【実施例】
【0126】
参照実施例1〜3は、本発明による方法、キット及び装置において使用できるhGDF-15に対する抗体を例示する。このhGDF-15抗体は、参照によりその全文が本明細書に組み込まれるWO2014/049087から知られているモノクローナル抗体である:
【0127】
参照実施例1:GDF-15抗体B1-23の作製及び特徴付け
GDF-15ノックアウトマウスにおいて抗体B1-23を作製した。組換えヒトGDF-15(配列番号8)を免疫原として使用した。
【0128】
mAb-B1-23を産生するハイブリドーマ細胞株B1-23は、ブダペスト条約に従い、Julius-Maximilians-Universitat Wurzburg、Sanderring 2、97070 Wurzburg、Germanyによって、Deutsche Sammlung fur Mikroorganismen und Zellkulturen GmbH (DMSZ)に受託番号DSM ACC3142の下で寄託された。
【0129】
市販の試験ストリップシステムによって、B1-23を、IgG2a(κ鎖)アイソタイプとして同定した。表面プラズモン共鳴測定を使用して、解離定数(Kd)を以下の通りに決定した:
【0130】
Biorad ProteOn XPR36システム及びBiorad GLCセンサーチップを使用する表面プラズモン共鳴測定を用いることによって、本発明のモノクローナル抗ヒト-GDF-15抗体抗ヒトGDF-15 mAb-B1-23の結合を測定した。
【0131】
バイオセンサーを調製するために、組換え成熟ヒトGDF-15タンパク質をフローセル1及び2上に固定化した。一方のフローセル上の、バキュロウイルス(Baculvirus)によってトランスフェクトされた昆虫細胞(HighFive昆虫細胞)に由来する組換えGDF-15及び大腸菌(E.coli)における発現に由来するもう一方の組換えタンパク質を使用した。GLCセンサーチップを、スルホ-NHS(N-ヒドロキシスルホスクシンイミド)及びEDC(1-エチル-3-[3-ジメチルアミノプロピル]カルボジイミドヒドロクロリド)(Biorad ProteOnアミンカップリングキット)を製造業者の推奨に従って使用して活性化し、続いて、センサー表面にタンパク質を、最大約600RU(1Ru=1pg mm
-2)の密度でロードした。次いで未反応のカップリング基を、1MエタノールアミンpH8.5を用いて灌流することによってクエンチし、チップにランニングバッファーを灌流することによってバイオセンサーを平衡化させた(HBS150と呼ばれる10M HEPES、150mM NaCl、3.4mM EDTA、0.005% Tween-20、pH7.4)。対照として、2つのフローセルを使用し、1つはタンパク質がカップリングされていない空のフローセルであり、1つは同一カップリング化学及び同一カップリング密度を使用して固定された非生理学的タンパク質パートナー(ヒトインターロイキン-5)とカップリングされたフローセルであった。相互作用測定のために、抗ヒトGDF-15 mAb-B1-23をHBS150に溶解し、分析物として6種の異なる濃度(濃度:0.4、0.8、3、12、49及び98nM)で使用した。断続的な再生を避けるためにワンショット動力学(one-shot kinetics)設定を使用して分析物をバイオセンサー中に灌流し、すべての測定を25℃で、100μl分
-1の流速を使用して実施した。処理のために、すべてのその他のSPRデータから空のフローセル(フローセル3)のSPRデータを差し引くことによって、バルクフェイス効果(bulk face effect)及びセンサーマトリックスとの非特異的結合を除去した。ソフトウェアProteOn Managerバージョン3.0を使用して得られたセンサーグラムを解析した。結合動力学の解析のために、1:1 ラングミュア型相互作用を仮定した。会合速度定数については、5.4±0.06×10
5M
-1s
-1(k
on)の値、解離速度定数については、4.3±0.03×10
-4s
-1(k
off)の値を決定できた(値は、抗ヒトGDF-15 mAb-B1-23の、昆虫細胞発現に由来するGDF-15tとの相互作用についてである)。方程式K
D=k
off/k
onを使用して平衡解離定数を算出し、約790pMの値を得た。大腸菌(E.coli)発現由来のGDF-15と、抗ヒトGDF-15 mAb-B1-23の相互作用の親和性値は2倍未満異なり、昆虫細胞及び大腸菌(E.coli)由来のGDF-15の速度定数は約45%逸脱し、したがって、SPR測定の正確性内にあり、親和性の真の相違を反映しない可能性が高い。使用される条件下で、抗ヒトGDF-15 mAb-B1-23はヒトインターロイキン-5との結合を示さず、したがって、相互作用データ及び抗ヒトGDF-15 mAb-B1-23の特異性が確認される。
【0132】
組換えヒトGDF-15のアミノ酸配列(バキュロウイルスによってトランスフェクトされた昆虫細胞において発現されたような)は:
GSARNGDHCP LGPGRCCRLH TVRASLEDLG WADWVLSPRE VQVTMCIGAC PSQFRAANMH AQIKTSLHRL KPDTVPAPCC VPASYNPMVL IQKTDTGVSL QTYDDLLAKD CHCI
である。
(配列番号8)
【0133】
したがって、表面プラズモン共鳴測定を使用して、790pMの解離定数(Kd)を決定した。比較として、治療上使用した抗体リツキシマブは有意に低い親和性(Kd=8nM)を有する。
【0134】
これまでに、mAb B1-23がin vitroで癌細胞増殖を阻害すること及びmAb B1-23が、in vivoで腫瘍の成長を阻害することが示された(WO2014/049087)。
【0135】
参照実施例2:mAb B1-23は、ヒトGDF-15のコンフォメーショナル又は不連続エピトープを認識する。
エピトープマッピング:GDF-15に由来する13 merの直鎖状ペプチドに対するモノクローナルマウス抗体GDF-15
【0136】
抗原:GDF-15:
GSGSGSGMPGQELRTVNGSQMLLVLLVLSWLPHGGALSLAEASRASFPGPSELHSEDSRFRELRKRYEDLLTRLRANQSWEDSNTDLVPAPAVRILTPEVRLGSGGHLHLRISRAALPEGLPEASRLHRALFRLSPTASRSWDVTRPLRRQLSLARPQAPALHLRLSPPPSQSDQLLAESSSARPQLELHLRPQAARGRRRARARNGDHCPLGPGRCCRLHTVRASLEDLGWADWVLSPREVQVTMCIGACPSQFRAANMHAQIKTSLHRLKPDTVPAPCCVPASYNPMVLIQKTDTGVSLQTYDDLLAKDCHCIGSGSGSG(リンカー付きの322アミノ酸)(配列番号10)
【0137】
タンパク質配列は、1個のアミノ酸のシフトを有する13 merのペプチドに翻訳された。末端切断型ペプチドを避けるためにC末端及びN末端を中性GSGSリンカーによって伸長した(太字)。
【0138】
対照ペプチド:
Flag:DYKDDDDKGG(配列番号13)、78スポット;HA:YPYDVPDYAG(配列番号14)、78スポット(各アレイコピー)
【0139】
ペプチドチップ識別子:
000264_01(10/90、Ala2Aspリンカー)
【0140】
染色条件:
標準バッファー:PBS、pH7.4+0.05% Tween 20
ブロッキングバッファー:RocklandブロッキングバッファーMB-070
インキュベーションバッファー:標準バッファー及び10% RocklandブロッキングバッファーMB-070
一次サンプル:モノクローナルマウス抗体GDF-15(1μg/μl):インキュベーションバッファー中、4℃、1:100の希釈、500rpmでわずかに振盪しながら16時間の染色
二次抗体:ヤギ抗マウスIgG(H+L)IRDye680、インキュベーションバッファー中、1:5000の希釈、室温(RT)で30分間の染色
対照抗体:モノクローナル抗HA(12CA5)-LL-Atto680(1:1000)、モノクローナル抗FLAG(M2)-FluoProbes752(1:1000);インキュベーションバッファー中、RTで1時間の染色
【0141】
スキャナー:
Odysseyイメージングシステム、LI-COR Biosciences
設定:オフセット:1mm;解像度:21μm;輝度 緑/赤: 7/7
【0142】
結果:
標準バッファー中での30分及びブロッキングバッファー中での30分の予備膨潤後、10、12及び15 merのB7H3由来直鎖状ペプチドを有するペプチドアレイを、二次ヤギ抗マウスIgG(H+L)IRDye680抗体とともに1:5000の希釈でのみ、室温で1時間インキュベートして、二次抗体のバックグラウンド相互作用を解析した。PEPperCHIP(登録商標)を標準バッファーを用いて2×1分洗浄し、蒸留水ですすぎ、空気流中で乾燥させた。21μmの解像度及び7/7の緑/赤輝度でOdysseyイメージングシステムを用いて読み取りを行った:本発明者らは、高頻度結合剤として知られるアルギニンリッチペプチド(ELHLRPQAARGRR(配列番号15)、LHLRPQAARGRRR(配列番号16)、HLRPQAARGRRRA(配列番号17)、LRPQAARGRRRAR(配列番号18)、RPQAARGRRRARA(配列番号19)、PQAARGRRRARAR(配列番号20)及びQAARGRRRARARN(配列番号21))の弱い相互作用を観察し、荷電抗体色素とのイオン性相互作用により塩基性ペプチドMHAQIKTSLHRLK(配列番号22)を用いた。
【0143】
標準バッファー中で10分の予備膨潤後に、ペプチドマイクロアレイを、1:100の希釈のモノクローナルマウス抗体GDF-15とともに4℃で一晩インキュベートした。標準バッファーで反復洗浄(2×1分)し、1:5000の希釈の二次抗体とともに室温で30分間インキュベーションを続けた。標準バッファーで2×10秒洗浄し、蒸留水で短くすすいだ後、PEPperCHIP(登録商標)を空気流中で乾燥させた。抗HA及び抗FLAG(M2)抗体による対照ペプチドの染色の前後に、21μmの解像度及び7/7の緑/赤輝度でOdysseyイメージングシステムを用いて読み取りを行った。
【0144】
GDF-15に由来する直鎖状の13 merのペプチドのうち、過剰調節された輝度のもとでさえ、モノクローナルマウス抗体GDF-15と相互作用するものはないと示された。しかし、アレイを構成するFlag及びHA対照ペプチドの染色は、良好な均一なスポット輝度を生じさせなかった。
【0145】
まとめ:
GDF-15に対するモノクローナルマウスGDF-15抗体のエピトープマッピングは、抗原に由来する13 merのペプチドを有する直鎖状エピトープを全く示さなかった。この知見によれば、モノクローナルマウス抗体GDF-15が、低い親和性の部分的エピトープを有するコンフォメーショナル又は不連続エピトープを認識する可能性が極めて高い。二次抗体のみのバックグラウンド染色を上回る任意のGDF-15シグナルが明らかにないことにより、PepSlide(登録商標)分析器を用いるスポット輝度の定量化及びそれに続くペプチドアノテーションを省略した。
【0146】
参照実施例3:質量分析的エピトープ切り出し及びエピトープ抽出によるペプチドリガンドエピトープの構造的同定
抗体B1-23と結合する組換えヒトGDF-15のエピトープは、エピトープ切り出し法及びエピトープ抽出法によって同定された(Suckauら Proc Natl Acad Sci U S A. 1990年12月;87(24):9848〜9852頁;R.Stefanescuら、Eur.J.Mass Spectrom. 13、69〜75頁(2007年))。
【0147】
抗体カラムの調製のために、抗体B1-23をNHS活性化6-アミノヘキサン酸がカップリングされたセファロースに添加した。次いで、セファロースがカップリングされた抗体B1-23を0.8mlマイクロカラム中にロードし、ブロッキング及び洗浄バッファーで洗浄した。
【0148】
エピトープ抽出実験:
組換えヒトGDF-15を、トリプシンを用いて37℃(溶液中)で2時間消化し、タンパク質中のトリプシン切断部位に従って種々のペプチドが得られた。完全に消化した後、ペプチドを、固定された抗体B1-23を含有する親和性カラム上にロードした。GDF-15の、結合していないペプチド並びに結合している可能性があるペプチドを、質量分析解析に使用した。質量分析によるペプチドの同定は可能ではなかった。これは、免疫複合体B1-23中のGDF-15の結合領域が、不連続又はコンフォメーショナルエピトープを含むという更なる指標であった。連続直鎖状エピトープの場合には、消化されたペプチドはエピトープペプチド中にトリプシン切断部位がない限り、その相互作用パートナーと結合するはずである。不連続又はコンフォメーショナルエピトープは、以下の部分に記載されるエピトープ切り出し法によって確認され得る。
【0149】
エピトープ切り出し実験:
次いで、親和性カラム上に固定された抗体B1-23を、組換えGDF-15とともに2時間インキュベートした。次いで、親和性カラム上に形成された免疫複合体を、トリプシンとともに37℃で2時間インキュベートした。切断は、組換えGDF-15に由来する種々のペプチドをもたらした。固定された抗体自体は、タンパク質分解的に安定である。抗体によって遮蔽され、このように、タンパク質分解による切断から保護された消化されたGDF-15タンパク質の得られたペプチドを酸性条件下(TFA、pH2)で溶出し、集め、質量分析によって同定した。
【0150】
MS/MS同定を使用するエピトープ切り出し法は、以下のペプチドをもたらした:
【0151】
【表A】
【0152】
抗体B1-23と結合するヒトGDF-15の一部は、不連続又はコンフォメーショナルエピトープを含む。質量分析によって、免疫複合体の形成に預かるGDF-15タンパク質中に2つのペプチドが同定された。これらのペプチドは、GDF-15アミノ酸配列中の位置40〜55(EVQVTMCIGACPSQFR)及び94〜114(TDTGVSLQTYDDLLAKDCHCI)に限定される。したがって、これら2種のペプチドは、抗体B1-23と結合するGDF-15タンパク質のエピトープを含む。
【0153】
本発明は、以下の非限定例によって例示される:
【0154】
(実施例1)
イピリムマブ(モノクローナル抗CTLA4抗体)を用いる前治療を受けており、完全奏効を示すことができなかった、ペムブロリズマブ(モノクローナル抗PD-1抗体)を用いる治療を受けたヒト黒色腫患者では、hGDF-15血清レベルは、ペムブロリズマブを用いる治療の開始後4ヶ月の時点で不十分な治療奏効と相関する。
【0155】
本発明者らは、免疫チェックポイントブロッカーを投与されている癌患者が、hGDF-15の阻害から恩恵を受けることができたか否かを調べるように設定した。この可能性を調べるために、イピリムマブ(モノクローナル抗CTLA4抗体)を用いる前治療を受けている、臨床研究においてペムブロリズマブ(モノクローナル抗PD-1抗体)を用いる治療を受けた黒色腫患者から得た血清をhGDF-15血清レベルについて分析した。次いで、hGDF-15が免疫チェックポイントブロッカーに対する患者の奏効に影響を及ぼすか否かを調べるために、得られたhGDF-15血清レベルを患者の奏効と相関させた。血清は、ペムブロリズマブを用いる治療の前に患者から採取した。
【0156】
研究及びその後の解析は以下の通りに実施した:
【0157】
臨床研究の組み入れ基準:
適格な患者は18歳以上であり、組織学的又は細胞学的に確認された切除不能なステージIII又はステージIVの黒色腫を有しており、局所療法に適しておらず、最後のイピリムマブ用量(最小2用量、3週間ごとに3mg/kg 1回)の24週以内に疾患進行が確認され、以前のBRAF又はMEK阻害剤療法又は両方(BRAFV600変異体陽性の場合)、イピリムマブ関連有害事象のグレード0〜1への解決又は改善及び研究薬物の第1の用量の前の少なくとも2週間のプレドニゾン用量10mg/日以下、米国東海岸癌臨床試験グループ(Eastern Cooperative Oncology Group)(ECOG)実施状態0又は1、固形癌の効果判定基準(Response Evaluation Criteria in Solid Tumors)バージョン1.1(RECIST v1.1)で測定可能な疾患、並びに絶対好中球カウント(mLあたり≧1500個細胞)、血小板(mLあたり≧100000個細胞)、ヘモグロビン(≧90g/L)、血清クレアチニン(≦1・5正常の上限[ULN])、血清総ビリルビン(≦1・5ULN又は総ビリルビン濃度>1・5ULNを有する患者について直接ビリルビン≦ULN)、アスパラギン酸及びアラニンアミノトランスフェラーゼ(≦2・5ULN又は肝臓転移を有する患者について≦5ULN)、国際標準比又はプロトロンビン時間(抗凝固薬を使用しない場合≦1・5ULN)及び活性化部分トロンボプラスチン時間(抗凝固薬を使用しない場合≦1・5ULN)、について事前に特定した範囲内の値とした。患者は、直近の療法の最後の用量とペムブロリズマブの第1の用量の間に少なくとも4週間のウォッシュアウト期間を有していた。既知活動性脳転移又は癌性髄膜炎、活動性自己免疫疾患、全身療法を必要とする活動性感染、HIV感染の既知病歴、活動性B型肝炎ウイルス又はC型肝炎ウイルス感染、12週間よりも長く持続するグレード4イピリムマブ関連有害事象又はグレード3イピリムマブ関連有害事象の病歴、又は任意のその他の抗PD-1若しくは抗PD-L1療法を用いる以前の治療を有する患者は、研究から排除された。
【0158】
患者の治療:
上記で定義された組み入れ基準を満たすヒト黒色腫患者(2人の例外を含む)は、イピリムマブ(モノクローナル抗CTLA4抗体)を用いて既に治療されており、完全奏効を示すことができなかった。ペムブロリズマブ(モノクローナル抗PD-1抗体)を、2mg/体重1kg又は10mg/体重1kgのいずれかで与えた。2つの治療グループ間で用量依存性相違は観察されなかったので、治療された患者を一緒に評価した。
【0159】
奏効の判定基準:
固形癌の効果判定基準(Response Evaluation Criteria in Solid Tumors)バージョン1.1(RECIST v1.1)を使用して、治療に対するレスポンダー及びノンレスポンダー並びに進行中の応答を分類した(Eisenhauerら:New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1)、Eur. J. Cancer. 45、第2号、2009年1月、228〜47頁)。
【0160】
酵素結合免疫吸着アッセイ(ELISA)によるhGDF-15血清レベルの解析:
酵素結合免疫吸着アッセイ(ELISA)によってヒトGDF-15血清レベルを測定した。
【0161】
バッファー及び試薬:
緩衝ブロッキング溶液:PBS中1% BSA(画分V pH7.0、PAA社)
洗浄溶液:PBS-Tween(0.05%)
標準:ヒトGDF-15(ストック濃度120μg/ml、R&D Systems社製)
捕捉抗体:ヒトGDF-15 MAb(クローン147627)R&D Systems社製、マウスIgG2B(カタログ番号MAB957、R&D Systems社製、ストック濃度360μg/ml)
検出抗体:ヒトGDF-15ビオチン化された親和性精製されたPAb、ヤギIgG(カタログ番号BAF940、R&D Systems社製、ストック濃度9μl/ml)
ストレプトアビジン-HRP(カタログ番号DY998、R&D Systems社製)
基質溶液:10ml 0.1M NaOAc pH6.0+100μl TMB+2μl H
2O
2
停止溶液:1M H
2SO
4
【0162】
解析手順:
1.プレート調製:
a.捕捉抗体を、PBSで2μg/mlの作業濃度に希釈した。96ウェルマイクロプレート(Nunc maxisorp(登録商標))を、外側の列(A及びH)を除いて、ウェルあたり50μlの希釈捕捉抗体を用いて直ちにコーティングした。列A及びHを、実験の間のサンプルの蒸発を防ぐためにバッファーで満たした。プレートを穏やかに軽くたたいて、各ウェルの底が完全に覆われることを確実にした。プレートを湿潤チャンバー中に入れ、室温(RT)で一晩インキュベートした。
b.各ウェルを吸引し、PBS-Tween(0.05%)を用いて3回洗浄した。
c.各ウェルに150μlのブロッキング溶液を添加し、続いて、RTで1時間インキュベートした。
d.各ウェルを吸引し、PBS-Tween(0.05%)を用いて3回洗浄した。
【0163】
2.アッセイ手順:
a.標準を調製した。GDF-15を、緩衝ブロッキング溶液で1ng/mlの最終濃度に希釈した(4.17μl GDF+496μl緩衝ブロッキング溶液)。1:2段階希釈を作製した。
b.二連のサンプル1:20(6μl+114μl緩衝ブロッキング溶液)を調製した。
c.ウェルあたり50μlの希釈サンプル又は標準を添加し、続いて、RTで1時間インキュベートした。
【0164】
【表B】
【0165】
a.各ウェルを吸引し、PBS-Tween(0.05%)を用いて3回洗浄した。
b.検出抗体を、50ng/mlの最終濃度に希釈した(56μl+10mlブロッキングバッファー)。各ウェルに50μlの希釈検出抗体を添加し、続いて、RTで1時間インキュベートした。
c.各ウェルを吸引し、PBS-Tween (0.05%)を用いて3回洗浄した。
d.ストレプトアビジン-HRPを、1:200希釈した(50μl+10mlブロッキングバッファー)。各ウェルに50μLのストレプトアビジン-HRPの作業希釈を添加し、続いて、RTで20分間インキュベートした。
e.各ウェルを吸引し、PBS-Tween(0.05%)を用いて3回洗浄した。
f.基質溶液を調製した。各ウェルに50μLの基質溶液を添加し、続いて、RTで20分間インキュベートした。
g.各ウェルに50μLの停止溶液を添加した。
h.450nmに設定したマイクロプレートリーダーを使用して、各ウェルの光学濃度を直ちに調べた。
【0166】
3.GDF-15血清力価の算出:
a.各サンプル/GDF-15標準希釈を二連で適用した。GDF-15力価を調べるために、2連の平均を算出し、バックグラウンド(GDF-15を含まないサンプル)を差し引いた。
b.標準曲線を作製するために、線形範囲から得た値をX-Y-図(X軸:GDF-15濃度、Y軸:OD450)にプロットし、線形曲線フィットを適用した。既知濃度を有する標準希釈のOD450値から補間することによって、試験サンプルのGDF-15血清力価を算出した。
c.サンプルの最終GDF-15濃度を算出するために、それぞれの希釈係数を考慮した。標準範囲を下回る又は上回るOD値をもたらすサンプルを、適当な希釈で再解析した。
【0167】
hGDF-15血清レベルの患者データとの比較:
次いで、測定されたhGDF-15血清レベルを、研究から得られた患者奏効データと比較した。
【0168】
図1は、治療レジメンに対するレスポンダー及びノンレスポンダーのGDF-15血清レベルを示す。すべての血清サンプルは、抗PD-1抗体を用いる治療の前に得られていた。図からわかるように、ノンレスポンダーのほとんどは、すべてのレスポンダーよりも高いGDF-15血清レベルを有する。
【0169】
この結果はまた、それぞれ、<1.8ng/ml、1.8〜4.2ng/ml及び>4.2ng/mlのhGDF-15血清レベルを有する患者中のレスポンダー及びノンレスポンダーの数を示す
図2に反映されている。
【0170】
これらの知見は、高いGDF-15レベルが不十分な治療奏効と関連していることを示唆した。したがって、これらの知見をその統計的有意性について試験した:
【0171】
hGDF-15血清レベルの患者データとの統計的相関:
データ:
データ解析は、列(変数)サンプル表示、GDF-15(ng/ml)、レスポンダー/ノンレスポンダー、日数(死亡又は打ち切りまでの)及び進行中(進行中の生命の指数変数)を含有する35人の患者から得たサンプルから得たデータを含有するデータファイルに基づいていた。ペムブロリズマブを用いる治療の開始後4ヶ月の時点で、これらのデータのレスポンダー/ノンレスポンダー分類を行った。一部の血清サンプルは、解析のわずか前にしか得られなかったので、奏効は29人においてしか評価できなかった。1人の部分レスポンダー(腫瘍の大きさの>30%低減)は、レスポンダーとして評価した。LDH決定のために、4サンプルは溶血により排除されなければならなかった。
【0172】
アウトカム変数(エンドポイント):
a.全生存(死亡までの時間)。このエンドポイントは、データファイルに由来する死亡についてのイベント指標(1=死亡/0=生存)、変数「日数」に対応する、死亡又は打ち切りまでの時間(患者が生存しているとわかっていた最後の時間)から構成される。
b.治療に対する奏効、例えば、患者がレスポンダーであったか否か(1=レスポンダー、0=ノンレスポンダーとしてコードされる)。部分レスポンダーは、レスポンダーと考えた。
【0173】
【表C】
【0174】
データ解析:
全生存をコックス比例ハザード生存モデルによって解析した。あるモデルを連続予測変数としてGDF-15(ng/ml)を用いて、別のモデルをカテゴリー予測変数としてGDF-15に基づくグループ化変数を用いて(グループは<1.8ng/ml、1.8〜4.2ng/ml、>4.2ng/mlのGDF-15とした)フィッティングした。全体で、生存データは35人の患者から入手可能であった。
【0175】
治療に対する奏効(2値変数)を、二項誤差分布及びロジットリンク関数(ロジスティック回帰)を用いて一般化線形モデル(GLM)によって解析した。4ヶ月後にRECIST1.1基準によって評価されるような治療に対する奏効について、連続予測変数としてGDF-15(ng/ml)を用いてモデルをフィッティングした。GDF-15>4.2ng/mlを有するグループにおいて奏効した患者がなかったので、このグループ対GDF-15<1.8ng/mlのグループについてのオッズ比推定値は極めて大きくなり、極めて広い信頼区間を有する。カテゴリー予測変数としてGDF-15に基づくグループ化変数を用いて別のモデルをフィッティングする代わりに、カイ二乗(χ
2)検定を使用して、グループを比較した(レスポンダーの割合の同等性を試験する)。レスポンダー/ノンレスポンダーの数は極めて小さい(<5)ことがあるので、フィッシャーの正確確率検定を使用する感度解析を更に行った。最後の4ヶ月内に抗PD-1のみを投与されていた患者は、レスポンダー又はノンレスポンダーとしてまだ分類できなかった。したがって、29人の患者のみを療法に対する奏効について評価できた。
【0176】
データ解析は、統計ソフトウェアパッケージR(R Core Team、2014、バージョン3.1.0)を使用して実施した。
【0177】
結果:
表1〜2は、連続予測変数としてGDF-15を用いたモデルから得た結果を示す。死亡のハザードは、高濃度のGDF-15について有意に増大した(HR>1、表1)が、治療に対する奏効の確率は、オッズ比(OR)によって示されるように有意に低下した(OR<1、表2)。
図3は、レスポンダー/ノンレスポンダーでの対応するデータ並びにモデルによって予測される治療に対する奏効の確率を示す。
【0178】
表3は、カテゴリー予測変数としてGDF-15に基づくグループを用いたコックス比例ハザードモデルから得た結果を示す。GDF-15<1.8ng/mlを有するグループは、参照グループとして使用されている(表中に示されていない)。表3中の2つのハザード比は、1.8から4.2の間のGDF-15を有するグループ及びGDF-15>4.2を有するグループの参照グループとの比較を表す。これらのグループの両方において、死亡のハザードは増大されるが(参照グループと比較して)、GDF-15>4.2を有するグループより大きな程度までである。
図4Aは、3つのグループにおける生存についてのカプラン・マイヤー曲線を示す。
【0179】
レスポンダーの割合は、グループ間で有意に異なっていた(レスポンダー1:χ
2df=2=16.04、P=0.0003)。この結果は、フィッシャーの正確確率検定の結果によって確認された(P=0.0003)。グループあたりの死亡及びレスポンダーの数は、Table 1(表1)に示されている。更に、Table 2(表2)は、各グループのGDF-15のいくつかの記述統計学を示す。
【0180】
【表1】
【0181】
【表2】
【0182】
【表3】
【0183】
【表4】
【0184】
【表5】
【0185】
乳酸デヒドロゲナーゼ(LDH)は、固形腫瘍の予後的に関連するマーカーであると考えられる。これは、臨床研究の大きなプール(31,857人の患者)に基づく包括的メタ解析によって最近確認された。すべての疾患サブグループ及びステージにわたって、OSに対するLDHの上昇の一貫した効果(HR=1.48、95%CI=1.43〜1.53)が見られた。更に、非転移性疾患と比較して転移性疾患においてLDHのより強い予後値への傾向があり、これは、より大きな腫瘍負荷を反映すると考えられた。正確な機序は未知のままであるが、低酸素、及びワールブルグ効果による代謝のリプログラミングと関連する可能性があり、LDHは、高腫瘍負荷又は腫瘍の攻撃性を反映すると解釈され得る(Zhang, J.、Yao, Y.-H.、Li, B.-G.、Yang, Q.、Zhang, P.-Y.及びWang, H.-T.(2015年).Prognostic value of pretreatment serum lactate dehydrogenase level in patients with solid tumors: a systematic review and meta-analysis. Scientific Reports 5、9800)。血清LDHレベルは、黒色腫の進行度診断スキーム中に組み込まれているので、このパラメータは、大学リファレンス研究施設によって臨床診断の際に日常的に測定される。
【0186】
【表6】
【0187】
4つの血液サンプルでは、溶血によりLDH決定は失敗した。
【0188】
Table 7(表7)は、GDF-15の代わりに治療の奏効(レスポンダー1)の連続予測変数としてLDHを使用した点を除いて、Table 2(表2)の類似物である。治療に対する奏効の確率は、LDHの値が増大するにつれ、わずかではあるが有意に低減した(OR<1、p<0.1)。
図5は、レスポンダー/ノンレスポンダーでの対応するデータ並びにモデルによって予測される治療に対する奏効の確率を示す。
【0189】
GDF-15が、治療に対する奏効(レスポンダー1)についてLDHよりも良好な予測変数であるか否かを決定するために、2つの更なるモデルをフィッティングした:予測変数として両方のマーカーを含有するモデル(自動的に両方のマーカーで測定値を有する患者のみを含む)及びGDF-15を唯一の予測変数として用いるが、LDHの測定値を有する患者のみを使用するモデル。次いで、3種すべてのモデルについて赤池情報量基準(Akaike's information criterion)(AIC)を算出した(Table 5(表5))。AICが小さいほど、より効率的なモデルを示す。実際、予測変数として、GDF-15を用いるモデルのAICは、LDHを用いるモデルのAICよりも小さかった。GDF-15のみを用いるモデルは更に、両方の予測変数を用いるモデルよりも小さいAICを有し、これは、更なる予測変数としてのLDHはモデルを改善しないことを示す。もちろん、両方の予測変数を用いるモデルが治療に対する奏効をより悪く説明するはずはないが、「モデル効率」の尺度としてAICは、モデルを相当に改善しない予測変数を用いるモデルにペナルティーを課し、より簡単なモデルを支持する。逸脱度の解析(分散分析と同様であるが、一般化線形モデルについてである)によって、すなわち、両方の予測変数を用いるより複雑なモデルと予測変数の一方のみを用いるより簡単なモデルの両方(LDH又はGDF-15のいずれかによるモデルの低減に対応する)の間で説明される逸脱度の相違を比較して、代替モデル比較を行った。より複雑なモデルからGDF-15を除去することは、説明される逸脱度の有意な低減をもたらしたが(P=0.02)、LDHを除去することはもたらさなかった(P=0.41)。
【0190】
【表7】
【0191】
【表8】
【0192】
図5Aは、連続予測変数としてLDHを使用する一般化線形モデルによって予測されるような治療に対する奏効(レスポンダー1)の確率を示す。丸はデータを示し、曲線はモデルを示す。垂直線は、治療奏効の確率が0.5であるLDH濃度を示す。患者コホートは、同一であった。しかし、4人の患者では、LDHレベルの信頼のおける決定は溶血のために失敗した。
図5Bは、レスポンダー及びノンレスポンダー並びにそれぞれのhGDF-15及びLDHレベルのグラフを示す。カットオフ値がすべてのレスポンダーを網羅するように選択される場合には、GDF-15に基づく試験によって、6人(9人のうち)のノンレスポンダーの同定が可能となるが、LDHレベルに基づく解析は、4人(9人のうち)のノンレスポンダーしか識別できない。LDH試験については、データの喪失を引き起こす4つの溶血サンプルが排除されなければならなかった。
【0193】
したがって、本発明によるhGDF-15レベルに基づく臨床アウトカムの予測は、固形腫瘍についての診断標準マーカーLDHを上回る以下の利点を含む:
・LDHレベルと正の臨床アウトカムの間よりも、hGDF-15レベルと正の臨床アウトカムの間により強い逆統計相関があり、したがって、hGDF-15レベルは、LDHレベルと比較して、予測について優れている。更に、上記で示される赤池情報量基準(Akaike's information criterion)によって反映されるように、hGDF-15レベルは単独で、LDHレベルと組み合わせたhGDF-15レベルよりもいっそうより良好な予測変数である。
・hGDF-15測定は、LDH測定よりも溶血に対して感度が高くなく、したがって、臨床実施において有利である。
・hGDF-15レベルは、LDHレベルよりも多数のノンレスポンダーを識別可能にする。LDHは現在、固形腫瘍の最良の利用可能な臨床マーカーと考えられるので、これらの利点は特に特筆すべきことである。
【0194】
まとめ:
総合すると、上記の実施例1の統計結果は、治療に対する奏効の確率が、患者血清中のhGDF-15レベルが増大するにつれ有意に低減することを示した。例えば、Table 2(表2)中に示される0.389のオッズ比は、hGDF-15血清レベルが1ng/mlだけ増大すると、治療に対する奏効の確率が元の値の0.389倍の値に低減する、すなわち、約60%低減することを示す。hGDF-15血清レベルが2ng/mlだけ増大すると、治療に対する奏効の確率が元の値の0.389×0.389倍=0.151倍の値に低減する、すなわち、約85%低減する。
【0195】
同様に、表1に示される1.27のハザード比は、hGDF-15血清レベルが1ng/mlだけ増大されると、患者の死亡の確率が1.27倍増大することを示す。
【0196】
実施例1の結果は、hGDF-15の血清レベルと、例えば、患者の奏効及び患者の生存を含む、患者における抗PD-1ベースの免疫療法の正の臨床アウトカムの確率との間に強い逆相関があることを示す。したがって、本発明によれば、有利なことに、患者由来の血液サンプル中のhGDF-15のレベルを使用して、抗PD-1のような免疫チェックポイントブロッカーを用いる治療に対する患者の奏効の確率を予測できる。
【0197】
本実施例は、固形腫瘍の一例として黒色腫の結果を示すが、hGDF-15発現は黒色腫に限定されず、多数のその他の固形癌中にも存在する。同様に、黒色腫以外の固形腫瘍もまた、免疫チェックポイントブロッカーを用いて治療され得ることが知られている。したがって、本発明によれば、有利なことに、黒色腫においてだけでなく、本明細書において言及される固形癌のすべてにおいて、患者由来の血液サンプル中のhGDF-15のレベルを使用して、免疫チェックポイントブロッカーを用いる治療に対する患者の奏効の確率を予測できる。
【0198】
(実施例2)
GDF-15レベルは、種々の腫瘍実体の転移中のCD8
+腫瘍浸潤リンパ球(TIL)と逆相関する。
患者の奏効に対するhGDF-15の負の効果の一因となるhGDF-15の機序を同定するために、種々の固形腫瘍からの脳転移をhGDF-15の発現について、及び免疫系の細胞の存在について解析した:
【0199】
組織検体及び組織処理:
記録保存された脳転移から得た、ホルマリン固定されパラフィン包埋された(FFPE)組織を解析し、それらは組織マイクロアレイ(TMA)として集められ処理された。すべての検体は、UCT腫瘍バンク(Goethe-University、Frankfurt am Main、Germany、member of the German Cancer Consortium (DKTK)、Heidelberg、Germany and German Cancer Research Center (DKFZ)、Heidelberg、Germany)から、又は癌レジストリー腫瘍バンク「Blut-und Gewebebank zur Erforschung des malignen Melanoms」(Department of Dermato-oncolgy、University Hospital Tubingen、Germany)から入手した。この研究の承認は、2つの独立倫理委員会(倫理委員会UCT Frankfurt /Goethe University Frankfurt am Main、Germany:プロジェクト番号:GS 4/09;SNO_01-12;倫理委員会University of Tubingenプロジェクト番号:408/2013BO2)によって付与された。黒色腫(n=98)、NSCLC(n=33)、乳癌(n=18)、RCC(n=10)、SCLC(n=7)、結腸直腸癌(n=7)、特定不能であった癌(癌NOS n=11)及びその他としてまとめられた稀な腫瘍の検体(n=6)を含む、脳転移を有する合計190人の患者を調べた。155人の患者の生存データ(腫瘍切除後の生存時間)を集め、更に、169人の患者における脳転移の数及び55人の黒色腫患者のサブコホートにおける脳転移の大きさを解析した。
【0200】
免疫組織化学:
自動化IHC染色システムDiscovery XT(Roche/Ventana社、Tucson、Arizona、USA)で3μm厚のスライド及び標準プロトコールを使用して、すべての抗体の免疫組織化学を実施した。以下の抗体を使用した:抗GDF-15(HPA011191、希釈1:50、Sigma/Atlas社、プロトコール番号730)、CD3(クローンA0452、希釈1:500、DAKO社、Glostrup,Denmark)、CD8(クローンC8/144B、希釈1:100、DAKO社、Glostrup、Denmark)、PD-1(クローンNAT105;希釈1:50;Abcam社、Cambridge、United Kingdom)、PD-L1(E1L3N;希釈1:200;Cell Signaling社、Boston、U.S.A.)、FOXP3(クローン236A/E7;希釈1:100;eBioscience社、San Diego、U.S.A.)。スライドをヘマトキシリンを用いて対比染色し、マウントした。
【0201】
統計解析:
すべてのサンプルを、染色されたTMAコア上のすべての細胞と関連する陽性細胞の頻度(パーセンテージとして)に従ってスコア化した。hGDF-15発現については、これまでに詳細に記載されたような[21,22]スコアを使用した:頻度0〜1% スコア0;1〜10% スコア1;10〜25% スコア2;25〜50% スコア3;>50% スコア4;更に、頻度スコアに染色の強度を乗じ(1弱い染色、2中程度の染色、3強い染色)、最後に順序尺度化hGDF-15スコア(0、1、2、3、4、6、8、9、12)を得た。順序尺度化変数を、ノンパラメトリックウィルコクソン/クラスカル-ウォリス検定及びダンの方法と比較して、複数の試験について補正した。連続変数については、ANOVAと、それに続くテューキー-クレーマーHSDポスト-ホック試験を使用して種々の脳転移実体間で平均を比較した。脳転移の大きさとマーカー発現の相関解析のために、線形フィットとそれに続くANOVAを実施し、順序尺度化変数の場合には、スピアマンのロー相関解析を使用した。すべての統計解析について、p<0.05の有意レベルを設定した。
【0202】
すべての統計解析を、JMP8及びJMP11(SAS、Cary、U.S.A.)を使用して実施し、Prism 6(GraphPadソフトウェア、La Jolla、U.S.A.)を用いて更なるグラフを作製した。
【0203】
結果:
図6は、図中に示されるように、それぞれGDF-15並びにT細胞マーカータンパク質CD3及びCD8について免疫組織化学によって染色された、高いGDF-15免疫反応性を有さない(上のパネル)又は高いGDF-15免疫反応性を有する(下のパネル)黒色腫脳転移から得た例示的組織切片を示す。GDF-15発現を有さない切片では、多数の浸潤免疫細胞が暗いスポットとして見られる。高レベルのGDF-15を発現する転移を示す写真中で、稀な浸潤免疫細胞が矢印によって表されている(CD3及びCD8陽性細胞が矢印によって示されている)。図からわかるように、驚くべきことに、高いhGDF-15免疫反応性を有する組織切片(下のパネル)では、hGDF-15免疫反応性がない組織切片(上のパネル)と比較して、CD3
+及びCD8
+細胞の数が強く低減されたことが見出された。注目すべきことに、PD-L1、PD-1のような染色されたその他のマーカーはすべて、腫瘍浸潤性CD3
+及びCD8
+T細胞の数と正の相関を示した。
【0204】
したがって、次に種々の黒色腫脳転移にわたって、hGDF-15レベルとCD3
+T細胞のパーセンテージの間に逆相関が存在するか否かを解析した。
図7Aは、GDF-15スコア(「統計解析」の節において上記で記載されたように得られた)に対するCD3
+細胞のパーセンテージのプロットを示す。
図7Aに示されるように、CD3
+細胞のパーセンテージとGDF-15スコアの間に統計的に有意な逆相間があった(p=0.0015)。
【0205】
同様に、種々の黒色腫脳転移にわたって、hGDF-15レベルとCD8
+T細胞のパーセンテージの間に逆相関が存在するか否かも解析した。
図7Bは、GDF-15スコア(「統計解析」の節において上記のように得られた)に対するCD8
+細胞のパーセンテージのプロットを示す。
図7Bに示されるように、CD8
+細胞のパーセンテージとGDF-15スコアの間に統計的に有意な逆相間があった(p=0.0038)。
【0206】
対照的に、スピアマンの順位相関係数(ロー)検定によれば、GDF-15をFOXP3と相関させることは、統計的に有意な結果をもたらさなかった(種々の腫瘍実体にわたって、p=0.8495;黒色腫転移のみを評価した場合、p=0.2455)。
【0207】
最後に、種々の腫瘍実体からの脳転移にわたって、hGDF-15レベルと、CD8
+及びCD3
+T細胞のパーセンテージの間に逆相関が存在するか否かも解析した。
図8は、種々の腫瘍実体(黒色腫、CRC、RCC、乳癌、NSCLC及びSCLC)からの、それぞれ168の(CD3について)又はそれぞれ169の(CD8について)脳転移におけるCD8
+及びCD3
+T細胞のパーセンテージに対するGDF-15スコアのプロットを示す。プロットは、「統計解析」の節において上記で記載されたように得た。
図8に示されるように、CD8
+細胞のパーセンテージとGDF-15スコアの間の統計的に有意な逆相関(p=0.0311)並びにCD3
+細胞のパーセンテージとGDF-15スコアの間の統計的に有意な逆相間(p=0.0093)があった。その他のマーカー(PD-L1、PD-1、FOXP3)もやはり、CD3及びCD8T細胞浸潤との正の相関関係を示した。
【0208】
まとめ:
上記の結果は、転移におけるhGDF-15の、一般的なT細胞マーカータンパク質CD3を発現するT細胞のパーセンテージとの逆相関だけでなく、転移におけるCD8
+Tリンパ球のパーセンテージとの逆相関もあることを示す。CD8
+Tリンパ球の存在は、抗PD-1抗体を用いる免疫チェックポイント阻害後の腫瘍退縮にとって特別に必要であるとこれまでに示されたので、これは特筆すべきことである(Tumehら、Nature. 2014年11月27日; 515(7528):568〜71頁)。
【0209】
したがって、本発明によれば、hGDF-15レベルと、好適な臨床アウトカム(例えば、患者の生存又は治療奏効の存在)の逆相関の好ましいが制限されない説明は、hGDF-15が、腫瘍転移を含む固形腫瘍中のCD8
+Tリンパ球のパーセンテージを低減し、それによって、好適な臨床アウトカム(例えば、患者の生存又は治療奏効の存在)の確率を低減するということである。この相関は種々の固形癌実体にわたって観察されるので、本発明は、黒色腫等の特定の固形癌に限定されない。
【0210】
したがって、本発明は、好ましい実施形態において言及されるような固形腫瘍のすべてに適用され得る。
【0211】
(実施例3)
GDF-15は、T細胞の内皮細胞との接着を低減する。
本発明者らは次いで、hGDF-15が固形腫瘍中のT細胞のパーセンテージに影響を及ぼす方法を決定しようと試みた。
【0212】
血流から腫瘍組織へのT細胞の浸潤にとって必要であるステップは、T細胞が内皮と最初に接着しなくてはならないことであり、その後、それらは腫瘍に入ることができる。このステップを刺激するために、またこのステップが、hGDF-15によって影響を受け得るか否かを評価するために、本発明者らは、T細胞のヒト臍帯静脈内皮細胞(HUVEC)への接着を測定するモデル系を使用した:
【0213】
T細胞フロー/接着実験(HUVECでの):
1日目:
a.μ-スライドVI 0.4(ibidi GmbH、Germany)を、フィブロネクチン(100μg/mL):ローディングポートあたり30μLを用いてコーティングした。それらを37℃で1時間インキュベートした(又はプレコーティングされたスライドを使用した)。
b.フィブロネクチンを吸引し、続いて、HUVEC培地を用いて洗浄した。
c.6ウェルプレートから得たHUVECをトリプシン処理した(カウント:2×10
5個/mL(合計2mL))。
d.それらを洗浄し、1×10
6個細胞/mLに希釈した。
e.30μLのHUVECをμ-スライドVIのローディングポート中に適用し、顕微鏡下でチェックした。
f.μ-スライドVIを蓋で覆い、37℃、5%CO
2iでインキュベートした。
【0214】
2日目:
a.HUVECを、チャネル2〜5(以下の表を参照のこと)においてTNFα(10ng/mL)及びIFNγ(10ng/mL)を用いて活性化した:チャネルからすべての培地を吸引し、サイトカインを含有する予温した培地と置換した。
【0215】
3日目:
a.T細胞を単離した(汎T細胞の陰性単離)。
b.T細胞を、GDF-15(100ng/mL)を有する又は有さないウェル1(1×10
6個細胞/mL)中で1時間プレインキュベートした。
c.GDF-15(100ng/mL)を有するチャネル4及び5中でHUVECを1時間プレインキュベートした:ローディングポート中のすべての培地を吸引し、両ローディングポートをGDF15を含有する予温培地で満たした。
d.顕微鏡に隣接したステージトップインキュベーターを予温し、ガス-ミックスを接続した(5% CO
2、16% O
2、79% N
2)。
e.3×50mLシリンジを調製した:
i.T細胞(1×10
6個細胞/mL):1mL
ii.T細胞GDF15(1×10
6個細胞/mL):1mL
iii.培地
f.シリンジ1をチャネル1に接続し(以下の表を参照のこと)、フローを開始した(0.5dyn/cm
2:0.38mL/分=22.8mL/h)。
g.T細胞を3分間流し、その間に顕微鏡上で10視野を予め定義した。
h.各視野を5秒間ビデオ録画した。
i.残りのチャネルを、以下の表において示されるようにT細胞サンプルを用いるチャネル1(f〜h)に類似して評価した。
【0216】
【表9】
【0217】
統計解析:
非正規分布データの試験のためのマン-ホイットニー検定を使用して、すべてのデータを比較した。p<0.05の値を統計的に有意であると考えた。
【0218】
結果:
実験の結果は
図9に示されている。この図は、いくつかの接着パラメータ、すなわち
a.T細胞の内皮細胞との中程度の接着の形態を反映する、秒あたりの視野あたりのローリングT細胞数(9A;データはチャネル番号3(「GDF-15」)及びチャネル番号2(「対照」)から入手した)
b.T細胞と内皮細胞間の接着の制限を増大する、T細胞のローリング速度(0.2秒あたりのピクセルで測定された)(9B;データはチャネル番号3(「GDF-15」)及びチャネル番号2(「対照」)から入手した)、及び
c.視野あたりの接着細胞数(9C;データはチャネル番号3(「GDF-15」)及びチャネル番号2(「対照」)から入手した;及び9D)
の解析を示す。
【0219】
図9Cからわかるように、視野あたりの接着細胞数において反映されるように、hGDF-15を用いるT細胞の処置は、内皮細胞との接着を有意に低減することがわかった。同様の結果が、ローリングT細胞数をカウントすることによって接着を解析する場合に得られた(
図9A)。更に、上記の結果に従って、hGDF-15を用いるT細胞の処置は、ローリング速度を有意に増大することがわかり、これは、T細胞と内皮細胞の間の相互作用時間の低減を示し、また、T細胞と内皮細胞の間の接着の低減を示す(
図9B)。
【0220】
本発明者らは次に、hGDF-15によってどの細胞が標的とされるかを解析した(
図9D)。hGDF-15を用いてHUVECのみが処理されたサンプルでは、T細胞の内皮細胞(HUVEC)との接着の中程度の低減が観察された。対照的に、hGDF-15を用いてT細胞のみが処理された場合又はhGDF-15を用いてT細胞及び内皮細胞(HUVEC)の両方が処置された場合のいずれかでは、T細胞の内皮細胞(HUVEC)との接着の強い低減が観察された。これらの結果は、hGDF-15がT細胞及び内皮細胞の両方に作用することを示すが、それらはまた、hGDF-15の主な接着効果はT細胞に対する効果であることも示す。
【0221】
次に本発明者らは、T細胞接着に対する腫瘍細胞によって分泌されるhGDF-15の効果がhGDF-15阻害剤を用いて阻害され得るか否かを試験した。これを試験するために、本発明者らは、hGDF-15を分泌する黒色腫細胞株、UACC257を使用した:
【0222】
腫瘍細胞上清中のGDF-15の存在下又は不在下でのT細胞フロー/接着実験(HUVECでの):
1日目:
a.1つのμ-スライドVI 0.4(ibidi GmbH、Germany;以下μ-スライドと呼ぶ)を、フィブロネクチン(100μg/mL):ローディングポートあたり30μLを用いてコーティングした。それらを37℃で1時間インキュベートした(又はプレコーティングされたスライドを使用した)。
b.フィブロネクチンを吸引し、続いてHUVEC培地を用いて洗浄した。
c.6ウェルプレートから得たHUVECをトリプシン処理した(カウント:2×10
5個/mL (合計2mL))。
d.それらを洗浄し、1×10
6個細胞/mLに希釈した。
e.30μLのHUVECをμ-スライドVIのローディングポート中に適用し、顕微鏡下でチェックした。
f.μ-スライドVIを蓋で覆い、37℃、5%CO
2でインキュベートした。
【0223】
2日目:
a.HUVECを、μ-スライドのチャネル2〜5(以下の表を参照のこと)においてTNFα(10ng/mL)及びIFNγ(10ng/mL)を用いて活性化した:チャネルからすべての培地を吸引し、サイトカインを含有する予温した培地と置換した。
【0224】
3日目:
a.T細胞を単離した(汎T細胞の陰性単離)。
b.並行して、96ウェルELISAプレート(Nunc maxisorb)の24ウェルを、200μLの抗GDF-15(PBSで希釈した10μg/mL)を用いてコーティングし、45分間インキュベートし、PBSを用いて洗浄した。
c.GDF-15を分泌する(データは示されていない)黒色腫細胞株UACC257から得た上清のGDF-15を枯渇させるために、抗GDF-15を用いてプレコーティングしたELISAプレート(b.を参照のこと)のウェル中で上清をインキュベートした。
d.対照として、黒色腫細胞株UACC257の上清を、抗GDF-15を用いてプレコーティングしていないELISAプレート(b.を参照のこと)のウェル中でインキュベートした。
e.GDF-15を枯渇させた黒色腫細胞株UACC257の上清中で(c.を参照のこと)、又はGDF-15を含有する黒色腫細胞株UACC257の上清中で(d.を参照のこと)、GDF-15(100ng/mL)とともに、GDF-15を伴わずに、12ウェル細胞培養プレート(1×10
6個細胞/mL)中でT細胞を1時間プレインキュベートした。
f.顕微鏡に隣接したステージトップインキュベーターを予温し、ガス-ミックスを接続した(5% CO
2、16% O
2、79% N
2)。
g.マイクロ流体フローシステムの4×2mLのチューブを調製した:
i.T細胞(1×10
6個細胞/mL):1mL
ii.T細胞GDF15(1×10
6個細胞/mL):1mL
iii.T細胞UACC257(GDF-15を含有する)
iv.GDF-15を枯渇させたT細胞UACC257
h.チューブ1をチャネル1に接続し(以下の表を参照のこと)、フローを開始した(0.4mL/分=24mL/時間)。
i.T細胞を3分間流し、その間に顕微鏡上で5視野を予め定義した。
j.各視野を5秒間ビデオ録画した。
k.残りのチャネルを、以下の表において示されるようにT細胞サンプルを用いるチャネル1(f〜h)に類似して評価した。
【0225】
【表10】
【0226】
結果:
実験の結果は
図10に示されている。この図は、秒あたりの視野あたりのローリングT細胞数の解析を示す。データは、チャネル番号1(「陰性対照」として刺激されていないHUVEC上の対照T細胞)、チャネル番号2(「陽性対照」として刺激されたHUVEC上の対照T細胞)、チャネル番号3(「GDF-15」)、チャネル番号4(「UACC257」:分泌されたGDF-15を含有するUACC257黒色腫細胞の上清中で培養されたT細胞)及びチャネル番号5(「UACC257+抗hGDF-15」:抗hGDF-15 B1-23を用いて、分泌されたGDF-15を枯渇させたUACC257黒色腫細胞の上清中で培養されたT細胞)から得た。
【0227】
刺激されていないHUVEC上を流されたT細胞と比較して(「陰性対照」;中央値=秒あたり視野あたり28個のローリング細胞)、刺激されたHUVEC上にT細胞を流すこと(「陽性対照」)は、秒あたり視野あたりのローリング細胞の数を増大した(中央値=46)。hGDF-15を用いるT細胞の処置は、秒あたり視野あたりのローリング細胞の数を実質的に低減する(中央値=29)。また、GDF-15を分泌する黒色腫細胞株UACC257の上清とのT細胞のプレインキュベーションは、刺激されたHUVEC上を流れるT細胞(「陽性対照」)と比較して、秒あたりの視野あたりのローリング細胞数を実質的に低減する(中央値=36)。これとは対照的に、抗GDF-15を用いて、分泌されたGDF-15を枯渇させた黒色腫細胞株UACC257の上清とのT細胞のプレインキュベーションは、刺激されたHUVEC上を流れるT細胞(陽性対照)に匹敵する、秒あたり視野あたりのローリング細胞の数(中央値=45)をもたらした。
【0228】
まとめ:
この実施例は、腫瘍細胞によって分泌されたGDF-15を含むhGDF-15が、T細胞の内皮細胞との接着を低減することを示す。固形癌へのCD8
+T細胞の侵入及び固形癌中のこれらのCD8
+T細胞の存在は、免疫チェックポイントブロッカーを使用する治療的アプローチにとって特に有利であるので、hGDF-15のレベルを使用して、免疫チェックポイントブロッカーを用いるこれらの癌患者の治療に対する奏効の確率を予測できる。
【0229】
(実施例4)
GDF-15血清レベルは、抗PD-1を用いて治療された黒色腫患者の生存を規定する
この実施例における研究は、実施例1の研究において得られた結果、例えば、hGDF-15が免疫チェックポイントブロッカーに対する患者の応答に影響を及ぼすという知見を、更なる独立研究によって更に検証するために実施した。
【0230】
この研究に関連して、以下の用語を使用した:
「打ち切られた」=更なるフォローアップデータが入手できない場合は、患者を研究コホートから除いた。
「イベント」=患者が死亡した。
「生存」=患者がフォローアップで生存していた。
【0231】
将来を見越して、ドイツ中の60を超える皮膚科学センターからの患者を記録する中央悪性黒色腫レジストリー(Central Malignant Melanoma Registry)(CMMR)データベースにおいて、組織学的に確認された黒色腫を有する、Department of Dematology、University of Tubingen、Germanyからの患者を同定した。(a)記録保存された血清サンプルを有する、(b)フォローアップデータを入手可能な、(c)採血の時点での局所領域又は遠位転移の病歴又は存在及び(d)抗PD-1抗体を用いる実験的治療を有する99人の患者を選択した。CMMRによるデータ収集の目的及び方法は、これまでに詳細に公開されている(Lasithiotakis,KGら、Cancer/107/1331〜9. 2006年)。各患者について得られたデータは、年齢、性別、最後のフォローアップの日付及び該当する場合には死亡の日付及び原因を含んでいた。すべての患者は、CMMRレジストリーによって記録される臨床データを有するための所与の書面でのインフォームドコンセントを行っていた。施設内倫理委員会Tubingenは研究を承認した(倫理的表明125/2015BO2)。適格な患者は年齢18歳以上であり、組織学的又は細胞学的に確認された切除不能なステージIII又はステージIVの黒色腫を有しており、局所療法に適しておらず、現在のガイドラインに従う先行療法を受けているにもかかわらず疾患進行を示した。BRAFV600変異体腫瘍を有する患者は、推奨される第一選択又はBRAF若しくはMEK阻害剤療法を含む実験的治療又は両方を受けていた。該当する場合には、患者が、最小の2用量、3週間ごとに3mg/kg 1回を投与されていたが、最後のイピリムマブ用量の24週間以内に確認された疾患進行を示した場合に、イピリムマブを用いる先行治療が失敗したと考えられた。抗PD-1の投与の前に、イピリムマブ関連有害事象のグレード0〜1への解決又は改善、及び研究薬物の第1の用量の少なくとも2週間前のプレドニゾン用量10mg/日以下が求められた。適格な患者は、米国東海岸癌臨床試験グループ(Eastern Cooperative Oncology Group)(ECOG)実施状態0又は1、固形癌の効果判定基準(Response Evaluation Criteria in Solid Tumors)バージョン1.1(RECIST v1.1)で測定可能な疾患、並びに絶対好中球カウント(mLあたり≧1500個細胞)、血小板(mLあたり≧100000個細胞)、ヘモグロビン(≧90g/L)、血清クレアチニン(≦1・5正常の上限[ULN])、血清総ビリルビン(≦1・5ULN又は総ビリルビン濃度>1・5ULNを有する患者について直接ビリルビン≦ULN)、アスパラギン酸及びアラニンアミノトランスフェラーゼ(≦2・5ULN又は肝臓転移を有する患者について≦5ULN)、国際標準比又はプロトロンビン時間(抗凝固薬を使用しない場合≦1・5ULN)及び活性化部分トロンボプラスチン時間(抗凝固薬を使用しない場合≦1・5ULN)を有していた。患者は、直近の療法の最後の用量とペムブロリズマブ又はニボルマブの第1の用量の間に少なくとも4週間のウォッシュアウト期間を有していた。
【0232】
酵素結合免疫吸着アッセイ(ELISA)によるhGDF-15血清レベルの解析:
ヒトGDF-15血清レベルを、酵素結合免疫吸着アッセイ(ELISA)によって測定した。
【0233】
バッファー及び試薬:
緩衝ブロッキング溶液: PBS中1% BSA(画分V pH7.0、PAA社、Pasching、Austria)
洗浄溶液:PBS-Tween(0.05%)
標準:ヒトGDF-15(ストック濃度120μg/ml、R&D Systems社製)
捕捉抗体:ヒトGDF-15 MAb(クローン147627)、R&D Systems社製、マウスIgG2B(カタログ番号MAB957、R&D Systems社製、ストック濃度360μg/ml)
検出抗体:ヒトGDF-15ビオチン化された親和性精製されたPAb、ヤギIgG(カタログ番号BAF940、R&D Systems社製、ストック濃度9μl/ml)
ストレプトアビジン-HRP(カタログ番号DY998、R&D Systems社製)
基質溶液:10ml 0.1M NaOAc pH6.0+100μl TMB+2μl H
2O
2
停止溶液:1M H
2SO
4
【0234】
解析手順:
1.プレート調製:
e.捕捉抗体を、PBSで2μg/mlの作業濃度に希釈した。96ウェルマイクロプレート(Nunc maxisorp(登録商標))を、外側の列(A及びH)を除いて、ウェルあたり50μlの希釈捕捉抗体を用いて直ちにコーティングした。列A及びHを、実験の間のサンプルの蒸発を防ぐためにバッファーで満たした。プレートを穏やかに軽くたたいて、各ウェルの底が完全に覆われることを確実にした。プレートを湿潤チャンバー中に入れ、室温(RT)で一晩インキュベートした。
f.各ウェルを吸引し、PBS-Tween(0.05%)を用いて3回洗浄した。
g.各ウェルに150μlのブロッキング溶液を添加し、続いて、RTで1時間インキュベートした。
h.各ウェルを吸引し、PBS-Tween(0.05%)を用いて3回洗浄した。
【0235】
2.アッセイ手順:
d.標準を調製した。GDF-15を緩衝ブロッキング溶液で1ng/mlの最終濃度に希釈した(4.17μl GDF+496μl緩衝ブロッキング溶液)。1:2段階希釈を作製した。
e.二連のサンプル1:20(6μl+114μl緩衝ブロッキング溶液)を調製した。
f.ウェルあたり50μlの希釈サンプル又は標準を添加し、続いてRTで1時間インキュベートした。
【0236】
【表11】
【0237】
i.各ウェルを吸引し、PBS-Tween(0.05%)を用いて3回洗浄した。
j.検出抗体を50ng/mlの最終濃度に希釈した(56μl+10mlブロッキングバッファー)。各ウェルに50μlの希釈検出抗体を添加し、続いてRTで1時間インキュベートした。
k.各ウェルを吸引し、PBS-Tween(0.05%)を用いて3回洗浄した。
l.ストレプトアビジン-HRPを1:200希釈した(50μl+10mlブロッキングバッファー)。各ウェルに50μLのストレプトアビジン-HRPの作業希釈を添加し、続いてRTで20分間インキュベートした。
m.各ウェルを吸引し、PBS-Tween(0.05%)を用いて3回洗浄した。
n.基質溶液を調製した。各ウェルに50μLの基質溶液を添加し、続いてRTで20分間インキュベートした。
o.各ウェルに50μLの停止溶液を添加した。
p.450nmに設定したマイクロプレートリーダーを使用して、各ウェルの光学濃度を直ちに決定した。
【0238】
3.GDF-15血清力価の算出:
d.各サンプル/GDF-15標準希釈を二連で適用した。GDF-15力価を決定するために、2連の平均を算出し、バックグラウンド(GDF-15を含まないサンプル)を差し引いた。
e.標準曲線を作製するために、線形範囲から得た値をX-Y-図(X軸:GDF-15濃度、Y軸:OD450)にプロットし、線形曲線フィットを適用した。既知濃度を有する標準希釈のOD450値から補間することによって、試験サンプルのGDF-15血清力価を算出した。
f.サンプルの最終GDF-15濃度を算出するために、それぞれの希釈係数を考慮した。標準範囲を下回る又は上回るOD値をもたらすサンプルを、適当な希釈で再解析した。
【0239】
hGDF-15血清レベルの患者データとの比較:
次いで、測定されたhGDF-15血清レベルを、研究から得られた患者奏効データと比較した。
【0240】
hGDF-15血清レベルの患者データとの統計的相関:
データ:
データ解析は、列(変数)サンプル表示、GDF-15(ng/ml)、日数(死亡又は打ち切りまでの)及び進行中(進行中の生命の指数変数)を含有する99人の患者から得たサンプルからのデータを含有するデータファイルに基づいていた。
【0241】
アウトカム変数(エンドポイント):
a.全生存(死亡までの時間)。このエンドポイントは、データファイルに由来した死亡についてのイベント指標(1=死亡/0=生存)、変数「日数」に対応する、死亡又は打ち切りまでの時間(患者が生存しているとわかっていた最後の時間)から構成される。
【0242】
治療に対する奏効、例えば患者がレスポンダーであったか否か(1=rとしてコードされる)。
【0243】
データ解析:
生存解析のためのフォローアップ時間は、血液サンプリングの日付から最後のフォローアップ(すなわち、患者から得られた最後の情報)又は死亡までと定義した。すべての血液サンプルは、抗PD1抗体を用いる治療の前の日付内に採取された。OSの解析のために、最後のフォローアップで生存していた患者を打ち切り、死亡していた患者を「イベント」と考えた。カプラン・マイヤーに従う累積生存確率を、95%の信頼区間(CI)と一緒に算出し、両側ログ・ランク検定統計学を使用して比較した。全生存のp値を、両側ログ・ランク統計学によって算出した。カテゴリー予測変数としてGDF-15に基づくグループ化変数を用いて、1つのモデルをフィッティングした(グループは、中央値分割に基づいて<1.5ng/ml(n=62)、≧1.5ng/ml(n=37)又はGDF-15
low(n=49)、GDF-15
high(n=50)とした)。得られたカプラン・マイヤー曲線は
図11及び12に示されており、ここでは、打ち切りは垂直線によって示されている。更に、以下の表は、症例のまとめTable 9(表9)、<1.5ng/ml及び≧1.5ng/mlのGDF-15レベルを有する患者グループの患者生存データ(Table 10(表10)及び11(表11))並びに<1.5ng/ml及び≧1.5ng/mlのGDF-15レベルを有する患者グループの全体的な統計的比較(Table 12(表12))を含有する。
【0244】
【表12】
【0245】
【表13】
【0246】
【表14】
【0247】
【表15】
【0248】
結果及び結論:
この実施例の上記の統計結果によって、実施例1の結果が更に確認された。例えば、患者の生存によって示されるような、治療の正の臨床アウトカムの確率は、患者血清中のhGDF-15レベルが増大するにつれて有意に低減することが確認された。例えば、Table 12(表12)は、0.004の有意性レベルによって証明されるように、それぞれ<1.5ng/ml及び≧1.5ng/mlのGDF-15レベルを有する2つの患者グループ間の生存が有意に異なっていたことを示す。同様に、Table 9(表9)は、<1.5ng/mlのGDF-15レベルを有するグループでは、より高いパーセンテージの患者(82.3%)が生存したことを実証し、Table 10(表10)及び11(表11)及び
図11及び12は、<1.5ng/mlのGDF-15レベルを有する患者について、生存時間が≧1.5ng/mlのGDF-15レベルを有する患者と比較して著しく長かったことを実証する。
【0249】
したがって、この実施例の結果から、hGDF-15の血清レベルと、例えば、患者の奏効及び患者の生存を含む、患者における抗PD-1ベースの免疫療法の正の臨床アウトカムの確率の間に強い逆相関があることが更に確認される。したがって、本発明によれば、有利なことに、患者由来の血液サンプル中のhGDF-15のレベルを使用して、抗PD-1のような免疫チェックポイントブロッカーを用いる治療に対する患者の奏効の確率を予測できる。
【0250】
(実施例5)
抗PD1抗体を用いて治療されたヒト非小細胞肺癌(NSCLC)患者では、進行性疾患を有する患者における中央値hGDF-15血清レベルは、部分奏効を示す患者と比較して高い。
この実施例は、実施例1の研究において得られた結果、例えば、hGDF-15が、免疫チェックポイントブロッカーに対する患者の奏効を予測することを可能にするという知見を、異なる固形癌における更なる独立研究において更に検証するために実施された。
【0251】
患者:
NSCLC患者を、抗PD1抗体の承認された薬物ラベルに従って、抗PD1抗体を用いて治療した。患者は、その他の癌療法を用いて予め治療された患者を含んでいた。NSCLC患者では完全奏効は稀にしか観察されないという事実により、患者グループはPD-1治療の際に進行性疾患を示す及び部分奏効を示す患者を含んでいたが、PD-1治療の際に完全奏効を示す患者は含んでいなかった。
【0252】
血清サンプル:
血清サンプルは、抗PD1抗体を用いる治療の前に患者から採取した。
【0253】
酵素結合免疫吸着アッセイ(ELISA)によるhGDF-15血清レベルの解析:
血清サンプル中のhGDF-15血清レベルを、実施例1に記載されるように酵素結合免疫吸着アッセイ(ELISA)によって解析した。
【0254】
結果:
抗PD-1を用いる治療の際に部分奏効を示す5人の患者から、及び抗PD-1を用いる治療の際に進行性疾患を示す5人の患者からhGDF-15血清レベルを入手した。とりわけ、部分奏効を示す患者における中央値hGDF-15血清レベルが0.55ng/mlであったのに対し、進行性疾患を示す患者における中央値hGDF-15血清レベルは1.56ng/mlであった。したがって、進行性疾患を示す患者における中央値hGDF-15血清レベルは、部分奏効を示す患者と比較して約2.8倍高かった。
【0255】
結論:
この実施例の結果から、hGDF-15レベルが、免疫チェックポイントブロッカーに対する患者の奏効と負に相関することが更に確認される。したがって、本発明によれば、有利なことに、患者由来の血液サンプル中のhGDF-15のレベルを使用して、抗PD-1のような免疫チェックポイントブロッカーを用いる治療に対する患者の奏効の確率を予測できる。このような予測は黒色腫について行うことができるだけでなく、NSCLC等の肺癌においても、また本明細書において言及されるその他の固形癌のすべてにおいても行うことができる。
【0256】
(実施例6)
hGDF-15血清レベルは、腫瘍の遺伝子変異量と有意に相関しない
遺伝子変異量は、免疫チェックポイントブロッカーに対する癌患者の奏効の公知の正の予後因子である。一般に、癌細胞は、癌細胞に対して特異的であり、非癌性細胞の抗原とは異なる癌細胞抗原を生じさせるゲノム変異を有する。高い遺伝子変異量は、多数のこのような癌細胞特異的抗原につながる。このような多数の癌細胞特異的抗原を有する癌では、免疫チェックポイントブロッカーによる免疫応答の刺激は、より癌細胞特異的な抗原が免疫応答の標的抗原として利用可能であるので特に有効であると考えられる。
【0257】
hGDF-15が単に腫瘍の遺伝子変異量の代替マーカーではないということを更に確認するために、またhGDF-15阻害剤を用いる治療が、腫瘍の遺伝子変異量と独立している機序によって作用することを更に確認するために、癌患者から得た癌サンプル中のhGDF-15 mRNAレベルを、癌において同定された体細胞変異の数に対してプロットした。体細胞変異は、エキソームシーケンシングの使用によって決定した。University Hospital Zurich製のUZHウェブツールを使用することによってデータを解析した(Cheng PFら:Data mining The Cancer Genome Atlas in the era of precision cancer medicine. Swiss Med Wkly. 2015年9月16日;145:w14183)。結果は
図13に示されている。
図13Aは、高悪性度悪性黒色腫を有する患者のみを考慮するthe Cancer Genome Atlas(TGCA)から入手した癌患者データのプロットを示す(the Cancer Genome Atlasは、Cheng PFら: Data mining The Cancer Genome Atlas in the era of precision cancer medicine. Swiss Med Wkly. 2015年9月16日;145:w14183の参考文献に記載されている)。GDF-15発現を、RSEM(「期待値最大化によるRNA Seq(RNA Seq by expectation maximization)」)ソフトウェアパッケージ(Li B及びDewey CN: RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011年8月4日;12:323. doi:10.1186/1471-2105-12-323)を使用する正規化によって評価した。
図13Bは、個別に解析されたUniversity Hospital Zurichからの40人の更なる転移性悪性黒色腫患者から得た癌患者データのプロットを示す。
【0258】
とりわけ、
図13A及び13Bの両方とも、0.5のp値を示し、これは、癌における遺伝子変異量とhGDF-15のレベルの間に有意な相関がないことを示す。これらの結果から、hGDF-15は、単に腫瘍の遺伝子変異量の代替マーカーではないということ、またhGDF-15レベルが、腫瘍の遺伝子変異量とは独立している方法で免疫チェックポイントブロッカーに対する患者の奏効を予測することを可能にすることが更に確認される。
【0259】
(実施例7)
野生型腫瘍又はヒトGDF-15(過剰)発現腫瘍におけるCD8
+T細胞浸潤
免疫適格性同系マウスC57BL/6の右側腹部に移植された野生型又はヒトGDF-15(過剰)発現MC38結腸癌細胞のいずれかを使用するパイロット研究では、GDF-15過剰発現は免疫細胞浸潤の低減と関連していた。野生型腫瘍又はトランスジェニック(tg)hGDF15を過剰発現する腫瘍を有する、29日後に屠殺されたマウスにおけるCD8aの免疫細胞化学画像が
図14に示されている。図からわかるように、野生型腫瘍は、トランスジェニック(tg)hGDF15を過剰発現する腫瘍よりも多くのCD8a陽性細胞を含有していた。
【0260】
これらの結果は、本発明によれば、hGDF-15が固形癌中のCD8
+T細胞のパーセンテージを低減するという知見を更に支持する。したがって、本発明によれば、hGDF-15レベルと、好適な臨床アウトカム(例えば、患者の生存又は治療奏効の存在)の逆相関の好ましいが制限されない説明は、hGDF-15が、腫瘍転移を含む固形腫瘍中のCD8
+Tリンパ球のパーセンテージを低減し、それによって、好適な臨床アウトカム(例えば、患者の生存又は治療奏効の存在)の確率を低減するということである。この相関は種々の固形癌実体にわたって観察されるので、本発明は、黒色腫等の特定の固形癌に限定されない。