【文献】
福島慶,外5名,インバリアント解析技術(SIAT)を用いたプラント故障予兆監視システム,NEC技報,日本電気株式会社,2014年,Vol.67,No.1,pp.119−122
(58)【調査した分野】(Int.Cl.,DB名)
前記各ステップを実行する過程において取得可能なデータ、故障予兆箇所を表示するための故障箇所表示情報、異常を検知した際の異常検知情報、故障予兆箇所の表示情報を、前記各工程を表すタグ、及びタイムスタンプとともに記憶するデータベースを生成するデータベース生成ステップを実行することを特徴とする請求項1乃至4の何れか1つに記載の故障予兆監視方法。
【発明を実施するための形態】
【0009】
以下、本発明を図面に示した実施の形態により詳細に説明する。
本発明は、プラントに備えられている機器の故障予兆を担当者に依存したバラツキがなく、一定の検知精度があり、機器の故障予兆を敏速に検知するために、以下の構成を有する。
すなわち、本発明の故障予兆監視方法は、プラント内に配置された複数の機器と、各機器の挙動を計測するセンサと、各センサにより測定された測定データに基づいて、各機器の故障予兆を監視する故障予兆監視装置と、を備え、故障予兆監視装置による故障予兆監視方法であって、故障予兆監視装置は、プラントの起動工程における運転内容に基づいて、起動工程内を複数の期間に区切っておき、測定データに基づいて、各期間が終了する毎に挙動状態の妥当性について確認することにより、各機器の故障予兆箇所を表示する問題箇所表示処理ステップと、各期間における挙動状態が妥当であると確認した場合に、次の期間に移行する工程管理ステップと、を実行することを特徴とする。
以上の構成を備えることにより、プラントに備えられている機器の故障予兆を担当者に依存したバラツキがなく、一定の検知精度があり、機器の故障予兆を敏速に検知することができる。
上記の本発明の特徴に関して、以下、図面を用いて詳細に説明する。
【0010】
図1は、本発明の実施形態に係るプラント10の構成について説明するための模式図である。本実施形態はプラントの一例として原子力発電所に設けられた原子炉やタービンに適用するものである。
原子炉建物11には、原子炉13を備えている。この原子炉13には、原子炉格納容器15、原子力圧力容器17(蒸気17a、水17b)、蒸気乾燥器19、気水分離器21、燃料集合体23、制御棒25、再循環ポンプ26、及び圧力抑制室27が備えられている。
タービン建物31には、タービン33、発電機35、復水器37(水37a)、放水口39、取水口41(復水器冷却水41a)、ポンプ43、給水ポンプ45が備えられている。
再循環ポンプ26には、例えば異なる3箇所の位置にセンサSe1〜Se3が備えられており、センサSe1〜Se3が検出した測定データをセンサ監視装置51#1に出力する。
なお、
図1においては、再循環ポンプ26に備えられたセンサSe1〜Se3が検出した測定データをセンサ監視装置51#1に送信することを示しているが、本実施形態では、原子炉建物11やタービン建物31等に配置された夫々の機器に備えられた複数のセンサが検出した測定データをセンサ監視装置51に出力するように構成することとする。
【0011】
図2は、本発明の実施形態に係るプラント10に設けられた機器の故障予兆を監視するためのシステム50を示すブロック図である。
本実施形態のシステム50には、センサ監視装置51#1〜5
1#n、ネットワークN1、分析サーバ53、ネットワークN2、及び複数のクライアント端末55#1〜55#nが備えられている。
センサ監視装置51は、それぞれネットワークN1を介して分析サーバ53に接続されている。センサ監視装置51(#1〜#n)において収集された各センサからの測定データは、それぞれネットワークN1を介して分析サーバ53に受信される。
分析サーバ53は、センサ監視装置51から取得した測定データに基づいて、プラント10内に配置された複数の機器の故障予兆を監視する。
分析サーバ53は、プラント10の起動工程における運転内容に基づいて、起動工程内を複数の期間に区切っておき、測定データに基づいて、各期間が終了する毎に挙動状態の妥当性について確認することにより、各機器の故障予兆箇所を表示し、各期間における挙動状態が妥当であると確認した場合に、次の期間に移行する。
【0012】
分析サーバ53は、各センサの測定データをリアルタイムに監視することにより各機器の故障予兆を検知して、問題箇所を表示する。
分析サーバ53は、プラント10のCRパターン変更工程、又は停止工程における運転内容に基づいて、該工程内を複数の期間に区切っておき、測定データに基づいて、期間が終了する毎に挙動状態の妥当性について確認することにより、各機器の故障予兆箇所を表示し、各期間における挙動状態が妥当であると確認した場合に、次の期間に移行する。
分析サーバ53は、プラントの試運転工程において、各センサの測定データをリアルタイムに監視することにより各機器の故障予兆を検知し、複数の機器の何れか1つの故障予兆を検知した場合に、測定データに基づいて、挙動状態の妥当性について確認することにより、各機器の故障予兆箇所を表示する。
クライアント端末55−1〜55−nは、表示部及び操作部を備え、表示部上に表示されたグラフ、アイコンを操作部により操作するという構成のGUI(Graphical User Interface)機能が搭載されたパーソナルコンピュータである。
分析サーバ53には、通信制御部61、通信制御部63、主制御部65、操作部67、データ記憶部69、表示制御部71、表示部73、ディスク制御部75、データベース部77、及びバス79が備えられている。
【0013】
通信制御部61は、ネットワークN1を介してイーサネット(登録商標)通信により各装置間のデータ通信を制御する。通信制御部63は、ネットワークN2を介してイーサネット(登録商標)通信により各装置間のデータ通信を制御する。
主制御部65は、内部にROM(read only memory)、RAM(random access memory)、CPU(central processing unit)、HDD(hard disk drive)を備えている。主制御部65は、HDDからオペレーティングシステムOSを読み出してRAM上に展開してOSを起動し、OS管理下において、HDDからプログラム(処理モジュール)を読み出し、各種処理を実行する。
操作部67は、ユーザのキーボードやマウス等への操作に対応する操作信号を主制御部65に供給する。
データ記憶部69は、RAMを有し、データを記憶する。
表示制御部71は、表示情報に基づいて画面データやグラフ等の表示画像を生成して表示部73に出力する。
表示部73は、表示制御部71から出力される画面データやグラフ等の表示画像を表示する。
ディスク制御部75は、データベース部77を制御して入出力データの読み出し、書き込みを行う。
データベース部77は、HDDからなり、データを蓄積する。
【0014】
図3は、本発明の実施形態に係るプラント10の各運転工程と出力との関係を示すグラフ図である。
図3に示すグラフ図は、縦軸に電力の出力量を表し、横軸に時間を表す。このグラフ図には、プラントの運転工程として、プラントを起動する際の出力量を表す[1]起動工程、プラントが定常状態に移行した際の出力量を表す[2]定常工程、プラントを運転中に制御棒25のパターンを変更した際の出力量を表す[3]CRパターン変更工程、プラントを定常状態から停止状態に移行する際の出力量を表す[4]停止工程、プラントの各箇所についての設備点検を行う際の停止状態を表す[5]設備点検工程等が示されている。
【0015】
図3に示す[1]起動工程では、時刻t0〜t1までの時間を複数の期間に分割して表すことが可能であり、[4]停止工程でも、同様に時刻t4〜t5までの時間を複数の期間に分割して表すことが可能である。
なお、本実施形態においては、プラント10を対象として説明するが、このようなプラントに代わって、系統でもよい。ここで、系統とは、個々の機器を順序立てて並べ、全体が一繋がりのものとして機能するようにまとめたもの(システム)を表し、例えば、ポンプ、配管、弁、負荷などの一連の機器をいう。なお、本実施形態では、系統として、原子炉蒸気発生系統、制御系統、放射線モニタ系統、炉心冷却系統、原子炉取扱機器、原子炉補助系統、制御盤、燃料、廃棄物処理系統、プラント系統、プラント補助系統、所内電気系統、送受電系統、原子炉格納容器及び付帯設備、各種建物及び付帯設備、取水設備及び付帯設備、構内諸設備などを扱うこととする。
【0016】
<関係性モデル>
ここで、本実施形態において採用される関係性モデルの構築手法、すなわち、各センサから取得した測定データに基づいて、2点のセンサ間の関係を表す関係性モデルを構築する手法について説明する。
まず、各センサから取得した測定データから、機器について測定された測定データ間に、相関関係があるかどうかを識別する。
ここでは、2点の測定点(センサ)の一定時間の時系列データから、2点間の相関関係として、B=f(A)のような数式ベースの近似式を生成する。近似式の生成方法としては、線形回帰と呼ばれている方法を用いればよい。
例えば、ある期間に渡って合計した予測値と測定値y(t)の差(絶対値)が最小になるように、式(1)に示す近似式(予測式)の係数(a
1,a
2,・・・,b
0,b
1,・・・c)を決定する。
・・・式(1)
なお、近似式については、線形回帰法の他にも様々な方法が提案されており、何れの手法を採用してもよい。
【0017】
さらに、生成した近似式と、生成時に利用した時系列データとから、実際のデータを近似式がどの程度近似できているかどうかの指標を表すフィット値を生成する。線形回帰法として最小二乗法を用いて近似した場合、フィット値は最小二乗法における決定係数とすることができる。
次に、フィット値と予め定められたしきい値を比較し、しきい値以上であれば、2点間の関係(近似式およびフィット値)を関係性モデルとして採用すればよい。
例えば、主制御部65は、測定値、測定値の平均値、予測値、設定パラメータ(基準値)に基づいて、式(2)に従って、
・・・式(2)
を算出する。ここで、左辺はフィット値を表し、右辺は基準値を表す。
定性的には、左辺は時系列データを予測式(式(1))を用いて予測できた割合を表しており、時系列データを80%予測できる場合を関係性があるとするならば、f
th=0.8とすればよい。
なお、基準値として、正常状態における測定値の平均値、又は標準偏差値を用いてもよい。
【0018】
図4は、本発明の実施形態に係る分析サーバ53による問題箇所表示処理を示すメインフローチャートである。
本実施形態では、
図3に示すように、プラントの運転工程を5工程に分割しておき、夫々の工程において問題箇所を表示するように構成されている。
まず、問題箇所表示処理において、ステップS10では、主制御部65は、プラント制御装置(図示しない)から現在の運転工程を通信制御部61を介して取得する。このプラント制御装置は、プラント10に配置されている各機器を制御する装置であって、運転工程として例えば5工程を表すタグ情報を分析サーバ53に出力する。
ステップS15では、主制御部65は、プラント制御装置から取得した運転工程が[1]起動工程、[2]定常運転工程、[3]CRパターン変更工程、[4]停止工程、[5]設備点検工程の何れか1つかを判断する。
[2]定常運転工程と判断した場合、ステップS20では、主制御部65は、サブルーチンである故障予兆検知処理(S600)をコールする。一方、[5]設備点検工程と判断した場合、ステップS25では、主制御部65は、サブルーチンである設備点検処理(S900)をコールする。他方、[1][3][4]と判断した場合、ステップS30では、主制御部65は、サブルーチンである二次元マトリクス表示処理(準備処理)(S100)をコールする。
上記サブルーチンから復帰した場合にステップS32に進む。
【0019】
ステップS32では、主制御部65は、[1]起動工程がタイミングt1、[3]CRパターン変更工程がタイミングt3、[4]停止工程がタイミングt5の何れかであるかを判断する。ここで、[1]起動工程がタイミングt1、[3]CRパターン変更工程がタイミングt3、[4]停止工程がタイミングt5の何れかである場合(S32、Yes)に処理を終了する。一方、[1]起動工程がタイミングt1、[3]CRパターン変更工程がタイミングt3、[4]停止工程がタイミングt5の何れかではない場合(S32、No)にステップS35に進む。
【0020】
ステップS35では、主制御部65は、サブルーチンであるコアインバリアント比較処理(比較開始)(S200)をコールする。上記サブルーチンから復帰した場合にステップS40に進む。
ステップS40では、主制御部65は、結果を表示部73に表示する。
上記サブルーチンから復帰した場合にステップS45に進む。
ステップS45では、主制御部65は、過去の同一作業時と比較して大きな差異があるか否かを判断する。
ここで、過去の同一作業時と比較して大きな差異がある場合(S45、あり)ステップS50に進み、一方、過去の同一作業時と比較して大きな差異がない場合(S45、なし)ステップS3
2に戻る。
【0021】
ステップS50では、主制御部65は、比較結果に基づいて、問題が発生していそうな箇所を表示部73に表示する(関連パラメータの選定)。
ステップS55では、主制御部65は、異常状態か否かを判断する。
ここで、異常状態である場合(S55、Yes)ステップS60に進み、一方、異常状態ではない場合(S55、No)ステップS3
2に戻る。
ステップS60では、主制御部65は、サブルーチンである異常予兆の影響範囲についての自動抽出処理(S500)をコールする。
上記サブルーチンから復帰した場合にステップS3
2に進む。
【0022】
ここで、CRパターン変更工程に代表される定期試験工程における試験項目について説明する。
試験項目として、R−[1]原子炉保護系には(1)ハーフスクラム試験がある。R−[2]制御棒駆動系には(1)挿入、引抜(ノッチ)試験、(2)スクラム排出水容器隔離試験、(3)制御棒駆動水ポンプ予備機起動試験がある。
R−[3]核計装系には(1)中性子源領域、中性子計装(SRM)試験、(2)中間領域 中性子計装(IRM)試験、(3)出力領域 中性子計装(APRM)試験,(4)起動領域 中性子計装(SRNM)試験がある。R−[4] 主蒸気系には(1)主蒸気隔離弁10%閉試験がある。R−[5] 低圧炉心スプレイ系には(1)電動弁作動試験、(2)ポンプ手動起動試験、(3)試験可能逆止弁作動試験がある。R−[6] 低圧注水系には(1)電動弁作動試験、(2)ポンプ手動起動試験、(3)試験可能逆止弁作動試験がある。R−[7] 高圧炉心スプレイ系には(1)電動弁作動試験(含 補機海水系)、(2)ポンプ手動起動試験(含 補機冷却系、海水系)、(3)試験可能逆止弁作動試験がある。
【0023】
R−[8] 原子炉隔離時冷却系には(2)ポンプ手動起動試験、(3)試験可能逆止弁作動試験がある。R−[9] ほう酸水注入系には(1)電動弁作動試験、(2)ポンプ手動起動試験がある。R−[10] 格納容器冷却系には(1)電動弁作動試験(含 原子炉補機冷却系)、(2)ポンプ手動起動試験がある。 R−[11] 原子炉補機冷却系には(1)原子炉補機冷却水ポンプ及び原子炉補機海水ポンプ手動起動試験がある。
R−[12] 非常用ガス処理系には(1)手動起動試験がある。R−[13] 可燃性ガス濃度制御系には(1)電動弁作動試験、(2)ブロワ手動起動試 常温作動試験)がある。R−[14] 燃料プール補給水系には(1)ポンプ運転試験がある。
R−[15] サプレッションプール浄化系には(1)ポンプ手動起動試験がある。T−[1] タービン主弁類には(1)主塞止弁10%閉試験、(2)タービンバイパス弁微開試験、(3)抽気逆止弁およびドレン弁作動試験、(4)インターセプト弁微閉試験がある。T−[2] タービン保安装置には(1)ロックアウトによる非常調速機オイルトリップ試験、(2)スラスト保護装置作動試験、(3)パワーロードアンバランス回路試験、(4)バックアップ過速度回路試験、(5)タービンマスタートリップ電磁弁作動試験がある。
【0024】
T−[3] タービン油圧系には(1)油ポンプ自動起動試験、(2)ジャッキング油ポンプ運転試験、(3)主油タンク油位警報試験、(4)タービン油ろ過ポンプ運転試験、(5)タービン油移送ポンプ運転試験、(6)制御油ポンプ予備機自動起動試験がある。T−[4] 給水系には(1)RFP・T 非常用油ポンプ自動起動試験、(2)RFP・T スラスト保護装置作動試験、(3)RFP・T 主油ポンプ予備機自動起動試験、(4)RFP・T 低圧および高圧蒸気止め弁開閉試験、(5)RFP・T 油タンク油位警報試験、(6)RFP・T ロックアウトによる非常調速機オイルトリップ試験がある。T−[5] 循環水系には(1)循環水配管取水側および放水側サイフォン破壊弁作動試験がある。E−[1] 発電機には(1)非常用密封油ポンプ自動起動試験、(2)密封油差圧警報試験、(3)密封油フロートトラップ作動試験、(4)固定子冷却水ポンプ自動起動試験、(5)軸封部N2ガス封入弁作動試験がある。
E−[2] 非常用電源には(1)ディーゼル発電機手動起動試験、(2)燃料供給系確認試験、(3)起動用空気圧縮機自動起動試験、(4)燃料移送ポンプ作動試験がある。E−[3] 所内蓄電池には(1)パイロット蓄電池確認試験、(2)充電器確認試験がある。E−[4] 電気関係・その他には(1)開閉所空気圧縮機自動起動試験がある。S−[1] 計装用圧縮空気系には(1)計装用空気圧縮機自動起動試験および所内空気・計装用連絡弁・所内空気遮断弁作動試験がある。S−[2] 所内用圧縮空気系には(1)所内用空気圧縮機自動起動試験がある。S−[3] 空調換気系には(1)中央制御室空調換気系隔離運転および外気取入運転試験がある。S−[4] 消火系には(1)消火ポンプ作動試験がある。
【0025】
上述した試験項目に加えて、原子力発電プラントにおける試験項目について説明する。
R−301原子炉緊急停止系には、(1)スクラムテストスイッチによるトリップ論理回路試験がある。R−302制御棒駆動系には、(1)制御棒挿入、引抜試験(CR駆動試験)、(2)制御棒駆動水ポンプ予備機起動試験がある。
R−303原子炉核計装系には、(1)SRNM機能試験、(2)APRM機能試験がある。
R−304主蒸気系には、(1)主蒸気隔離弁10%閉試験がある。R−305高圧炉心注水系には、(1)高圧炉心注水ポンプ手動起動試験(高定格容量運転)、(2)高圧炉心注水系電動弁作動試験(含 試験可能逆止弁作動試験)がある。
R−306残留熱除去系には、(1)低圧注水系ポンプ手動起動試験(含 格納容器スプレイ冷却系)、(2)低圧注水系電動弁作動試験(含 試験可能逆止弁作動試験,格納容器スプレイ冷却系)
R−307ほう酸水注入系には、(1)ほう酸水注入ポンプ手動起動試験(純水使用)、(2)ほう酸水注入系電動弁作動試験がある。
R−308原子炉隔離時冷却系には、(1)原子炉隔離時冷却系ポンプ手動起動試験、(2)原子炉隔離時冷却系電動弁作動試験(含 試験可能逆止弁作動試験)がある。
R−309非常用ガス処理系には、(1)非常用ガス処理系手動起動試験がある。
【0026】
R−310可燃性ガス濃度制御系には、(1)可燃性ガス濃度制御系電動弁作動試験、(2)可燃性ガス濃度制御系ブロワ常温作動試験がある。
R−311中央制御室換気空調系には、(1)中央制御室換気空調系隔離運転および外気取入運転試験がある。
R−312サプレッションプール浄化系には、(1)サプレッションプール浄化ポンプ手動起動試験がある。
R−313原子炉補機冷却水系、補機冷却海水系には、(1)原子炉補機冷却水ポンプおよび原子炉補機冷却海水ポンプ手動起動試験がある。
T−301タービンには、(1)タービン主蒸気止め弁個弁10%閉試験、(2)タービンバイパス弁個弁微開試験、(3)抽気逆止弁および抽気管ドレン弁作動試験、(4)タービンインタ−セプト弁微閉試験、(5)ロックアウトによるオイルトリップ試験、(6)パワーロードアンバランス回路試験、(7)タービンバックアップ過速度回路試験、(8)タービンマスタートリップ電磁弁試験、(9)油ポンプ自動起動試験、(10)ジャッキング油ポンプ起動試験、(11)制御油ポンプ自動起動試験がある。
T−302循環水系には、(1)循環水配管取水側および放水側サイフォン破壊弁作動試験がある。
【0027】
T−303原子炉給水ポンプ駆動用蒸気タービンには、(1)RFP−T主油ポンプ予備機自動起動試験、(2)RFP−T非常用油ポンプ自動起動試験、(3)RFP−T低圧蒸気止め弁半閉および高圧蒸気止め弁全閉試験、(4)RFP−Tスラスト保護装置作動試験、(5)RFP−Tロックアウトによる非常調速機オイルトリップ試験がある。
E−301発電機および発電機補機には、(1)非常用密封油ポンプ自動起動試験、(2)密封油差圧警報試験、(3)固定子冷却水ポンプ予備機自動起動試験がある。
E−302非常用ディーゼル発電設備 、(1)非常用ディーゼル発電機手動起動試験、(2)非常用ディーゼル発電設備 燃料油系確認試験、(3)非常用ディーゼル発電設備 燃料移送ポンプ作動試験、(4)非常用ディーゼル発電設備 空気圧縮機自動起動試験がある。
E−303蓄電池には、(1)パイロット蓄電池確認試験がある。
S−301計装用圧縮空気系には、(1)計装用圧縮空気系空気圧縮機自動起動試験、(2)SA→IA連絡弁作動試験がある。
S−302消火系には、(1)消火ポンプ作動試験がある。
【0028】
図5は、本発明の実施形態に係る分析サーバ53による二次元マトリクス表示処理(準備処理)のサブルーチン(S100)を示すフローチャートである。
ステップS105では、主制御部65は、データベースから測定データを取得する。すなわち、主制御部65は、データベース部77に記憶されているデータベースから測定データをデータ記憶部69に取得する。
これにより、主制御部65は、データベースから取得した計測項目IDと測定データとその測定時刻データを計測項目名と関連付けてデータ記憶部69に取得することができる。ここで、測定データの内容を表1に示す。
【0030】
ステップS110では、主制御部65は、系統を基準にして監視パラメータ群を抽出し、データ記憶部69に記憶する。
この結果、データ記憶部69には、監視パラメータ群が記憶される。
ステップS115では、主制御部65は、相関関係にある各センサの表示位置を縦軸方向及び横軸方向の位置に夫々配置した二次元マトリクス表を作成し、表示制御部71から表示部73に表示する。
ステップS120では、主制御部65は、比較する期間を決定する。
【0031】
ステップS125では、主制御部65は、基準となる過去の正常操作期間において、式(2)に従って、全ての監視パラメータ間の関係性の強さを表すフィット値を算出する。
ステップS130では、主制御部65は、フィット値の基準値(平均値、標準偏差値)を算出し、データ記憶部69に記憶する。
この結果、データ記憶部69には、フィット値、フィット値の基準値が記憶される。
次いで、当該サブルーチンでの処理を終了して復帰する。
【0032】
図6は、本発明の実施形態に係る分析サーバ53によるコアインバリアント比較処理(比較開始)のサブルーチン(S200)を示すフローチャートである。
なお、コアインバリアント比較処理(比較開始)は、[5]設備点検工程後の試運転処理に適用するものである。
まず、ステップS205では、主制御部65は、サブルーチンである監視処理(S300)をコールする。このサブルーチンでは、主制御部65は、点検前の状態で作成した関係性モデルによるインバリアント監視処理を実行する。
上記サブルーチンから復帰した場合にステップS210に進む。
ステップS210では、主制御部65は、データ記憶部69から比較対象期間のフィット値と基準値(平均値、又は標準偏差値)とをデータ記憶部69に読み込み、比較対象期間のフィット値と基準値とを比較する。
ステップS215では、主制御部65は、通常と異なる状態か否かを判断する。例えば、フィット値が基準値よりも大きいか否かを判断する。
ここで、フィット値が基準値よりも大きい場合(S215、Yes)ステップS220に進み、一方、フィット値が基準値よりも大きくない場合(S215、No)ステップS225に進む。
【0033】
ステップS220では、主制御部65は、二次元マトリクス表の関係性を示す交点を赤色で表示する。
ステップS225では、主制御部65は、二次元マトリクス表の関係性を示す交点を白色で表示する。
この結果、
図14(a)〜(d)に示すように、赤色と白色とに色分けされた二次元マトリクス表が表示部73に表示される。なお、本実施形態では、赤色と白色とに色分けされた二次元マトリクス表を表示するように構成しているが、他の異なる2色を用いて表示するように構成してもよい。
ステップS230では、主制御部65は、全てのマトリクス(対象)について比較したか否かを判断する。
【0034】
ここで、全てのマトリクス(対象)について比較した場合(S230、Yes)ステップS237に進み、一方、未だ全てのマトリクス(対象)について比較していない場合(S230、No)ステップS235に進む。
ステップS235では、主制御部65は、次のマトリクス(対象)を指定し、ステップS210に戻る。
ステップS237では、主制御部65は、データベース化が必要か否かを判断する。データベース化が必要である場合(S237、Yes)ステップS240に進む。一方、データベース化が必要ではない場合(S237、No)当該サブルーチンでの処理を終了して復帰する。
なお、データベース化が必要か否かを問い合わせるメッセージを表示部73に表示しておき、操作部67を用いてGUI機能により担当者の意志を確認してもよい。
【0035】
ステップS240では、主制御部65は、比較結果は過去と同じか否かを判断する。
ここで、比較結果は過去と同じである場合(S240、Yes)ステップS245に進み、一方、比較結果は過去と同じではない場合(S240、No)ステップS255に進む。
ステップS245では、主制御部65は、サブルーチンである関係性モデル作成処理(再作成)(S400)をコールする。
上記サブルーチンから復帰した場合にステップS250に進む。
ステップS250では、主制御部65は、作成した関係性モデルを監視モデルとしてデータ記憶部69に設定する。
ステップS255では、主制御部65は、過去と同一ではないと判断された場合、原因箇所の特定作業を促すメッセージを表示部73に表示する。
例えば、主制御部65は、表示制御部71を介して「表示画面を確認して原因箇所を特定して下さい。」というメッセージを表示部73に表示する。
次いで、当該サブルーチンでの処理を終了して復帰する。
【0036】
本実施形態によれば、分析サーバ53は、プラント10の起動工程における運転内容に基づいて、起動工程内を複数の期間t0〜t1に区切っておき、測定データに基づいて、各期間が終了する毎に挙動状態の妥当性について確認することにより、各機器の故障予兆箇所を表示し、各期間における挙動状態が妥当であると確認した場合に、次の期間に移行することで、各機器の故障予兆箇所を表示できるので、プラントに備えられている機器の故障予兆を担当者に依存したバラツキがなく、一定の検知精度があり、機器の故障予兆を敏速に検知することができる。
この結果、起動工程等の長期間連続して複数のイベントを監視する必要があるような場合、監視機能の強化に大きな効果を得ることができる。
【0037】
本実施形態によれば、分析サーバ53は、プラントのCRパターン変更工程、又は停止工程における運転内容に基づいて、該工程内を複数の期間t40〜t5に区切っておき、測定データに基づいて、期間が終了する毎に挙動状態の妥当性について確認することにより、各機器の故障予兆箇所を表示し、各期間における挙動状態が妥当であると確認した場合に、次の期間に移行することで、各期間における挙動状態が妥当であると確認できるので、プラントに備えられている機器の故障予兆を担当者に依存したバラツキがなく、一定の検知精度があり、機器の故障予兆を敏速に検知することができる。
【0038】
本実施形態によれば、各センサSe1〜Senにより測定された測定データを取得し、測定データに基づいて、監視パラメータ群を抽出し、監視パラメータ群に含まれる各センサの測定データ間の相関関係の強さを示すフィット値を算出し、基準となる過去の正常状態において取得した複数回のフィット値の平均値及び標準偏差を算出し、正常状態におけるフィット値の平均値及び標準偏差値と、期間のフィット値とを比較することにより挙動状態の妥当性について確認することができるので、プラントに備えられている機器の故障予兆を担当者に依存したバラツキがなく、一定の検知精度があり、機器の故障予兆を敏速に検知することができる。
【0039】
図7は、本発明の実施形態に係る分析サーバ53による監視処理のサブルーチン(S300)を示すフローチャートである。
監視処理において、ステップS305では、主制御部65は、監視処理に用いる関係性モデルはデータ記憶部69に設定済みか否かを判断する。
ここで、関係性モデルがデータ記憶部69に設定済みである場合(S305、Yes)ステップS310に進み、一方、関係性モデルがデータ記憶部69に設定済みではない場合(S305、No)、当該サブルーチンでの処理を終了して復帰する。
ステップS310では、主制御部65は、センサ監視装置51から測定データを取得する。
ステップS315では、主制御部65は、取得した測定データに同様の傾向が現れているか否かを判断する。
ここで、測定データに同様の傾向が現れている場合(S315、Yes)、当該サブルーチンでの処理を終了して復帰する。一方、測定データに同様の傾向が現れていない場合(S315、No)ステップS320に進む。
ステップS320では、主制御部65は、データベース部77から異常要因の候補を抽出し、データ記憶部69に記憶する。
次いで、当該サブルーチンでの処理を終了して復帰する。
【0040】
図8は、本発明の実施形態に係る分析サーバ53による異常予兆の影響範囲についての自動抽出処理のサブルーチン(S500)を示すフローチャートである。
異常予兆の影響範囲についての自動抽出処理において、ステップS505では、主制御部65は、異常予兆が閾値を越えた時に担当者に報知するためにアラーム発生する。
ステップS510では、主制御部65は、異常予兆に関係するセンサ、系統の不具合事例の情報についてデータベース部77を検索する。
【0041】
ステップS515では、主制御部65は、データベース部77から類似事象を抽出する。
ステップS520では、主制御部65は、異常箇所を表示部73に表示する。
ステップS522では、主制御部65は、データベース化が必要か否かを判断する。データベース化が必要である場合(S522、Yes)ステップS525に進む。一方、データベース化が必要ではない場合(S522、No)当該サブルーチンでの処理を終了して復帰する。
なお、データベース化が必要か否かを問い合わせるメッセージを表示部73に表示しておき、操作部67を用いてGUI機能により担当者の意志を確認してもよい。
ステップS525では、主制御部65は、今までの処理ステップを実行する過程において取得した取得データ、故障箇所を特定するための故障箇所特定情報、異常を検知した際の異常検知情報(ノウハウ)を、各工程を表す工程タグ、及びタイムスタンプとともに記憶するデータベースを生成し、レコード番号を付加してデータベース部77に記憶する。
【0043】
次いで、当該サブルーチンでの処理を終了して復帰する。
【0044】
本実施形態によれば、各ステップを実行する過程において取得可能なデータ、故障予兆箇所を表示するための故障箇所表示情報、異常を検知した際の異常検知情報、故障予兆箇所の表示情報を、各工程を表すタグ、及びタイムスタンプとともに記憶するデータベースを生成することで、今後における故障予兆箇所に対する特定精度を向上することができる。
【0045】
図9は、本発明の実施形態に係る分析サーバ53による故障予兆検知処理のサブルーチン(S600)を示すフローチャートである。
故障予兆検知処理において、ステップS605では、主制御部65は、監視期間は終了か否かを判断する。監視期間を終了する場合(S605、Yes)は当該サブルーチンでの処理を終了して復帰する。一方、監視期間が終了していない場合(S605、No)はステップS615に進む。
なお、監視期間は終了か否かを問い合わせるメッセージを表示部73に表示しておき、操作部67を用いてGUI機能により担当者の意志を確認してもよい。
ステップS615では、主制御部65は、サブルーチンであるインバリアント監視によるリアルタイム監視処理(S700)をコールする。
上記サブルーチンから復帰した場合にステップS620に進む。
ステップS620では、主制御部65は、兆候ありか又は予兆ありかを判断する。すなわち、主制御部65は、崩れたインバリアントの合計値(アノマリスコア)が許容範囲を超えたか否かを判断する。
ここで、崩れたインバリアントの合計値が許容範囲を超えた場合(S620、Yes)にはステップS625に進む。一方、崩れたインバリアントの合計値が許容範囲を超え
ていない場合(S620、No)にはステップS605に戻る。
ステップS625では、主制御部65は、サブルーチンである異常予兆の影響範囲についての自動抽出処理(S500)をコールする。
上記サブルーチンから復帰した場合にステップS630に進む。
【0046】
ステップS630では、主制御部65は、問題箇所の特定作業を促すメッセージを表示部73に表示する。例えば、主制御部65は、表示制御部71を介して「問題箇所の特定作業を行って下さい。」というメッセージを表示部73に表示することで、アラーム通報する。
ステップS635では、主制御部65は、異常予兆の影響範囲に関連するパラメータの時間的変化を表示部73に表示する。
ステップS640では、主制御部65は、監視強化用の関係性モデルを並行使用する。(監視強化)
【0047】
ステップS645では、主制御部65は、異常状態か否かを判断する。
ここで、異常状態である場合(S645、Yes)ステップS650に進み、一方、異常状態ではない場合(S645、No)ステップS655に進む。
ステップS650では、主制御部65は、対象箇所への処置を促すメッセージを表示部73に表示する。例えば、主制御部65は、表示制御部71を介して「対象箇所へ処置を施して下さい。」というメッセージを表示部73に表示する。
ステップS655では、主制御部65は、サブルーチンである関係性モデル作成処理(S400)をコールする。
上記サブルーチンから復帰した場合にステップS6
05に進む。
【0048】
本実施形態によれば、分析サーバ53は、各センサの測定データをリアルタイムに監視することにより各機器の故障予兆を検知して、問題箇所を表示することができるので、プラントに備えられている機器の故障予兆を担当者に依存したバラツキがなく、一定の検知精度があり、機器の故障予兆を敏速に検知することができる。
【0049】
図10は、本発明の実施形態に係る分析サーバ53によるインバリアント監視によるリアルタイム監視処理のサブルーチン(S700)を示すフローチャートである。
インバリアント監視によるリアルタイム監視処理において、ステップS705では、主制御部65は、データベース部77に記憶されているデータベースから定常運転工程に対応した関係性モデルをデータ記憶部69に取得する。
ステップS710では、主制御部65は、センサ監視装置51から測定データを取得する。
ステップS715では、主制御部65は、各センサの測定データに対して、式(1)に従って関係性モデルを用いて関係性が予測される各センサの予測値を算出する。
【0050】
ステップS720では、主制御部65は、各センサの測定データと予測値との差分値を算出する。
ステップS725では、主制御部65は、差分値が許容範囲を超えることにより発生するインバリアント(不変関係)の崩れを算出する。ここで、許容範囲とは、予測値の下限値から上限値までの範囲を表すものであり、各センサの測定データと予測値との差(差分値)が許容範囲を超えた場合に異常発生があることとする。
ステップS730では、主制御部65は、崩れたインバリアントの合計値(アノマリスコア)を算出する。次いで、当該サブルーチンでの処理を終了して復帰する。
【0051】
本実施形態によれば、プラント10の定常運転工程に対応して、各センサの測定データ間にある相互の関係性を表す機器における正常動作時の測定データの関係性モデルをモデル記憶手段に複数記憶させ、各センサの測定データに対して、関係性モデルを用いて関係性が予測される各センサの予測値を算出し、各センサの測定データと予測値との差分値を算出し、差分値が許容範囲を超えることにより発生するインバリアント(不変関係)の崩れを検出することにより各機器の故障予兆を検知することができるので、プラントに備えられている機器の故障予兆を担当者に依存したバラツキがなく、一定の検知精度があり、機器の故障予兆を敏速に検知することができる。
【0052】
図11は、本発明の実施形態に係る分析サーバ53による設備点検処理のサブルーチン(S900)を示すフローチャートである。
設備点検処理において、ステップS905では、主制御部65は、サブルーチンである関係性モデル作成処理(S400)をコールする。
上記サブルーチンから復帰した場合にステップS910に進む。
ステップS910では、主制御部65は、サブルーチンであるインバリアント監視によるリアルタイム監視処理(S700)をコールする。
上記サブルーチンから復帰した場合にステップS915に進む。
【0053】
ステップS915では、主制御部65は、問題発生か否かを判断する。
ここで、問題発生がある場合(S915、Yes)ステップS940に進み、一方、問題発生がない場合(S915、No)ステップS920に進む。
問題発生がない場合、ステップS920では、主制御部65は、設備点検を促すメッセージを表示部73に表示する。例えば、主制御部65は、表示制御部71を介して「設備点検を行って下さい。」というメッセージを表示部73に表示する。
ステップS925では、主制御部65は、設備点検が終了か否かを判断する。
ここで、設備点検が終了した場合(S925、Yes)ステップS930に進み、一方、設備点検が終了してない場合(S925、No)ステップS920に戻る。
ステップS930では、主制御部65は、サブルーチンである関係性モデル作成処理(S400)をコールする。
上記サブルーチンから復帰した場合にステップS935に進む。
ステップS935では、主制御部65は、関係性モデル作成処理(S400)により作成された関係性モデルをディスク制御部75を介してデータベース部77に記憶する。
次いで、当該サブルーチンでの処理を終了して復帰する。
【0054】
問題発生がある場合、ステップS940では、主制御部65は、サブルーチンである問題箇所特定処理(S1100)をコールする。
上記サブルーチンから復帰した場合にステップS945に進む。
ステップS945では、主制御部65は、問題箇所に対して問題対処を促すメッセージを表示部73に表示する。例えば、主制御部65は、表示制御部71を介して「問題箇所がありますので、問題対処を行って下さい。」というメッセージを表示部73に表示する。
ステップS950では、主制御部65は、問題対処が終了したか否かを判断する。
ここで、問題対処が終了した場合(S950、Yes)ステップS910に進み、一方、問題対処が終了していない場合(S950、No)ステップS945に戻る。
【0055】
図12は、本発明の実施形態に係る分析サーバ53によるインバリアント監視によるリアルタイム監視処理のサブルーチン(S1000)を示すフローチャートである。
インバリアント監視によるリアルタイム監視処理において、ステップS1005では、主制御部65は、ディスク制御部75を介してデータベース部77から設備点検工程に対応した関係性モデルをデータ記憶部69に取得する。
ステップS1010では、主制御部65は、センサ監視装置51から測定データを取得する。
ステップS1015では、主制御部65は、各センサの測定データに対して、式(1)に従って関係性モデルを用いて関係性が予測される各センサの予測値を算出する。
ステップS1025では、主制御部65は、各センサの測定データと予測値との差分値を算出する。
ステップS1030では、主制御部65は、差分値が予めデータ記憶部69に設定しておいた許容範囲を超えることにより発生するインバリアント(不変関係)の崩れを検出する。
ステップS1035では、主制御部65は、崩れたインバリアントの合計値(アノマリスコア)を算出する。
ステップS1040では、主制御部65は、結果を表示部73に表示する。
この結果、
図14(a)〜(e)に示すように、各時点での表示画面を表示部73に表示して、担当者に目視確認させることができる。
次いで、当該サブルーチンでの処理を終了して復帰する。
【0056】
本実施形態によれば、各センサSe1〜Senの測定データに対して、関係性モデルを用いて関係性が予測される各センサの予測値を算出し、各センサの測定データと予測値との差分値を算出し、差分値が許容範囲を超えることにより発生するインバリアント(不変関係)の崩れを検出することにより各機器の故障予兆を検知することができるので、プラントに備えられている機器の故障予兆を担当者に依存したバラツキがなく、一定の検知精度があり、機器の故障予兆を敏速に検知することができる。
【0057】
本実施形態によれば、関係性モデルとして、各センサSe1〜Senの特性毎にグループ化したセンサ群についての相関性を監視範囲とした互いに異なる第1関係性モデル乃至第n関係性モデルと、をデータベース部77に記憶し、各センサの測定データと、各センサに対した第1関係性モデル乃至第n関係性モデルとに基づいて、各センサの測定データをリアルタイムに同時並行して監視することができるので、プラントに備えられている機器の故障予兆を担当者に依存したバラツキがなく、一定の検知精度があり、機器の故障予兆を敏速に検知することができる。
【0058】
本実施形態によれば、相関関係にある各センサの表示位置を縦軸方向及び横軸方向の位置に夫々配置して、夫々の交点位置にインバリアント(不変関係)の崩れの有無を表示することができるので、プラントに備えられている機器の故障予兆を担当者に依存したバラツキがなく、一定の検知精度があり、機器の故障予兆を敏速に検知することができる。
【0059】
本実施形態によれば、崩れたインバリアントの合計値(アノマリスコア)を算出し、合計値が許容範囲を超えたか否かを判定し、合計値が許容範囲を超えたことが判定された場合に、アラームを通報することができるので、プラントに備えられている機器の故障予兆を担当者に依存したバラツキがなく、一定の検知精度があり、機器の故障予兆を敏速に検知することができる。
【0060】
図13は、本発明の実施形態に係る分析サーバ53による問題箇所特定処理のサブルーチン(S1100)を示すフローチャートである。以下、主制御部65は、ステップS1105−1〜S1105−nからステップS1115−1〜S1115−nまでの処理においては並列処理を行うこととし、同様の処理内容については、その説明を省略する。
ステップS1105−1では、主制御部65は、ディスク制御部75を介してデータベース部77から第1関係性モデルをデータ記憶部69に取得する。
ステップS1110−1では、主制御部65は、サブルーチンである故障予兆検知処理(S600)をコールする。
上記サブルーチンから復帰した場合にステップS1115−1に進む。
【0061】
ステップS1115−1では、主制御部65は、検知結果に基づいて、判定フラグを生成する。すなわち、検知結果が異常である場合に判定フラグとして異常フラグ(NG)をデータ記憶部69に設定する。この結果、データ記憶部69には、第1関係性モデル〜第n関係性モデルと、夫々の判定フラグが設定される。
【0063】
次いで、ステップS1125では、主制御部65は、結果を表示部73に表示する。次いで、当該サブルーチンでの処理を終了して復帰する。
【0064】
本実施形態によれば、分析サーバ53は、プラントの試運転工程において、各センサの測定データをリアルタイムに監視することにより各機器の故障予兆を検知し、複数の機器の何れか1つの故障予兆を検知した場合に、測定データに基づいて、挙動状態の妥当性について確認することにより、各機器の故障予兆箇所を表示することができるので、プラントに備えられている機器の故障予兆を担当者に依存したバラツキがなく、一定の検知精度があり、機器の故障予兆を敏速に検知することができる。
【0065】
図14(a)〜(e)は、本発明の実施形態に係る分析サーバ53による分析結果を示す図である。
図14(a)は、表示画面101、表示対象の時刻及び表示ボタン103、アノマリスコアグラフ103a、検索条件105、全インバリアント一覧又は不具合インバリアント一覧107を示す表示画面例である。
図14(a)に示すアノマリスコアグラフ103a上の所望の点をクリックすると、そのクリック点の時刻での二次元マトリクス(b)〜(e)に表示が移行する。
二次元マトリクス表示処理では、フィット値が基準値よりも大きい場合に、二次元マトリクス表の関係性を示す交点を赤色で表示し、フィット値が基準値よりも大きくない場合に、二次元マトリクス表の関係性を示す交点を白色で表示するように構成されている。
図14(b)はある時点において赤色で表示された交点が少し出始めた表示画面例109aであり、
図14(c)は
図14(b)の時点から時間が少し進み赤色で表示された交点が増加した表示画面例109bであり、
図14(d)は分析サーバ53による検知タイミング(S1030)を示す表示画面例109cであり、
図14(e)は担当者による検知タイミングを示す表示画面例109dである。
なお、本実施形態では、赤色と白色とに色分けされた二次元マトリクス表を表示するように構成しているが、他の異なる2色を用いて表示するように構成してもよい。
【0066】
従来技術にあっては、観測データをモニタし、設定したしきい値と比較して異常を検知する場合、測定対象の物理量に着目してしきい値を設定するため、意図しない異常は検知が困難であり、見逃しが発生する場合があった。
これに対して、本実施形態によれば、従来技術において設定されたしきい値による異常検知タイミングよりも以前のわずかな測定データの変位から各機器の故障予兆箇所を表示できるので、プラントに備えられている機器の故障予兆を担当者に依存したバラツキがなく、一定の検知精度があり、機器の故障予兆を敏速に検知することができる。
この結果、影響範囲の分析にかかる時間や労力等の担当者への負担を軽減することができる。同時に、プラントに設けられた各機器に加わる負担を軽減することができる。
【0067】
<本発明の実施態様例の構成、作用、効果>
<第1態様>
本態様の故障予兆監視方法は、プラント10内に配置された複数の機器と、各機器の挙動を計測するセンサSe1〜Senと、各センサにより測定された測定データに基づいて、各機器の故障予兆を監視する分析サーバ53(故障予兆監視装置)と、を備え、分析サーバ53による故障予兆監視方法であって、分析サーバ53は、
図4、
図6に示すフローチャートのように、プラント10の起動工程における運転内容に基づいて、起動工程内を複数の期間t0〜t1に区切っておき、測定データに基づいて、各期間が終了する毎に挙動状態の妥当性について確認することにより、各機器の故障予兆箇所を表示する問題箇所表示処理ステップ(
図4)と、各期間における挙動状態が妥当であると確認した場合に、次の期間に移行する工程管理ステップ(S235)と、を実行することを特徴とする。
本態様によれば、分析サーバ53は、プラント10の起動工程における運転内容に基づいて、起動工程内を複数の期間t0〜t1に区切っておき、測定データに基づいて、各期間が終了する毎に挙動状態の妥当性について確認することにより、各機器の故障予兆箇所を表示し、各期間における挙動状態が妥当であると確認した場合に、次の期間に移行することで、各機器の故障予兆箇所を表示できるので、プラントに備えられている機器の故障予兆を担当者に依存したバラツキがなく、一定の検知精度があり、機器の故障予兆を敏速に検知することができる。
この結果、起動工程等の長期間連続して複数のイベントを監視する必要があるような場合、監視機能の強化に大きな効果を得ることができる。
【0068】
<第2態様>
本態様の故障予兆監視方法は、プラント10内に配置された複数の機器と、各機器の挙動を計測するセンサSe1〜Senと、各センサにより測定された測定データに基づいて、各機器の故障予兆を監視する分析サーバ53(故障予兆監視装置)と、を備え、分析サーバ53による故障予兆監視方法であって、分析サーバ53は、
図9に示すフローチャートのように、各センサの測定データをリアルタイムに監視することにより各機器の故障予兆を検知して、問題箇所を表示する故障予兆検知ステップ(S600)を実行することを特徴とする。
本態様によれば、分析サーバ53は、各センサの測定データをリアルタイムに監視することにより各機器の故障予兆を検知して、問題箇所を表示することができるので、プラントに備えられている機器の故障予兆を担当者に依存したバラツキがなく、一定の検知精度があり、機器の故障予兆を敏速に検知することができる。
【0069】
<第3態様>
本態様の故障予兆監視方法は、プラント10内に配置された複数の機器と、各機器の挙動を計測するセンサSe1〜Senと、各センサにより測定された測定データに基づいて、各機器の故障予兆を監視する分析サーバ53(故障予兆監視装置)とを備え、分析サーバ53による故障予兆監視方法であって、分析サーバ53は、
図4、
図6に示すフローチャートのように、プラントのCRパターン変更工程、又は停止工程における運転内容に基づいて、該工程内を複数の期間t40〜t5に区切っておき、測定データに基づいて、期間が終了する毎に挙動状態の妥当性について確認することにより、各機器の故障予兆箇所を表示する問題箇所表示処理ステップ(
図4)と、各期間における挙動状態が妥当であると確認した場合に、次の期間に移行する工程管理ステップ(S235)と、を実行することを特徴とする。
本態様によれば、分析サーバ53は、プラントのCRパターン変更工程、又は停止工程における運転内容に基づいて、該工程内を複数の期間t40〜t5に区切っておき、測定データに基づいて、期間が終了する毎に挙動状態の妥当性について確認することにより、各機器の故障予兆箇所を表示し、各期間における挙動状態が妥当であると確認した場合に、次の期間に移行することで、各期間における挙動状態が妥当であると確認できるので、プラントに備えられている機器の故障予兆を担当者に依存したバラツキがなく、一定の検知精度があり、機器の故障予兆を敏速に検知することができる。
【0070】
<第4態様>
本態様の故障予兆監視方法は、プラント10内に配置された複数の機器と、各機器の挙動を計測するセンサSe1〜Senと、各センサにより測定された測定データに基づいて、各機器の故障予兆を監視する分析サーバ53(故障予兆監視装置)と、を備え、分析サーバ53による故障予兆監視方法であって、
図11、
図13に示すフローチャートのように、分析サーバ53は、プラントの試運転工程において、各センサの測定データをリアルタイムに監視することにより各機器の故障予兆を検知する故障予兆検知ステップ(S900)と、故障予兆検知ステップにより複数の機器の何れか1つの故障予兆を検知した場合に、測定データに基づいて、挙動状態の妥当性について確認することにより、各機器の故障予兆箇所を表示する問題箇所表示処理ステップ(S1100)と、を実行することを特徴とする。
本態様によれば、分析サーバ53は、プラントの試運転工程において、各センサの測定データをリアルタイムに監視することにより各機器の故障予兆を検知し、複数の機器の何れか1つの故障予兆を検知した場合に、測定データに基づいて、挙動状態の妥当性について確認することにより、各機器の故障予兆箇所を表示することができるので、プラントに備えられている機器の故障予兆を担当者に依存したバラツキがなく、一定の検知精度があり、機器の故障予兆を敏速に検知することができる。
【0071】
<第5態様>
本態様の問題箇所表示処理ステップは、
図4、
図5及び
図6に示すフローチャートのように、各センサSe1〜Senにより測定された測定データを取得する取得ステップ(S105)と、測定データに基づいて、監視パラメータ群を抽出する抽出ステップ(S110)と、監視パラメータ群に含まれる各センサの測定データ間の相関関係の強さを示すフィット値を算出するフィット値算出ステップ(S125)と、基準となる過去の正常状態において取得した複数回のフィット値の平均値及び標準偏差を算出する算出ステップ(S130)と、正常状態におけるフィット値の平均値及び標準偏差値と、期間のフィット値とを比較する比較ステップ(S215)と、を実行することにより挙動状態の妥当性について確認することを特徴とする。
本態様によれば、各センサSe1〜Senにより測定された測定データを取得し、測定データに基づいて、監視パラメータ群を抽出し、監視パラメータ群に含まれる各センサの測定データ間の相関関係の強さを示すフィット値を算出し、基準となる過去の正常状態において取得した複数回のフィット値の平均値及び標準偏差を算出し、正常状態におけるフィット値の平均値及び標準偏差値と、期間のフィット値とを比較することにより挙動状態の妥当性について確認することができるので、プラントに備えられている機器の故障予兆を担当者に依存したバラツキがなく、一定の検知精度があり、機器の故障予兆を敏速に検知することができる。
【0072】
<第6態様>
本態様の故障予兆検知ステップ(S600)は、
図9、
図10に示すフローチャートのように、プラント10の定常運転工程に対応して、各センサの測定データ間にある相互の関係性を表す機器における正常動作時の測定データの関係性モデルをモデル記憶手段に複数記憶させるモデル記憶ステップ(S655)と、各センサの測定データに対して、関係性モデルを用いて関係性が予測される各センサの予測値を算出する予測値算出ステップ(S715)と、各センサの測定データと予測値との差分値を算出する差分値算出ステップ(S720)と、差分値が許容範囲を超えることにより発生するインバリアント(不変関係)の崩れを検出する崩れ検出ステップ(S725)と、を実行することにより各機器の故障予兆を検知することを特徴とする。
本態様によれば、プラント10の定常運転工程に対応して、各センサの測定データ間にある相互の関係性を表す機器における正常動作時の測定データの関係性モデルをモデル記憶手段に複数記憶させ、各センサの測定データに対して、関係性モデルを用いて関係性が予測される各センサの予測値を算出し、各センサの測定データと予測値との差分値を算出し、差分値が許容範囲を超えることにより発生するインバリアント(不変関係)の崩れを検出することにより各機器の故障予兆を検知することができるので、プラントに備えられている機器の故障予兆を担当者に依存したバラツキがなく、一定の検知精度があり、機器の故障予兆を敏速に検知することができる。
【0073】
<第7態様>
本態様の故障予兆検知ステップ(S900)は、
図11、
図12に示すフローチャートのように、各センサSe1〜Senの測定データに対して、関係性モデルを用いて関係性が予測される各センサの予測値を算出する予測値算出ステップ(S1015)と、各センサの測定データと予測値との差分値を算出する差分値算出ステップ(S1025)と、差分値が許容範囲を超えることにより発生するインバリアント(不変関係)の崩れを検出する崩れ検出ステップ(S1030)と、を実行することにより各機器の故障予兆を検知することを特徴とする。
本態様によれば、各センサSe1〜Senの測定データに対して、関係性モデルを用いて関係性が予測される各センサの予測値を算出し、各センサの測定データと予測値との差分値を算出し、差分値が許容範囲を超えることにより発生するインバリアント(不変関係)の崩れを検出することにより各機器の故障予兆を検知することができるので、プラントに備えられている機器の故障予兆を担当者に依存したバラツキがなく、一定の検知精度があり、機器の故障予兆を敏速に検知することができる。
【0074】
<第8態様>
本態様の故障予兆監視方法は、
図8に示すフローチャートのように、各ステップを実行する過程において取得可能なデータ、故障予兆箇所を表示するための故障箇所表示情報、異常を検知した際の異常検知情報、故障予兆箇所の表示情報を、各工程を表すタグ、及びタイムスタンプとともに記憶するデータベースを生成するデータベース生成ステップ(S525)を実行することを特徴とする。
本態様によれば、各ステップを実行する過程において取得可能なデータ、故障予兆箇所を表示するための故障箇所表示情報、異常を検知した際の異常検知情報、故障予兆箇所の表示情報を、各工程を表すタグ、及びタイムスタンプとともに記憶するデータベースを生成することで、今後における故障予兆箇所に対する特定精度を向上することができる。
【0075】
<第9態様>
本態様のモデル記憶ステップ(S930、S400)は、
図11乃至
図13に示すフローチャートのように、関係性モデルとして、各センサSe1〜Senの特性毎にグループ化したセンサ群についての相関性を監視範囲とした互いに異なる第1関係性モデル乃至第n関係性モデルと、をデータベース部77に記憶(S935)し、問題箇所表示ステップ(S1100)は、各センサの測定データと、各センサに対した第1関係性モデル乃至第n関係性モデルとに基づいて、各センサの測定データをリアルタイムに同時並行して監視することを特徴とする。
本態様によれば、関係性モデルとして、各センサSe1〜Senの特性毎にグループ化したセンサ群についての相関性を監視範囲とした互いに異なる第1関係性モデル乃至第n関係性モデルと、をデータベース部77に記憶し、各センサの測定データと、各センサに対した第1関係性モデル乃至第n関係性モデルとに基づいて、各センサの測定データをリアルタイムに同時並行して監視することができるので、プラントに備えられている機器の故障予兆を担当者に依存したバラツキがなく、一定の検知精度があり、機器の故障予兆を敏速に検知することができる。
【0076】
<第10態様>
本態様の問題箇所表示処理ステップは、
図12に示すフローチャートのように、相関関係にある各センサの表示位置を縦軸方向及び横軸方向の位置に夫々配置して、夫々の交点位置にインバリアント(不変関係)の崩れの有無を表示する表示ステップ(S1000)を実行することを特徴とする。
本態様によれば、相関関係にある各センサの表示位置を縦軸方向及び横軸方向の位置に夫々配置して、夫々の交点位置にインバリアント(不変関係)の崩れの有無を表示することができるので、プラントに備えられている機器の故障予兆を担当者に依存したバラツキがなく、一定の検知精度があり、機器の故障予兆を敏速に検知することができる。
【0077】
<第11態様>
本態様の故障予兆検知ステップは、
図9、
図10に示すフローチャートのように、崩れたインバリアントの合計値(アノマリスコア)を算出する合計値算出ステップ(S730)と、合計値が許容範囲を超えたか否かを判定する判定ステップ(S620)と、を実行し、判定ステップにより合計値が許容範囲を超えたことが判定された場合に、アラームを通報することを特徴とする。
本態様によれば、崩れたインバリアントの合計値(アノマリスコア)を算出し、合計値が許容範囲を超えたか否かを判定し、合計値が許容範囲を超えたことが判定された場合に、アラームを通報することができるので、プラントに備えられている機器の故障予兆を担当者に依存したバラツキがなく、一定の検知精度があり、機器の故障予兆を敏速に検知することができる。