特許第6854791号(P6854791)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 信越ポリマー株式会社の特許一覧

特許6854791導電性高分子溶液、キャパシタ及びキャパシタの製造方法
<>
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6854791
(24)【登録日】2021年3月18日
(45)【発行日】2021年4月7日
(54)【発明の名称】導電性高分子溶液、キャパシタ及びキャパシタの製造方法
(51)【国際特許分類】
   C08L 101/12 20060101AFI20210329BHJP
   C08L 65/00 20060101ALI20210329BHJP
   C08K 5/00 20060101ALI20210329BHJP
   H01G 9/028 20060101ALI20210329BHJP
   H01G 9/00 20060101ALI20210329BHJP
【FI】
   C08L101/12
   C08L65/00
   C08K5/00
   H01G9/028 G
   H01G9/00 290H
【請求項の数】5
【全頁数】24
(21)【出願番号】特願2018-159835(P2018-159835)
(22)【出願日】2018年8月29日
(62)【分割の表示】特願2017-538901(P2017-538901)の分割
【原出願日】2016年7月19日
(65)【公開番号】特開2019-14895(P2019-14895A)
(43)【公開日】2019年1月31日
【審査請求日】2019年7月3日
(31)【優先権主張番号】特願2015-176780(P2015-176780)
(32)【優先日】2015年9月8日
(33)【優先権主張国】JP
(73)【特許権者】
【識別番号】000190116
【氏名又は名称】信越ポリマー株式会社
(74)【代理人】
【識別番号】100110973
【弁理士】
【氏名又は名称】長谷川 洋
(74)【代理人】
【識別番号】110002697
【氏名又は名称】めぶき国際特許業務法人
(72)【発明者】
【氏名】松林 総
(72)【発明者】
【氏名】鈴木 健一
【審査官】 藤本 保
(56)【参考文献】
【文献】 特開2010−095580(JP,A)
【文献】 特開2013−185031(JP,A)
【文献】 特開2015−131890(JP,A)
【文献】 国際公開第2014/125827(WO,A1)
【文献】 特許第6399571(JP,B2)
(58)【調査した分野】(Int.Cl.,DB名)
H01G9/00
H01G9/028
C08L1/00−101/16
C08K3/00−13/08
(57)【特許請求の範囲】
【請求項1】
導電性高分子と、水若しくは水と有機溶剤とを混合した状態の溶媒と、を有する導電性高分子溶液であって、
前記導電性高分子は、
π共役系導電性高分子と、
前記π共役系導電性高分子にドープしたポリアニオンと
前記ポリアニオンの内ドープに寄与しないアニオンとオキシラン基又はオキセタン基含有有機化合物と反応した化合物と、
バインダ、および/または窒素含有芳香族性環式化合物、2個以上のヒドロキシ基を有する化合物、2個以上のカルボキシ基を有する化合物、1個以上のヒドロキシ基及び1個以上のカルボキシ基を有する化合物、アミド基を有する化合物、イミド基を有する化合物、およびラクタム化合物からなる群より選択される少なくとも1つの導電性向上剤と、を含み、
溶液のpHが2.0以上6.0以下であり、
前記オキシラン基又はオキセタン基含有有機化合物が、酸化プロピレン、グリシドール、2−[2−(2−ブトキシ−エトキシ)−エトキシ]−オキシラン及び2−{2−[2−(2−ブトキシ−エトキシ)−エトキシ]−エトキシ}−オキシランから選ばれる1種または2種以上である導電性高分子溶液。
【請求項2】
前記π共役系導電性高分子がポリエチレンジオキシチオフェンである請求項1に記載の導電性高分子溶液。
【請求項3】
前記ポリアニオンがポリスチレンスルホン酸である請求項1又は請求項2に記載の導電性高分子溶液。
【請求項4】
弁金属の多孔質体からなる陽極と、陽極表面が酸化されて形成された誘電体層と、その誘電体層における前記陽極と反対側に設けられた導電性の陰極と、前記誘電体層及び前記陰極の間に形成された固体電解質層とを具備するキャパシタにおいて、
前記固体電解質層に、請求項1から請求項3のいずれか1項に記載の導電性高分子溶液若しくはその溶液から前記溶媒を除去した化合物を含むキャパシタ。
【請求項5】
弁金属の多孔質体からなる陽極と、陽極表面が酸化されて形成された誘電体層と、その誘電体層における前記陽極と反対側に設けられた導電性の陰極と、前記誘電体層及び前記陰極の間に形成された固体電解質層とを具備するキャパシタの製造方法であって、
前記誘電体層に、請求項1から請求項3のいずれか1項に記載の導電性高分子溶液を含浸させ、前記導電性高分子溶液を構成する溶媒を除去して前記固体電解質層を形成するキャパシタの製造方法。
【発明の詳細な説明】
【クロスリファレンス】
【0001】
本出願は、2015年9月8日に日本国において出願された特願2015−176780に基づき優先権を主張し、当該出願に記載された内容は、本明細書に援用する。また、本願において引用した特許、特許出願及び文献に記載された内容は、本明細書に援用する。
【技術分野】
【0002】
本発明は、導電性高分子溶液、キャパシタ及びキャパシタの製造方法に関する。
【背景技術】
【0003】
近年、電子機器のデジタル化に伴い、電子機器に用いられるキャパシタは高周波領域におけるインピーダンス(等価直列抵抗)を低下させることが要求されている。さらに、これら電子機器の小型化、薄型化、また使用環境の多様化に伴い、キャパシタの長期信頼性に対する要求も厳しくなってきている。従来から、この要求に対応すべく、アルミニウム、タンタル、ニオブなどの弁金属の酸化皮膜を誘電体とした、いわゆる、機能性キャパシタ(以下、キャパシタと略す。)が使用されている。このキャパシタの一般的な構造は、特許文献1に示されるように、弁金属の多孔質体からなる陽極と、陽極の表面を酸化して形成した誘電体層と、導電性の固体電解質層と、カーボン層、銀層などが積層された陰極とを有する。固体電解質層としては、π共役系導電性高分子を含有する導電性膜を用いることがある。
【0004】
このようなπ共役系導電性高分子を含有する導電性膜を用いた技術としては、前記構成の固体電解質を含むキャパシタにおいて、該固体電解質が窒素含有芳香族環式化合物を添加したπ共役系導電性高分子を必須成分とする組成物から成るものが提案されている(特許文献2を参照)。この固体電解質を構成する組成物は、キャパシタの等価直列抵抗(以下、ESRという。)の低下に寄与し、π共役系導電性高分子を含有する組成物を含浸、乾燥という簡便なプロセスでキャパシタを製造できるという特徴を有する。
【0005】
また、特許文献3には、3,4−エチレンジオキシチオフェンの反復構造単位からなるポリマーとポリスチレンスルホン酸または、その塩を水溶液中に混合、攪拌した後、酸化剤を加えて化学酸化重合した第一の高分子重合溶液Aに、ナフタレンスルホン酸等を溶解させた非水溶媒と純水との混合水溶液Bを添加した、第二の高分子重合溶液Cを、タンタル、ニオブ、アルミニウム等の弁作用金属の陽極酸化皮膜上に形成した内部導電性高分子膜上に塗布し、導電性高分子重合溶液で外部導電性高分子膜を形成する手法が開示されている。
【0006】
同様に、特許文献4には、その表面にプリコート層及び内部導電性高分子層が順に形成された陽極酸化皮膜上に、ナフタレンスルホン酸類、高分子量PSSA、ホウ酸、マンニトール、グリコール類等を含有したPEDOT及びPSSAを含む水分散体を塗布もしくは含浸して導電性高分子層を設け、加熱して乾燥固化することにより固体電解キャパシタを作製する手法が開示されている。PEDOTにドープさせたPSSAのスルホ基は、上記水分散体に水分散性を付与するが、溶液のpHを強酸性の領域まで下げる機能を持つため、陽極自体が強酸性によって侵され、ESRの上昇や静電容量の低下を起こすという欠点がある。この欠点を解消するために、アミン化合物を添加してpHを上げる方法も提案されている(例えば、特許文献5を参照)。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開2003−37024号公報
【特許文献2】特開2006−100774号公報
【特許文献3】特開2008−135509号公報
【特許文献4】特開2008−311582号公報
【特許文献5】特開2006−249303号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
しかし、従来のキャパシタには、次のような課題がある。特許文献3に開示されるキャパシタを製造する場合には、長期信頼性に優れるキャパシタを製造できるものの、電解重合で内部の導電性高分子膜を形成した後に、外部の導電性高分子膜を形成するという2段階の処理が必要になる。特許文献4に開示されるキャパシタを製造する場合でも、同様に、2段階の処理が必要になる。このため、外部導電性高分子層形成用処理液の他に、内部導電性高分子層を形成するための設備または処理液が必要になり、キャパシタ製造工程が長く、煩雑になることがあった。さらに、昨今のキャパシタ性能に対する要求特性は高くなってきており、より一層の低ESR化及び大容量化を求められている。このことから、窒素含有芳香族性環式化合物を用いた特許文献2に開示の技術をもってしても要求特性の達成が困難になっている。
【0009】
以上の課題に鑑みて、本発明の目的は、異なる組成の導電性高分子層形成用処理液を用いることなく、または異なる手法で内部導電性高分子層を形成することなく、静電容量が大きくかつESRが低く、また、長期信頼性に優れるキャパシタを形成可能な導電性高分子溶液、当該キャパシタ及びその製造方法を提供することにある。
【課題を解決するための手段】
【0010】
上記目的を達成するための本発明の一実施の形態は、導電性高分子と溶媒とを有する導電性高分子溶液であって、導電性高分子は、π共役系導電性高分子と、π共役系導電性高分子にドープしたポリアニオンと、ポリアニオンの内ドープに寄与しないアニオンとオキシラン基又はオキセタン基と反応した化合物と、を含み、溶液のpHが2.0以上6.0以下の導電性高分子溶液である。
【0011】
本発明の別の実施の形態は、さらに、π共役系導電性高分子をポリエチレンジオキシチオフェンとする導電性高分子溶液でも良い。
【0012】
本発明の別の実施の形態は、また、ポリアニオンをポリスチレンスルホン酸とする導電性高分子溶液でも良い。
【0013】
本発明の別の実施の形態は、また、オキシラン基又はオキセタン基を含む有機化合物が、酸化プロピレン、グリシドール、2−[2−(2−ブトキシ−エトキシ)−エトキシ]−オキシラン及び2−{2−[2−(2−ブトキシ−エトキシ)−エトキシ]−エトキシ}−オキシランから選ばれる1種または2種以上とする導電性高分子溶液でも良い。
【0014】
本発明の一実施の形態は、弁金属の多孔質体からなる陽極と、陽極表面が酸化されて形成された誘電体層と、その誘電体層における陽極と反対側に設けられた導電性の陰極と、誘電体層及び陰極の間に形成された固体電解質層とを具備するキャパシタにおいて、前述の導電性高分子溶液若しくはその溶液から溶媒を除去した化合物を含むキャパシタである。
【0015】
本発明の一実施の形態は、前述のキャパシタに、前述の導電性高分子溶液を含浸させ、その導電性高分子溶液を構成する溶媒を除去するキャパシタの製造方法である。
【発明の効果】
【0016】
本発明によれば、異なる組成の導電性高分子層形成用処理液を用いることなく、または異なる手法で内部導電性高分子層を形成することなく、静電容量が大きくかつESRが低く、また、長期信頼性に優れるキャパシタを形成可能な導電性高分子溶液、当該キャパシタ及びその製造方法を提供することができる。
【発明を実施するための形態】
【0017】
次に、本発明の導電性高分子溶液、キャパシタ及びキャパシタの製造方法の実施の形態について説明する。なお、この実施の形態に記載の構成要素は、本発明にとって必ずしも必須であるとは限らない。
【0018】
1.導電性高分子溶液
この実施の形態に係る導電性高分子溶液は、導電性高分子と、溶媒とを有する。該導電性高分子は、π共役系導電性高分子と、そのπ共役系導電性高分子にドープしたポリアニオンと、そのポリアニオンの内ドープに寄与しないアニオンとオキシラン基又はオキセタン基と反応した化合物と、を含む。加えて、導電性高分子溶液のpHは、2.0以上6.0以下である。ここで、上記溶媒は、水、有機溶剤、さらにはそれらの混合物であっても良い。また、導電性高分子溶液は、バインダをさらに含んでいても良い。本願で用いられるポリアニオンをドーパントとしている導電性高分子は、好ましくは、おおよそ数十ナノメータの粒子径を持つ微粒子から形成される。かかる微粒子は、界面活性剤の作用をも持つポリアニオンの存在によって可視光領域において透明であって、溶媒中に微粒子が溶解しているように見える。実際には、当該微粒子は溶媒中に分散しているが、本願では、この状態を「分散可溶化」の状態と称している。
【0019】
1.1 導電性高分子
(1)π共役系導電性高分子
π共役系導電性高分子は、主鎖がπ共役系で構成されている有機高分子であれば好適に使用できる。π共役系導電性高分子としては、例えば、ポリピロール類、ポリチオフェン類、ポリアセチレン類、ポリフェニレン類、ポリフェニレンビニレン類、ポリアニリン類、ポリアセン類、ポリチオフェンビニレン類、及びこれらの共重合体等が挙げられる。重合の容易さ、空気中での安定性の点からは、ポリピロール類、ポリチオフェン類及びポリアニリン類が好ましい。
【0020】
π共役系導電性高分子は、無置換のままでも、充分な導電性、バインダへの相溶性を得ることができるが、導電性及びバインダへの分散性又は溶解性をより高めるためには、アルキル基、カルボキシ基、スルホ基、アルコキシル基、ヒドロキシル基、シアノ基等の官能基をπ共役系導電性高分子に導入しても良い。このようなπ共役系導電性高分子の具体例としては、ポリピロール、ポリ(N−メチルピロール)、ポリ(3−メチルピロール)、ポリ(3−エチルピロール)、ポリ(3−n−プロピルピロール)、ポリ(3−ブチルピロール)、ポリ(3−オクチルピロール)、ポリ(3−デシルピロール)、ポリ(3−ドデシルピロール)、ポリ(3,4−ジメチルピロール)、ポリ(3,4−ジブチルピロール)、ポリ(3−カルボキシピロール)、ポリ(3−メチル−4−カルボキシピロール)、ポリ(3−メチル−4−カルボキシエチルピロール)、ポリ(3−メチル−4−カルボキシブチルピロール)、ポリ(3−ヒドロキシピロール)、ポリ(3−メトキシピロール)、ポリ(3−エトキシピロール)、ポリ(3−ブトキシピロール)、ポリ(3−ヘキシルオキシピロール)、ポリ(3−メチル−4−ヘキシルオキシピロール)、ポリ(3−メチル−4−ヘキシルオキシピロール)、ポリ(チオフェン)、ポリ(3−メチルチオフェン)、ポリ(3−エチルチオフェン)、ポリ(3−プロピルチオフェン)、ポリ(3−ブチルチオフェン)、ポリ(3−ヘキシルチオフェン)、ポリ(3−ヘプチルチオフェン)、ポリ(3−オクチルチオフェン)、ポリ(3−デシルチオフェン)、ポリ(3−ドデシルチオフェン)、ポリ(3−オクタデシルチオフェン)、ポリ(3−ブロモチオフェン)、ポリ(3−クロロチオフェン)、ポリ(3−ヨードチオフェン)、ポリ(3−シアノチオフェン)、ポリ(3−フェニルチオフェン)、ポリ(3,4−ジメチルチオフェン)、ポリ(3,4−ジブチルチオフェン)、ポリ(3−ヒドロキシチオフェン)、ポリ(3−メトキシチオフェン)、ポリ(3−エトキシチオフェン)、ポリ(3−ブトキシチオフェン)、ポリ(3−ヘキシルオキシチオフェン)、ポリ(3−ヘプチルオキシチオフェン)、ポリ(3−オクチルオキシチオフェン)、ポリ(3−デシルオキシチオフェン)、ポリ(3−ドデシルオキシチオフェン)、ポリ(3−オクタデシルオキシチオフェン)、ポリ(3,4−ジヒドロキシチオフェン)、ポリ(3,4−ジメトキシチオフェン)、ポリ(3,4−ジエトキシチオフェン)、ポリ(3,4−ジプロポキシチオフェン)、ポリ(3,4−ジブトキシチオフェン)、ポリ(3,4−ジヘキシルオキシチオフェン)、ポリ(3,4−ジヘプチルオキシチオフェン)、ポリ(3,4−ジオクチルオキシチオフェン)、ポリ(3,4−ジデシルオキシチオフェン)、ポリ(3,4−ジドデシルオキシチオフェン)、ポリ(3,4−エチレンジオキシチオフェン)、ポリ(3,4−プロピレンジオキシチオフェン)、ポリ(3,4−ブテンジオキシチオフェン)、ポリ(3−メチル−4−メトキシチオフェン)、ポリ(3−メチル−4−エトキシチオフェン)、ポリ(3−カルボキシチオフェン)、ポリ(3−メチル−4−カルボキシチオフェン)、ポリ(3−メチル−4−カルボキシエチルチオフェン)、ポリ(3−メチル−4−カルボキシブチルチオフェン)、ポリアニリン、ポリ(2−メチルアニリン)、ポリ(3−イソブチルアニリン)、ポリ(2−アニリンスルホン酸)、ポリ(3−アニリンスルホン酸)等が挙げられる。中でも、ポリピロール、ポリチオフェン、ポリ(N−メチルピロール)、ポリ(3−メチルチオフェン)、ポリ(3−メトキシチオフェン)、ポリ(3,4−エチレンジオキシチオフェン)から選ばれる1種又は2種以上からなる(共)重合体を、抵抗値、反応性の点から好適に用いることができる。さらには、ポリピロール、ポリ(3,4−エチレンジオキシチオフェン)は、導電性がより高い上に、耐熱性を向上させることができる点で、より好ましい。また、ポリ(N−メチルピロール)、ポリ(3−メチルチオフェン)のようなアルキル置換化合物は、溶媒溶解性、疎水性樹脂を添加した場合の相溶性及び分散性を向上させる観点から、より好ましい。また、アルキル基の中では、導電性に悪影響を与えることがないメチル基がより好ましい。
【0021】
(2)ポリアニオン
ポリアニオンは、アニオン性化合物であれば、特に制約無く用いることができる。アニオン性化合物とは、分子中に、π共役系導電性高分子への化学酸化ドーピングが起こりうるアニオン基を有する化合物である。アニオン基としては、製造の容易さ及び高い安定性の観点から、リン酸基、カルボキシ基、スルホ基、などが好ましい。これらのアニオン基の内、π共役系導電性高分子へのドープ効果に優れる理由から、スルホ基あるいはカルボキシ基がより好ましい。
【0022】
ポリアニオンとしては、例えば、アニオン基を有さないポリマーをスルホン化剤によりスルホン化等を行ってポリマー内にアニオン基を導入したポリマーの他、アニオン基含有重合性モノマーを重合して得られたポリマーを挙げることができる。通常、ポリアニオンは、製造の容易さの観点から、好ましくは、アニオン基含有重合性モノマーを重合して得る。かかる製造方法としては、例えば、溶媒中、アニオン基含有重合性モノマーを、酸化剤及び/又は重合触媒の存在下、酸化重合またはラジカル重合させて得る方法を例示できる。より具体的には、所定量のアニオン基含有重合性モノマーを溶媒に溶解させ、これを一定温度に保持し、そこに、予め溶媒に所定量の酸化剤及び/又は重合触媒を溶解しておいた溶液を添加して、所定時間で反応させる。当該反応により得られたポリマーは、触媒によって一定の濃度に調整される。この製造方法において、アニオン基含有重合性モノマーにアニオン基を有さない重合性モノマーを共重合させることもできる。アニオン基含有重合性モノマーの重合に際して使用する酸化剤及び/又は酸化触媒、溶媒は、π共役系導電性高分子を形成する前駆体モノマーを重合する際に使用するものと同様である。
【0023】
アニオン基含有重合性モノマーは、分子内にアニオン基と重合可能な官能基を有するモノマーであり、具体的には、ビニルスルホン酸及びその塩類、アリルスルホン酸及びその塩類、メタリルスルホン酸及びその塩類、スチレンスルホン酸及びその塩類、メタリルオキシベンゼンスルホン酸及びその塩類、アリルオキシベンゼンスルホン酸及びその塩類、α−メチルスチレンスルホン酸及びその塩類、アクリルアミド−t−ブチルスルホン酸及びその塩類、2−アクリルアミド−2−メチルプロパンスルホン酸及びその塩類、シクロブテン−3−スルホン酸及びその塩類、イソプレンスルホン酸及びその塩類、1,3−ブタジエン−1−スルホン酸及びその塩類、1−メチル−1,3−ブタジエン−2−スルホン酸及びその塩類、1−メチル−1,3−ブタジエン−4−スルホン酸及びその塩類、アクリロイルオキシエチルスルホン酸(CHCH−COO−(CH−SOH)及びその塩類、アクリロイルオキシプロピルスルホン酸(CHCH−COO−(CH−SOH)及びその塩類、アクリロイルオキシ−t−ブチルスルホン酸(CHCH−COO−C(CHCH−SOH)及びその塩類、アクリロイルオキシ−n−ブチルスルホン酸(CHCH−COO−(CH−SOH)及びその塩類、3−ブテノイルオキシエチルスルホン酸(CHCHCH−COO−(CH−SOH)及びその塩類、3−ブテノイルオキシ−t−ブチルスルホン酸(CHCHCH−COO−C(CHCH−SOH)及びその塩類、4−ペンテノイルオキシエチルスルホン酸(CHCH(CH−COO−(CH−SOH)及びその塩類、4−ペンテノイルオキシプロピルスルホン酸(CHCH(CH−COO−(CH−SOH)及びその塩類、4−ペンテノイルオキシ−n−ブチルスルホン酸(CHCH(CH−COO−(CH−SOH)及びその塩類、4−ペンテノイルオキシ−t−ブチルスルホン酸(CHCH(CH−COO−C(CHCH−SOH)及びその塩類、4−ペンテノイルオキシフェニレンスルホン酸(CHCH(CH−COO−C−SOH)及びその塩類、4−ペンテノイルオキシナフタレンスルホン酸(CHCH(CH−COO−C10−SOH)及びその塩類、メタクロイルオキシエチルスルホン酸(CHC(CH)−COO−(CH−SOH)及びその塩類、メタクロイルオキシプロピルスルホン酸(CHC(CH)−COO−(CH−SOH)及びその塩類、メタクロイルオキシ−t−ブチルスルホン酸(CHC(CH)−COO−C(CHCH−SOH)及びその塩類、メタクロイルオキシ−n−ブチルスルホン酸(CHC(CH)−COO−(CH−SOH)及びその塩類、メタクロイルオキシフェニレンスルホン酸(CHC(CH)−COO−C−SOH)及びその塩類、メタクロイルオキシナフタレンスルホン酸(CHC(CH)−COO−C10−SOH)及びその塩類等が挙げられる。また、これらを2種以上含む共重合体であってもよい。
【0024】
アニオン基を有さない重合性モノマーとしては、エチレン、プロぺン、1−ブテン、2−ブテン、1−ペンテン、2−ペンテン、1−ヘキセン、2−ヘキセン、スチレン、p−メチルスチレン、p−エチルスチレン、p−ブチルスチレン、2,4,6−トリメチルスチレン、p−メトキシスチレン、α−メチルスチレン、2−ビニルナフタレン、6−メチル−2−ビニルナフタレン、1−ビニルイミダゾール、ビニルピリジン、ビニルアセテート、アクリルアルデヒド、アクリルニトリル、N−ビニル−2−ピロリドン、N−ビニルアセトアミド、N−ビニルホルムアミド、N−ビニルイミダゾ−ル、アクリルアミド、N,N−ジメチルアクリルアミド、アクリル酸、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸n−ブチル、アクリル酸イソブチル、アクリル酸t−ブチル、アクリル酸イソオクチル、アクリル酸イソノニルブチル、アクリル酸ラウリル、アクリル酸アリル、アクリル酸ステアリル、アクリル酸イソボニル、アクリル酸シクロヘキシル、アクリル酸ベンジル、アクリル酸エチルカルビトール、アクリル酸フェノキシエチル、アクリル酸ヒドロキシエチル、アクリル酸メトキシエチル、アクリル酸エトキシエチル、アクリル酸メトキシブチル、メタクリル酸、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n−ブチル、メタクリル酸イソブチル、メタクリル酸t−ブチル、メタクリル酸2−エチルヘキシル、メタクリル酸ラウリル、メタクリル酸トリデシル、メタクリル酸ステアリル、メタクリル酸シクロヘキシル、メタクリル酸ベンジル、メタクリル酸2−ヒドロキシエチル、メタクリル酸2−ヒドロキシプロピル、アクリロイルモルホリン、ビニルアミン、N,N−ジメチルビニルアミン、N,N−ジエチルビニルアミン、N,N−ジブチルビニルアミン、N,N−ジ−t−ブチルビニルアミン、N,N−ジフェニルビニルアミン、N−ビニルカルバゾール、ビニルアルコール、塩化ビニル、フッ化ビニル、メチルビニルエーテル、エチルビニルエーテル、シクロプロペン、シクロブテン、シクロペンテン、シクロヘキセン、シクロヘプテン、シクロオクテン、2−メチルシクロヘキセン、ビニルフェノール、1,3−ブタジエン、1−メチル−1,3−ブタジエン、2−メチル−1,3−ブタジエン、1,4−ジメチル−1,3−ブタジエン、1,2−ジメチル−1,3−ブタジエン、1,3−ジメチル−1,3−ブタジエン、1−オクチル−1,3−ブタジエン、2−オクチル−1,3−ブタジエン、1−フェニル−1,3−ブタジエン、2−フェニル−1,3−ブタジエン、1−ヒドロキシ−1,3−ブタジエン、2−ヒドロキシ−1,3−ブタジエン等が挙げられる。
【0025】
こうして得られるポリアニオンの重合度は、特に限定されるものではないが、通常、モノマーの単位が10〜100,000程度であり、溶媒可溶化、分散性及び導電性を良好にする観点から、50〜10,000程度とするのがより好ましい。
【0026】
ポリアニオンの具体例としては、ポリビニルスルホン酸、ポリスチレンスルホン酸、ポリイソプレンスルホン酸、ポリアクリロイルオキシエチルスルホン酸、ポリアクリロイルオキシブチルスルホン酸、ポリ(2−アクリルアミド−2−メチル−1−プロパンスルホン酸)を好適に挙げることができる。得られたアニオン性化合物がアニオン塩である場合には、アニオン酸に変質させるのが好ましい。アニオン酸に変質させる方法としては、イオン交換樹脂を用いたイオン交換法、透析法、限外ろ過法などを挙げることができる。これらの方法の中でも、作業容易性の観点から、限外ろ過法が好ましい。ただし、金属イオン濃度を低減することを要する場合には、イオン交換法を用いるのが好ましい。
【0027】
π共役系導電性高分子とポリアニオンとの組み合わせとしては、それらの各グループから選択されたものを使用できるが、化学的安定性、導電性、保存安定性、入手容易性などの観点から、π共役系導電性高分子の一例であるポリ(3,4−エチレンジオキシチオフェン)と、ポリアニオンの一例であるポリスチレンスルホン酸との組み合わせが好ましい。ポリ(3,4−エチレンジオキシチオフェン)とポリスチレンスルホン酸とは、前述のように、導電性高分子用のモノマーとドーパントが共存した水溶液または水分散液の状態で酸化剤の存在下にて重合を行い、合成しても良い。また、市販の導電性高分子/ドーパント複合体の水分散体を使用しても良い。市販の導電性高分子/ドーパント水分散体としては、例えば、「Clevios」(商品名、ヘレウス社製、PEDOT/PSSの水分散体)、「Orgacon」(商品名、アグファ社、PEDOT/PSSの水分散体)等が挙げられる。
【0028】
ポリアニオンの含有量は、好ましくはπ共役系導電性高分子100質量部に対して10〜1,000質量部の範囲、より好ましくは50〜500質量部の範囲である。ポリアニオンの含有量を10質量部以上とすることにより、π共役系導電性高分子へのドーピング効果を高め、導電性を高めることができる。加えて、溶媒への溶解性が高くなり、均一分散形態の導電性高分子の溶液を得やすくなる。一方、ポリアニオンの含有量を1,000質量部以下にすると、π共役系導電性高分子の含有割合を相対的に多くすることができ、より高い導電性を発揮させることができる。
【0029】
(3)ポリアニオンの内ドープに寄与しないアニオンとオキシラン基又はオキセタン基と反応した化合物
ポリアニオンの内でドープに寄与しないアニオンと、オキシラン基及び/又はオキセタン基含有有機化合物との反応生成物は、前述のπ共役系導電性高分子とポリアニオンとの複合体に、オキシラン基及び/又はオキセタン基含有有機化合物を添加して反応させることにより得られる。例えば、π共役系導電性高分子とそれにドープしたポリアニオンとの複合体溶液と、オキシラン基及び/又はオキセタン基含有有機化合物とを混合し、0℃から100℃の温度で攪拌混合することにより得られる。必要により、メタノール、エタノール等の水溶性溶媒や界面活性剤を加えた混合溶媒中で反応を行っても良い。反応後は、エバポレーター等で溶媒や水、用いたオキシラン基及び/又はオキセタン基含有有機化合物の一部を除き、必要な濃度に調整しても良い。
【0030】
オキシラン基及び/又はオキセタン基含有有機化合物としては、ポリアニオンのアニオン基または電子吸引基に配位あるいは結合するものであれば、特に限定されない。1分子中に1個以下のオキシラン基及び/又はオキセタン基含有有機化合物を用いると、凝集やゲル化を低減できる点でより好ましい。オキシラン基及び/又はオキセタン基含有有機化合物の分子量は、有機溶剤への易溶解性を考慮すると、好ましくは50〜2,000の範囲である。
【0031】
オキシラン基及び/又はオキセタン基含有有機化合物の量は、pHを2.0以上6.0以下とするためにも、好ましくは、π共役系導電性高分子のポリアニオン中のアニオン基あるいは電子吸引基に対して、重量比で0.1〜50であり、より好ましくは1.0〜30.0である。オキシラン基及び/又はオキセタン基含有有機化合物の量を上記重量比で0.1以上とすると、上記pHの範囲に調製しやすく、かつオキシラン基及び/又はオキセタン基含有有機化合物を、有機溶剤を多く含む溶媒にも溶解する程度に変性することが出来る。一方、オキシラン基及び/又はオキセタン基含有有機化合物の量を上記重量比で50以下とすると、上記pHの範囲に調製しやすく、かつ余剰のオキシラン基及び/又はオキセタン基含有有機化合物が導電性高分子溶液中に析出しにくいので、得られる導電性塗膜の導電率及び機械的物性の低下を防止しやすい。
【0032】
オキシラン基及び/又はオキセタン基含有有機化合物としては、オキシラン基若しくはオキセタン基を分子中に有していればどのような分子構造を持つ化合物でも良い。ただし、オキシラン基及び/又はオキセタン基含有有機化合物としては、炭素数4以下のものが好ましく、OH基を有する場合においては炭素数が5以上でも良い。製造工程中において水を多用する場合には、加水分解や水と反応する官能基を有するアルコキシシリル基を含有する化合物は、なるべく使用しないのが好ましい。一方、凍結乾燥を経由の製造方法の場合には、アルコキシシリル基を含有する化合物もまた、その特徴を維持したまま溶剤に分散あるいは可溶するので、使用しても良い。
【0033】
以下、オキシラン基及び/又はオキセタン基含有有機化合物を例示する。
(オキシラン基含有有機化合物)
単官能オキシラン基含有有機化合物としては、プロピレンオキサイド(酸化プロピレン)、2,3−ブチレンオキサイド、イソブチレンオキサイド、1,2−ブチレンオキサイド、1,2−エポキシヘキサン、1,2−エポキシヘプタン、1,2−エポキシペンタン、1,2−エポキシオクタン、1,2−エポキシデカン、1,3−ブタジエンモノオキサイド、1,2−エポキシテトラデカン、グリシジルメチルエーテル、1,2−エポキシオクタデカン、1,2−エポキシヘキサデカン、エチルグリシジルエーテル、グリシジルイソプロピルエーテル、tert−ブチルグリシジルエーテル、1,2−エポキシエイコサン、2−(クロロメチル)−1,2−エポキシプロパン、グリシドール、エピクロルヒドリン、エピブロモヒドリン、ブチルグリシジルエーテル、1,2−エポキシヘキサン、1,2−エポキシ−9−デカン、2−(クロロメチル)−1,2−エポキシブタン、2−エチルヘキシルグリシジルエーテル、1,2−エポキシ−1H,1H,2H,2H,3H,3H−トリフルオロブタン、アリルグリシジルエーテル、テトラシアノエチレンオキサイド、グリシジルブチレート、1,2−エポキシシクロオクタン、グリシジルメタクリレート、1,2−エポキシシクロドデカン、1−メチル−1,2−エポキシシクロヘキサン、1,2−エポキシシクロペンタデカン、1,2−エポキシシクロペンタン、1,2−エポキシシクロヘキサン、1,2−エポキシ−1H,1H,2H,2H,3H,3H−ヘプタデカフルオロブタン、3,4−エポキシテトラヒドロフラン、グリシジルステアレート、3−グリシジルオキシプロピルトリメトキシシラン、エポキシ琥珀酸、グリシジルフェニルエーテル、イソホロンオキサイド、α−ピネンオキサイド、2,3−エポキシノルボルネン、ベンジルグリシジルエーテル、ジエトキシ(3−グリシジルオキシプロピル)メチルシラン、3−[2−(パーフルオロヘキシル)エトキシ]−1,2−エポキシプロパン、1,1,1,3,5,5,5−ヘプタメチル−3−(3−グリシジルオキシプロピル)トリシロキサン、9,10−エポキシ−1,5−シクロドデカジエン、4−tert−ブチル安息香酸グリシジル、2,2−ビス(4−グリシジルオキシフェニル)プロパン、2−tert−ブチル−2−[2−(4−クロロフェニル)]エチルオキシラン、スチレンオキサイド、グリシジルトリチルエーテル、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、2−フェニルプリピレンオキサイド、コレステロール−5α,6α−エポキシド、スチルベンオキサイド、p−トルエンスルホン酸グリシジル、3−メチル−3−フェニルグリシド酸エチル、N−プロピル−N−(2,3−エポキシプロピル)ペルフルオロ−n−オクチルスルホンアミド、(2S,3S)−1,2−エポキシ−3−(tert−ブトキシカルボニルアミノ)−4−フェニルブタン、3−ニトロベンゼンスルホン酸(R)−グリシジル、3−ニトロベンゼンスルホン酸−グリシジル、パルテノリド、N−グリシジルフタルイミド、エンドリン、デイルドリン、4−グリシジルオキシカルバゾール、7,7−ジメチルオクタン酸[オキシラニルメチル]、2−[2−(2−ブトキシ−エトキシ)−エトキシ]−オキシラン、2−{2−[2−(2−ブトキシ−エトキシ)−エトキシ]−エトキシ}−オキシランなどを例示できる。これらの例示物の中では、酸化プロピレン、グリシドール、2−[2−(2−ブトキシ−エトキシ)−エトキシ]−オキシランおよび2−{2−[2−(2−ブトキシ−エトキシ)−エトキシ]−エトキシ}−オキシランがより好ましい。
【0034】
多官能オキシラン基含有有機化合物としては、1,7−オクタジエンジエポキシド、ネオペンチルグリコールジグリシジルエーテル、4−ブタンジオールジグリシジルエーテル、1,2:3,4−ジエポキシブタン、1,2−シクロヘキサンジカルボン酸ジグリシジル、イソシアヌル酸トリグリシジルネオペンチルグリコールジグリシジルエーテル、1,2:3,4−ジエポキシブタン、ポリエチレングリコール#200ジグリシジルエーテル、エチレングリコールジグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、水添ビスフェノールAジグリシジルエーテルなどを例示できる。
【0035】
(オキセタン基含有有機化合物)
単官能オキセタン基含有有機化合物としては、3−エチル−3−ヒドロキシメチルオキセタン(=オキセタンアルコール)、2−エチルヘキシルオキセタン、(3−エチル−3−オキセタニル)メチルアクリレート、(3−エチル−3−オキセタニル)メタアクリレートなどを例示できる。
【0036】
多官能オキセタン基含有有機化合物としては、キシリレンビスオキセタン、3−エチル−3{[(3−エチルオキセタン−3−イル)メトキシ]メチル}オキセタン、1,4−ベンゼンジカルボン酸,ビス{[3−エチル−3−オキセタニル]メチル}エステルなどを例示できる。
【0037】
以上のように、導電性高分子は、ポリアニオンのドープに寄与していないアニオン基にオキシラン基若しくはオキセタン基が反応しているため、ポリアニオンのアニオン基に由来する溶液の強酸性を弱酸性の域(具体的には、pH=2.0以上6.0以下)に上げることができる。
【0038】
1.2 溶媒
導電性高分子溶液を構成する溶媒は、水、有機溶剤、あるいはそれらの混合物を含む。水を含む溶媒中の好ましい水の含有率は、60〜100%である。溶媒に、溶媒に含み得る有機溶剤としては、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチレンホスホニウムトリアミド、アセトニトリル、ベンゾニトリル等に代表される極性溶媒; クレゾール、フェノール、キシレノール等に代表されるフェノール類; メタノール、エタノール、プロパノール、ブタノール等に代表されるアルコール類; アセトン、メチルエチルケトン、メチルイソブチルケトン等に代表されるケトン類; 酢酸エチル、酢酸プロピル、酢酸ブチル等に代表されるエステル類; ヘキサン、ヘプタン、ベンゼン、トルエン、キシレン等に代表される炭化水素類; ギ酸、酢酸等に代表されるカルボン酸; エチレンカーボネート、プロピレンカーボネート等に代表されるカーボネート化合物; ジオキサン、ジエチルエーテル等に代表されるエーテル化合物; エチレングリコールジアルキルエーテル、プロピレングリコールジアルキルエーテル、ポリエチレングリコールジアルキルエーテル、ポリプロピレングリコールジアルキルエーテル等に代表される鎖状エーテル類; 3−メチル−2−オキサゾリジノン等に代表される複素環化合物; アセトニトリル、グルタロジニトリル、メトキシアセトニトリル、プロピオニトリル、ベンゾニトリル等に代表されるニトリル化合物などを好適に例示できる。これらの有機溶剤は、単独で用いても良く、あるいは2種以上を混合して用いても良い。これらの有機溶剤の内、種々の有機物との易混合性の観点から、アルコール類、ケトン類、エーテル類、エステル類、炭化水素類をより好適に用いることができる。導電性高分子溶液をキャパシタに用いる場合、固形の導電性高分子を溶媒に分散可溶化させて塗料を製造し、その中にキャパシタ用素子を浸漬し、乾燥して、溶媒の一部若しくは全部を除去する。したがって、溶媒に有機溶剤を含む場合には、溶媒としては、沸点の低いものを好適に選択する。これにより、導電性高分子層の形成時の乾燥時間を短縮でき、もって生産性を高めることができる。
【0039】
1.3 その他添加物
(1)バインダ
導電性高分子溶液は、導電性高分子層の耐傷性や硬度を高くし、該層とキャパシタ内の他の層との密着性を向上させる観点から、好適には、バインダの機能を持つ樹脂(バインダ、あるいはバインダ樹脂とも称する)を含んでも良い。バインダは、好ましくは、アルコキシシリル基を含む。好適なバインダは、アルコキシシラン、アルコキシシランの縮合物、該アルコキシシランの縮合物とそれに反応可能な反応性樹脂との反応物であり、π共役系導電性高分子同士を結着させる機能を持つ。
【0040】
アルコキシシランの縮合物は、アルコキシシランを加熱、脱水させて得たものである。アルコキシシランとしては、有機官能基(例えば、エポキシ基、メルカプト基、アミノ基、カルボキシ基等)を有しているものが好ましい。有機官能基はケイ素原子に直接結合していてもよいし、炭素数1〜10の2価の炭化水素基を介してケイ素原子に結合していてもよい。
【0041】
有機官能基を有するアルコキシシランの具体例としては、γ−メタクリロキシプロピルトリメトキシシラン、γ−メタクリロキシプロピルトリエトキシシラン、γ−メタクリロキシプロピルトリブトキシシラン、γ−メタクリロキシプロピルメチルジメトキシシラン、γ−メタクリロキシプロピルメチルジエトキシシラン、γ−アクリロキシプロピルトリメトキシシラン、γ−アクリロキシプロピルトリエトキシシラン、γ−アクリロキシプロピルメチルジメトキシシラン、γ−メタクリロキシメチルトリメトキシシラン、γ−アクリロキシメチルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリブトキシシラン、ビニルメチルジメトキシシラン、5−ヘキセニルトリメトキシシラン、9−デセニルトリメトキシシラン、スチリルトリメトキシシラン、γ−クロロプロピルトリメトキシシラン、γ−ブロモプロピルトリメトキシシラン、トリフルオロプロピルトリメトキシシラン、ノナフルオロヘキシルトリメトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルトリブトキシシラン、γ−アミノプロピルメチルジメトキシシラン、γ−アミノプロピルメチルジエトキシシラン、N−(β−アミノエチル)−γ−アミノプロピルトリメトキシシラン、N−(β−アミノエチル)−γ−アミノプロピルトリエトキシシラン、N−(β−アミノエチル)−γ−アミノプロピルトリブトキシシラン、N−(β−アミノエチル)−γ−アミノプロピルメチルジメトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン、β−(3,4−エポキシシクロへキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、γ−グリシドキシメチルジメトキシシラン等が挙げられる。また、上記化合物のうち、耐溶剤性がより高くなる点では、β−(3,4−エポキシシクロへキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、γ−グリシドキシメチルジメトキシシランがより好ましい。また、上記有機官能基を有するアルコキシシランは1種を単独で使用してもよいし、2種以上を併用してもよい。
【0042】
アルコキシシランは、有機官能基を有さないものであってもよい。有機官能基を有さないテトラアルコキシシランとしては、例えば、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン、テトラブトキシシランが挙げられる。これらの中でも、アルコキシシラン基が容易に加水分解することから、テトラメトキシシランまたはテトラエトキシシランが好ましい。有機官能基を有さないアルコキシシラン1種を単独で使用してもよいし、2種以上を併用してもよい。
【0043】
反応性樹脂は、アルコキシシランの縮合物と反応可能な官能基を有するものである。アルコキシシランの縮合物と反応可能な官能基は、具体的には、アルコキシシランの縮合物の加水分解により生成するシラノールと反応可能な官能基、または、アルコキシシランの縮合物が有する有機官能基と反応する官能基である。このような官能基としては、カルボキシ基、スルホン酸基、ニトリル基、ヒドロキシ基、ニトリル基、アミノ基、アルコキシシリル基、シラノール基などが挙げられる。これら官能基の中でも、耐溶剤性の面からエポキシ基が好ましい。反応性樹脂としては、例えば、エポキシ樹脂、ウレタン樹脂、アクリル樹脂、アルキッド樹脂、シリコーン樹脂、フッ素樹脂、ポリエステル樹脂などが挙げられる。これらの中でも、アルコキシシランとの反応性、基材との密着性の面から、エポキシ樹脂、ウレタン樹脂、ポリエステル樹脂よりなる群から選ばれる少なくとも1種が好ましく、エポキシ樹脂がより好ましい。
【0044】
導電性高分子溶液中のバインダの含有量は、π共役系導電性高分子とポリアニオンの合計を100質量部とした際の200〜9,000質量部であることが好ましく、500〜6,000質量部であることがより好ましい。バインダの含有量が200質量部以上であれば、得られる導電性塗膜の耐溶剤性をより高くでき、9,000質量部以下であれば、充分な導電性を確保できる。
【0045】
(2)導電性向上剤
導電性高分子溶液は、塗膜の導電性をさらに向上させるべく、下記の化合物から選ばれる1種以上の導電性向上剤を有するのが好ましい。
(2.1)窒素含有芳香族性環式化合物
(2.2)2個以上のヒドロキシ基を有する化合物
(2.3)2個以上のカルボキシ基を有する化合物
(2.4)1個以上のヒドロキシ基及び1個以上のカルボキシ基を有する化合物
(2.5)アミド基を有する化合物
(2.6)イミド基を有する化合物
(2.7)ラクタム化合物
(2.8)その他
【0046】
(2.1)窒素含有芳香族性環式化合物
窒素含有芳香族性環式化合物としては、好適には、一つの窒素原子を含有するピリジン類及びその誘導体、二つの窒素原子を含有するイミダゾール類及びその誘導体、ピリミジン類及びその誘導体、ピラジン類及びその誘導体、三つの窒素原子を含有するトリアジン類及びその誘導体等が挙げられる。溶媒溶解性等の観点からは、ピリジン類及びその誘導体、イミダゾール類及びその誘導体、ピリミジン類及びその誘導体が好ましい。
【0047】
ピリジン類及びその誘導体の具体的な例としては、ピリジン、2−メチルピリジン、3−メチルピリジン、4−メチルピリジン、4−エチルピリジン、N−ビニルピリジン、2,4−ジメチルピリジン、2,4,6−トリメチルピリジン、3−シアノ−5−メチルピリジン、2−ピリジンカルボン酸、6−メチル−2−ピリジンカルボン酸、4−ピリジンカルボキシアルデヒド、4−アミノピリジン、2,3−ジアミノピリジン、2,6−ジアミノピリジン、2,6−ジアミノ−4−メチルピリジン、4−ヒドロキシピリジン、4−ピリジンメタノール、2,6−ジヒドロキシピリジン、2,6−ピリジンジメタノール、6−ヒドロキシニコチン酸メチル、2−ヒドロキシ−5−ピリジンメタノール、6−ヒドロキシニコチン酸エチル、4−ピリジンメタノール、4−ピリジンエタノール、2−フェニルピリジン、3−メチルキノリン、3−エチルキノリン、キノリノール、2,3−シクロペンテノピリジン、2,3−シクロヘキサノピリジン、1,2−ジ(4−ピリジル)エタン、1,2−ジ(4−ピリジル)プロパン、2−ピリジンカルボキシアルデヒド、2−ピリジンカルボン酸、2−ピリジンカルボニトリル、2,3−ピリジンジカルボン酸、2,4−ピリジンジカルボン酸、2,5−ピリジンジカルボン酸、2,6−ピリジンジカルボン酸、3−ピリジンスルホン酸等が挙げられる。
【0048】
イミダゾール類及びその誘導体の具体的な例としては、イミダゾール、2−メチルイミダゾール、2−プロピルイミダゾール、2−ウンデジルイミダゾール、2−フェニルイミダゾール、N−メチルイミダゾール、N−ビニルイミダゾール、N−アリルイミダゾール、1−(2−ヒドロキシエチル)イミダゾール(N−ヒドロキシエチルイミダゾール)、2−エチル−4−メチルイミダゾール、1,2−ジメチルイミダゾール、1−ベンジル−2−メチルイミダゾール、1−ベンジル−2−フェニルイミダゾール、1−シアノエチル−2−メチルイミダゾール、1−シアノエチル−2−エチル−4−メチルイミダゾール、2−フェニル−4,5−ジヒドロキシメチルイミダゾール、1−アセチルイミダゾール、4,5−イミダゾールジカルボン酸、4,5−イミダゾールジカルボン酸ジメチル、ベンズイミダゾール、2−アミノべンズイミダゾール、2−アミノべンズイミダゾール−2−スルホン酸、2−アミノ−1−メチルべンズイミダゾール、2−ヒドロキシべンズイミダゾール、2−(2−ピリジル)べンズイミダゾール等が挙げられる。
【0049】
ピリミジン類及びその誘導体の具体的な例としては、2−アミノ−4−クロロ−6−メチルピリミジン、2−アミノ−6−クロロ−4−メトキシピリミジン、2−アミノ−4,6−ジクロロピリミジン、2−アミノ−4,6−ジヒドロキシピリミジン、2−アミノ−4,6−ジメチルピリミジン、2−アミノ−4,6−ジメトキシピリミジン、2−アミノピリミジン、2−アミノ−4−メチルピリミジン、4,6−ジヒドロキシピリミジン、2,4−ジヒドロキシピリミジン−5−カルボン酸、2,4,6−トリアミノピリミジン、2,4−ジメトキシピリミジン、2,4,5−トリヒドロキシピリミジン、2,4−ピリミジンジオール等が挙げられる。
【0050】
トリアジン類及びその誘導体の具体的な例としては、1,3,5−トリアジン、2−アミノ−1,3,5−トリアジン、3−アミノ−1,2,4−トリアジン、2,4−ジアミノ−6−フェニル−1,3,5−トリアジン、2,4,6−トリアミノ−1,3,5−トリアジン、2,4,6−トリス(トリフルオロメチル)−1,3,5−トリアジン、2,4,6−トリ−2−ピリジン−1,3,5−トリアジン、3−(2−ピリジン)−5,6−ビス(4−フェニルスルホン酸)−1,2,4―トリアジン二ナトリウム、3−(2−ピリジン)−5,6−ジフェニル−1,2,4−トリアジン、3−(2−ピリジン)−5,6−ジフェニル−1,2,4―トリアジン−ρ,ρ’−ジスルホン酸二ナトリウム、2−ヒドロキシ−4,6−ジクロロ−1,3,5−トリアジン等が挙げられる。
【0051】
(2.2)2個以上のヒドロキシ基を有する化合物
2個以上のヒドロキシ基を有する化合物としては、例えば、プロピレングリコール、1,3−ブチレングリコール、1,4−ブチレングリコール、グリセリン、ジグリセリン、D−グルコース、D−グルシトール、イソプレングリコール、ジメチロールプロピオン酸、ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,9−ノナンジオール、ネオペンチルグリコール、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール、チオジエタノール、グルコース、酒石酸、D−グルカル酸、グルタコン酸等の多価脂肪族アルコール類; セルロース、多糖、糖アルコール等の高分子アルコール; 1,4−ジヒドロキシベンゼン、1,3−ジヒドロキシベンゼン、2,3−ジヒドロキシ−1−ペンタデシルベンゼン、2,4−ジヒドロキシアセトフェノン、2,5−ジヒドロキシアセトフェノン、2,4−ジヒドロキシベンゾフェノン、2,6−ジヒドロキシベンゾフェノン、3,4−ジヒドロキシベンゾフェノン、3,5−ジヒドロキシベンゾフェノン、2,4’−ジヒドロキシジフェニルスルフォン、2,2’,5,5’−テトラヒドロキシジフェニルスルフォン、3,3’,5,5’−テトラメチル−4,4’−ジヒドロキシジフェニルスルフォン、ヒドロキシキノンカルボン酸及びその塩類、2,3−ジヒドロキシ安息香酸、2,4−ジヒドロキシ安息香酸、2,5−ジヒドロキシ安息香酸、2,6−ジヒドロキシ安息香酸、3,5−ジヒドロキシ安息香酸、1,4−ヒドロキノンスルホン酸及びその塩類、4,5−ヒドロキシベンゼン−1,3−ジスルホン酸及びその塩類、1,5−ジヒドロキシナフタレン、1,6−ジヒドロキシナフタレン、2,6−ジヒドロキシナフタレン、2,7−ジヒドロキシナフタレン、2,3−ジヒドロキシナフタレン、1,5−ジヒドロキシナフタレン−2,6−ジカルボン酸、1,6−ジヒドロキシナフタレン−2,5−ジカルボン酸、1,5−ジヒドロキシナフトエ酸、1,4−ジヒドロキシ−2−ナフトエ酸フェニルエステル、4,5−ジヒドロキシナフタレン−2,7−ジスルホン酸及びその塩類、1,8−ジヒドロキシ−3,6−ナフタレンジスルホン酸及びその塩類、6,7−ジヒドロキシ−2−ナフタレンスルホン酸及びその塩類、1,2,3−トリヒドロキシベンゼン(ピロガロール)、1,2,4−トリヒドロキシベンゼン、5−メチル−1,2,3−トリヒドロキシベンゼン、5−エチル−1,2,3−トリヒドロキシベンゼン、5−プロピル−1,2,3−トリヒドロキシベンゼン、トリヒドロキシ安息香酸、トリヒドロキシアセトフェノン、トリヒドロキシベンゾフェノン、トリヒドロキシベンゾアルデヒド、トリヒドロキシアントラキノン、2,4,6−トリヒドロキシベンゼン、テトラヒドロキシ−p−ベンゾキノン、テトラヒドロキシアントラキノン、ガリック酸メチル(没食子酸メチル)、ガリック酸エチル(没食子酸エチル)等の芳香族化合物、ヒドロキノンスルホン酸カリウム等が挙げられる。
【0052】
(2.3)2個以上のカルボキシ基を有する化合物
2個以上のカルボキシ基を有する化合物としては、マレイン酸、フマル酸、イタコン酸、シトラコン酸、マロン酸、1,4−ブタンジカルボン酸、コハク酸、酒石酸、アジピン酸、D−グルカル酸、グルタコン酸、クエン酸等の脂肪族カルボン酸類化合物; フタル酸、テレフタル酸、イソフタル酸、テトラヒドロ無水フタル酸、5−スルホイソフタル酸、5−ヒドロキシイソフタル酸、メチルテトラヒドロ無水フタル酸、4,4’−オキシジフタル酸、ビフェニルテトラカルボン酸二無水物、ベンゾフェノンテトラカルボン酸二無水物、ナフタレンジカルボン酸、トリメリット酸、ピロメリット酸等の、芳香族性環に少なくとも一つ以上のカルボキシ基が結合している芳香族カルボン酸類化合物; ジグリコール酸、オキシ二酪酸、チオ二酢酸(チオジ酢酸)、チオ二酪酸、イミノ二酢酸、イミノ酪酸等が挙げられる。
【0053】
(2.4)1個以上のヒドロキシ基及び1個以上のカルボキシ基を有する化合物
1個以上のヒドロキシ基及び1個以上のカルボキシ基を有する化合物としては、酒石酸、グリセリン酸、ジメチロールブタン酸、ジメチロールプロパン酸、D−グルカル酸、グルタコン酸等が挙げられる。
【0054】
(2.5)アミド基を有する化合物
アミド基を有する化合物(以後、「アミド化合物」という)は、−CO−NH−(COの部分は二重結合)で表されるアミド結合を分子中に有する単分子化合物である。すなわち、アミド化合物としては、例えば、上記結合の両末端に官能基を有する化合物、上記結合の一方の末端に環状化合物が結合された化合物、上記両末端の官能基が水素である尿素及び尿素誘導体などが挙げられる。アミド化合物の具体例としては、アセトアミド、マロンアミド、スクシンアミド、マレアミド、フマルアミド、ベンズアミド、ナフトアミド、フタルアミド、イソフタルアミド、テレフタルアミド、ニコチンアミド、イソニコチンアミド、2−フルアミド、ホルムアミド、N−メチルホルムアミド、プロピオンアミド、プロピオルアミド、ブチルアミド、イソブチルアミド、メタクリルアミド、パルミトアミド、ステアリルアミド、オレアミド、オキサミド、グルタルアミド、アジプアミド、シンナムアミド、グリコールアミド、ラクトアミド、グリセルアミド、タルタルアミド、シトルアミド、グリオキシルアミド、ピルボアミド、アセトアセトアミド、ジメチルアセトアミド、ベンジルアミド、アントラニルアミド、エチレンジアミンテトラアセトアミド、ジアセトアミド、トリアセトアミド、ジベンズアミド、トリベンズアミド、ローダニン、尿素、1−アセチル−2−チオ尿素、ビウレット、ブチル尿素、ジブチル尿素、1,3−ジメチル尿素、1,3−ジエチル尿素及びこれらの誘導体等が挙げられる。
【0055】
また、アミド化合物として、アクリルアミドを使用することもできる。アクリルアミドとしては、N−メチルアクリルアミド、N−メチルメタクリルアミド、N−エチルアクリルアミド、N−エチルメタクリルアミド、N,N−ジメチルアクリルアミド、N,N−ジメチルメタクリルアミド、N,N−ジエチルアクリルアミド、N,N−ジエチルメタクリルアミド、2−ヒドロキシエチルアクリルアミド、2−ヒドロキシエチルメタクリルアミド、N−メチロールアクリルアミド、N−メチロールメタクリルアミドなどが挙げられる。アミド化合物の分子量は46〜10,000であることが好ましく、46〜5,000であることがより好ましく、46〜1,000であることが特に好ましい。
【0056】
(2.6)イミド基を有する化合物
イミド基を有する化合物(以後、「イミド化合物」という)としては、その骨格より、フタルイミド及びフタルイミド誘導体、スクシンイミド及びスクシンイミド誘導体、ベンズイミド及びベンズイミド誘導体、マレイミド及びマレイミド誘導体、ナフタルイミド及びナフタルイミド誘導体などが挙げられる。
【0057】
また、イミド化合物は、両末端の官能基の種類によって、脂肪族イミド、芳香族イミド等に分類されるが、溶解性の観点からは、脂肪族イミドが好ましい。さらに、脂肪族イミド化合物は、分子内の炭素間に不飽和結合を有する飽和脂肪族イミド化合物と、分子内の炭素間に不飽和結合を有する不飽和脂肪族イミド化合物とに分類される。飽和脂肪族イミド化合物は、R−CO−NH−CO−Rで表される化合物であり、R,Rの両方が飽和炭化水素である化合物である。具体的には、シクロヘキサン−1,2−ジカルボキシイミド、アラントイン、ヒダントイン、バルビツル酸、アロキサン、グルタルイミド、スクシンイミド、5−ブチルヒダントイン酸、5,5−ジメチルヒダントイン、1−メチルヒダントイン、1,5,5−トリメチルヒダントイン、5−ヒダントイン酢酸、N−ヒドロキシ−5−ノルボルネン−2,3−ジカルボキシイミド、セミカルバジド、α,α−ジメチル−6−メチルスクシンイミド、ビス[2−(スクシンイミドオキシカルボニルオキシ)エチル]スルホン、α−メチル−α−プロピルスクシンイミド、シクロヘキシルイミドなどが挙げられる。不飽和脂肪族イミド化合物は、R−CO−NH−CO−Rで表される化合物であり、R,Rの一方または両方が1つ以上の不飽和結合である化合物である。その具体例としては、1,3−ジプロピレン尿素、マレイミド、N−メチルマレイミド、N−エチルマレイミド、N−ヒドロキシマレイミド、1,4−ビスマレイミドブタン、1,6−ビスマレイミドヘキサン、1,8−ビスマレイミドオクタン、N−カルボキシヘプチルマレイミドなどが挙げられる。
【0058】
イミド化合物の分子量は60〜5,000であることが好ましく、70〜1,000であることがより好ましく、80〜500であることが特に好ましい。
【0059】
(2.7)ラクタム化合物
ラクタム化合物とは、アミノカルボン酸の分子内環状アミドであり、環の一部が−CO−NR−(Rは水素または任意の置換基)である化合物である。ただし、環の一個以上の炭素原子が不飽和やヘテロ原子に置き換わっていてもよい。ラクタム化合物としては、例えば、ペンタノ−4−ラクタム、4−ペンタンラクタム−5−メチル−2−ピロリドン、5−メチル−2−ピロリジノン、ヘキサノ−6−ラクタム、6−ヘキサンラクタム等が挙げられる。
【0060】
(2.8)その他
上記以外に、ジメチルスルホキシド(DMSO); ヒドロキシエチルアクリレート、乳酸エチル等のヒドロキシ基含有カルボン酸エステル化合物; エチレングリコールモノエチルエーテル、プロピレングリコールモノエチルエーテル等のヒドロキシ基含有エーテル化合物を、導電性向上剤に使用しても良い。
【0061】
導電性向上剤の含有量は、π共役系導電性高分子とポリアニオンの合計量100質量部に対して10〜10,000質量部であることが好ましく、30〜5,000質量部であることがより好ましい。導電性向上剤の含有量が前記下限値以上で上限値以下であれば、導電性をより向上させることができる。
【0062】
2.導電性高分子溶液の製造方法
この実施の形態に係る導電性高分子溶液は、一例として、以下の方法によって製造することができる。
【0063】
2.1 導電性高分子/ポリアニオン錯体水分散体の溶液からの製造方法
導電性高分子/ポリアニオン錯体水分散体は、導電性高分子用のモノマーとドーパントとが共存した水溶液または水分散体の状態に、酸化剤の存在下で重合を行う。ただし、このようなモノマーからの重合のみならず、市販の導電性高分子/ドーパント水分散体を用いても良い。市販の導電性高分子/ドーパント水分散体としては、例えば、Heraeus社のPEDOT/PSS水分散体(商品名: Clevios)、アグファ社のPEDOT/PSS水分散体(商品名: Orgacon)などを挙げることができる。次に、上記水分散体に、最終的に得られる導電性高分子溶液のpHが2.0〜6.0の範囲になるようにオキシラン基及び/又はオキセタン基含有有機化合物を添加後、撹拌する。この結果、オキシラン基及び/又はオキセタン基含有有機化合物の環状エーテルが開環し、そこに、ポリアニオン中のドープに寄与していないアニオン基のOHが反応する。その後、得られた反応液を濃縮、濾別あるいは乾固すると、導電性高分子が得られる。その後、得られた固形の導電性高分子を、溶媒中に可溶若しくは分散させて、導電性高分子溶液を得る。その他の添加物を加える場合には、予め溶媒中に当該添加物を混合し、あるいは導電性高分子と共に当該添加物を溶媒に混合するのが好ましい。また、上記水分散体に、オキシラン基及び/又はオキセタン基含有有機化合物を溶剤と共に添加後、好ましくはアニオンとオキシラン基若しくはオキセタン基とを反応させている間若しくは反応後に、水に不溶の有機溶剤を加えて、水不溶の溶剤相に導電性高分子を転相させ、必要に応じて脱水などの工程を経た後に、溶媒中に、導電性高分子を可溶若しくは分散させても良い。
【0064】
2.2 凍結乾燥された導電性高分子/ポリアニオン錯体固形物からの製造方法
既に固体となっているπ共役系導電性高分子にドープしたポリアニオンの状態の導電性高分子に、水及び/またはオキシラン基及び/又はオキセタン基含有有機化合物が溶解する溶媒を適量添加後、好ましくはアニオンとオキシラン基若しくはオキセタン基とを反応させる。その後、反応液を濃縮、濾別あるいは乾固する。その後、好適には、得られた濃縮物あるいは固体を、溶媒中に可溶若しくは分散させる。また、上記製造において、アニオンとオキシラン基若しくはオキセタン基とを反応させた後、水に不溶の有機溶剤を加えて、水不溶の溶剤相に導電性高分子を転相させ、必要に応じて脱水などの工程を経た後に、導電性高分子を、溶媒中に可溶若しくは分散させても良い。この方法によれば、凍結乾燥された導電性高分子を原料として用いているので、特に、濃縮する工程の時間を短縮できる。
【0065】
オキシラン基及び/又はオキセタン基含有有機化合物の量は、最終的に得られる導電性高分子溶液のpHが2.0〜6.0の範囲になる量である。例えば、PEDOT−PSS系の導電性高分子溶液に酸化プロピレンを添加する場合、PEDOT−PSS系の導電性高分子1質量部に対して5〜50質量部を添加するのが好ましい。また、PEDOT−PSS系の導電性高分子溶液にグリシドールを添加する場合、PEDOT−PSS系の導電性高分子1質量部に対して好ましくは3.5〜50質量部、さらに好ましくは4〜50質量部を添加する。また、PEDOT−PSS系の導電性高分子溶液に2−{2−[2−(2−ブトキシ−エトキシ)−エトキシ]−エトキシ}−オキシランを添加する場合、PEDOT−PSS系の導電性高分子1質量部に対して好ましくは3〜50質量部、さらに好ましくは4〜25質量部を添加する。
【0066】
3.キャパシタ
この実施の形態に係るキャパシタは、弁金属の多孔質体からなる陽極と、陽極表面が酸化されて形成された誘電体層と、誘電体層における陽極と反対側に設けられた導電物質製の陰極と、誘電体層及び陰極の間に形成された固体電解質層とを備えるキャパシタである。固体電解質層は、π共役系導電性高分子と、π共役系導電性高分子にドープしたポリアニオンと、ポリアニオン中のドープに寄与しないアニオンとオキシラン基及び/又はオキセタン基含有有機化合物との反応物を含む導電性高分子を備える層である。キャパシタは、導電性高分子溶液若しくはその溶液から溶媒を除去した化合物を含む。
【0067】
4.キャパシタの製造方法
この実施の形態に係るキャパシタは、π共役系導電性高分子と、π共役系導電性高分子にドープしたポリアニオンと、ポリアニオン中のドープに寄与していないアニオンとオキシラン基及び/又はオキセタン基含有有機化合物との反応物を含む導電性高分子溶液を誘電体層表面に塗布し、それを乾燥させて固体電解質層を形成する工程を経て製造される。この工程は、キャパシタに、導電性高分子溶液を含浸させ、導電性高分子溶液を構成する溶媒を除去する工程である。次に、本発明のキャパシタの製造方法をより詳細に説明する。この実施の形態に係るキャパシタの製造方法は、π共役系導電性高分子と、π共役系導電性高分子にドープしたポリアニオンと、ポリアニオン中のドープに寄与していないアニオンとオキシラン基及び/又はオキセタン基含有有機化合物との反応物を含む導電性高分子分散液を調製する工程と、弁金属の多孔質体からなる陽極の表面を酸化して誘電体層を形成する工程と、誘電体層に対向する位置に陰極を形成する工程と、誘電体層表面に前記導電性高分子分散液を塗布し、乾燥させて固体電解質層を形成する工程と、を有する。
【0068】
4.1 導電性高分子分散液の調製方法
π共役系導電性高分子と、π共役系導電性高分子にドープしたポリアニオンと、ポリアニオン中のドープに寄与していないアニオンとオキシラン基及び/又はオキセタン基含有有機化合物との反応物を含む導電性高分子溶液の調製方法は前記したとおりである。こうして得られた溶液に、ヒドロキシ基含有芳香族性化合物、水溶性高分子化合物または水分散性高分子化合物、スルホ基含有ジカルボン酸、分子内に4個以上の水酸基を有する脂肪族化合物、高沸点溶媒、導電性向上のための添加剤、バインダ、シランカップリング剤、水等を混合、攪拌し、必要により加熱溶解する。さらに、ビーズミル、高圧分散機、超音波等により分散処理を行うことにより、導電性高分子分散液の安定性を改良することができる。その中でも高圧分散機による分散処理は、簡便に分散安定性を改良することができるため、より好ましい。
【0069】
(1)高圧分散処理工程
高圧分散処理は、高圧分散機を用いて、分散処理する溶液を高圧で対向衝突させたり、オリフィスやスリットに高圧で通したりして、ポリアニオンや導電性高分子溶液を分散する処理のことである。高圧分散機としては、例えば、高圧ホモジナイザー等の市販の高圧分散機を好適に使用できる。高圧ホモジナイザーは、例えば、分散処理する溶液などを加圧する高圧発生部と、分散を行う対向衝突部やオリフィス部あるいはスリット部とを備える装置である。高圧発生部としては、プランジャーポンプ等の高圧ポンプが好適に用いられる。高圧ポンプには、一連式、二連式、三連式などの各種の形式があるが、いずれの形式も採用できる。高圧分散処理において分散処理する溶液を高圧で対向衝突させる場合には、高圧分散処理効果がより発揮されることから、その処理圧力は50MPa以上であることが好ましく、100MPa以上であることがより好ましく、130MPa以上であることがとりわけ好ましい。また、300MPaを超える処理圧力では高圧分散機の耐圧性や耐久性に問題が生じやすいため、処理圧力は300MPa以下であることが好ましい。
【0070】
上述のオリフィスとは、円形状等の微細な穴を持つ薄板(オリフィス板)が直管内に挿入されて、直管の流路を急激に絞る機構をいう。また、上述のスリットとは、金属やダイヤモンドなど強固な材料製の一対の部材がわずかな隙間を有して配置された機構をいう。高圧分散処理において分散処理する溶液をオリフィスやスリットに通す場合には、高圧分散処理効果がより発揮されることから、上流側と下流側の差圧が50MPa以上であることが好ましく、100MPa以上であることがより好ましく、130MPa以上であることがとりわけ好ましい。また、300MPa以下の差圧では、高圧分散機の耐圧性や耐久性に問題が生じにくいため、差圧は300MPa以下であることが好ましい。高圧ホモジナイザーの具体例としては、吉田機械興業社製の商品名ナノヴェイター、マイクロフルイディクス社製の商品名マイクロフルイダイザー、スギノマシン社製のアルティマイザーなどが挙げられる。
【0071】
高圧分散処理の処理回数は特に制限されないが、1〜数十回の範囲が好ましい。分散処理回数が多すぎる場合には、処理回数を増やしても処理回数に応じた効果が発揮されないからである。上記高圧分散処理では、対向衝突の際に、または、急激に絞られた流路を通過する際に高い剪断力が生じることにより、分散処理する溶液に含まれるポリアニオンまたは複合体の分散性を高めることができる。高圧分散機により高圧分散処理を施すと、原理上、処理した後の液の温度が高くなる。そのため、分散処理前の分散処理する溶液の温度をあらかじめ低くしておくことが好ましい。しかし、分散処理する溶液が凍結すると特性が変化する場合があるので、凍結しない程度に制御することが好ましい。従って分散処理前の分散処理する溶液の温度は、分散媒が水の場合には0〜60℃、より好ましくは0〜40℃、特に好ましくは0〜30℃とすることが好ましい。分散処理前の分散処理する溶液の温度を60℃以下にすれば、π共役系導電性高分子またはポリアニオンの変性を防止できる。さらに、高圧分散処理後の溶液を、冷媒温度−30〜20℃の熱交換器に通して冷却しても構わない。
【0072】
(2)電解酸化工程
この実施の形態に係るキャパシタの製造方法では、まず、電解酸化工程にて、弁金属からなる陽極の表面を電解酸化し、化成処理して誘電体層を形成する。陽極表面を電解酸化する方法としては、例えば、アジピン酸アンモニウム水溶液などの電解液中にて、電圧を印加して陽極表面を陽極酸化する方法などが挙げられる。
【0073】
(3)陰極配置工程
次に、誘電体層の表面に、セパレータを介して、アルミニウム箔等の導電体から形成された陰極を対向配置させる。
【0074】
(4)固体電解質層の形成工程
次に、固体電解質層の形成工程にて、誘電体層と陰極との間に、固体電解質層を形成する。固体電解質層の形成方法としては、誘電体層及び陰極を有する素子を上記導電性高分子溶液に浸漬させる方法、誘電体層の表面に上記導電性高分子溶液を公知の塗布装置により塗布する方法、誘電体層の表面に上記導電性高分子溶液を公知の噴霧装置により噴霧する方法などが挙げられる。また、浸漬または塗布時、必要に応じて、減圧状態にしてもよい。上記導電性高分子溶液の浸漬または塗布後には、熱風乾燥など公知の乾燥方法により乾燥することが好ましい。
【0075】
キャパシタは、必要に応じて、誘電体層と陰極との間に、電解液を充填してもよい。電解液としては電気伝導度が高ければ特に限定されず、周知の電解液用溶媒中に周知の電解質を溶解させたものが挙げられる。電解液用溶媒としては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、1,4−ブタンジオール、グリセリン等のアルコール系溶媒、γ−ブチロラクトン、γ−バレロラクトン、δ−バレロラクトン等のラクトン系溶媒、N−メチルホルムアミド、N,N−ジメチルホルムアミド、N−メチルアセトアミド、N−メチルピロリジノン等のアミド系溶媒、アセトニトリル、3−メトキシプロピオニトリル等のニトリル系溶媒、水等が挙げられる。電解質としては、アジピン酸、グルタル酸、コハク酸、安息香酸、イソフタル酸、フタル酸、テレフタル酸、マレイン酸、トルイル酸、エナント酸、マロン酸、蟻酸、1,6−デカンジカルボン酸、5,6−デカンジカルボン酸等のデカンジカルボン酸、1,7−オクタンジカルボン酸等のオクタンジカルボン酸、アゼライン酸、セバシン酸等の有機酸、あるいは、硼酸、硼酸と多価アルコールより得られる硼酸の多価アルコール錯化合物、りん酸、炭酸、けい酸等の無機酸などをアニオン成分とし、一級アミン(メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、エチレンジアミン等)、二級アミン(ジメチルアミン、ジエチルアミン、ジプロピルアミン、メチルエチルアミン、ジフェニルアミン等)、三級アミン(トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリフェニルアミン、1,8−ジアザビシクロ(5,4,0)−ウンデセン−7等)、テトラアルキルアンモニウム(テトラメチルアンモニウム、テトラエチルアンモニウム、テトラプロピルアンモニウム、テトラブチルアンモニウム、メチルトリエチルアンモニウム、ジメチルジエチルアンモニウム等)などをカチオン成分とした電解質が挙げられる。
【0076】
(5)印加工程
次に、印加工程にて、陽極と陰極との間に直流電圧を印加する処理を施して、コンデンサを得る。印加する直流電圧は特に制限されないが、漏れ電流をより小さくするという点では、得られるコンデンサの定格電圧の30%以上であることが好ましく、50%以上であることがより好ましく、80%以上であることが特に好ましい。ここで、定格電圧は、陽極を電解酸化する際の印加電圧(化成電圧)などによって決まる値である。通常、定格電圧は、化成電圧以下とされる。また、印加工程にて印加する電圧は、漏れ電流がより小さくなることから、電解酸化工程における化成電圧の20%以上であることが好ましく、30%以上であることがより好ましく、40%以上であることが特に好ましい。
【0077】
印加工程を行う環境温度は、漏れ電流をより小さくできることから、30℃以上が好ましく、40〜200℃がより好ましく、80〜180℃が特に好ましく、100〜160℃が最も好ましい。印加工程の時間は、印加する直流電圧や環境温度に応じて適宜調整される。例えば、漏れ電流をより小さくするためには、印加する直流電圧が低い程、印加時間を長くすることが好ましい。具体的に、印加する直流電圧がコンデンサの定格電圧の50%未満である場合には、漏れ電流をより小さくするために、印加時間を5分以上にすることが好ましい。印加する直流電圧が高い場合には、印加時間を短くしても構わない。具体的に、印加する直流電圧がコンデンサの定格電圧の50%以上である場合には、印加時間を5分未満にしても、漏れ電流を小さくできる。また、漏れ電流をより小さくするためには、環境温度が低い程、印加時間を長くすることが好ましい。環境温度が高ければ、印加時間を短くしても構わない。
【実施例】
【0078】
次に、本発明の実施例について説明する。ただし、本発明は、以下の実施例に限定されない。
【0079】
<製造例>
(製造例1)可溶化高分子の合成
1,000mlのイオン交換水に206gのスチレンスルホン酸ナトリウムを溶解し、80℃で攪拌しながら、予め10mlの水に溶解した1.14gの過硫酸アンモニウム酸化剤溶液を20分間滴下し、この溶液を12時間攪拌した。得られたスチレンスルホン酸ナトリウム含有溶液に10質量%に希釈した硫酸を1,000ml添加し、限外ろ過法によりポリスチレンスルホン酸含有溶液の約1,000ml溶液を除去し、残液に2,000mlのイオン交換水を加え、限外ろ過法により約2,000ml溶液を除去した。上記の限外ろ過操作を3回繰り返した。さらに、得られたろ液に約2,000mlのイオン交換水を添加し、限外ろ過法により約2,000mlの溶液を除去した。この限外ろ過操作を3回繰り返した。得られた溶液中の水を減圧除去して、無色の固形状のポリスチレンスルホン酸を得た。
(製造例2)π共役系導電性高分子とポリアニオンを含む導電性高分子溶液の合成
14.2gの3,4−エチレンジオキシチオフェンと、36.7gのポリスチレンスルホン酸を2,000mlのイオン交換水に溶かした溶液とを20℃で混合させた。これにより得られた混合溶液を20℃に保ち、掻き混ぜながら、200mlのイオン交換水に溶かした29.64gの過硫酸アンモニウムと8.0gの硫酸第二鉄の酸化触媒溶液とをゆっくり添加し、3時間攪拌して反応させた。得られた反応液に2,000mlのイオン交換水を加え、限外ろ過法により約2,000ml溶液を除去した。この操作を3回繰り返した。そして、得られた溶液に200mlの10質量%に希釈した硫酸と2,000mlのイオン交換水とを加え、限外ろ過法により約2,000mlの溶液を除去し、これに2,000mlのイオン交換水を加え、限外ろ過法により約2,000ml溶液を除去した。この操作を3回繰り返した。さらに、得られた溶液に2,000mlのイオン交換水を加え、限外ろ過法により約2,000mlの溶液を除去した。この操作を5回繰り返し、2.0%のポリスチレンスルホン酸ドープポリ(3,4−エチレンジオキシチオフェン)溶液(PEDOT−PSS水溶液)を得た。
【0080】
<実施例>
(実施例1)
製造例2で得たPEDOT−PSS水溶液85gに対し、グリシドール8.0g、水15gを加えて、50℃で8時間攪拌し、溶液を作製した。得られた溶液のpHは2.10であった。
(実施例2)
グリシドールの添加量を8.0gから12.0gに変更した以外を実施例1と同条件で溶液を作製した。得られた溶液のpHは2.18であった。
(実施例3)
製造例2で得たPEDOT−PSS水溶液60gに対し、グリシドール5.75g、水40gを加えて、50℃で8時間攪拌し、溶液を作製した。得られた溶液のpHは2.18であった。
(実施例4)
グリシドールの添加量を5.75gから12.0gに変更した以外を実施例3と同条件で溶液を作製した。得られた溶液のpHは2.32であった。
(実施例5)
グリシドールの添加量を5.75gから17.5gに変更し、50℃で8時間の攪拌を50℃で4時間の撹拌に変更した以外を、実施例3と同条件で溶液を作製した。得られた溶液のpHは3.08であった。
(実施例6)
グリシドールの添加量を17.5gから23.0gに変更した以外を実施例5と同条件で溶液を作製した。得られた溶液のpHは3.48であった。
(実施例7)
グリシドールの添加量を17.5gから28.0gに変更した以外を実施例5と同条件で溶液を作製した。得られた溶液のpHは3.81であった。
(実施例8)
グリシドールの添加量を17.5gから34.5gに変更した以外を実施例5と同条件で溶液を作製した。得られた溶液のpHは4.11であった。
(実施例9)
グリシドールの添加量を12.0gから46.6gに変更した以外を実施例4と同条件で溶液を作製した。得られた溶液のpHは4.11であった。
(実施例10)
製造例2で得たPEDOT−PSS水溶液60gに対し、酸化プロピレン5.96g、水40gを加えて、50℃で8時間攪拌し、溶液を作製した。得られた溶液のpHは2.45であった。
(実施例11)
製造例2で得たPEDOT−PSS水溶液60gに対し、2−{2−[2−(2−ブトキシ−エトキシ)−エトキシ]−エトキシ}−オキシラン8.66g、水40gを加えて、50℃で8時間攪拌し、溶液を作製した。得られた溶液のpHは2.10であった。
(実施例12)
製造例2で得たPEDOT−PSS水溶液60gに対し、グリシドール68.6g、水40gを加えて、50℃で8時間攪拌し、溶液を作製した。得られた溶液のpHは4.30であった。
(実施例13)
グリシドールの添加量を68.6gから114.4gに変更した以外を実施例12と同条件で溶液を作製した。得られた溶液のpHは4.01であった。
(実施例14)
2−{2−[2−(2−ブトキシ−エトキシ)−エトキシ]−エトキシ}−オキシランの添加量を8.66gから5.0gに変更した以外を実施例11と同条件で溶液を作製した。得られた溶液のpHは2.05であった。
(実施例15)
製造例2で得たPEDOT−PSS水溶液40gに対し、2−{2−[2−(2−ブトキシ−エトキシ)−エトキシ]−エトキシ}−オキシラン5.0g、水60gを加えて、50℃で8時間攪拌し、溶液を作製した。得られた溶液のpHは2.13であった。
【0081】
<比較例>
(比較例1)
製造例2で得たPEDOT−PSS水溶液60gに対し、イミダゾール0.176g、水40gを加えて、50℃で8時間攪拌し、溶液を作製した。得られた溶液のpHは2.48であった。
(比較例2)
イミダゾールの添加量を0.176gから0.32gに変更した以外を比較例1と同条件で溶液を作製した。得られた溶液のpHは6.83であった。
(比較例3)
製造例2で得たPEDOT−PSS水溶液85gに対し、イミダゾール0.25g、水15gを加えて、50℃で8時間攪拌し、溶液を作製した。得られた溶液のpHは2.31であった。
(比較例4)
イミダゾールの添加量を0.25gから0.45gに変更した以外を比較例3と同条件で溶液を作製した。得られた溶液のpHは6.89であった。
(比較例5)
製造例2で得たPEDOT−PSS水溶液85gに対し、水15gを加えて、50℃で8時間攪拌し、溶液を作製した。得られた溶液のpHは1.82であった。
(比較例6)
製造例2で得たPEDOT−PSS水溶液60gに対し、水40gを加えて、50℃で8時間攪拌し、溶液を作製した。得られた溶液のpHは1.70であった。
【0082】
各実施例及び各比較例の製造条件及び溶液特性を表1及び表2に示す。表中、Comp.はオキシラン基及び/又はオキセタン基含有有機化合物を、CPは導電性高分子溶液を、Glはグリシドールを、POは酸化プロピレンを、BEEは2−{2−[2−(2−ブトキシ−エトキシ)−エトキシ]−エトキシ}−オキシランを、IZはイミダゾールを、それぞれ意味する。また、表中、Comp./CPは、導電性高分子溶液中の導電性高分子に対するオキシラン基及び/又はオキセタン基含有有機化合物の割合を示す。
【0083】
【表1】
【0084】
【表2】
【0085】
<キャパシタの製造>
(キャパシタ用素子の製造)
エッチドアルミニウム箔(陽極箔)に陽極リード端子を接続した後、アジピン酸アンモニウム10質量%水溶液中で150Vの電圧を印加し、化成(酸化処理)して、アルミニウム箔の両面に誘電体層を形成して陽極箔を得た。次に、陽極箔の両面に、陰極リード端子を溶接させた対向アルミニウム陰極箔を、セルロース製のセパレータを介して積層し、これを円筒状に巻き取ってキャパシタ用素子を得た。
(キャパシタの製造)
上記各実施例及び各比較例にて製造した導電性高分子溶液に、上記で得たキャパシタ用素子を減圧下で浸漬した後、120℃の熱風乾燥機により10分間乾燥し誘電体層表面上に、導電性高分子複合体を含む固体電解質層を形成させた。さらに、アルミニウム製のケースに、キャパシタ用素子を装填し、封口ゴムで封止しキャパシタを作製した。
得られたキャパシタについて、LCRメータ2345(エヌエフ回路設計ブロック社製)を用いて、120Hzでの静電容量及び誘電正接(tanσ)、及び100kHzでのESRを測定した。
【0086】
<キャパシタの評価>
表3、表4及び表5に、各実施例及び各比較例の導電性高分子溶液を用いたキャパシタの性能評価を示す。
【0087】
【表3】
【0088】
【表4】
【0089】
【表5】
【0090】
<考察>
実施例1〜15と比較例1〜6とを比較すると、各実施例のキャパシタは、各比較例のキャパシタに比べ、より低いESR及びより高い静電容量を有していた。このことから、酸化プロピレン、グリシドールあるいは2−{2−[2−(2−ブトキシ−エトキシ)−エトキシ]−エトキシ}−オキシランを用いて溶液のpHを2.0〜6.0の範囲にすることで、キャパシタの性能を低ESR及び高静電容量にすることができると考えられる。
【産業上の利用可能性】
【0091】
本発明は、キャパシタなどに有効に利用できる。