【実施例】
【0076】
以下に、実施例および比較例などを示し、本発明をより具体的に説明する。なお、本発明は、これらの実施例によって限定されるものではない。
【0077】
(実施例1)
以下のとおり、実施例1のAl含有シリコン材料及びリチウムイオン二次電池を製造した。
【0078】
a)工程
Ca、Al及びSiを炭素坩堝に秤量した。Ca及びSiの元素組成比は1:2であり、Alの添加量はCa、Al及びSiの全体の質量に対して1%とした。アルゴンガス雰囲気下の高周波誘導加熱装置にて、炭素坩堝を1300℃付近で加熱してCa、Al及びSiを含む溶湯とした。前記溶湯を所定の鋳型に注湯することで冷却して固体とした。当該固体を粉砕して粉末状にした後に、b)工程に供した。
【0079】
b)工程
窒素ガス雰囲気下にて、0℃の17wt%塩酸に、a)工程で得られた粉末状の固体を加え、撹拌した。反応液を濾過し、残渣を蒸留水及びメタノールで洗浄し、さらに、室温で減圧乾燥してAl含有シリコン材料の前駆体を得た。
【0080】
c)工程
Al含有シリコン材料の前駆体を、窒素ガス雰囲気下、900℃で1時間加熱して、実施例1のAl含有シリコン材料を製造した。
【0081】
実施例1のAl含有シリコン材料を用いて、以下のとおり、実施例1の負極及び実施例1のリチウムイオン二次電池を製造した。
【0082】
重量平均分子量80万のポリアクリル酸をN−メチル−2−ピロリドンに溶解して、ポリアクリル酸が10質量%で含有されるポリアクリル酸溶液を製造した。また、4,4’−ジアミノジフェニルメタン0.2g(1.0mmol)を0.4mLのN−メチル−2−ピロリドンに溶解して、4,4’−ジアミノジフェニルメタン溶液を製造した。撹拌条件下、ポリアクリル酸溶液7mL(アクリル酸モノマー換算で、9.5mmolに該当する。)に、4,4’−ジアミノジフェニルメタン溶液の全量を滴下して、得られた混合物を室温で30分間撹拌した。その後、ディーンスターク装置を用いて、混合物を130℃で3時間撹拌して脱水反応を進行させることで、結着剤溶液を製造した。
【0083】
負極活物質として実施例1のAl含有シリコン材料72.5質量部、導電助剤としてアセチレンブラック13.5質量部、結着剤として固形分が14質量部となる量の上記結着剤溶液、及び、適量のN−メチル−2−ピロリドンを混合して、スラリーを製造した。負極用集電体として銅箔を準備した。この銅箔の表面に、ドクターブレードを用いて、上記スラリーを膜状に塗布した。スラリーが塗布された銅箔を80℃、15分間乾燥することで、N−メチル−2−ピロリドンを除去した。その後、プレスし、真空ポンプによる減圧雰囲気で180℃、30分加熱することで、負極活物質層が形成された実施例1の負極を製造した。
【0084】
正極活物質としてLiNi
82/100Co
15/100Al
3/100O
2を96質量部、導電助剤としてアセチレンブラック2質量部、結着剤としてポリフッ化ビニリデン2質量部、及び適量のN−メチル−2−ピロリドンを混合して、スラリーを製造した。正極用集電体としてアルミニウム箔を準備した。このアルミニウム箔の表面に、ドクターブレードを用いて上記スラリーが膜状になるように塗布した。スラリーが塗布されたアルミニウム箔を80℃で20分間乾燥することで、N−メチル−2−ピロリドンを除去した。その後、プレスし、真空ポンプによる減圧雰囲気で120℃、6時間加熱することで、正極活物質層が集電体の表面に形成された正極を製造した。
【0085】
セパレータとして、ポリエチレン製多孔質膜を準備した。また、フルオロエチレンカーボネート及びエチルメチルカーボネートを体積比19:81で混合した混合溶媒に、LiPF
6を濃度2mol/Lで溶解した溶液を、電解液とした。
【0086】
実施例1の負極、セパレータ、正極の順に積層して、積層体とした。この積層体及び電解液をラミネートフィルム製の袋に収容して、袋を密閉し、実施例1のリチウムイオン二次電池を製造した。
【0087】
(比較例1)
a)工程において、Alを添加しなかったこと以外は、実施例1と同様の方法で、比較例1のシリコン材料、比較例1の負極、比較例1のリチウムイオン二次電池を製造した。
【0088】
(評価例1)
誘導結合プラズマ発光分析装置(ICP−AES)を用いて、実施例1のAl含有シリコン材料と、比較例1のシリコン材料の元素分析を行った。元素分析の結果、実施例1のAl含有シリコン材料におけるAl質量%は0.25%、Fe質量%は0%であり、比較例1のシリコン材料におけるAl質量%は0%、Fe質量%は0%であった。
【0089】
(評価例2)
25℃の恒温層中で、実施例1のリチウムイオン二次電池をSOC(State of Charge)15%に調整した。そして、1Cレートの一定電流で、当該リチウムイオン二次電池を10秒間放電させた。放電前後の電圧の変化量を、電流値で除して、抵抗を算出した。比較例1のリチウムイオン二次電池についても同様の試験を行った。
実施例1のリチウムイオン二次電池の抵抗は3.3Ωであり、比較例1のリチウムイオン二次電池の抵抗は3.6Ωであった。Al含有シリコン材料を用いることで、リチウムイオン二次電池の抵抗が低下することが裏付けられた。
【0090】
(実施例2)
以下のとおり、実施例2のAl含有シリコン材料、負極及びリチウムイオン二次電池を製造した。
【0091】
a)工程
Ca、Al及びSiを炭素坩堝に秤量した。Ca及びSiの元素組成比は1:2であり、Alの添加量はCa、Al及びSiの全体の質量に対して1%とした。アルゴンガス雰囲気下の高周波誘導加熱装置にて、炭素坩堝を1300℃付近で加熱してCa、Al及びSiを含む溶湯とした。前記溶湯を所定の鋳型に注湯して冷却して固体とした。当該固体を粉砕して粉末状にした後に、b)工程に供した。
【0092】
b)工程
窒素ガス雰囲気下にて、0℃の17wt%塩酸に、a)工程で得られた粉末状の固体を加え、撹拌した。反応液を濾過し、残渣を蒸留水及びメタノールで洗浄し、さらに、室温で減圧乾燥してAl含有シリコン材料の前駆体を得た。
【0093】
c)工程
Al含有シリコン材料の前駆体を、窒素ガス雰囲気下、900℃で1時間加熱して、実施例2のAl含有シリコン材料を製造した。
【0094】
実施例2のAl含有シリコン材料を用いて、以下のとおり、実施例2の負極及び実施例2のリチウムイオン二次電池を製造した。
【0095】
重量平均分子量80万のポリアクリル酸をN−メチル−2−ピロリドンに溶解して、ポリアクリル酸が10質量%で含有されるポリアクリル酸溶液を製造した。また、4,4’−ジアミノジフェニルメタン0.2g(1.0mmol)を0.4mLのN−メチル−2−ピロリドンに溶解して、4,4’−ジアミノジフェニルメタン溶液を製造した。撹拌条件下、ポリアクリル酸溶液7mL(アクリル酸モノマー換算で、9.5mmolに該当する。)に、4,4’−ジアミノジフェニルメタン溶液の全量を滴下して、得られた混合物を室温で30分間撹拌した。その後、ディーンスターク装置を用いて、混合物を130℃で3時間撹拌して脱水反応を進行させることで、結着剤溶液を製造した。
【0096】
負極活物質として実施例2のAl含有シリコン材料72.5質量部、導電助剤としてアセチレンブラック13.5質量部、結着剤として固形分が14質量部となる量の上記結着剤溶液、及び、適量のN−メチル−2−ピロリドンを混合して、スラリーを製造した。負極用集電体として銅箔を準備した。この銅箔の表面に、ドクターブレードを用いて、上記スラリーを膜状に塗布した。スラリーが塗布された銅箔を80℃、15分間乾燥することで、N−メチル−2−ピロリドンを除去した。その後、プレスし、真空ポンプによる減圧雰囲気で180℃、30分加熱することで、負極活物質層が形成された実施例2の負極を製造した。
【0097】
実施例2の負極を径11mmに裁断し、評価極とした。厚さ500μmの金属リチウム箔を径13mmに裁断し対極とした。セパレータとしてガラスフィルター(ヘキストセラニーズ社)及び単層ポリプロピレンであるcelgard2400(ポリポア株式会社)を準備した。また、フルオロエチレンカーボネート3体積部、エチルメチルカーボネート3体積部及びジエチルカーボネート4体積部を混合した溶媒にLiPF
6を1mol/Lで溶解した電解液を準備した。対極、ガラスフィルター、celgard2400、評価極の順に、2種のセパレータを対極と評価極で挟持し電極体とした。この電極体をコイン型電池ケースCR2032(宝泉株式会社)に収容し、さらに電解液を注入して、コイン型電池を得た。これを実施例2のリチウムイオン二次電池とした。
【0098】
(実施例3)
製造スケールを大きくした点、及び、c)工程の後に以下の炭素被覆工程を加えて、炭素被覆されたAl含有シリコン材料を実施例3のAl含有シリコン材料とし、これを負極活物質として用いた点以外は、実施例2と同様の方法で、実施例3のAl含有シリコン材料、負極及びリチウムイオン二次電池を製造した。
【0099】
・炭素被覆工程
c)工程を経たAl含有シリコン材料をロータリーキルン型の反応器に入れ、プロパン−アルゴン混合ガスの通気下にて880℃、滞留時間60分間の条件で熱CVDを行い、炭素被覆されたAl含有シリコン材料を得た。
【0100】
(実施例4)
不純物としてAl及びFeを含有する粉末状のCaSi
2を準備した。ICP−AESを用いて当該CaSi
2の元素分析を行ったところ、Ca:38質量%、Si:57質量%、Fe:4質量%、Al:1質量%であった。
当該CaSi
2を用いてb)工程以下を実施した以外は、実施例3と同様の方法で、実施例4のAl含有シリコン材料、負極及びリチウムイオン二次電池を製造した。
【0101】
(比較例2)
a)工程において、Alを添加しなかったこと以外は、実施例2と同様の方法で、比較例2のシリコン材料、負極及びリチウムイオン二次電池を製造した。
【0102】
(比較例3)
a)工程において、Alを添加せず、Feを添加したこと以外は、実施例2と同様の方法で、比較例3のシリコン材料、負極及びリチウムイオン二次電池を製造した。
なお、a)工程のFeは、Ca、Fe及びSiの全体の質量に対して4%となる量で添加した。
【0103】
(評価例3)
蛍光X線分析装置(XRF)を用いて、実施例2〜実施例4のAl含有シリコン材料と、比較例2及び比較例3のシリコン材料の元素分析を行った。また、酸素・窒素・水素分析装置を用いて、実施例2〜実施例4のAl含有シリコン材料と、比較例2及び比較例3のシリコン材料に対して、酸素を対象とした元素分析を行った。さらに、炭素・硫黄分析装置を用いて、炭素被覆された実施例3及び実施例4のAl含有シリコン材料に対して、炭素を対象とした元素分析を行った。
【0104】
これらの元素分析の結果を、質量%として、表1に示す。実施例2、実施例3、比較例2に若干量のFeが存在するのは、原料の金属にFeが不純物として含まれていたためである。また、すべてのシリコン材料に含まれているO、Ca及びClは、製造で使用した溶媒(水)、原料、酸のアニオンなどに由来する。
【0105】
【表1】
【0106】
(評価例4)
粉末X線回折装置にて、実施例2のAl含有シリコン材料のX線回折を測定した。その結果、実施例2のAl含有シリコン材料のX線回折チャートから、シリコン結晶子に由来するピークが確認できた。
【0107】
(評価例5)
実施例2〜実施例4、比較例2及び比較例3のリチウムイオン二次電池に対して、電流0.2mAで0.01Vまで放電を行い、その後、電流0.2mAで0.8Vまで充電を行うとの初回充放電を行った。
さらに、初回充放電後の実施例2、比較例2及び比較例3のリチウムイオン二次電池につき、電流0.5mAで0.01Vまで放電を行い、その後、電流0.5mAで1.0Vまで充電を行うとの充放電サイクルを複数回行った。
【0108】
初期効率及び容量維持率を以下の各式で算出した。
初期効率(%)=100×(初回充電容量)/(初回放電容量)
容量維持率(%)=100×(各サイクル時の充電容量)/(1サイクル目の充電容量)
初回放電容量、初回充電容量及び初期効率の結果を、元素分析の結果の一部とともに表2に示す。また、容量維持率の結果(N=2)を
図2に示す。
【0109】
【表2】
【0110】
表2の結果から、Feの存在に因り、初回放電容量、初回充電容量及び初期効率が低くなるといえる。また、
図2の結果から、容量維持率の点からは、AlやFeの存在が好ましいといえる。これらの結果から総合的に考察すると、本発明のAl含有シリコン材料において、Feの存在量は少ない方が好ましく、Alの存在量は多い方が好ましいと考えられる。
【0111】
(実施例5)
以下のとおり、実施例5のAl含有シリコン材料、負極及びリチウムイオン二次電池を製造した。
【0112】
a)工程
Ca、Al及びSiを炭素坩堝に秤量した。Ca及びSiの元素組成比は1:2であり、Alの添加量はCa、Al及びSiの全体の質量に対して0.1%とした。アルゴンガス雰囲気下の高周波誘導加熱装置にて、炭素坩堝を1300℃付近で加熱してCa、Al及びSiを含む溶湯とした。前記溶湯を所定の鋳型に注湯して冷却して固体とした。当該固体を粉砕して粉末状にした後に、b)工程に供した。
【0113】
b)工程
窒素ガス雰囲気下にて、0℃の17wt%塩酸に、a)工程で得られた粉末状の固体を加え、撹拌した。反応液を濾過し、残渣を蒸留水及びメタノールで洗浄し、さらに、室温で減圧乾燥してAl含有シリコン材料の前駆体を得た。
【0114】
c)工程
Al含有シリコン材料の前駆体を、窒素ガス雰囲気下、900℃で1時間加熱し、実施例5のAl含有シリコン材料を製造した。
【0115】
実施例5のAl含有シリコン材料を用いて、以下のとおり、実施例5の負極及び実施例5のリチウムイオン二次電池を製造した。
【0116】
重量平均分子量80万のポリアクリル酸をN−メチル−2−ピロリドンに溶解して、ポリアクリル酸が10質量%で含有されるポリアクリル酸溶液を製造した。また、4,4’−ジアミノジフェニルメタン0.2g(1.0mmol)を0.4mLのN−メチル−2−ピロリドンに溶解して、4,4’−ジアミノジフェニルメタン溶液を製造した。撹拌条件下、ポリアクリル酸溶液7mL(アクリル酸モノマー換算で、9.5mmolに該当する。)に、4,4’−ジアミノジフェニルメタン溶液の全量を滴下して、得られた混合物を室温で30分間撹拌した。その後、ディーンスターク装置を用いて、混合物を130℃で3時間撹拌して脱水反応を進行させることで、結着剤溶液を製造した。
【0117】
負極活物質として実施例5のAl含有シリコン材料72.5質量部、導電助剤としてアセチレンブラック13.5質量部、結着剤として固形分が14質量部となる量の上記結着剤溶液、及び、適量のN−メチル−2−ピロリドンを混合して、スラリーを製造した。負極用集電体として銅箔を準備した。この銅箔の表面に、ドクターブレードを用いて、上記スラリーを膜状に塗布した。スラリーが塗布された銅箔を80℃、15分間乾燥することで、N−メチル−2−ピロリドンを除去した。その後、プレスし、真空ポンプによる減圧雰囲気で180℃、30分加熱することで、負極活物質層が形成された実施例5の負極を製造した。
【0118】
実施例5の負極を径11mmに裁断し、評価極とした。厚さ500μmの金属リチウム箔を径13mmに裁断し対極とした。セパレータとしてガラスフィルター(ヘキストセラニーズ社)及び単層ポリプロピレンであるcelgard2400(ポリポア株式会社)を準備した。また、フルオロエチレンカーボネート3体積部、エチルメチルカーボネート3体積部及びジエチルカーボネート4体積部を混合した溶媒にLiPF
6を1mol/Lで溶解した電解液を準備した。対極、ガラスフィルター、celgard2400、評価極の順に、2種のセパレータを対極と評価極で挟持し電極体とした。この電極体をコイン型電池ケースCR2032(宝泉株式会社)に収容し、さらに電解液を注入して、コイン型電池を得た。これを実施例5のリチウムイオン二次電池とした。
【0119】
(実施例6)
a)工程において、Alの添加量をCa、Al及びSiの全体の質量に対して0.3%とした以外は、実施例5と同様の方法で、実施例6のAl含有シリコン材料、負極及びリチウムイオン二次電池を製造した。
【0120】
(実施例7)
a)工程において、Alの添加量をCa、Al及びSiの全体の質量に対して0.5%とした以外は、実施例5と同様の方法で、実施例7のAl含有シリコン材料、負極及びリチウムイオン二次電池を製造した。
【0121】
(実施例8)
a)工程において、Alの添加量をCa、Al及びSiの全体の質量に対して1%とした以外は、実施例5と同様の方法で、実施例8のAl含有シリコン材料、負極及びリチウムイオン二次電池を製造した。
【0122】
(実施例9)
a)工程に以下のアニール工程を加えた以外は、実施例8と同様の方法で、実施例9のAl含有シリコン材料、負極及びリチウムイオン二次電池を製造した。
【0123】
・アニール工程
冷却されたCa、Al及びSiを含有する固体を、窒素雰囲気下、900℃で24時間加熱し、その後、冷却した。冷却後のCa、Al及びSiを含有する固体を、粉砕して粉末状にした後に、b)工程に供した。
【0124】
(実施例10)
不純物としてAl及びFeを含有する粉末状のCaSi
2を準備した。当該CaSi
2においてはAlよりもFeの含有量の方が多かった。
当該CaSi
2を用いてb)工程以下を実施した以外は、実施例5と同様の方法で、実施例10のAl含有シリコン材料、負極及びリチウムイオン二次電池を製造した。
【0125】
(評価例6)
評価例3と同様の方法で、実施例5〜実施例10のAl含有シリコン材料の元素分析を行った。これらの元素分析の結果を、質量%として、表3に示す。各実施例のAl含有シリコン材料にFeが存在するのは、原料の金属にFeが不純物として含まれていたためである。また、各実施例のAl含有シリコン材料に含まれているCl、Ca、C及びOは、製造で使用した酸のアニオン、原料、炭素坩堝、溶媒(水)などに由来する。
【0126】
【表3】
【0127】
表3から、a)工程でのAlの添加量が増加するに従い、Al含有シリコン材料におけるAl含有量も増加するのが確認できる。ただし、a)工程でのAlの添加量の増加割合に対して、Al含有シリコン材料におけるAl含有量の増加割合は、低いことがわかる。これらの結果から、a)工程で添加したAlの一部は、b)工程での酸処理において、酸溶液に溶解して除去されたと考えられる。
また、実施例8と実施例9の結果から、a)工程にアニール工程を加えることで、Al含有シリコン材料におけるAl含有量が増加するのがわかる。アニール工程により、比較的多くのAlが、CaSi
2のSiとの置換によりCaSi
2−xAl
xなる置換型固溶体を形成して、b)工程での酸処理において除去されるのを免れたと推察される。
【0128】
(評価例7)
実施例5〜実施例10のAl含有シリコン材料のBET比表面積を測定した。結果を、以下の評価例8の結果とともに表4及び表5に示す。
【0129】
(評価例8)
実施例5〜実施例10のリチウムイオン二次電池に対して、電流0.2mAで0.01Vまで放電を行い、その後、電流0.2mAで0.8Vまで充電を行うとの初回充放電を行った。
初期効率を以下の式で算出した。
初期効率(%)=100×(初回充電容量)/(初回放電容量)
【0130】
また、実施例5〜実施例10のリチウムイオン二次電池に対して、電流0.2mAで0.01Vまで放電を行い、その後、電流0.2mAで1.0Vまで充電を行うとの初回充放電を行った。さらに、初回充放電後の実施例5〜実施例10のリチウムイオン二次電池につき、電流0.5mAで0.01Vまで放電を行い、その後、電流0.5mAで1.0Vまで充電を行うとの充放電サイクルを50回行った。容量維持率を以下の式で算出した。
容量維持率(%)=100×(50サイクル時の充電容量)/(1サイクル目の充電容量)
以上の結果を、Al質量%及び評価例7の結果とともに表4及び表5に示す。
【0131】
【表4】
【0132】
【表5】
【0133】
以上の結果から、BET比表面積が適切な範囲である本発明のAl含有シリコン材料を具備する実施例のリチウムイオン二次電池は、電池特性に優れるといえる。
特に、BET比表面積が比較的大きいAl含有シリコン材料を具備する実施例7〜実施例9のリチウムイオン二次電池が、初回充放電容量、初期効率及び容量維持率のすべてで優れている点は、特筆に値する。
以上の結果から、本発明のAl含有シリコン材料における、BET比表面積は6m
2/g以上が特に好適といえる。
【0134】
(実施例11〜実施例15)
実施例3と同様の方法で、炭素被覆されたAl含有シリコン材料である実施例11〜実施例15のAl含有シリコン材料、負極及びリチウムイオン二次電池を製造した(5バッチ製造)。
【0135】
(評価例9)
実施例11〜実施例15のAl含有シリコン材料のBET比表面積を測定したところ、6.9〜8.0m
2/gであった。
【0136】
(評価例10)
実施例11〜実施例15のリチウムイオン二次電池に対して、電流0.2mAで0.01Vまで放電を行い、その後、電流0.2mAで1.0Vまで充電を行うとの初回充放電を行った。初回充放電後の実施例11〜実施例15のリチウムイオン二次電池につき、電流0.5mAで0.01Vまで放電を行い、その後、電流0.5mAで1.0Vまで充電を行うとの充放電サイクルを50回行った。
容量維持率を以下の式で算出したところ、83.6%であった。
容量維持率(%)=100×(50サイクル目の充電容量)/(1サイクル目の充電容量)
【0137】
評価例9及び評価例10の結果から、Alを含有し、かつ好適な範囲内のBET比表面積を示す炭素被覆されたAl含有シリコン材料が、負極活物質として好適な特性を示すことが裏付けられたといえる。
【0138】
(実施例16)
以下のとおり、実施例16のAl含有シリコン材料を製造した。
【0139】
a)工程
Ca、Al及びSiを炭素坩堝に秤量した。Ca及びSiの元素組成比は1:2であり、Alの添加量はCa、Al及びSiの全体の質量に対して1%とした。アルゴンガス雰囲気下の高周波誘導加熱装置にて、炭素坩堝を1300℃付近で加熱してCa、Al及びSiを含む溶湯とした。前記溶湯を所定の鋳型に注湯することで冷却して固体とした。当該固体を粉砕して粉末状にした後に、b)工程に供した。
【0140】
b)工程
窒素ガス雰囲気下にて、0℃の17wt%塩酸に、a)工程で得られた粉末状の固体を加え、撹拌した。反応液を濾過し、残渣を蒸留水及びアセトンで洗浄し、さらに、室温で減圧乾燥してAl含有シリコン材料の前駆体を得た。
【0141】
c)工程
Al含有シリコン材料の前駆体を、窒素ガス雰囲気下、900℃で1時間加熱して、Al含有シリコン材料を製造した。
【0142】
・炭素被覆工程
c)工程を経たAl含有シリコン材料をロータリーキルン型の反応器に入れ、プロパン−アルゴン混合ガスの通気下にて880℃、滞留時間60分間の条件で熱CVDを行い、炭素被覆されたAl含有シリコン材料を得た。この炭素被覆されたAl含有シリコン材料を実施例16のAl含有シリコン材料とした。
【0143】
実施例16のAl含有シリコン材料を用いて、以下のとおり、実施例16の負極及び実施例16のリチウムイオン二次電池を製造した。
【0144】
負極活物質として実施例16のAl含有シリコン材料80.8質量部、導電助剤としてアセチレンブラック10.2質量部、結着剤としてポリアミドイミド9質量部、及び、適量のN−メチル−2−ピロリドンを混合して、スラリーを製造した。負極用集電体として銅箔を準備した。この銅箔の表面に、ドクターブレードを用いて、上記スラリーを膜状に塗布した。スラリーが塗布された銅箔を80℃、15分間乾燥することで、N−メチル−2−ピロリドンを除去した。その後、プレスし、真空ポンプによる減圧雰囲気で180℃、30分加熱することで、負極活物質層が形成された実施例16の負極を製造した。
【0145】
正極活物質としてLiNi
82/100Co
15/100Al
3/100O
2を69質量部、正極活物質としてLiFePO
4を26質量部、導電助剤としてアセチレンブラック2質量部、結着剤としてポリフッ化ビニリデン3質量部、及び、適量のN−メチル−2−ピロリドンを混合して、スラリーを製造した。正極用集電体としてアルミニウム箔を準備した。このアルミニウム箔の表面に、ドクターブレードを用いて上記スラリーが膜状になるように塗布した。スラリーが塗布されたアルミニウム箔を80℃で20分間乾燥することで、N−メチル−2−ピロリドンを除去した。その後、プレスし、真空ポンプによる減圧雰囲気で120℃、6時間加熱することで、正極活物質層が集電体の表面に形成された正極を製造した。
【0146】
セパレータとして、ポリエチレン製多孔質膜を準備した。また、ジメチルカーボネート及びフルオロエチレンカーボネートを体積比81:19で混合した混合溶媒に、LiPF
6を濃度2mol/Lで溶解した溶液を、電解液とした。
【0147】
実施例16の負極、セパレータ、正極の順に積層して、積層体とした。この積層体及び電解液をラミネートフィルム製の袋に収容して、袋を密閉し、実施例16のリチウムイオン二次電池を製造した。
【0148】
(比較例4)
a)工程において、Alを添加しなかったこと以外は、実施例16と同様の方法で、炭素被覆された比較例4のシリコン材料、比較例4の負極、比較例4のリチウムイオン二次電池を製造した。
【0149】
(評価例11)
評価例3と同様の方法で、実施例16のAl含有シリコン材料及び比較例4のシリコン材料の元素分析を行った。これらの元素分析の結果を、質量%として、表6に示す。
また、実施例16のAl含有シリコン材料及び比較例4のシリコン材料のBET比表面積を測定した。結果を表7に示す。
【0150】
【表6】
【0151】
【表7】
【0152】
(評価例12)
実施例16のリチウムイオン二次電池を電圧4.1Vまで充電した。電圧4.1Vで充電状態の実施例16のリチウムイオン二次電池を解体して、充電状態の実施例16の負極を取り出した。取り出した負極を、ジメチルカーボネートで洗浄し、次いで乾燥した。以上の作業は、不活性ガス雰囲気下で行った。乾燥後の負極を大気下に曝した状態で、10℃/分の昇温速度で550℃まで加熱して、負極の温度変化を観測した。
比較例4のリチウムイオン二次電池についても同様の試験を行った。
【0153】
実施例16の負極については、10℃/分での昇温に追従する温度変化が観測された。他方、比較例4の負極については、263℃に達した時点で、10℃/分での昇温から逸脱する急激な昇温が観測された。
以上の結果から、本発明のAl含有シリコン材料は、Alの存在に因り、充電状態での熱安定性に優れるといえる。
【0154】
(実施例17)
a)工程
Ca、Al及びSiを炭素坩堝に秤量した。Ca及びSiの元素組成比は1:2であり、Alの添加量はCa、Al及びSiの全体の質量に対して1%とした。アルゴンガス雰囲気下の高周波誘導加熱装置にて、炭素坩堝を1300℃付近で加熱してCa、Al及びSiを含む溶湯とした。前記溶湯を所定の鋳型に注湯することで冷却して固体とした。当該固体を粉砕して、CaSi
2粉末にした後に、b)工程に供した。
【0155】
b)工程
18質量%塩酸を入れた反応容器を、0℃の恒温槽に設置した。塩酸の温度が0℃になったのを確認後、窒素ガス雰囲気下及び撹拌条件下で、上記CaSi
2粉末を塩酸に徐々に投入した。CaSi
2粉末の投入後、15分間撹拌を継続した。恒温槽を1℃/分の速度で40℃まで昇温し、反応液を終夜撹拌した。その後、反応液を濾過した。残渣を蒸留水で洗浄した後、さらにメタノールで洗浄し、減圧乾燥してAl含有シリコン材料の前駆体を得た。
【0156】
c)工程
Al含有シリコン材料の前駆体を、窒素ガス雰囲気下にて700℃で1時間加熱し、Al含有シリコン材料を得た。当該Al含有シリコン材料を、ジェットミルを用いて粉砕し、平均粒子径5μmの粉末として、次工程に供した。
【0157】
・炭素被覆工程
Al含有シリコン材料をロータリーキルン型の反応器に入れ、ヘキサン−アルゴン混合ガスの通気下にて700℃、滞留時間60分間の条件で熱CVDを行い、炭素被覆されたAl含有シリコン材料を得た。これを実施例17のAl含有シリコン材料とした。
【0158】
実施例17の負極及びリチウムイオン二次電池を以下のとおり製造した。
【0159】
負極活物質として実施例17のAl含有シリコン材料72.5質量部、導電助剤としてアセチレンブラック13.5質量部、結着剤としてポリアミドイミド14質量部、及び、適量のN−メチル−2−ピロリドンを混合して、スラリーを製造した。負極用集電体として銅箔を準備した。この銅箔の表面に、ドクターブレードを用いて、上記スラリーを膜状に塗布した。スラリーが塗布された銅箔を乾燥することで、N−メチル−2−ピロリドンを除去した。その後、プレス、180℃ベークすることで、負極活物質層が形成された実施例17の負極を製造した。
【0160】
エチレンカーボネート及びジエチルカーボネートを体積比1:1で混合した混合溶媒に、LiPF
6を1mol/Lの濃度で溶解した溶液を電解液とした。
【0161】
負極を径11mmに裁断し、評価極とした。厚さ500μmの金属リチウム箔を径13mmに裁断し対極とした。セパレータとしてガラスフィルター(ヘキストセラニーズ社)及び単層ポリプロピレンであるcelgard2400(ポリポア株式会社)を準備した。対極、ガラスフィルター、celgard2400、評価極の順に、2種のセパレータを対極と評価極で挟持し電極体とした。この電極体をコイン型電池ケースCR2032(宝泉株式会社)に収容した。電池ケースに電解液を注入し、電池ケースを密閉して、実施例17のリチウムイオン二次電池を製造した。
【0162】
(実施例18)
Alを含有するCaSi
2粉末を準備する工程にて、Alの添加量をCa、Al及びSiの全体の質量に対して0.5%とした以外は、実施例17と同様の方法で、実施例18のAl含有シリコン材料、負極及びリチウムイオン二次電池を製造した。
【0163】
(比較例5)
Alを含有するCaSi
2粉末を準備する工程にて、Alを添加せず、Alを含有しないCaSi
2粉末を準備した以外は、実施例17と同様の方法で、比較例5のシリコン材料、負極及びリチウムイオン二次電池を製造した。
【0164】
(実施例19)
c)工程の加熱温度を900℃として、かつ、炭素被覆工程の条件を、プロパン−アルゴン混合ガスの通気下にて880℃、滞留時間60分間とした以外は、実施例17と同様の方法で、実施例19のAl含有シリコン材料、負極及びリチウムイオン二次電池を製造した。
【0165】
(比較例6)
c)工程の加熱温度を900℃として、かつ、炭素被覆工程の条件を、プロパン−アルゴン混合ガスの通気下にて880℃、滞留時間60分間とした以外は、比較例5と同様の方法で、比較例6のシリコン材料、負極及びリチウムイオン二次電池を製造した。
【0166】
(評価例13)
炭素被覆された実施例17〜実施例19のAl含有シリコン材料、及び、炭素被覆された比較例5〜比較例6のシリコン材料に対して、評価例3と同様の方法で、元素分析を行った。これらの元素分析の結果を、質量%として、表8に示す。
【0167】
【表8】
【0168】
(評価例14)
炭素被覆された実施例17〜実施例19のAl含有シリコン材料、及び、炭素被覆された比較例5〜比較例6のシリコン材料のBET比表面積を測定した。結果を製造方法の特徴と共に表9に示す。
【0169】
【表9】
【0170】
(評価例15)
実施例17〜実施例19、比較例5〜比較例6のリチウムイオン二次電池に対して、電流0.2mAで0.01Vまで放電を行い、その後、電流0.2mAで1.0Vまで充電を行うとの初期充放電を行った。
さらに、初期充放電後の実施例17〜実施例19、比較例5〜比較例6のリチウムイオン二次電池につき、電流0.5mAで0.01Vまで放電を行い、その後、電流0.5mAで1.0Vまで充電を行うとの充放電サイクルを50回行った。
【0171】
初期効率及び容量維持率を以下の各式で算出した。
初期効率(%)=100×(0.8Vまでの初期充電容量)/(初期放電容量)
容量維持率(%)=100×(50サイクル時の充電容量)/(1サイクル時の充電容量)
結果を評価例13及び評価例14のデータと共に表10に示す。
【0172】
【表10】
【0173】
表10の結果から、Alを含有しないシリコン材料と比較して、Alを含有し、かつ好適なBET比表面積である本発明のAl含有シリコン材料は、負極活物質として優れた充放電サイクル特性を示すといえる。また、Al含有シリコン材料の酸素質量%、シリコン質量%及びAl質量%が、二次電池の容量維持率に影響を与えることもわかる。