特許第6852279号(P6852279)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 三洋電機株式会社の特許一覧

<>
  • 特許6852279-非水電解質二次電池 図000004
  • 特許6852279-非水電解質二次電池 図000005
  • 特許6852279-非水電解質二次電池 図000006
  • 特許6852279-非水電解質二次電池 図000007
  • 特許6852279-非水電解質二次電池 図000008
  • 特許6852279-非水電解質二次電池 図000009
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6852279
(24)【登録日】2021年3月15日
(45)【発行日】2021年3月31日
(54)【発明の名称】非水電解質二次電池
(51)【国際特許分類】
   H01M 50/531 20210101AFI20210322BHJP
【FI】
   H01M2/26 A
【請求項の数】7
【全頁数】11
(21)【出願番号】特願2016-89380(P2016-89380)
(22)【出願日】2016年4月27日
(65)【公開番号】特開2017-199552(P2017-199552A)
(43)【公開日】2017年11月2日
【審査請求日】2019年4月12日
(73)【特許権者】
【識別番号】000001889
【氏名又は名称】三洋電機株式会社
(74)【代理人】
【識別番号】100104732
【弁理士】
【氏名又は名称】徳田 佳昭
(74)【代理人】
【識別番号】100164035
【弁理士】
【氏名又は名称】村山 正人
(72)【発明者】
【氏名】吉田 聡司
(72)【発明者】
【氏名】衣笠 正純
(72)【発明者】
【氏名】福島 洋文
【審査官】 儀同 孝信
(56)【参考文献】
【文献】 特開2011−175913(JP,A)
【文献】 国際公開第2012/124255(WO,A1)
【文献】 特開2015−074012(JP,A)
【文献】 特開2014−072233(JP,A)
【文献】 特開2016−207412(JP,A)
【文献】 特開2006−100097(JP,A)
【文献】 特開2013−037807(JP,A)
【文献】 特開2009−231145(JP,A)
【文献】 国際公開第2011/016194(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H01M 50/531
(57)【特許請求の範囲】
【請求項1】
正極板と負極板がセパレータを介して巻回又は積層された電極体と、非水電解質と、前記電極体と前記非水電解質を収容する有底筒状の外装缶と、前記外装缶の開口部を封止する封口板とを備え、
前記負極板に接続された負極リードが少なくとも一つの銅層を含み、
前記負極リードが負極端子に溶接され、
前記負極リードと前記負極端子の間の溶接部の平面形状は線状であり、
前記負極リードと前記負極端子の当接面における前記溶接部の幅は0.05mm以上0.2mm以下であり、
前記負極端子が前記当接面の周囲を絶縁部材で囲まれた状態で前記封口板に固定されている、
非水電解質二次電池。
【請求項2】
前記溶接部が直線状である請求項1に記載の非水電解質二次電池。
【請求項3】
前記負極リードが銅の単層からなる請求項1又は2に記載の非水電解質二次電池。
【請求項4】
前記負極リードが銅層とニッケル層を積層したクラッド材からなる請求項1又は2に記載の非水電解質二次電池。
【請求項5】
前記ニッケル層はレーザーが照射される面に配置されている請求項4に記載の非水電解質二次電池。
【請求項6】
正極板と負極板がセパレータを介して巻回又は積層された電極体と、非水電解質と、前記電極体と前記非水電解質を収容する有底筒状の外装缶と、前記外装缶の開口部を封止する封口板とを備える非水電解質二次電池の製造方法であって、
前記負極板に接続された負極リードが少なくとも一つの銅層を含み、
前記負極リードと負極端子の当接面における幅が0.05mm以上0.2mm以下である線状の溶接部が形成されるように前記負極リードにレーザーを照射するステップを含み、
前記負極端子が前記当接面の周囲を絶縁部材で囲まれた状態で前記封口板に固定されている、
非水電解質二次電池の製造方法。
【請求項7】
前記レーザーとしてファイバーレーザーを用いる請求項6に記載の非水電解質二次電池の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は銅層を含む負極リードを用いた非水電解質二次電池に関する。
【背景技術】
【0002】
近年、スマートフォンやタブレットといった薄型の電子機器の高機能化に伴い、それらの駆動電源として用いられる非水電解質二次電池にも薄型化とともにさらなる高容量化が求められている。また、非水電解質二次電池は電動工具や電動アシスト自転車といった用途にも普及しており、高出力化も求められている。
【0003】
非水電解質二次電池に用いられる極板は、芯体としての金属箔上に活物質を含む合剤スラリーを塗布して作製され、極板の一部に合剤スラリーが塗布されていない芯体露出部が設けられる。その芯体露出部にリードが接続され、リードが極板と外部端子との間の電流経路を形成する。芯体には非水電解質中で正極又は負極の電位に曝されても安定に存在することのできる金属箔が用いられる。そのため、正極芯体にはアルミニウム箔が好ましく用いられ、負極芯体には銅箔が好ましく用いられる。
【0004】
角形の非水電解質二次電池では外装体としてアルミニウム製の有底角筒状の外装缶が用いられ、その封口板にはアルミニウム板が用いられる。封口板は外装缶の開口部にレーザー溶接で取り付けられる。正極板に接続された正極リードが封口板に接続されるため、封口板を正極端子として用いることができる。一方、負極端子は封口板に設けた開口にその周囲から絶縁した状態で取り付けられており、その負極端子に負極板に接続された負極リードが接続される。
【0005】
非水電解質二次電池の内部抵抗を低減するために、リードには電気抵抗の低い材料を用いることが好ましい。特許文献1は、負極リードが少なくとも銅又は銅合金を含む材料から構成される非水電解質二次電池を開示している。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2003−86166号公報
【特許文献2】国際公開第2010/016182号
【発明の概要】
【発明が解決しようとする課題】
【0007】
封口体に取り付けられた負極端子に負極リードを接続する方法として、レーザー溶接が一般的に用いられている。ところが銅はレーザーの反射率が高いため、銅製の負極リードにレーザーを照射しても負極リードが発熱しにくい。また銅は熱伝導性が高いため、レーザーの照射によって生じた熱がリード内を素早く拡散し、その熱が溶接相手の負極端子に効果的に伝わらない。特許文献1に記載されているように銅製の負極リードを用いることは非水電解質二次電池の内部抵抗の低減には効果的であるが、銅製の負極リードを用いた非水電解質二次電池には負極リードと負極端子の間の溶接強度や製造時の品質を確保することが難しいという課題がある。特許文献1ではこのような課題について何ら検討されていない。
【0008】
特許文献2には、正極端子としての封口板に正極リードを接続するための手段としてファイバーレーザーを用いることが提案されている。ファイバーレーザーを用いることで溶接時のスパッタの飛散が抑制されている。しかし、この溶接方法はアルミニウム同士の溶
接に関するものであり、その溶接方法をそのまま銅製の負極リードと負極端子の溶接に適用することはできない。
【0009】
本発明は上記に鑑みてなされたものであり、銅製の負極リードを用いながらも負極リードと負極端子の溶接強度や製造時の品質が優れた非水電解質二次電池を提供することを目的とする。
【課題を解決するための手段】
【0010】
上記課題を解決するために本発明の一態様に係る非水電解質二次電池は、正極板と負極板がセパレータを介して巻回又は積層された電極体と、非水電解質と、電極体と非水電解質を収容する有底筒状の外装缶と、外装缶の開口部を封止する封口板を有している。負極板に接続された負極リードが少なくとも一つの銅層を含み、負極リードが負極端子に溶接されている。負極リードと負極端子の間の溶接部の平面形状は線状であり、負極リードと負極端子の当接面における溶接部の幅は0.05mm以上0.2mm以下である。
【0011】
負極リードは銅の単層から構成されていてもよく、他の金属を主成分とする層と銅層を積層したクラッド材から構成されていてもよい。クラッド材としては、銅層とニッケル層を積層したものが好ましい。
【0012】
上記のような線状の溶接部を形成するために、ファイバーレーザーを用いて負極リードを負極端子に溶接することが好ましい。
【発明の効果】
【0013】
本発明の一態様によれば、銅を含む負極リードと負極端子の間の溶接強度を確保することができる。また、過剰なエネルギーのレーザーの照射による負極リードや負極端子などの損傷を抑えることができるため、量産時の非水電解質二次電池の不良の発生を低減して量産時の品質の向上に寄与することができる。
【図面の簡単な説明】
【0014】
図1】一実施形態に係るリードと外部端子の間の集電構造を示す概要図である。
図2】一実施形態に係る負極リードと負極端子の間の溶接部の平面図である。
図3】一実施形態に係る負極リードと負極端子の間の溶接部の断面図である。
図4】実験例4に係る負極リードと負極端子の間の溶接部の平面図である。
図5】溶接強度の測定方法を示す概要図である。
図6】実施例に係る非水電解質二次電池の斜視図である。
【発明を実施するための形態】
【0015】
以下、本発明を実施するための形態について説明するが、本発明は下記の実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々の変更が可能である。
【0016】
正極板は正極芯体上に正極活物質層を形成して作製することができる。正極板の一部に正極芯体露出部を設けることで、正極リード11を正極芯体露出部に接続することができる。
【0017】
正極芯体には非水電解質中で正極電位に曝されても安定に存在できる金属箔を用いることが好ましく、金属箔の構成材料としてアルミニウム及びアルミニウム合金が例示される。正極芯体露出部に接続される正極リード11にはアルミニウム又はアルミニウム合金を用いることが好ましい。正極リード11の正極芯体への接続方法は特に制限されないが、超音波溶接、抵抗溶接、及びレーザー溶接が例示される。
【0018】
正極活物質として、リチウムイオンを可逆的に吸蔵、放出することができる材料であれば適宜選択して使用することができる。例えば、LiMO(MはCo、Ni、及びMnの少なくとも1種)で表されるリチウム遷移金属複合酸化物、LiMn、及び、LiFePOなどを用いることができる。これらは単独で、又は2種以上を組み合わせて用いることができる。また、これらの正極活物質はジルコニウム、マグネシウム、アルミニウム、及びチタンの少なくとも1種を添加して、又は遷移金属元素と置換して用いることもできる。
【0019】
負極板は負極芯体上に負極活物質層を形成して作製することができる。負極板の一部に負極芯体露出部を設けることで、負極リード12を負極芯体露出部に接続することができる。
【0020】
負極芯体には非水電解質中で負極電位に曝されても安定に存在できる金属箔を用いることが好ましく、金属箔の構成材料として銅及び銅合金が例示される。負極芯体露出部に接続される負極リード12には少なくとも一つの銅層を含む金属材料を用いることが好ましい。負極リード12が銅層を含むことで負極リード12の電気抵抗が低減し、非水電解質二次電池の負荷特性などの電池特性が向上する。負極リード12は銅の単層から構成されていてもよく、他の金属を主成分とする層と銅層を積層したクラッド材から構成されていてもよい。クラッド材を構成する各層は負極リード12の厚み方向に積層されることが好ましい。クラッド材としては、銅層とニッケル層を積層したCu−Niクラッド材が好ましい。銅層とニッケル層には微量の他の成分が含まれていてもよく、他の成分の総含有量は1質量%以下であることが好ましい。負極リード12の接続方法は特に制限されないが、超音波溶接、抵抗溶接、及びレーザー溶接が例示される。
【0021】
負極活物質として、リチウムイオンを可逆的に吸蔵、放出することができる材料であれば適宜選択して使用することができる。例えば、人造黒鉛及び天然黒鉛などの炭素材料、並びにケイ素及び酸化ケイ素などのケイ素材料を用いることができる。これらは単独で、又は2種以上を組み合わせて用いることができる。
【0022】
電極体13は正極板と負極板をそれらの間にセパレータを介在させて円状に又は偏平状に巻回して作製することができる。円状に巻回して得られた電極体はプレスして偏平状の電極体に形成することもできる。また、正極板と負極板をそれらの間にセパレータを介在させて積層して作製した電極体を用いることもできる。
【0023】
セパレータとしては、ポリエチレン(PE)やポリプロピレン(PP)などのポリオレフィンを主成分とする微多孔膜を用いることができる。微多孔膜は1層単独で又は2層以上を積層して用いることができる。2層以上の積層セパレータにおいては、融点が低いポリエチレン(PE)を主成分とする層を中間層に、耐酸化性に優れたポリプロピレン(PP)を表面層とすることが好ましい。さらに、セパレータには酸化アルミニウム(Al)、酸化チタン(TiO)及び酸化ケイ素(SiO)のような無機粒子を添加することができる。このような無機粒子はセパレータ中に担持させることができ、セパレータ表面に結着剤とともに塗布することもできる。
【0024】
電極体13を収容する外装缶には円筒形及び角形のいずれの形状の外装缶も用いることができる。外装缶の構成材料として、アルミニウム、鉄、ニッケル、及びステンレスが例示される。外装缶が正極電位に曝される場合はアルミニウム又はアルミニウム合金を用いることが好ましい。
【0025】
図1は、一実施形態に係るリードと外部端子の間の集電構造を示す概要図である。封口板が正極端子として機能し、負極端子15は周囲を絶縁部材16で囲まれた状態で封口板
14に設けられた開口に固定されている。正極リード11は正極端子としての封口板14に接続され、負極リード12は封口板14に設けられた負極端子15に接続されている。封口板にはアルミニウム又はアルミニウム合金を用いることが好ましく、負極端子15には鉄、ニッケル、又はステンレスを用いることが好ましい。
【0026】
正極リード11と正極端子としての封口板14の接続方法として、レーザー溶接を用いることができる。また、負極リード12と負極端子15の接続方法にもレーザー溶接を用いることができる。ただし、銅はレーザーの反射率や熱伝導性が高いためレーザーによる溶接が難しい。次に、負極リード12と負極端子15との接続方法について説明する。
【0027】
レーザーで負極リード12を負極端子15に溶接する場合、レーザーの焦点は狭い範囲に絞ることが好ましい。これにより、レーザーの反射によるエネルギー効率の低下が防止されるだけでなく、溶接相手の負極端子15へ熱が効率的に伝えられる。さらに、負極リード12と負極端子15の間の溶接強度が確保されるとともに、レーザーの照射による負極リード12や負極端子15などの損傷が抑えられる。そのような効果を得るために、溶接部18の幅は0.05mm以上0.2mm以下であることが好ましい。ただし、レーザーの焦点を狭い範囲に絞ると溶接部18の面積が小さくなり、十分な溶接強度を確保することができない。そこで、レーザーを負極リード12上で掃引して線状の溶接部18が形成される。
【0028】
本開示において溶接部18とは、レーザーの照射熱によってそれらが溶融し、凝固した溶融痕に対応する部分を意味する。溶接部18の平面形状は負極リード12上からの平面視で確認することができる。図2に示すように、複数の直線状の溶接部18を形成することが好ましい、溶接部18の数は特に限定されず、溶接部18の平面形状は曲線状としてもよい。
【0029】
溶接部18は図3に示すように、負極リード12の表面だけでなく負極リード12や負極端子15の厚み方向にも形成されている。本開示における溶接部18の幅は、負極リード12と負極端子15の当接面に形成された溶接部18の幅Wを測定して決定される。溶接部18の長さ方向の全範囲において、溶接部18の幅が0.05mm以上0.2mm以下であることが好ましいが、溶接部18の長さ方向の両端部などの一部領域において溶接部18の幅が0.05mm未満に又は0.2mmより大きくなることは許容される。その一部領域の長さは溶接部18の長さの10%以下であることが好ましい。溶接部18の幅Wは、溶接部18の断面を光学顕微鏡で観察することにより測定することができる。
【0030】
上記のような線状の溶接部18を形成するためにファイバーレーザーを用いることが好ましい。ファイバーレーザーを用いる場合は、レーザーの出力及び掃引速度はそれぞれ50〜250W及び50〜1000mm/secの範囲内で適宜調整される。
【0031】
封口板14は外装缶の開口部にレーザーで溶接される。封口板14には注液孔17が設けられており、注液孔17から所定量の非水電解質を電池内部に注液することができる。非水電解質を注液した後は、注液孔17を封止して電池内部が密閉される。
【0032】
非水電解質に用いることができる非水溶媒として、環状炭酸エステル、鎖状炭酸エステル、環状カルボン酸エステル及び鎖状カルボン酸エステルを用いることができ、これらは2種以上を混合して用いることが好ましい。環状炭酸エステルとしては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)及びブチレンカーボネート(BC)が例示される。また、フルオロエチレンカーボネート(FEC)のように、水素の一部をフッ素で置換した環状炭酸エステルを用いることもできる。鎖状炭酸エステルとしては、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボ
ネート(DEC)及びメチルプロピルカーボネート(MPC)などが例示される。環状カルボン酸エステルとしてはγ−ブチロラクトン(γ−BL)及びγ−バレロラクトン(γ−VL)が例示され、鎖状カルボン酸エステルとしてはピバリン酸メチル、ピバリン酸エチル、メチルイソブチレート及びメチルプロピオネートが例示される。
【0033】
非水電解質の電解質塩に用いることができるリチウム塩として、LiPF、LiBF、LiCFSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)、LiC(CFSO、LiC(CSO、LiAsF、LiClO、Li10Cl10及びLi12Cl12が例示される。これらの中でもLiPFが特に好ましく、非水電解質中の濃度は0.5〜2.0mol/Lであることが好ましい。LiPFにLiBFなど他のリチウム塩を混合することもできる。
【0034】
以下、負極リード12の材質や溶接条件を変更して封口板14に固定された負極端子15に負極リード12を溶接した実験例とそれらの溶接強度の測定結果について説明する。
【0035】
(実験例1)
長さが40mm、幅が3mm、厚みが0.1mmの銅製の負極リード12をファイバーレーザーで封口板14に固定された負極端子15に溶接した。図2に示すように、平面形状が直線状である4つの溶接部18を形成した。レーザーの出力及び掃引速度はそれぞれ120W及び50mm/secとした。負極端子15にはニッケルめっきされた鉄を用いた。溶接部18の寸法は長さが1.5mm、幅が0.1mmであった。
【0036】
(実験例2)
実験例2では銅層とニッケル層が積層した二層のCu−Niクラッド材を負極リード12に用いた。銅層とニッケル層の厚みの比は1:2とした。その負極リード12をファイバーレーザーで負極端子15に溶接した。銅層はレーザーが照射される面に、ニッケル層は負極端子15に当接する面に配置した。レーザーの出力及び掃引速度は実験例1と同じ条件を用いた。
【0037】
(実験例3)
Cu−Niクラッド材のニッケル層をレーザーが照射される面に配置し、レーザーの出力及び掃引速度をそれぞれ80W及び300mm/secとしたこと以外は実験例2と同様にして負極リード12を負極端子15に溶接した。実験例2に比べてレーザーの出力を小さくしているのは、銅に比べてニッケルのレーザーの反射率が低いため小さな出力で負極リード12を加熱することができるためである。
【0038】
(実験例4)
実験例3と同様にCu−Niクラッド材のニッケル層をレーザーが照射される面に配置した。そして、ファイバーレーザーに代えてYAGレーザーで負極リード12を負極端子15に溶接した。溶接部48の形状は図4に示すように2つの点状とし、レーザーの出力を調整することでそれらの直径を0.6mmとした。
【0039】
(実験例5)
溶接部18の幅が0.2mmとなるようにレーザーの出力を130Wに変更したこと以外は実験例1と同様にして銅製の負極リード12を負極端子15に溶接した。
【0040】
(実験例6)
溶接部18の幅が0.3mmとなるようにレーザーの出力を140Wに変更したこと以外は実験例1と同様にして銅製の負極リード12を負極端子15に溶接した。
【0041】
(溶接強度の測定)
実験例1〜5の負極リードが溶接された各封口板を図5に示すように測定器の第1チャック51で固定し、負極端子に対して垂直方向に折り曲げられた負極リードを第2チャック52で固定した。負極リードを固定した第2チャック52を徐々に下方に引っ張って負極リードと負極端子の間の溶接部が破断したときの荷重を溶接強度として測定した。実験例1〜10の各10個の封口体について溶接強度を測定し、算出したそれぞれの平均値を表1にまとめて示す。
【0042】
【表1】
【0043】
実験例1及び5では、いずれも銅製の負極リードが用いられているにも関わらず負極リードと負極端子がレーザーによる損傷を受けることなく互いに十分な強度で溶接されていた。一方、溶接部の幅を0.3mmとした実験例6では、負極リードに穴が開くなどの損傷が見られたため、溶接強度の測定は行わなかった。これらの結果から、負極リードと負極端子の間の溶接部の幅を0.2mm以下とすることが好ましいことがわかる。また、負極リードと負極端子の間の溶接強度を十分に確保するために、溶接部の幅は0.05mm以上であることが好ましい。
【0044】
Cu−Niクラッド材からなる負極リードを用いた実験例2及び3においても、負極リードや負極端子がレーザーの照射による損傷を受けることなく負極リードを負極端子に溶接することができた。Cu−Niクラッド材を負極リードに用いる場合、レーザーの照射面に銅層及びニッケル層のいずれかが配置される。ニッケルのレーザーの反射率は銅よりも小さいため、ニッケル層をレーザーの照射面に配置する場合はレーザーの出力を低減することができる。実験例4の溶接強度は実験例3に比べて低くなっているが、レーザーの出力を上げることで溶接強度を高めることが可能である。Cu−Niクラッド材を用いる場合、ニッケル層をレーザーの照射面に配置することで負極リードと負極端子の溶接条件の自由度が高まる。そのため、ニッケル層はレーザーの照射面に配置することが好ましい。
【0045】
実験例4は実験例3と同様に、負極リードにCu−Niクラッド材を用い、ニッケル層をレーザーの照射面に配置している。そのため、点状の溶接部が形成されるように負極リードを負極端子に溶接することができる。しかし、実験例4の溶接強度は実施例3に比べて小さい。また、表1には記載していないが、実験例4の溶接強度のバラツキ(最大値と最小値の差)が3.6Nに対して、実験例3の溶接強度のバラツキは1.4Nと非常に小さくなっている。つまり、溶接部の平面形状を線状とし、溶接部の幅を0.2mm以下とすることでレーザーの照射熱が銅層を介して負極端子へ効果的に伝えられていることが推察される。このように、Cu−Niクラッド材のニッケル層をレーザーの照射面に配置する場合においても本発明は効果的である。
【実施例】
【0046】
(正極板の作製)
正極活物質としてのコバルト酸リチウムと、導電剤としてのアセチレンブラックと、結着剤としてのポリフッ化ビニリデン(PVDF)を、95:2.5:2.5の質量比で分散媒としてのN−メチルピロリドン(NMP)中で混練して正極合剤スラリーを作製した。その正極合剤スラリーを厚さ13μmのアルミニウム製の正極芯体の両面にドクターブレード法により間欠塗布し、乾燥して正極合剤層を形成した。その正極合剤層をローラーで所定厚みに圧縮し、圧縮後の極板を所定寸法に切断して正極板を作製した。正極板の一部に設けられた正極芯体露出部にアルミニウム製の正極リード11を超音波溶接で溶接した。
【0047】
(負極板の作製)
負極活物質としての人造黒鉛と、増粘剤としてのカルボキシメチルセルロース(CMC)と、結着剤としてのスチレンブタジエンゴム(SBR)を、98:1:1の質量比で分散媒としての水中で混練して負極合剤スラリーを作製した。その負極合剤スラリーを厚さ8μmの銅製の負極芯体の両面にドクターブレード法により間欠塗布し、乾燥して負極合剤層を形成した。その負極合剤層をローラーで所定厚みに圧縮し、圧縮後の極板を所定寸法に切断して負極板を作製した。負極板の一部に設けられた負極芯体露出部に銅製の負極リード12を超音波溶接で溶接した。
【0048】
(非水電解質の調製)
エチレンカーボネート、エチルメチルカーボネート、及びジエチルカーボネートを40:30:30の体積比で混合して非水溶媒を調製した。その非水溶媒に電解質塩としてのヘキサフルオロリン酸リチウム(LiPF)を1mol/Lの濃度になるように溶解して非水電解質を調製した。
【0049】
(電極体の作製)
正極板と負極板をポリエチレン微多孔膜からなるセパレータを介して巻回し、その巻回電極体を押しつぶして偏平状の電極体13を作製した。正極リード11及び負極リード12は巻回電極体から同一方向へ導出するように配置した。
【0050】
(非水電解質二次電池の作製)
電極体13をアルミニウム製の有底筒状の外装缶へ挿入した。電極体から導出する正極リード11は正極端子としての封口板14にレーザーで溶接した。負極リード12は絶縁部材16に囲まれた状態で封口板14に固定された負極端子15にレーザーで溶接した。負極リード12の負極端子15への溶接条件は実験例1と同じ条件を用いた。次に、封口板14を外装缶の開口部にレーザーで溶接し、封口板14に設けられた注液孔17から非水電解質を注液した。最後に、注液孔17をアルミニウム板で封止することにより実施例に係る非水電解質二次電池10を作製した。
【0051】
(比較例)
ニッケル製の負極リードを用い、負極リードと負極端子の溶接に実験例4と同じ条件を用いたこと以外は実施例と同様にして比較例に係る非水電解質二次電池を作製した。
【0052】
(負荷特性の測定)
実施例及び比較例の各電池を1It(=2900mA)の定電流で電池電圧が4.2Vになるまで充電し、さらに4.2Vの定電圧で電流が0.02It(=58mA)になるまで充電した。そして、各電池を1It(=2900mA)の定電流で電池電圧が2.75Vになるまで放電して1It放電容量を測定した。次に、各電池を上記の充電条件と同じ条件で充電した後、各電池を2It(=5800mA)の定電流で電池電圧が2.75Vになるまで放電して2It放電容量を測定した。1It放電容量に対する2It放電容
量の百分率を負荷特性として算出した。
【0053】
(外部短絡試験)
実施例及び比較例の各電池を1It(=2900mA)の定電流で電池電圧が4.2Vになるまで充電し、さらに4.2Vの定電圧で電流が0.02It(=58mA)になるまで充電した。充電後の各電池を55℃の環境下で30mΩの抵抗で短絡させて、電池の発火の有無を確認した。試験には実施例及び比較例ともに5セルの電池を用いた。
【0054】
【表2】
【0055】
表2に示すように、銅製の負極リードを用いることによって負荷特性が向上することがわかる。また、銅製の負極リードを用いることによって外部短絡時の安全性も向上しているが、この効果は高容量の非水電解質二次電池に発揮されやすい。
【産業上の利用可能性】
【0056】
本発明は、銅を含む負極リードが十分な溶接強度で負極端子に溶接されるとともに製造時の品質に優れた非水電解質二次電池を提供することができる。そのため、高出力が求められる用途に本発明は好適であり、本発明は非水電解質二次電池の用途の拡大に寄与することができる。
【符号の説明】
【0057】
10 非水電解質二次電池
11 正極リード
12 負極リード
13 電極体
14 封口板
15 負極端子
18 溶接部
図1
図2
図3
図4
図5
図6