【実施例】
【0034】
(1)ポリエステルの組成
ポリエステル樹脂およびフィルムをヘキサフルオロイソプロパノール(HFIP)に溶解し、1H−NMRおよび13C−NMRを用いて各モノマー残基成分や副生ジエチレングリコールについて含有量を定量することができる。積層フィルムの場合は、積層厚みに応じて、フィルムの各層を削り取ることで、各層単体を構成する成分を採取し、評価することができる。なお、本発明のフィルムについては、フィルム製造時の混合比率から計算により、組成を算出した。
【0035】
(2)層厚み
フィルムをエポキシ樹脂に包埋し、フィルム断面をミクロトームで切り出した。該断面を透過型電子顕微鏡(日立製作所製TEM H7100)で5000倍の倍率で観察し、各層の厚みを求めた。任意に採取した5サンプルについて上記測定を実施し、その数平均を「層厚み」とした。
【0036】
(3)150℃におけるフィルムMD方向の10%伸張時応力
フィルムをMD方向に長さ150mm×幅10mmの矩形に切り出したサンプルとした。引張試験機(オリエンテック製テンシロンUCT−100)を用いて、初期張力チャック間距離50mmとし、引張速度を300mm/分としてフィルムのMD方向に引張試験を行った。測定は予め150℃に設定した恒温槽中にフィルムサンプルをセットし、90秒間の予熱の後で引張試験を行った。サンプルが10%伸張したとき(チャック間距離が55mmとなったとき)のフィルムにかかる荷重を読み取り、試験前の試料の断面積(フィルム厚み×10mm)で除した値を10%伸張時応力とした。任意に採取した5サンプルについて上記測定を実施し、その数平均を「150℃におけるフィルムMD方向の10%伸張時応力」とした。
【0037】
(4)フィルムMD方向の熱収縮率
フィルムをMD方向およびTD方向にそれぞれ長さ150mm×幅10mmの矩形に切り出しサンプルとした。サンプルに100mmの間隔(中央部から両端に50mmの位置)で標線を描き、3gの錘を吊るして所定温度(150℃)に加熱した熱風オーブン内に30分間設置し加熱処理を行った。熱処理後の標線間距離を測定し、加熱前後の標線間距離の変化から下記式により熱収縮率を算出した。任意に採取した5サンプルについて上記測定を実施し、その数平均を「フィルムMD方向の熱収縮率」とした。
熱収縮率(%)={(加熱処理前の標線間距離)−(加熱処理後の標線間距離)}/(加熱処理前の標線間距離)×100。
【0038】
(5)表層(A)側から測定したAFM弾性率
離型フィルムの離型層表面について、AFM(Burker Corporation製 DimensionIcon)を用い、PeakForceQNMモードにて測定を実施し、得られたフォースカーブから付属の解析ソフト「NanoScopeAnalysis V1.40」を用いて、JKR接触理論に基づいた解析を行い、弾性率分布を求めた。
【0039】
具体的にはPeakForceQNMモードのマニュアルに従い、カンチレバーの反り感度、バネ定数、先端曲率の構成を行った後、下記の条件にて測定を実施し、得られたDMT Modulusチャンネルのデータを表面の弾性率として採用した。なお、バネ定数および先端曲率は個々のカンチレバーによってバラつきを有するが、測定に影響しない範囲として、バネ定数0.3(N/m)以上0.5(N/m)以下、先端曲率半径15(nm)以下の条件を満たすカンチレバーを採用し、測定に使用した。
【0040】
測定条件は下記に示す。
測定装置 : Burker Corporation製原子間力顕微鏡(AFM)
測定モード : PeakForceQNM(フォースカーブ法)
カンチレバー: ブルカーAXS社製SCANASYST-AIR
(材質:Si、バネ定数K:0.4(N/m)、先端曲率半径R:2(nm))
測定雰囲気 : 23℃・大気中
測定範囲 : 3(μm)四方
分解能 : 512×512
カンチレバー移動速度: 10(μm/s)
最大押し込み荷重 : 10(nN)
次いで得られたDMT Modulusチャンネルのデータを解析ソフト「NanoScopeAnalysis V1.40」にて解析し、Roughnessにて処理することにより得られた、ResultsタブのImage Raw Meanの値を、離型層表面の弾性率とした。更に得られた弾性率のヒストグラムの各階級値および観測頻度を表計算ソフト「Microsoft Office Excel 2010」に取り込み、STDEVP関数を用いることで、弾性率分布の標準偏差を算出した。任意に採取した5サンプルについて上記測定を実施し、その数平均を「表層(A)側から測定したAFM弾性率」とした。
【0041】
(6)結晶融解前の微小吸熱ピーク温度(Tmeta)
示差走査熱量計(セイコー電子工業製、RDC220)を用い、JIS K7121−1987、JIS K7122−1987に準拠して測定および、解析を行った。ポリエステルフィルムを5mg、サンプルに用い、25℃から20℃/分で300℃まで昇温した際の結晶融解ピークの前に現れる微小の吸熱ピーク温度をTmetaとして読み取った。任意に採取した5サンプルについて上記測定を実施し、その数平均を「結晶融解前の微小吸熱ピーク温度」とした。
【0042】
(7)寸法安定性
1000mm幅のポリエステルフィルム表面に、ポリアリレート/MEK分散体をダイコーターにて塗工・乾燥を行った。(乾燥温度:150℃、乾燥時間:1分、巻出張力:200N/m、巻取張力:100N/m)。乾燥後のポリエステルフィルムの幅を測定し、下記の基準で評価を行った(乾燥後のポリアリレート厚みは25μm)。
A:幅縮みが10mm未満(乾燥後のポリエステルフィルムの幅が990mm以上)であった。
B:幅縮みが10mm以上15mm未満(乾燥後のポリエステルフィルムの幅が985mm以上)であった。
C:幅縮みが15mm以上(乾燥後のポリエステルフィルムの幅が985mm未満)であった。
【0043】
なお、幅縮みの評価は、塗工・乾燥後のフィルムの任意の10箇所を選定して幅測定を行い、その任意10箇所のフィルム幅平均値を幅縮み量として採用した。
【0044】
(8)成型加工性
(7)で得られたポリアリレートが塗布されたポリエステルフィルムを、熱風オーブンに投入し、長手方向に一軸延伸を行った(オーブン温度:150℃、幅方向フリー)。フィルムの延伸性(成型加工性)について、下記の基準で評価を行った。
A:延伸張力1200N/m未満で、1.1倍延伸が可能であった。
B:延伸張力1200N/m以上1500N/m未満で、1.1倍延伸が可能であった。
C:延伸張力1500N/mで1.1倍延伸ができなかった。
【0045】
(9)キズ評価
新東科学社製摩擦磨耗試験機HEIDONを用いて、磨耗材を装着せずに接触面積15mmφ、荷重1.13g/mm
2、速度30mm/min、ストローク長60mmにて摩擦試験と実施した。
次いで、キーエンス社製レーザー顕微鏡VK−9700を用いて、摩擦試験にて得られたサンプルを観察し、深さが50nm以上、長さ200nmで検出される部分をキズとし、同一のキズを5回測定し、測定された深さの数平均を算出した。任意に採取した5つのキズについて上記測定を実施し、数平均を「キズ深さ」とした。また、下記判定を実施し、B級以上を合格した。
A:キズ深さが100nm未満である
B:キズ深さが100nm以上200nm未満である
C:キズ深さが200nm以上である。
【0046】
(ポリエステルの製造)
製膜に供したポリエステル樹脂および粒子マスターは以下のように準備した。
【0047】
(ポリエステルA)
ジカルボン酸成分としてテレフタル酸成分が100モル%、グリコール成分としてエチレングリコール成分が100モル%であるポリエチレンテレフタレート樹脂。
【0048】
(ポリエステルB)
1,4−シクロヘキサンジメタノールがグリコール成分に対し33モル%共重合された共重合ポリエステル(イーストマン・ケミカル社製 GN001)を、シクロヘキサンジメタノール共重合ポリエステルとして使用した。
【0049】
(ポリエステルC)
ジカルボン酸成分としてテレフタル酸成分が100モル%、グリコール成分としてエチレングリコール成分が70モル%、ネオペンチルグリコール成分が30モル%であるネオペンチルグリコール共重合ポリエチレンテレフタレート樹脂。
【0050】
(ポリエステルD)
ジカルボン酸成分としてテレフタル酸成分が82.5モル%、イソフタル酸成分が17.5モル%、グリコール成分としてエチレングリコール成分が100モル%であるイソフタル酸共重合ポリエチレンテレフタレート樹脂。
【0051】
(粒子マスターA)
ポリエステルA中に数平均粒子径1.1μmの炭酸カルシウム粒子を粒子濃度2質量%で含有したポリエステルAの粒子マスター。
(粒子マスターB)
ポリエステルA中に数平均粒子径0.8μmの架橋ポリスチレン粒子を粒子濃度2質量%で含有したポリエステルAの粒子マスター。
(粒子マスターC)
ポリエステルA中に数平均粒子径250nmのδ―アルミナを粒子濃度2質量%で含有したポリエステルAの粒子マスター。
【0052】
(実施例1〜5)
組成を表の通りとして、原料をそれぞれ酸素濃度を0.2体積%とした別々のベント同方向二軸押出機に供給し、A層押出機シリンダー温度を270℃、B層押出機シリンダー温度を277℃で溶融し、A層とB層合流後の短管温度を277℃、口金温度を280℃で、Tダイより25℃に温度制御した冷却ドラム上にシート状に吐出した。その際、直径0.1mmのワイヤー状電極を使用して静電印加し、冷却ドラムに密着させA層/B層/A層からなる3層未延伸フィルムを得た。次いで、長手方向への延伸前に加熱ロールにてフィルム温度を上昇させ、延伸温度85℃で長手方向に3.1倍延伸し、すぐに40℃に制御した金属ロールで冷却した。
【0053】
次いでテンター式横延伸機にて延伸前半温度95℃、延伸中盤温度105℃、延伸後半温度140℃で幅方向に3.7倍延伸し、そのままテンター内にて、熱処理前半温度200℃、熱処理中盤温度225℃で熱処理を行った。このとき、熱処理前半で幅方向に5%微延伸を行い、さらに熱処理中盤で幅方向に3%微延伸を行いながら熱処理を施した。その後、熱処理後半温度180℃で、幅方向に3%のリラックスを掛けながら熱処理を行い、フィルム厚み50μmの積層フィルムを得た。
【0054】
(比較例1〜4)
組成を表の通りに変更し、実施例1−5と同様にして厚み50μmの積層フィルムを得た。
【0055】
【表1】