特許第6858821号(P6858821)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 東芝プラントシステム株式会社の特許一覧

特許6858821ガスタービンの吸気温調システムおよび発電プラント
<>
  • 特許6858821-ガスタービンの吸気温調システムおよび発電プラント 図000002
  • 特許6858821-ガスタービンの吸気温調システムおよび発電プラント 図000003
  • 特許6858821-ガスタービンの吸気温調システムおよび発電プラント 図000004
  • 特許6858821-ガスタービンの吸気温調システムおよび発電プラント 図000005
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6858821
(24)【登録日】2021年3月26日
(45)【発行日】2021年4月14日
(54)【発明の名称】ガスタービンの吸気温調システムおよび発電プラント
(51)【国際特許分類】
   F02C 7/08 20060101AFI20210405BHJP
   F01D 25/10 20060101ALI20210405BHJP
【FI】
   F02C7/08 B
   F01D25/10 C
   F01D25/10 D
【請求項の数】10
【全頁数】14
(21)【出願番号】特願2019-174681(P2019-174681)
(22)【出願日】2019年9月25日
(65)【公開番号】特開2021-50671(P2021-50671A)
(43)【公開日】2021年4月1日
【審査請求日】2019年9月25日
(73)【特許権者】
【識別番号】390014568
【氏名又は名称】東芝プラントシステム株式会社
(74)【代理人】
【識別番号】100091982
【弁理士】
【氏名又は名称】永井 浩之
(74)【代理人】
【識別番号】100091487
【弁理士】
【氏名又は名称】中村 行孝
(74)【代理人】
【識別番号】100105153
【弁理士】
【氏名又は名称】朝倉 悟
(74)【代理人】
【識別番号】100107582
【弁理士】
【氏名又は名称】関根 毅
(74)【代理人】
【識別番号】100150717
【弁理士】
【氏名又は名称】山下 和也
(72)【発明者】
【氏名】岸 俊人
(72)【発明者】
【氏名】及川 治翁
(72)【発明者】
【氏名】桧山 直矢
(72)【発明者】
【氏名】順毛 栄治
(72)【発明者】
【氏名】岩田 貴雅
(72)【発明者】
【氏名】鳥海 章久
【審査官】 谿花 正由輝
(56)【参考文献】
【文献】 特開2003−206752(JP,A)
【文献】 特開2005−098240(JP,A)
【文献】 特表2007−500810(JP,A)
【文献】 特開2001−073799(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
F02C 7/08
F01D 25/10
(57)【特許請求の範囲】
【請求項1】
発電プラントの大気放出部から大気に放出される排ガスを排出するガスタービンに吸入される吸入空気の温度を調整するガスタービンの吸気温調システムであって、
前記大気放出部内を流れる前記排ガスと熱媒体とを熱交換させる第1熱交換器と、
前記熱媒体と前記吸入空気とを熱交換させる第2熱交換器と、
前記第1熱交換器と前記第2熱交換器との間で前記熱媒体を循環させる循環流路と、 前記大気放出部内を流れる前記排ガスの一部を流入させ、流入した前記排ガスを前記大気放出部内に流出させるバイパス流路と、を備え、
前記第1熱交換器は、前記バイパス流路に設けられて、前記バイパス流路内を流れる前記排ガスと前記熱媒体とを熱交換させ、
前記大気放出部は、前記ガスタービンから排熱回収ボイラを通って排出された前記排ガスを大気に放出する排気煙突を含み、
前記バイパス流路は、前記排気煙突内を流れる前記排ガスの一部を流入させる第1バイパス入口と、前記排ガスを前記排気煙突内に流出させる第1バイパス出口と、を有している、ガスタービンの吸気温調システム。
【請求項2】
前記大気放出部は、排熱回収ボイラを通ることなく前記ガスタービンから排出された前記排ガスを大気に放出するバイパススタックを更に含み、
前記バイパス流路は、前記バイパススタック内を流れる前記排ガスの一部を流入させる第2バイパス入口と、前記排ガスを前記バイパススタックに流出させる第2バイパス出口と、前記第1バイパス入口および前記第2バイパス入口に連通するとともに前記第1バイパス出口および前記第2バイパス出口に連通し、前記第1熱交換器が設けられた本体流路と、を更に有している、請求項1に記載のガスタービンの吸気温調システム。
【請求項3】
前記バイパス流路は、前記第1バイパス入口からの前記排ガスの流入を制御する第1入口流路弁と、前記第2バイパス入口からの前記排ガスの流入を制御する第2入口流路弁と、を更に有している、請求項2に記載のガスタービンの吸気温調システム。
【請求項4】
前記バイパス流路は、前記第1バイパス出口からの前記排ガスの流出を制御する第1出口流路弁と、前記第2バイパス出口からの前記排ガスの流出を制御する第2出口流路弁と、を更に有している、請求項2または3に記載のガスタービンの吸気温調システム。
【請求項5】
発電プラントの大気放出部から大気に放出される排ガスを排出するガスタービンに吸入される吸入空気の温度を調整するガスタービンの吸気温調システムであって、
前記大気放出部内を流れる前記排ガスと熱媒体とを熱交換させる第1熱交換器と、
前記熱媒体と前記吸入空気とを熱交換させる第2熱交換器と、
前記第1熱交換器と前記第2熱交換器との間で前記熱媒体を循環させる循環流路と、 前記大気放出部内を流れる前記排ガスの一部を流入させ、流入した前記排ガスを前記大気放出部内に流出させるバイパス流路と、を備え、
前記第1熱交換器は、前記バイパス流路に設けられて、前記バイパス流路内を流れる前記排ガスと前記熱媒体とを熱交換させ、
前記大気放出部は、排熱回収ボイラを通ることなく前記ガスタービンから排出された前記排ガスを大気に放出するバイパススタックを含み、
前記バイパス流路は、前記バイパススタック内を流れる前記排ガスの一部を流入させる第2バイパス入口と、前記排ガスを前記バイパススタックに流出させる第2バイパス出口と、を有している、ガスタービンの吸気温調システム。
【請求項6】
前記バイパス流路に設けられ、前記排ガスを流入させる排ガスファンを更に備えた、請求項1〜5のいずれか一項に記載のガスタービンの吸気温調システム。
【請求項7】
前記循環流路のうち前記第2熱交換器と前記第1熱交換器との間の部分から分岐した分岐流路と、
前記分岐流路に設けられ、前記熱媒体を冷却する冷却装置と、を更に備え、
前記冷却装置で冷却された前記熱媒体は、前記第2熱交換器に供給される、請求項1〜6のいずれか一項に記載のガスタービンの吸気温調システム
【請求項8】
発電プラントの大気放出部から大気に放出される排ガスを排出するガスタービンに吸入される吸入空気の温度を調整するガスタービンの吸気温調システムであって、
前記大気放出部内を流れる前記排ガスと熱媒体とを熱交換させる第1熱交換器と、
前記熱媒体と前記吸入空気とを熱交換させる第2熱交換器と、
前記第1熱交換器と前記第2熱交換器との間で前記熱媒体を循環させる循環流路と、を備え、
前記大気放出部は、前記ガスタービンから排熱回収ボイラを通って排出された前記排ガスを大気に放出する排気煙突を含み、
前記第1熱交換器は、前記排気煙突内に設けられ
前記循環流路のうち前記第2熱交換器と前記第1熱交換器との間の部分から分岐した分岐流路と、
前記分岐流路に設けられ、前記熱媒体を冷却する冷却装置と、を更に備え、
前記冷却装置で冷却された前記熱媒体は、前記第2熱交換器に供給される、ガスタービンの吸気温調システム。
【請求項9】
前記冷却装置は、前記熱媒体を冷却するチラー装置と、前記チラー装置により冷却された熱媒体を貯留する貯留タンクと、を有している、請求項7または8に記載のガスタービンの吸気温調システム。
【請求項10】
ガスタービンと、
前記ガスタービンから排出される排ガスを大気に放出する大気放出部と、
前記ガスタービンに吸入される吸入空気の温度を調整する、請求項1〜9のいずれか一項に記載のガスタービンの吸気温調システムと、を備えた、発電プラント。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ガスタービンの吸気温調システムおよび発電プラントに関する。
【背景技術】
【0002】
ガスタービンを備えた複合火力発電プラントは、発電出力の変動制御が比較的容易である。このため、近年の再生可能エネルギの台頭により、複合火力発電プラントには調整電源の役割が要求されている。一般に、電力需要が大きい場合には、複合火力発電プラントの発電出力を増加させる運転が行われ、電力需要が小さい場合には、発電出力を減少させる運転が行われる。このようにして、複合火力発電プラントにおける柔軟な出力変動が行われている。今後、発電出力の変動が大きくなり、制御が比較的困難とされる再生可能エネルギが基幹電力となると、電力需要だけでなく、再生可能エネルギの出力変動に合わせた部分負荷運転などのより柔軟な運用が要求される。
【0003】
一般に複合火力発電プラントでは、最大発電出力時に最高効率となるように設計されている。このため、最大発電出力時よりも出力が小さくなる部分負荷運転時では、最大発電出力時よりも効率が低下し得る。
【0004】
ガスタービンでは吸入空気の温度や圧力などが変化すると、出力や効率などが変化し得る。これに対して、吸入空気の温度を上昇させることにより、部分負荷運転時の効率の改善を行うことができる。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2007−315213号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
本発明は、このような点を考慮してなされたものであり、ガスタービンの排ガスの排熱回収をしながらガスタービンの部分負荷時の効率を改善することができるガスタービンの吸気温調システムおよび発電プラントを提供することを目的とする。
【課題を解決するための手段】
【0007】
実施の形態によるガスタービンの吸気温調システムは、発電プラントの大気放出部から大気に放出される排ガスを排出するガスタービンに吸入される吸入空気の温度を調整するガスタービンの吸気温調システムである。この吸気温調システムは、大気放出部内を流れる排ガスの一部を流入させ、流入した排ガスを大気放出部内に流出させるバイパス流路と、バイパス流路に設けられ、排ガスと熱媒体とを熱交換させる第1熱交換器と、熱媒体と吸入空気とを熱交換させる第2熱交換器と、を備えている。第1熱交換器と第2熱交換器との間で熱媒体が循環流路によって循環する。
【0008】
また、実施の形態による発電プラントは、ガスタービンと、ガスタービンから排出される排ガスを大気に放出する大気放出部と、ガスタービンに吸入される吸入空気の温度を調整する上述したガスタービンの吸気温調システムと、を備えている。
【発明の効果】
【0009】
本発明によれば、ガスタービンの排ガスの排熱回収をしながらガスタービンの部分負荷時の効率を改善することができる。
【図面の簡単な説明】
【0010】
図1図1は、本発明の第1の実施の形態におけるガスタービンの吸気加温システムを備えた発電プラントを示す概略図である。
図2図2は、本発明の第2の実施の形態におけるガスタービンの吸気加温システムを備えた発電プラントを示す概略図である。
図3図3は、本発明の第3の実施の形態におけるガスタービンの吸気加温システムを備えた発電プラントを示す概略図である。
図4図4は、本発明の第4の実施の形態におけるガスタービンの吸気加温システムを備えた発電プラントを示す概略図である。
【発明を実施するための形態】
【0011】
以下、図面を参照して、本発明の実施の形態におけるガスタービンの吸気加温システムおよび発電プラントについて説明する。
【0012】
(第1の実施の形態)
図1を用いて、本発明の第1の実施の形態におけるガスタービンの吸気加温システムおよび発電プラントについて説明する。
【0013】
まず、図1を用いて、本実施の形態による発電プラント1について説明する。本実施の形態による発電プラント1としては、ガスタービン4を備えた発電プラントであれば任意の構成とすることができるが、ここでは、ガスタービン4と蒸気タービンとを備えた複合火力発電プラント(コンバインドサイクル発電プラント)を例にとって説明する。
【0014】
図1に示す発電プラント1は、圧縮機2と、燃焼器3と、ガスタービン4と、排熱回収ボイラ5と、排ガスを大気に放出する大気放出部6と、蒸気タービン(図示せず)と、発電機(図示せず)と、を備えている。
【0015】
圧縮機2には、吸気ダクト7が接続されており、外気が吸気ダクト7から吸入されて、吸入空気(図1に示す符号F1)として圧縮機2に供給される。圧縮機2は、ガスタービン4で得られる回転駆動力を用いて吸入空気を圧縮し、圧縮空気を生成する。生成された圧縮空気は、燃焼器3に供給される。燃焼器3は、圧縮空気と燃料ガスとを燃焼して燃焼ガスを生成する。生成された燃焼ガスは、ガスタービン4に供給される。ガスタービン4は、燃焼ガスの流体エネルギを回転エネルギに変換し、タービンロータ(図示せず)を回転駆動する。この回転エネルギは発電機に伝達される。
【0016】
排熱回収ボイラ5は、ガスタービン4から排出される排ガス(図1に示す符号F2)の排熱を回収して蒸気を生成する。生成された蒸気は、蒸気タービンに供給される。蒸気タービンは、蒸気の流体エネルギを回転エネルギに変換し、タービンロータ(図示せず)を回転駆動する。この回転エネルギは、上述した発電機に伝達される。蒸気タービンから排出された蒸気は、図示しない復水器で復水となって、排熱回収ボイラ5に戻される。
【0017】
発電機は、ガスタービン4で得られた回転エネルギと、蒸気タービンで得られた回転エネルギとで発電を行う。なお、ガスタービン4の回転エネルギと蒸気タービンの回転エネルギが、別々の発電機に伝達されて、別々に発電を行うようにしてもよい。
【0018】
排熱回収ボイラ5の下流側には、大気放出部6の一例としての排気煙突8が設けられている。ガスタービン4から排熱回収ボイラ5を通って排出された排ガスは、この排気煙突8から大気に放出される。排気煙突8から排出される際の排ガスの温度は、例えば、80℃〜100℃である。排熱回収ボイラ5は、排ガスを排出する接続開口9を有している。この接続開口9に排気煙突8が接続されており、接続開口9から排気煙突8に排ガスが流入するようになっている。排気煙突8は、接続開口9の下端から、接続開口9の上端を越えて上方に延びている。
【0019】
また、ガスタービン4と排熱回収ボイラ5とは、排ガスダクト10を介して接続されている。ガスタービン4から排出された排ガスは、この排ガスダクト10を通って排熱回収ボイラ5に供給される。排ガスダクト10には、大気放出部6の一例としてのバイパススタック11が設けられている。バイパススタック11は、排ガスダクト10から上方に延びており、ガスタービン4から排出された排ガスを、排熱回収ボイラ5を通ることなく大気に放出する。
【0020】
排ガスダクト10には、排気ダンパー弁12が設けられている。この排気ダンパー弁12は、主として、ガスタービン4から排出される排ガスの供給先を切り替える機能を有しており、支点12aを中心にして回動可能になっている。図1に示す排気ダンパー弁12は、ガスタービン4から排出される排ガスを排熱回収ボイラ5に供給する状態を示している。この状態では、排気ダンパー弁12は、バイパススタック11の側の流路を塞ぎ、排ガスがバイパススタック11に供給されることが防止される。この状態では、排ガスの排熱を利用して蒸気が生成され、発電プラント1の効率の向上を図ることができる。一方、排ガスをバイパススタック11に供給する場合には、排気ダンパー弁12は、排熱回収ボイラ5の側の流路を塞ぎ、排ガスが、排熱回収ボイラ5に供給されることが防止される。この状態では、ガスタービン4単独での運転を行うことができる。
【0021】
このような発電プラント1に、本実施の形態によるガスタービンの吸気温調システム20(以下、単に吸気温調システム20と記す)が設けられている。ここで、吸気温調システム20は、発電プラント1の大気放出部6から大気に放出される排ガスを排出するガスタービン4に吸入される吸入空気の温度を調整するためのシステムである。この吸気温調システム20は、主として、排ガスの排熱を利用してガスタービン4に供給される吸入空気の温度を加熱するように構成されている。
【0022】
図1に示すように、吸気温調システム20は、大気放出部6内を流れる排ガスの一部を流入させ(引き込み)、流入した排ガスを大気放出部6内に流出させる(戻す)バイパス流路21と、排ガスと熱媒体(図1に示す符号F3)とを熱交換させる第1熱交換器22と、熱媒体と吸入空気とを熱交換させる第2熱交換器23と、熱媒体を循環させる循環流路24と、を備えている。図1に示す発電プラント1では、大気放出部6は、上述した排気煙突8と、バイパススタック11と、を含んでいる。しかしながら、本実施の形態においては、大気放出部6の一例としての排気煙突8内を流れる排ガスの排熱を利用する吸気温調システム20の例について説明する。
【0023】
本実施の形態におけるバイパス流路21には、排ガスをバイパス流路21内に流入させる排ガスファン25が設けられている。図1に示す例では、排ガスファン25は、第1熱交換器22の下流側に設けられているが、第1熱交換器22の上流側に設けられていてもよい。しかしながら、このような排ガスファン25を用いなくてもバイパス流路21内を排ガスが自然循環可能であれば、排ガスファン25は設けられていなくてもよい。
【0024】
また、バイパス流路21は、排熱回収ボイラ5から排出された排ガスを大気に放出する排気煙突8(大気放出部6)内を流れる排ガスの一部を流入させる第1バイパス入口26と、排ガスを排気煙突8内に流出させる第1バイパス出口27と、を有している。このようにして、排気煙突8内の排ガスの一部が、第1バイパス入口26からバイパス流路21に流入し、バイパス流路21を通って、第1バイパス出口27から排気煙突8内に戻るようになっている。本実施の形態では、第1バイパス入口26は、排気煙突8と接続する排熱回収ボイラ5の接続開口9よりも上方に配置されていてもよい。第1バイパス出口27は、排気煙突8において第1バイパス入口26よりも下流側(上方)に配置されていてもよい。なお、第1バイパス出口27は、排気煙突8の上部に設けられている計器(図示せず)よりも下方に配置されていてもよい。
【0025】
第1熱交換器22は、バイパス流路21に設けられている。この第1熱交換器22に、熱媒体が供給されることにより、バイパス流路21を流れる排ガスと熱媒体とが熱交換する。第1熱交換器22には、第2熱交換器23から排出された熱媒体が供給される。第1熱交換器22に供給される排ガスの温度は、第1熱交換器22に供給される熱媒体の温度よりも高い。このことにより、第1熱交換器22において、熱媒体が排ガスによって加熱されて、熱媒体の温度が上昇する。ここで、熱媒体としては、排ガスの排熱を回収して吸気空気を加熱することができれば、任意の流体を用いることができるが、例えば水を用いてもよい。
【0026】
第2熱交換器23は、吸気ダクト7内に設けられている。この第2熱交換器23に、熱媒体が供給されることにより、吸気ダクト7内を流れる吸入空気と熱媒体とが熱交換する。第2熱交換器23には、第1熱交換器22から排出された熱媒体が供給される。第2熱交換器23に供給される熱媒体の温度が、第2熱交換器23に供給される吸入空気の温度よりも高い場合、熱媒体は加熱媒体として機能し、吸入空気は熱媒体によって加熱される。このことにより、吸入空気の温度が上昇する。一方、第2熱交換器23に供給される熱媒体の温度が、第2熱交換器23に供給される吸入空気の温度よりも低い場合、熱媒体は、冷熱媒体として機能し、吸入空気は熱媒体によって冷却される。このことにより、吸入空気の温度が低下する。
【0027】
循環流路24は、第1熱交換器22と第2熱交換器23との間で熱媒体を循環させるように構成されている。図1に示す例では、循環流路24は、第1熱交換器22から第2熱交換器23に熱媒体を案内する第1循環流路部分24aと、第2熱交換器23から第1熱交換器22に熱媒体を案内する第2循環流路部分24bと、を有している。熱媒体は、第1熱交換器22、第1循環流路部分24a、第2熱交換器23および第2循環流路部分24bを、この順番で繰り返し通過するようになっている。
【0028】
循環流路24の第2循環流路部分24bには、循環ポンプ28が設けられている。この循環ポンプ28によって、熱媒体が循環流路24を強制循環するようになっている。
【0029】
図1に示すように、本実施の形態における吸気温調システム20は、循環流路24のうち第2熱交換器23と第1熱交換器22との間の部分から分岐した分岐流路30を更に備えている。この分岐流路30は、第2循環流路部分24bから分岐し、第1循環流路部分24aに合流するように構成されており、熱媒体が第1熱交換器22を通過しないようになっている。そして、分岐流路30には、熱媒体を冷却する冷却装置31が設けられている。本実施の形態では、冷却装置31は、熱媒体を冷却するチラー装置32を有している。そして、本実施の形態による冷却装置31は、チラー装置32により冷却された熱媒体を貯留する貯留タンク33を更に有していてもよい。貯留タンク33は、チラー装置32で冷却された熱媒体の温度が維持されるように、温度が上昇することを防止可能な保冷タンクとして構成されていてもよい。貯留タンク33は、チラー装置32の下流側に配置されている。例えば、夜間などの余剰電力を用いてチラー装置32において冷却した熱媒体を、貯留タンク33に保冷しながら貯留させておいてもよい。この場合、予め熱媒体を冷却しておくことができ、チラー装置32の電力消費が集中することを抑制することができる(ピークシフト)。さらに、電力消費を集中させずに夜間にゆっくりと熱媒体を冷却することでチラー装置32の冷却容量を小さくすることもできる。貯留されていた熱媒体は、貯留タンク33から第2熱交換器23に供給される。
【0030】
分岐流路30には、分岐ポンプ34が設けられている。この分岐ポンプ34は、例えば、分岐流路30のうち、チラー装置32の上流側に設けられていてもよい。
【0031】
循環流路24および分岐流路30には、各種弁が設けられている。
【0032】
より具体的には、循環流路24の第1循環流路部分24aには、第1循環流路弁40が設けられている。この第1循環流路弁40は、第1循環流路部分24aのうち分岐流路30の合流点P1と第1熱交換器22との間に配置されている。循環流路24の第2循環流路部分24bに、第2循環流路弁41が設けられている。この第2循環流路弁41は、第2循環流路部分24bのうち分岐流路30の分岐点P2と、循環ポンプ28との間に配置されている。
【0033】
分岐流路30においては、循環流路24との分岐点P2と分岐ポンプ34との間に第1分岐流路弁42が設けられている。また、循環流路24との合流点P1と貯留タンク33との間に第2分岐流路弁43が設けられている。
【0034】
熱媒体を第1熱交換器22で加熱する場合には、第1循環流路弁40および第2循環流路弁41を開き、第1分岐流路弁42および第2分岐流路弁43を閉じる。このことにより、熱媒体を第1熱交換器22に供給して第1熱交換器22で加熱することができる。一方、熱媒体をチラー装置32で冷却する場合には、第1循環流路弁40および第2循環流路弁41を閉じ、第1分岐流路弁42および第2分岐流路弁43を開く。このことにより、熱媒体をチラー装置32に供給してチラー装置32で冷却することができる。
【0035】
上述した各循環流路弁40、41および各分岐流路弁42、43は、電動弁であってもよく、この場合には、各流路弁40〜43を、図示しない制御装置で制御することができる。しかしながら、このことに限られることはなく、各流路弁40〜43は、手動弁または空気作動弁であってもよい。
【0036】
次に、このような構成からなる本実施の形態の作用について説明する。
【0037】
図1に示す発電プラント1の運転時には、吸気ダクト7から外気が吸入されて吸入空気として圧縮機2に供給される。吸入空気は圧縮機2で圧縮され、圧縮空気が生成される。生成された圧縮空気は、燃焼器3に供給されて燃焼ガスと燃焼し、燃焼ガスが生成される。生成された燃焼ガスは、ガスタービン4に供給されて、燃焼ガスの流体エネルギが回転エネルギに変換される。ガスタービン4から排出された排ガスは、排熱回収ボイラ5に供給されて、蒸気タービンに供給するための蒸気が生成される。排熱回収ボイラ5から排出された排ガスは排気煙突8に供給されて、排気煙突8から大気に放出される。
【0038】
吸気ダクト7に吸入された吸入空気を加熱する場合、バイパス流路21に設けられた排ガスファン25が駆動される。このことにより、排気煙突8内を流れる排ガスの一部が第1バイパス入口26からバイパス流路21に流入し、バイパス流路21を流れる。バイパス流路21を流れる排ガスは、第1熱交換器22を通って第1バイパス出口27から排気煙突8内に流出される。排気煙突8内に流出された排ガスは、バイパス流路21を通っていない排ガスとともに、大気に放出される。
【0039】
また、第1循環流路弁40および第2循環流路弁41を開き、第1分岐流路弁42および第2分岐流路弁43を閉じる。このことにより、熱媒体は、第1熱交換器22および第2熱交換器23を通って循環流路24を循環する(図1における符号F3の実線矢印参照)。
【0040】
第1熱交換器22において、熱媒体は、排ガスによって加熱されて、熱媒体の温度が上昇する。加熱された熱媒体は、第1循環流路部分24aを通って第2熱交換器23に供給される。
【0041】
第2熱交換器23に供給された熱媒体は、加熱媒体として、吸気ダクト7内を流れる吸入空気を加熱し、吸入空気の温度が上昇する。このことにより、部分負荷運転時のガスタービン4の効率を改善することができる。第2熱交換器23において吸入空気を加熱した熱媒体は、第2循環流路部分24bを通って第1熱交換器22に供給され、排ガスによって再び加熱される。
【0042】
このようにして熱媒体が循環流路24を循環し、吸入空気が連続的に加熱される。
【0043】
吸気ダクト7に吸入された吸入空気を冷却する場合には、第1循環流路弁40および第2循環流路弁41を閉じ、第1分岐流路弁42および第2分岐流路弁43を開く。このことにより、熱媒体は、第2熱交換器23およびチラー装置32を通過しながら循環流路24の一部と分岐流路30を流れて循環する(図1における符号F3の破線矢印参照)。
【0044】
より具体的には、チラー装置32において、熱媒体は冷却されて、熱媒体の温度が低下する。冷却された熱媒体は、貯留タンク33に一旦貯留されて保冷され、貯留タンク33から排出された熱媒体が、第2熱交換器23に供給される。
【0045】
第2熱交換器23に供給された熱媒体は、冷却媒体として、吸気ダクト7内を流れる吸入空気を冷却し、吸入空気の温度が低下する。このことにより、ガスタービン4の出力を増加させることができる。第2熱交換器23において吸入空気を冷却した熱媒体は、第2循環流路部分24bの一部および分岐流路30を通ってチラー装置32に供給され、再び冷却される。
【0046】
このようにして熱媒体が循環流路24の一部と分岐流路30を循環し、吸入空気が連続的に冷却される。
【0047】
このように本実施の形態によれば、ガスタービン4の排ガスを大気に放出させる排気煙突8内を流れる排ガスによって熱媒体が加熱されて、加熱された熱媒体が第2熱交換器23において吸入空気と熱交換する。このことにより、ガスタービン4の排ガスから回収した排熱で、吸入空気を加熱することができる。このため、ガスタービン4の排ガスの排熱を回収しながらガスタービン4の部分負荷運転時の効率を改善することができる。
【0048】
また、本実施の形態によれば、排ガスと熱媒体とを熱交換させる第1熱交換器22が、バイパス流路21に設けられている。このことにより、大気放出部6内(ここでは排気煙突8内)における排ガスの流れが、圧力損失を受けることを抑制でき、排ガスをスムースに流すことができる。このため、ガスタービン4の性能低下を抑制することができる。
【0049】
また、本実施の形態によれば、ガスタービン4から排熱回収ボイラ5を通って排出された排ガスを大気に放出する排気煙突8内を流れる排ガスの一部が、バイパス流路21に流入される。このことにより、排気煙突8内を流れる排ガスから排熱を回収することができ、この回収した排熱で吸入空気を加熱することができる。
【0050】
また、本実施の形態によれば、バイパス流路21に排ガスを流入させる第1バイパス入口26が、排気煙突8と接続する排熱回収ボイラ5の接続開口9よりも上方に配置されている。このことにより、第1バイパス入口26に流入される排ガスの温度が低下することを防止できる。すなわち、排気煙突8の下部(例えば、接続開口9の下部)では、排ガスの温度が低下する傾向にあるが、このように温度が低下した排ガスがバイパス流路21に流入されることを防止できる。このため、第1熱交換器22において、熱媒体の加熱が不十分になることを防止でき、排ガスの排熱を効果的に利用して吸入空気を加熱することができる。
【0051】
また、本実施の形態によれば、バイパス流路21に、排ガスを流入させる排ガスファン25が設けられている。このことにより、排気煙突8内を流れる排ガスを効果的にバイパス流路21に流入させることができ、第1熱交換器22において、熱媒体を効果的に加熱することができる。このため、排ガスの排熱を効果的に利用して吸入空気を加熱することができる。
【0052】
また、本実施の形態によれば、循環流路24のうち第2熱交換器23と第1熱交換器22との間の部分から分岐した分岐流路30に、熱媒体を冷却する冷却装置31が設けられている。そして、冷却装置31で冷却された熱媒体は、第2熱交換器23に供給されるようになっている。このことにより、吸入空気を冷却することができ、吸入空気の温度を低下させることができる。このため、ガスタービン4の出力を増加させることができる。
【0053】
さらに、本実施の形態によれば、冷却装置31のチラー装置32で冷却された熱媒体が、貯留タンク33で貯留される。このことにより、冷却された熱媒体を予め確保しておくことができ、第2熱交換器23に迅速に冷却された熱媒体を供給することができる。このため、第2熱交換器23において吸入空気を迅速に冷却することができる。
【0054】
なお、上述した本実施の形態においては、第1バイパス入口26が、排気煙突8と接続する排熱回収ボイラ5の接続開口9よりも上方に配置されている例について説明した。しかしながら、このことに限られることはなく、第1バイパス入口26は、排気煙突8のうち接続開口9の下端から接続開口9の上端までの部分に配置されていてもよい。この場合、第1バイパス入口26を低い位置に設置することができ、バイパス流路21の設置作業を容易化させることができる。
【0055】
(第2の実施の形態)
次に、図2を用いて、第2の実施の形態によるガスタービンの吸気加温システムおよび発電プラントについて説明する。
【0056】
図2に示す第2の実施の形態においては、バイパススタック内を流れる排ガスの一部がバイパス流路に流入される点が主に異なり、他の構成は、図1に示す第1の実施の形態と略同一である。なお、図2において、図1に示す第1の実施の形態と同一部分には同一符号を付して詳細な説明は省略する。
【0057】
本実施の形態においては、大気放出部6の一例としてのバイパススタック11内を流れる排ガスの排熱を利用する吸気温調システム20の例について説明する。
【0058】
本実施の形態では、図2に示すように、バイパス流路21は、バイパススタック11内を流れる排ガスの一部を流入させる第2バイパス入口50と、排ガスをバイパススタック11に流出させる第2バイパス出口51と、を有している。すなわち、本実施の形態における吸気温調システム20は、排気煙突8内を流れる排ガスではなく、大気放出部6の一例としてのバイパススタック11内を流れる排ガスの排熱を利用するようになっている。このようにして、バイパススタック11内の排ガスの一部が、第2バイパス入口50からバイパス流路21に流入し、バイパス流路21を通って、第2バイパス出口51からバイパススタック11内に流出されるようになっている。
【0059】
このように本実施の形態によれば、バイパススタック11内を流れる排ガスの一部が、バイパス流路21に流入される。このことにより、バイパススタック11内を流れる排ガスから排熱を回収することができ、この回収した排熱で吸入空気を加熱することができる。とりわけ、バイパススタック11内を流れる排ガスの温度は、排気煙突8内を流れる排ガスの温度よりも高い。このため、熱媒体を介して吸入空気をより一層加熱することができ、吸入空気の温度を高めることができる。また、バイパススタック11内を流れる排ガスの排熱で吸入空気を加熱することができるため、発電プラント1の排熱回収ボイラ5の停止時(ガスタービン4単独運転時)に、ガスタービン4の排ガスの排熱を回収して吸入空気を加熱することができる。
【0060】
(第3の実施の形態)
次に、図3を用いて、第3の実施の形態によるガスタービンの吸気加温システムおよび発電プラントについて説明する。
【0061】
図3に示す第3の実施の形態においては、排気煙突内を流れる排ガスの一部およびバイパススタック内を流れる排ガスの一部のいずれかが選択的にバイパス流路に流入される点が主に異なり、他の構成は、図1に示す第1の実施の形態と略同一である。なお、図3において、図1に示す第1の実施の形態と同一部分には同一符号を付して詳細な説明は省略する。
【0062】
本実施の形態においては、大気放出部6の一例としての排気煙突8内を流れる排ガスの排熱と、バイパススタック11内を流れる排ガスの排熱とを選択的に利用する吸気温調システム20の例について説明する。
【0063】
本実施の形態においては、図3に示すように、バイパス流路21は、バイパススタック11内を流れる排ガスの一部を流入させる第2バイパス入口50と、排ガスをバイパススタック11に流出させる第2バイパス出口51と、第1熱交換器22が設けられた本体流路60と、を更に有している。本体流路60は、上流側で、第1バイパス入口26および第2バイパス入口50に連通するとともに、下流側で、第1バイパス出口27および第2バイパス出口51に連通している。すなわち、第1バイパス入口26と本体流路60とは、第1入口流路61で連通し、第2バイパス入口50と本体流路60とは、第2入口流路62で連通している。同様に、第1バイパス出口27と本体流路60とは、第1出口流路63で連通し、第2バイパス出口51と本体流路60とは、第2出口流路64で連通している。
【0064】
バイパス流路21は、第1バイパス入口26からの排ガスの流入を制御する第1入口ダンパー弁70(第1入口流路弁)と、第2バイパス入口50からの排ガスの流入を制御する第2入口ダンパー弁71(第2入口流路弁)と、を有している。より具体的には、上述した第1入口流路61に、第1入口ダンパー弁70が設けられており、上述した第2入口流路62に、第2入口ダンパー弁71が設けられている。
【0065】
バイパス流路21は、第1バイパス出口27から排気煙突8への排ガスの流出を制御する第1出口ダンパー弁72(第1出口流路弁)と、第2バイパス出口51からバイパススタック11への排ガスの流出を制御する第2出口ダンパー弁73(第2出口流路弁)と、を有している。より具体的には、上述した第1出口流路63に、第1出口ダンパー弁72が設けられており、上述した第2出口流路64に、第2出口ダンパー弁73が設けられている。
【0066】
図3における符号F2の実線矢印のように、排気煙突8内の排ガスの一部をバイパス流路21に流入させる場合には、第1入口ダンパー弁70および第1出口ダンパー弁72を開き、第2入口ダンパー弁71および第2出口ダンパー弁73を閉じる。一方、図3における符号F2の破線矢印のように、バイパススタック11内の排ガスの一部をバイパス流路21に流入させる場合には、第2入口ダンパー弁71および第2出口ダンパー弁73を開き、第1入口ダンパー弁70および第1出口ダンパー弁72を閉じる。
【0067】
このように本実施の形態によれば、バイパス流路21が、バイパススタック11内を流れる排ガスの一部を流入させる第2バイパス入口50と、排ガスをバイパススタック11に流出させる第2バイパス出口51と、第1熱交換器22が設けられた本体流路60と、を更に有している。そして、本体流路60は、第1バイパス入口26および第2バイパス入口50に連通するとともに、第1バイパス出口27および第2バイパス出口51に連通している。このことにより、排気煙突8内を流れる排ガスの排熱と、バイパススタック11内を流れる排ガスの排熱とを利用して、吸入空気を加熱することができる。このため、発電プラント1の排熱回収ボイラ5の運転時および停止時のいずれにおいても、ガスタービン4の排ガスの排熱を回収して吸入空気を加熱することができ、汎用性を向上させることができる。
【0068】
また、本実施の形態によれば、第1バイパス入口26からの排ガスの流入が第1入口ダンパー弁70によって制御され、第2バイパス入口50からの排ガスの流入が第2入口ダンパー弁71によって制御される。このことにより、排気煙突8内を流れる排ガスと、バイパススタック11内を流れる排ガスとを、バイパス流路21に選択的に流入させることができ、これらの排ガスを選択的に利用して吸入空気を加熱することができる。
【0069】
また、本実施の形態によれば、第1バイパス出口27からの排ガスの流出が第1出口ダンパー弁72によって制御され、第2バイパス出口51からの排ガスの流出が第2出口ダンパー弁73によって制御される。このことにより、排気煙突8内を流れる排ガスと、バイパススタック11内を流れる排ガスとを、バイパス流路21に選択的に流入させることができ、これらの排ガスを選択的に利用して吸入空気を加熱することができる。
【0070】
(第4の実施の形態)
次に、図4を用いて、第4の実施の形態によるガスタービンの吸気加温システムおよび発電プラントについて説明する。
【0071】
図4に示す第4の実施の形態においては、第1熱交換器が、排気煙突内に設けられている点が主に異なり、他の構成は、図1に示す第1の実施の形態と略同一である。なお、図4において、図1に示す第1の実施の形態と同一部分には同一符号を付して詳細な説明は省略する。
【0072】
本実施の形態においては、図4に示すように、バイパス流路21は設けられておらず、第1熱交換器22は、大気放出部6の一例としての排気煙突8内に設けられている。第1熱交換器22は、排気煙突8と接続する排熱回収ボイラ5の接続開口9よりも上方に配置されていてもよい。しかしながら、第1熱交換器22は、排気煙突8のうち接続開口9の下端から接続開口9の上端までの部分に配置されていてもよい。
【0073】
このように本実施の形態によれば、ガスタービン4の排ガスを大気に放出させる排気煙突8内に、排ガスと熱媒体とを熱交換させる第1熱交換器22が設けられている。このことにより、バイパス流路21を設けることを不要にでき、吸気温調システム20の構造を簡素化させることができる。また、排ガスファン25も不要にすることができ、排ガスファン25のための消費電力を削減でき、発電プラント1のプラント効率を向上させることができる。
【0074】
以上、本発明のいくつかの実施の形態を説明したが、これらの実施の形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これらの新規な実施の形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これらの実施の形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
【符号の説明】
【0075】
1:発電プラント、4:ガスタービン、5:排熱回収ボイラ、6:大気放出部、8:排気煙突、9:接続開口、11:バイパススタック、20:吸気温調システム、21:バイパス流路、22:第1熱交換器、23:第2熱交換器、24:循環流路、25:排ガスファン、26:第1バイパス入口、27:第1バイパス出口、30:分岐流路、31:冷却装置、32:チラー装置、33:貯留タンク、50:第2バイパス入口、51:第2バイパス出口、70:第1入口ダンパー弁、71:第2入口ダンパー弁、72:第1出口ダンパー弁、73:第2出口ダンパー弁、F1:吸入空気、F2:排ガス、F3:熱媒体
図1
図2
図3
図4