(58)【調査した分野】(Int.Cl.,DB名)
前記幾何学的パターンの前記配列が、複数の繰り返しパターン、パターン間の距離、及び/又は、パターン間のばらつきを意味する、請求項1又は2に記載の分子を同定するプロセス。
前記サンプルの画像上で直接少なくとも1つのイオンと関連した前記形態計測特性及び/又は前記テクスチャ特性が視認される追加的な工程を含む、請求項1〜3のうちのいずれか1項に記載のサンプル中の分子を同定するプロセス。
前記少なくとも1つのイオンの前記空間配列を分析する前記工程が、形状の認識プロセス及び/又はテクスチャの分析を適用することによって達成される、請求項1〜4のうちのいずれか1項に記載のサンプル中の分子を同定するプロセス。
データが、前記サンプル中の複数のイオンに対する、MSIによって取得される予備工程を含む、請求項1〜5のうちのいずれか1項に記載のサンプル中の分子を同定するプロセス。
データベース(DB)又はモデルに、前記対象のサンプル中の複数のイオンの形態計測特性及び/又はテクスチャ特性を含ませる工程を含む、請求項1〜6のうちのいずれか1項に記載のサンプル中の分子を同定するプロセス。
前記データベース(DB)又は前記モデルが、前記対象のサンプル中の少なくとも1つのイオンの前記スペクトルMSIデータ、及び/又は前記対象のサンプルに特異的な物理化学的、生理的、及び/若しくは生物学的データ、によって実施される追加的な工程を含む、請求項7に記載のサンプル中の分子を同定するプロセス。
イオンの形態計測特性及び/又はテクスチャ特性を決定するための、サンプル中の少なくとも1つの前記イオンの質量分析イメージング(MSI)データの使用方法であって、前記サンプル中の前記イオンの空間配列によって前記サンプルが特徴づけられ、前記形態計測特性が、前記イオンの存在により形成された幾何学的パターンと前記幾何学的パターンの数学的な寸法とを定め、前記テクスチャ特性が、前記サンプル中の前記幾何学的パターンの配列を定める、使用方法。
サンプル中の少なくとも1つのイオンの空間配列による、質量分析イメージング(MSI)によってサンプルを特徴づける方法であって、形態計測特性及び/又はテクスチャ特性に関する、前記イオンと関連したイメージングデータから特徴づけられ、前記形態計測特性が、前記イオンの存在により形成された幾何学的パターンと前記幾何学的パターンの数学的な寸法とを定め、前記テクスチャ特性が、前記サンプル中の前記幾何学的パターンの配列を定める、方法。
e)前記サンプル中の複数のイオンの形態計測特性及び/又はテクスチャ特性を含むデータベース(DB)又はモデルが作成される工程を含む、請求項10〜12のうちのいずれか1項に記載のMSIによってサンプルを特徴づける方法。
f)前記データベース(DB)又は前記モデルが、前記サンプル中の少なくとも1つのイオンのスペクトルMSIデータ、並びに/又は前記サンプルに特異的な物理化学的、生理的、及び/若しくは生物学的データ、によって実施される追加的な工程を含む、請求項13に記載のMSIによってサンプルを特徴づける方法。
請求項16に記載のMSIによってサンプルを同定するプロセスであって、データベース又はモデルが、いくつかの参照サンプルから得られた、少なくとも1つの参照イオンと関連した形態計測データ及び/又はテクスチャデータによって確立され、
前記形態計測データ及び/又はテクスチャデータが、前記参照サンプル中の前記少なくとも1つの参照イオンの空間配列を表し、
工程iii)が、同定される前記サンプルの前記少なくとも1つのイオンと関連した形態計測特性及び/又はテクスチャ特性を前記データベース又は前記モデルのデータと比較することによって適用される、追加的な工程を含む、プロセス。
少なくとも1つのサンプル中の少なくとも1つのイオンの形態計測データ及び/又はテクスチャデータを含んだデータベースを含むことを特徴とする、請求項18に記載のコンピュータ可読データ媒体。
【技術分野】
【0001】
分野
本発明は、質量分析イメージングを使用することによってサンプルを特徴づける方法に関する。より詳細には、本発明は、サンプル中の1つ又はいくつかのイオンの分布と関連した形態計測データ及び/又はテクスチャデータを抽出及び測定するための質量分析によって得られたイメージングデータの使用を提案する。本発明はまた、サンプル中の1つ又はいくつかの対象の分子を同定及び/又は選択するためのこの種の形態計測データ及び/又はテクスチャデータの使用を提案する。
【0002】
一般に、本発明は、サンプルの又はサンプル中の化合物の特徴づけが有用/必要であるどの分野においても用途が見いだされる。例えば、本発明は、いろいろな生体組織中の分子マーカを同定する製薬分野において、又は、サンプル中の組織及び/若しくは細胞のタイプを同定するために、医療診断の分野において、用途が見いだされる。また、本発明は、部品が所望の特徴を実際に有することをチェックするために、品質制御の分野において使用され得る。
【0003】
背景
質量分析は、サンプル中の対象の分子を検出及び同定するために化学及び生化学分析において使用される周知の技術である。近年、質量分析による分子イメージングが開発され、対象の分子の分布をサンプル中に直接視認することが可能となった。質量分析イメージング(MSI)は、サンプルから分子イオンを局在化することを可能にするイオン化源を使用したすべてのイメージング技術を統括する。レーザー、イオン、気体、液体、溶媒、プラズマ(単独又は組み合わせられた源)、マイクロ波、電子などの、複数のイオン化源が挙げられ、DESI(「Desorption Electrospray Ionization」)、LAESI(「Laser Ablation Electrospray Ionization」)、MALDI(「Matrix-Assisted Laser Desorption Ionization」)、SIMS(「Secondary Ion Mass Spectrometry」)、MALDESI(「Matrix-Assisted Laser Desorption Electrospray Ionization」)、及びLESA(「Liquid Extraction Surface Analysis」)(ICP−MSI(Inductively Coupled Plasma Mass Spectrometry Imaging)などの、イメージングモードにおいて使用され得る。
【0004】
質量分析によるイメージングは、現在、生体組織の分析のために主に使用される。実際、蛍光によるマーク及び放射活性なしで、MSIによって組織の又は組織の切片の分子組成を直接研究することが可能である。更に、その特異性のため、MSIは、検出イオンをサンプル上で直接判別及び同定することを可能にする。したがって、対象の生物学的サンプル中の内因性分子マーカを研究又は探索するためにMSIを使用することが今では一般的である。より具体的には、イオン又はその質量電荷比(m/z)を標的とすることによって既知の分子の分布を直接分析することが可能である。少なくとも2つの対象の領域を比較することによってこれらの領域のどちらか一方に特異的な1つ又はいくつかの分子を同定するために、統計ツール、特にACP(Principle Component Analysis)、PLSA、T-Test、ANOVA、又は他のツールを使用することも可能である(J. Stauber, et al., J Proteome Res, 2008. 7(3): p. 969-78; D. Bonnel et al., Anal Bioanal Chem, 2011)。サンプルのイオンの強度に従ってスペクトルを分類するために、前記サンプルの画像のスペクトル分析の間にセグメンテーション法を使用することも公知である。したがって、検出された組織学的エリアの分子強度プロファイルに従って生体組織を特徴づけすることが公知である(T. Alexandrov et al., J Cancer Res Clin Oncol, 2012. 139(1): p. 85-95; T. Alexandrov et al., J Proteomics, 2011. 75(1): p. 237-45)。それ故、組織の完全な分子プロファイルに従って、いくつかのマーカのスペクトルプロファイルだけによらずに組織を分類することが可能である。
【0005】
しかしながら、すべてのMSIデータ分析方法は、現在、m/z比と関連した強度値の研究に基づく。より具体的には、MSIによるサンプルの画像の取得の間、前記サンプルは、サンプルの各々のポイントで検出イオンに対応する平均スペクトルを記録するために、イオン化源からのビームで分析される。記録データの全体は、記録座標ごとに、1つの列上にいろいろなm/z比を含み第2の列に対応する強度を含むスペクトルを有した、マトリックスとして現れる。続いて、特定の化合物に対応する特定のイオン(すなわち所与のm/z比)のために、このイオンの強度の測定(又はピークの面積の積分)は、画像再構成ソフトウェアパッケージにより、記録座標を有したピークの強度を考慮し各々のポイントに所定の色及び/又は色強度を有したピクセルを割り当てることによってこのイオン(したがって、対応する化合物)の分布を得ることを可能にする。代替的に、単発でサンプルのすべて又は一部を分析するためにイオン化源をデフォーカスすることも公知である。次いで、局在性が、位置検出器によって得られる(Luxembourg et al., Anal. Chem 2004)。
【0006】
しかしながら、サンプルが異なる組織及び/又は細胞の組織化を呈した場合であっても、同じプロファイル又はスペクトルシグネチャを有する2つの生物学的サンプルを判別することは不可能である。それ故、例えば両方のサンプルの組織の組織化の違いを同定するために、染色(免疫組織化学、組織X線撮影など)といった、サンプルを分析する別の方法とMSIによる分析を組み合わせることが必要である。
【0007】
概要
本発明は、サンプルのイオンと関連した強度値を考慮するだけでなく、サンプル中の前記イオンの空間配列及び前記空間配列を特徴づける測定値を考慮することによって、質量分析によるイメージングによって従来得られる前記サンプルのイメージングデータ(すなわち、位置、m/z比、強度)を使用することを提案する。
【0008】
本発明によれば、サンプルは、分布の形態及び関連した測定値(形態計測データ)によって、並びに/又はサンプル中の1つ又はいくつかのイオンのテクスチャによって特徴づけられる。サンプル中の前記イオンの存在と関連した形状及び形状の配列は、スペクトル強度から生じる情報と比較して、追加的な情報(表面積、形状、体積、パターン、反復、量、ばらつき、及びそれらの比率などのこれらの情報から導出される値)を得ることを可能にする。そのため、サンプル中の少なくとも1つのイオンの形状に及び/又はこれらの形状の寸法に及び/又はサンプル中の形状の配列に従って前記サンプルを特徴づけることが可能である。したがって、本発明によれば、類似又は同一の分子プロファイルを有する2つのサンプル間に違いを認めることが可能である。また、サンプルの形態計測及び/又はテクスチャデータに基づいてサンプルを同定すること、すなわち例えば具体的な形状及び/又はテクスチャなどを標的とすることによってサンプル中の対象の分子を同定することが可能である。より一般的には、本発明は、サンプル中の1つ又はいくつかのイオンの分布の形態計測及び/又はテクスチャを特徴づけること、並びにスペクトルイメージングデータに加えて又はスペクトルイメージングデータの代わりにこれらの形態計測及びテクスチャデータを使用することを提案する。本発明によれば、この特徴づけを、例えば強度を考慮する現在のイメージングデータ処理法と、より一般的には、光学的、物理的処理、着色などを含む、サンプルに対する任意の特徴づけ方法と組み合わせることができる。
【0009】
したがって、本発明は、形態計測及び/又はテクスチャに関して、サンプル中の少なくとも1つのイオンの空間配列を前記イオンと関連したイメージングデータから特徴づける、質量分析イメージング(MSI)によって前記サンプルを特徴づける方法を目的とする。
【0010】
換言すれば、形状、形状の配列、特定の測定値を同定し、それに応じてこれらの形態計測及び/又はテクスチャ特性によりサンプル中の前記イオンの分布を特徴づけるために、前記サンプル中の少なくとも1つのイオンの空間配列は、MSIデータから測定及び/又は定量化される。
【0011】
本発明はまた、以下の工程を含む、サンプル中の対象の新しい分子を同定するプロセスを目的とする。
i)前記サンプル中の複数のイオンと関連した複数の形態計測及び/又はテクスチャを、参照サンプル中の複数のイオンと関連した形態計測及び/又はテクスチャデータと比較する;
ii)サンプルの少なくとも1つの特徴的イオンを同定する;
iii)工程ii)において同定された前記イオンに対応する分子を同定する。
【0012】
本発明はまた、質量分析イメージングによってサンプルを同定するためのプロセスであって、
i)データベース又はモデルが、いくつかの参照サンプルから得られた、複数の参照イオンと関連した形態計測及び/又はテクスチャデータによって確立され、前記形態計測及び/又はテクスチャデータが、前記参照サンプル中の前記参照イオンの空間配列を表し;
ii)同定されるサンプル中の少なくとも1つのイオンと関連した形態計測及び/又はテクスチャデータが、記録され;
iii)同定されるサンプルのイオンと関連した形態計測及び/又はテクスチャデータが、データベース又はモデルに含まれる参照イオンと関連した形態計測及び/又はテクスチャデータと比較される、
プロセスを提案する。
【0013】
本発明の別の目的は、コンピュータによって実行可能な命令であり、コンピュータシステムが本発明によるサンプルの特徴づけ方法の少なくとも1つの工程を、並びに/又はサンプルを同定するプロセスの少なくとも1つの工程を及び/若しくはサンプル中の対象の分子を同定するプロセスの少なくとも1つの工程を実行することを可能にするために適合された命令を含むコンピュータによって読み取り可能なデータの支援からなる。
【発明を実施するための形態】
【0015】
発明の詳細な説明
したがって、本発明は、形態計測及び/又はテクスチャに関して、サンプル中の少なくとも1つのイオンの空間配列を前記イオンと関連したイメージングデータから特徴づける、質量分析イメージング(MSI)によって前記サンプルを特徴づける方法を目的とする。本発明によれば、サンプル中のイオンの分布は、もはや強度によってだけではなく、この分布により描画された形状/オブジェクト及び関連した測定値(表面積、容積など)によって、並びに/又はこれらの形状/オブジェクト間の配列によって特徴づけられる。それ故、所与のイオンに対して同一の平均強度を有するが、前記イオンと関連した異なる形態計測及び/又はテクスチャ特性を有する2つのサンプルを判別することが容易に可能となる。
【0016】
本発明による方法は、有機又は無機であるかどうか、液体又は固体であるかどうかにかかわらず、真空(MALDI)又は周囲雰囲気(LAESI、DESI)における質量分析によって分析され得る任意のタイプのサンプルに適用され得る。例えば、本発明による方法は、特に、動物又は植物由来の、生体組織の特徴づけに適合される。
【0017】
「組織」とは、一般に、同一由来の、同じ機能の一因となる機能的な集団に分類された細胞の集団を意味する。ある場合には、組織は、器官、器官断片、又は器官の具体的な領域と理解され、細胞のいくつかの集団を統合することが可能である。例えば、組織は、器官内の限局性腫瘍であってもよい。
【0018】
例示的な実施形態では、サンプルは、対象の領域を染色及び/又はそれらの分子シグネチャによって前もって特徴づけることが可能である、組織(単数又は複数)の組織学的切片からなり得る。より一般的には、本発明による方法は、従来技術の任意の方法によって前もって同定された、サンプルの対象の領域の全部又は一部を更に特徴づけるために使用され得る。
【0019】
本発明による方法はまた、例えば血液、血漿、血清、唾液、脳脊髄液、尿などの、生体液を特徴づけるために使用され得る。
【0020】
液体サンプルの場合には、乾燥サンプルのMS画像を生成するために表面上でサンプルを乾燥させて、次いで説明された方法でこのサンプルを特徴づけることが可能である。それ以外では、特に大気圧で前記MSIシステムにより、液体又は溶媒の表面を分析することが可能である。
【0021】
本発明による方法はまた、例えば土壌、水、植物サンプルなどの、環境サンプルを特徴づけるために使用され得る。
【0022】
例示的な実施形態では、本発明による方法は、例えば電子部品、生体材料、カプセル、高精度な部品などの、物体を特徴づけるために使用される。
【0023】
「サンプルを特徴づける」とは、前記サンプルに独特な/特異的な特徴の関連づけを意味し、前記特徴は、他のサンプル中からの前記サンプルの判別/同定を特に可能にする。
【0024】
本発明によれば、イメージングデータ、より詳細にはスペクトルのイメージングデータが、所与のイオンのために前記サンプル中に推測される空間配列を決定するために使用される。有利には、所与のイオンに特徴的なm/z比と関連したデータが、特に使用される。本発明の文脈において、「m/z比」、すなわち「質量電荷比」、という表現は、イオンに特徴的な物理量を指し、mは質量を、zは前記イオンの価数を表す。質量分析イメージングにおいては、所与のイオンは、いくつかのm/z比に対応し得る。
【0025】
イオン又はm/z比の「空間配列」又は「分布」とは、サンプル中の前記イオン又はm/z比の存在によって描画された形状(単数又は複数)を意味する。
【0026】
本発明によれば、研究されているイオン(単数又は複数)の空間配列は、1つ又はいくつかの形状、寸法などをイオンと関連づけるために、決定される。サンプル中の少なくとも1つのイオンの存在と関連したイメージングデータは、前記サンプル中の前記イオンと関連した強度の変動とは無関係に、サンプル中の前記イオンの分布を表す形態計測及び/又はテクスチャデータを定めるために使用される。
【0027】
有利には、サンプル中の少なくとも1つのイオンの空間配列を特徴づける工程は、異なる対象の領域における前記イオンのイメージングデータをセグメント化して及び/又はパターンの輪郭を描画する形状
の認識
プロセス及び/又はテクスチャ
の分
析を使用する。例えば、分水線技術、特に一般化された形式のハフ変換、グレートーンの空間依存マトリックスなどの、数理形態学技術が、使用される。
【0028】
「形態計測データ」又は「形態計測特性」とは、サンプル中の関連イオン(若しくは前記イオンと関連したm/z比)の存在によって形成された幾何学的形状、又はパターンに、及び/又は例えば表面積、体積、直径、半径、長さ、幅、厚さなどの、幾何学的形状の数学的な寸法に関連するデータ/特性を意味する。ある場合には、パターンは、例えば数字、文字、単語などの、書込要素からなり得る。
【0029】
「テクスチャデータ」又は「テクスチャ特性」とは、例えば繰り返しパターンの数、距離、前記パターン間のばらつきなどの、サンプル中のパター
ンの配列に関連するデータ/特性を意味する。
【0030】
「参照サンプル」とは、対象のサンプルと同じ特質及び/又は同一由来のサンプルを意味する。例えば、対象の被験者の生体組織の研究においては、参照サンプルは、対照被験者から生じた同じ特質の生体組織からなる。
【0031】
本発明によれば、前記サンプルの1つ又はいくつかのイオンの空間配列又はm/z比を、共に又は別々に、特徴づけることが可能である。したがって、所与のパターンは、同時に考慮されたいくつかのm/z比の存在及び分布と関連づけられ得る。代替的に、同じサンプル中の異なるm/z比の異なるパターンを、同時に又は順次に、特徴づけることが可能である。本発明によれば、これらの異なるm/z比は、同じイオンを又は異なるイオンを表してもよい。
【0032】
一実施形態では、本発明による方法は、イメージングデータを取得し、イメージングデータから少なくとも1つのm/z比の形態計測及び/又はテクスチャ特性を決定する予備工程を含む。
【0033】
本発明による方法は、任意の公知の質量分析イメージング技術、特に、例えばTOF(Time of Flight)、Orbitrap、FTICR(Transform Ion Cyclotron Resonance、Quadripole(「シングル又はトリプル」)、ICPMS分析器などの、いろいろなタイプの分析器と組み合わせたMALDI、LDI、DESI、LESA、LAESI(Laser Ablation Electrospray Ionization)、DART(Direct Analysis in Real Time)、SIMS、JEDI(Jet Desorption Electrospray Ionization)、LAMMA(Laser Microprobe Mass Analysis)、SMALDI(Scanning Microprobe Matrix Assisted Laser Desorption Ionization)イメージング、によって適用され得る。
【0034】
本発明の特定の実施形態では、例えばMALDIイメージングを使用して、サンプルのイオン画像上に直接少なくとも1つのイオンと関連した形態計測及び/又はテクスチャ特性を視認することが可能である。より具体的には、分析イオンと関連した形態計測及び/又はテクスチャ特性が、サンプルを再現した画像として生成され、その結果、画像上にそれらの空間配列を視認することが可能である。当然、いくつかのイオンのデータ、更には例えば光学顕微鏡法、組織学的染色などの、他の分析法によって得られた組織学的データ又は他のデータを同時に視認するために、サンプルのいろいろな画像を重ねることが可能である。
【0035】
一実施形態では、本発明によるサンプルを特徴づける方法は、以下の工程を含む:
a)サンプル中の少なくとも1つのイオンのために、MSIによりデータを取得する工程;
次いで、
b)形態計測及び/又はテクスチャ特性に従って、前記少なくとも1つのイオンの位置と関連するデータからサンプル中の前記少なくとも1つのイオンの空間配列を特徴づける工程。
【0036】
対象のサンプル中のイオンの空間配列から、前記イオンは、前記サンプルに特異的な、イオンの形態計測及びテクスチャ特性によって特徴づけられる。両方のサンプルの分子プロファイルが同一な場合であっても、別のサンプル中の同じイオンは、異なる形態測定及びテクスチャ特性を提示することができる。
【0037】
したがって、本発明によるプロセスは、サンプル中のイオンのための別のレベルの情報を取得することを可能にし、情報は、単独で又はサンプルの及び/若しくは関連イオンの任意の他のデータ/特性と組み合わせて考慮され得る。例えば、対象のイオンの形態計測及びテクスチャ特性だけでなく、イオンのスペクトルの特徴(質量スペクトルのピークの強度、信号対雑音比(S/N)、ピークの面積など)の全部又は一部も同時に又は順次に分析することが可能である。
【0038】
有利には、本発明によるプロセスは、サンプルの同じイオン画像上で直接これらのデータ/特性の全体を同時に視認することを可能にする。
【0039】
別の実施形態では、本発明によるサンプルを特徴づける方法は、以下の工程を含む:
c)サンプルのイメージングデータをサンプルの分子強度プロファイルを表す対象の領域にセグメント化する工程;及び
d)形態計測及び/又はテクスチャ特性に従って対象の領域の分子プロファイルのイオンの空間配列を特徴づける工程。
【0040】
工程c)は、同じサンプル内の分子プロファイルに従ったサンプルのセグメント化からなる。対象の各々の領域は、サンプルの質量スペクトルから得られた分子プロファイルに対応する。特に質量スペクトルのピークの強度、信号対雑音比(S/N)、ピークの面積などの、いろいろなスペクトルの特徴が、前記サンプルの分子プロファイルを得るために、従来、使用され得る。
【0041】
サンプル中の対象の領域(単数又は複数)が同定されると、対象の選択領域と関連したイメージングデータは、対象の前記選択領域のイオン全体の空間配列を特徴づけるために処理される。対象の領域中のイオン全体のデータが、前記対象の領域に特徴的なパターン及びテクスチャを同定するために考慮及び分析される。また、本発明によれば、サンプルの画像上で直接結果を視認するためにこれらのデータからサンプルのデジタル画像を再構成することが可能である。
【0042】
本発明によれば、工程c)及びd)は、工程a)及びb)とは無関係に、すなわち工程a)及びb)を適用せずに、適用されてもよい。別の特定の実施形態では、関連サンプル上の関連イオン(単数又は複数)の形態計測及びテクスチャに関する異なるレベルの情報を得るために、工程a)及びb)、次いでc)及びd)を、又はその反対を、連続的に適用することが可能である。また、工程c)において同定された対象のいくつかの又はすべての領域に工程d)を適用することが可能である。
【0043】
本発明の別の実施形態では、特徴づけ方法は、以下の工程を含む:
e)前記サンプル中の複数のイオンから形態計測及び/又はテクスチャデータを含むデータベース(DB)を作成する工程。
代替的に、特徴づけ方法は、以下の工程を含む:
f)前記サンプル中の複数のイオンの形態計測及び/又はテクスチャデータを含むモデルを生成する工程。
【0044】
本発明の文脈において、「複数」とは、2つ以上を意味する。
【0045】
「モデル」とは、特に強度データ、形態計測及び/又はテクスチャデータなどの、サンプルの特徴に関するこの場合には、前記データ間の依存関係及び/又は関係を定めるために特にモデル化されたデータの、関連サンプルを表すセットを意味する。「データベース」は、処理前データのセットが記憶されたベースを指す。
【0046】
したがって、サンプル又はサンプルのタイプに特異的なデータセットの、つまりパターン、寸法、配列などの、集合、すなわちモデルを得ることが可能である。本発明によれば、このデータベース(DB)又はモデルは、前記サンプル中の少なくとも1つのイオンのスペクトルMSIデータ並びに/又は前記サンプルに特異的な物理化学的、生理的、及び/若しくは生物学的データによって、実施され得る(工程g)。例えば、データベース(DB)又はモデルは、対象のさまざまなエリアを定めるために、サンプル又は同一のサンプルの組織学的、化学的、又は他の研究によって得られたデータによって実施される。
【0047】
このようなデータベース(DB)又はモデルは、特に、組織、組織の領域、細胞タイプ、例えば健康又は病気の組織の生理的状態などを、迅速に自動で同定するために有用であり得る。また、データベース又はモデルは、生物学的サンプル中の細胞の同定及びカウント、すなわち番号付け、のために使用され得る。
【0048】
本発明はまた、質量分析イメージングによってサンプルを同定するプロセスであって、
i)いくつかの参照サンプルから得られた、少なくとも1つの参照イオンと関連した形態計測及び/又はテクスチャデータによって、データベースが確立又はモデルが生成され、前記形態計測及び/又はテクスチャデータが、前記参照サンプル中の前記少なくとも1つの参照イオンの空間配列を表し;
ii)同定されるサンプル中の少なくとも1つのイオンと関連した形態計測及び/又はテクスチャデータ(表面積、体積、形状、パターン、繰り返しなど)が、記録され;
iii)工程ii)の形態計測及び/又はテクスチャデータが、工程i)の、データベース又はモデルに含まれる形態計測及び/又はテクスチャデータと比較される、
プロセスを目的とする。
【0049】
本発明によれば、工程ii)において、データベース又はモデルのイオンに対応するイオンが、分析される。有利には、データベース又はモデルは、複数の参照イオンと関連した又はしない形態計測及び/又はテクスチャデータを含む。
【0050】
サンプルを特徴づける方法に関連して上で説明された特徴及び定義の全体が、必要な変更を加えて前記同定プロセスに適用される。
【0051】
有利には、参照サンプルごとに、形態及びテクスチャデータのセットは、可能な限り確実に参照サンプルの各々を特徴づけるように、いくつかのイオンのために確立される。
【0052】
本発明によれば、工程iii)において、類似又は同一の形態計測特性を有する参照サンプル(単数又は複数)を選択し、それによりサンプルを同定するように、参照データの異なるセットと同定されるサンプルのデータのセットとの間の類似点及び/又は違いの分析が進行する。
【0053】
本発明によるプロセスは、例えば、生体組織、細胞タイプ、疾患の発病段階などの、特質及び/又は由来を同定することを可能にする。
【0054】
本発明はまた、サンプル中の対象の分子を同定するプロセスであって、
i)前記サンプル中の複数のイオンと関連した形態計測及び/又はテクスチャデータが、参照サンプル中の複数のイオンと関連した形態計測及び/又はテクスチャデータと比較される;
ii)有利には参照サンプル中に存在しない、サンプルの少なくとも1つのイオンの特徴が、同定される;
iii)前工程において同定された前記イオンに対応する分子が同定される、
プロセスを目的とする。
【0055】
このようなプロセスは、対象のサンプル中の新しい分子を発見及び同定することを可能にする。
【0056】
一実施形態では、対象のサンプル中の対象の新しい分子を同定するプロセスは、前記サンプルに特異的なMSIデータを取得し、形態計測及び/又はテクスチャ特性によって1つ又はいくつかのイオンの分布を特徴づける工程を予め含む。
【0057】
サンプルを特徴づける方法に関連して上で説明された特徴及び定義の全体が、必要な変更を加えて分子を同定する本プロセスに適用される。
【0058】
本発明のこの実施形態によれば、サンプルの特質は知られており、前記サンプルに特異的な1つ又はいくつかのマーカが、すなわち参照サンプル中に存在しないマーカ又は参照サンプル中の特性と比較して異なる形態計測及び/又はテクスチャ特性を呈するマーカが、望ましくは同定される(
図7)。所与のイオンのために考慮される形態計測特性は、例えばオブジェクトの数、オブジェクトの表面積の平均、ばらつき、形状、表面積の変動性などであり得る。したがって、対象のサンプルと同じ特質及び/又は同じタイプの参照サンプルが、優先して使用される。
【0059】
有利には、工程i)は、参照サンプルの複数の参照データセットを集めたデータベース(DB)を照会するか、又は参照サンプルの複数の参照データセットを集めたモデルとサンプルのデータを比較することによって、適用され得る。
【0060】
対象のサンプルの独特な形態計測及び/又はテクスチャデータ(単数又は複数)が同定されると、対応するイオン(単数又は複数)は、イオンの各々と関連した分子を追跡するために、データと関連づけられる。
【0061】
このプロセスは、詳細には、製薬又は医療分野において、特に新しいバイオマーカを同定するために有用である。
【0062】
本発明はまた、コンピュータによって実行可能な命令であり、コンピュータシステムが本発明によるサンプルを特徴づける方法の少なくとも1つの工程を並びに/又は本発明によるサンプル若しくはサンプル中の対象の分子を同定するプロセスの少なくとも1つの工程を実行することを可能にするために適合された命令を含む、コンピュータによって読み取り可能なデータ媒体を目的とする。
【0063】
したがって、本発明は、プログラムがコンピュータ上で実行されるときに上で述べられた工程の全部又は一部を実行するプログラムコード命令を含んだコンピュータプログラムを提案する。
【0064】
有利には、コンピュータプログラムは、対象のサンプル中の1つ又はいくつかのイオンの空間配列を特徴づける工程を少なくとも実行するプログラムコード命令を含む。
【0065】
有利には、本発明によるコンピュータ可読データ媒体又はプログラムは、少なくとも1つのサンプル中の少なくとも1つのイオンの、好ましくは複数のサンプルのための複数のイオンの形態計測及び/又はテクスチャデータを含んだデータベース又はモデルを含む。
【0066】
マーカの探索
本発明によるプロセスは、マーカ、特にバイオマーカを同定するために使用され得る。実際、生物学的サンプルの場合に、2つの状態(例えば、病気対健康、処置済対保菌、露出対非露出など)間に存在する形態変動を同定することが可能である。特に、本発明によれば、例えばサンプルの構造の巨視的及び/又は微視的研究によって前もって同定された、対象の領域に具体的に存在するイオンをより詳細に研究することが可能である。
【0067】
形態計測及び/又はテクスチャ特性が得られ、統計学的分析の後に、研究されているイオンと関連した形状に有意差があると考慮される場合には、関連した対象の分子量(単数又は複数)を従来のように追跡するのみで足りる。専門データベースを照会した後に、対応する分子(単数又は複数)は、同定され得る。このため、いろいろな統計的試験が、強度だけでなく分子分布の要素の形態に基づくように、使用され得る。特に、Fischer test、z検定、Student test、Welch test、対応のあるStudent test、ANOVA、Dunett test、Tukey test、Kruskal-Wallis test、Wilcoxon-Mann-Whitney test、Wilcoxon signed-rank test、MANOVAなどを使用することが可能である。
【0068】
分子のフィルタリング及び分類
本発明によるプロセスは、分子フィルタリングのために使用され得る。
【0069】
例えば、任意か否かを問わず、サンプル中で分子フィルタを実行する特定の形態計測(例えば、Xmm
2の最小表面積の星形状)を選択することが可能である。したがって、定められた基準(単数又は複数)を満たすイオンだけが選択される。それ故、所望の形状インパクトと同じ形状インパクトを有する分子を同定することが可能である。
【0070】
このようなフィルタリングはまた、サンプルの分類を可能にする。したがって、本発明のプロセスによって、強度及び形状に関する情報に基づいて類似点を得ることが可能である。生体組織などの、サンプル中で、例えば生理的状態の特徴である所与の形状の存在を自動で認識することが可能である。それ故、強度基準だけに基づく分類より正確でかつ信頼性の高い点を基礎とした分類を確立することが可能になり、選択されたプロトコルに関係なく保存された形態計測及びテクスチャ特性とは異なり、サンプルの調製(マトリックスの堆積、乾燥時間、冷凍、組織のタイプなど)に応じて変化することができる。
【0071】
本発明によれば、有利には、同じ生体組織の又は同一由来/特質の生体組織のいくつかのサンプルなどの、同じ母集団のいくつかのサンプルの仕様を集めたデータベース(DB)又はモデルを作成することが可能である。このようなデータベース又はこのようなモデルから、同じ母集団の新しいサンプルを同定するか又は母集団中のサンプルを確実に同定することが容易である。
【0072】
例えば、健康な肺組織のサンプルと比較して肺組織サンプルを線維症であると特徴づけることが可能である。
図2は、健康な肺組織サンプル及び線維症肺組織サンプルに対して得られるイメージングデータセットの形態計測特徴づけから得られた結果をより詳細に示す。本発明のプロセスによれば、2つの形態計測は、楕円形状で同定され、楕円形状の一方は、(線維症組織)の傾向がある短軸と長軸との間の比を有する。これらの形態計測シグネチャの使用は、それぞれ健康な(長円タイプ1)及び線維症の(長円タイプ2)、気道の2つの形状を特徴づけることを可能にする。
【0073】
同様に、特に品質制御を行うために、電子部品、自動車部品、又は他の構成要素などの、無機のサンプルを特徴づけることが可能である。
【0074】
細胞カウント及び形態計測ソーティング
本発明によるプロセスはまた、特に環境又は健康診断の一環としての、細胞又は細菌カウントの分野で使用され得る。この目的のために、カウントされるオブジェクトを強調するように、質量分析イメージングにおいて、細胞壁の特異的な分子(例えば脂質)を選択することが可能である。
【0075】
本発明によるプロセスにより、形状は、分子因子によって特定されるが、現在まで、これは、光信号によって、特に光学顕微鏡法又はフローサイトメトリによって達成されている。本発明は、作業速度、精度(少ない誤検出)だけでなく、光信号によって得られる検出感度限界を超えることを可能にし、同時に分析されるパラメータの数を増加させる。本発明によれば、細胞は、それらの形態を基礎として番号付け及び認識され得るが、同定された細胞の代謝活性のような分子プロファイルを指示する。したがって、複数の細胞、生物学的、又は組織学的タイプ、及びそれらの生理的活性に番号付けすることが可能である。
【0076】
図3は、2つの線維症組織の気道のサンプルに対して得られたイメージングデータセットに関する形態計測による自動カウントを説明する。長円形状の自動検出は、直近の組織学的染色と相関せずに、対象の組織学的構造(ここでは気道)を同定及び番号付けすることを可能にする。
【0077】
形態計測の動力学的研究
本発明によるプロセスはまた、特にサンプル中の対象の要素(分子、イオン、m/z)の形態計測(形状、表面積、体積など)の経時変化を追跡するために、形状の動力学的研究において使用され得る。特に、経時的に対象の領域の形態計測の変化、例えば増大又は減少、を示すことが可能である。
【0078】
生物学的サンプルの段階の他の研究と合わせて、生物学的サンプル中の形状の経時変化の段階を考察することも可能である。例えば、本発明のプロセスを介して、経時的に1つ又はいくつかの標的質量に応じた表面積の曲線を得ることが可能である。特異的なプラトー又は段階(形態計測の変動、プラトー、形状の振動など)が同定された場合、それらは、生物学的サンプルの周知の段階(例えば、癌組織のグレードの変化)と相関する可能性がある。
【0079】
図4は、線維症組織での気道の狭窄の経時変化の研究における本発明によるプロセスの適用を例示する。例示されるように、本発明のプロセスによって、経時的に気道の表面積を決定し、したがって気道の狭窄への線維症の影響を追跡することが可能である。
【0080】
細胞又は組織タイピング
本発明によるプロセスは、植物又は動物の生物学的サンプル中の細胞タイプ又は組織サブ構造を同定するために使用され得る。この細胞タイピングは、各々の細胞の特異的な形態計測によって可能となる。したがって、得られた細胞の形態計測に応じて、1つ又はいくつかのサンプル中に含まれる細胞タイプ(単数又は複数)を決定することが可能である。
【0081】
近年、機器の開発は、10μm未満にMALDIイメージングの空間分解能を低下させることを可能にした。SIMS技術は、常に1μm未満の分解能を得ることを可能にする。細胞の平均サイズが10〜15μmであることを考慮すると、質量分析イメージングは、それらが分子データセットにおいて判別され得る細胞分解能を獲得すると考慮され得る。
【0082】
図5は、皮膚組織切片に関する組織タイピングの範囲内における、何ら組織学的相関のない、本発明のプロセスの適用を例示する。組織(角質層及び表皮)のエリアは、MSI取得後に得られたそれらの特異的な形態計測によって同定される。
【0083】
また、
図6は、生物学的サンプルでの/に関する直接の番号付け及び組織タイピングの範囲内における、何ら組織学的相関のない、本発明のプロセスの適用を概略的に例示する。サンプルの細胞(組織、細胞液、又は培養液)は、MSI取得後に得られたそれらの特異的な形態計測によってタイピングされる。
【実施例】
【0084】
ここで、本発明を、具体的な実施例により、より詳細に説明する。これらの実施例は、本発明の限定としてではなく、例示として挙げられる。
【0085】
実施例1:スペクトル情報と空間情報とを組み合わせることによってサンプル又は対象の領域を特徴づけるための手順。
本実施例の意図は、サンプル中で得られたm/z比に対する強度に関するデータだけを考慮するか、又はこのm/z比と関連した形態計測及びテクスチャ特性を考慮するかに応じて、前記サンプルについて取得された同じイメージングデータセットから生じる情報の違いを示すことである。
【0086】
何らかの公知の方法によって、サンプルの質量分析イメージングデータ(位置、m/z比、強度)が取得されると、例えば、以下の工程に従って実施される:
1/イメージングデータから得られた画像をロードする。
2/例えばOtsu法を使用することによって画像を2値化するための閾値を決定する。
3/非最適化アルゴリズムを介してオブジェクトをラベリング及びカウントする。
4/変数中の非ゼロ位置の数を回収する。
5/変数中のオブジェクト又は画像のピクセル数を回収する。
6/変数中の平均強度を算出する。
7/オブジェクトが少なくとも一定の形状性を有するかどうかを決定する試験をする。
【0087】
簡略的には、工程3は、以下のアルゴリズムを介して適用され得る:
「画像全体を走査しないのならば:
行別に画像行を走査し、
非ゼロピクセルに遭遇した(オブジェクトに属する)場合には、
オブジェクトのピクセルを0にセットするためにその近隣及び8連結で隣接する近隣を 走査し、
オブジェクトカウンタをインクリメントし、
近隣走査を終了し、
非ゼロピクセルを終了し、
行走査を終了し、
アルゴリズムを終了する」
【0088】
試験工程7は、例えば、試験される性質(単数又は複数)を有する構造要素(SE)でオープニング(エロージョンε、ダイレーションδが続く)を実行することによって、適用され得る。SEによるオープニングのピクセルの追加が非ゼロである場合、画像/領域は性質を有する。
【数1】
【数2】
【数3】
【0089】
結果
上で説明された工程を、連続して(
図1A)又は断片化して(
図1B)6ピクセルの長さを各々有し及びこれらの6ピクセル上に同一の平均強度を各々有する2つのセグメント(
図1)のために従来取得されるイメージングデータに適用した。
【0090】
強度だけを考慮に入れることによって、両方のセグメント間に違いを認めることが可能とはならないが、本発明によるプロセスによって得られる形態及びテクスチャ特徴づけにより、両方のセグメント間の違いを示すことが可能となる(表1)。
【0091】
【表1】
【0092】
実施例2:形態計測データから対象のピーク及び関連するバイオマーカを同定するための手順
材料及び方法
動物:
5つのラット肺を、この研究のために使用した。3つは、7日間1mg/kgの用量で気道(口咽頭吸引ルート)によりブレオマイシン(Apollo Scientific, UK)の処置を受けていたラットのもので、2つは、同期間同様に食塩水を受けていた動物のものである。すべてのラットは、Sprague Dawley, Crl:CD (SD)雄ラットであった。両方の群を、実験開始の22日後に屠殺した。肺を、アガロースで膨張し、10%の中性緩衝液を含んだホルマリン中で固定し、−80度に冷凍した。動物実験は、1986年のAnimals (Scientific Procedures) Actに準拠した。
【0093】
質量分析(MS)画像を取得するための準備:
画像を取得するために、ITOスライドを、Delta Technologies (Loveland, USA)から購入し、9−アミノアクリジン(9AA)で覆った。
【0094】
厚さ12μmの新鮮な組織切片を―35度でmicrom HM560クリオスタット(Thermo Scientific, Germany)を使用して得て、ITOスライド上に載置した。更に、厚さ10μmの薬物をドープされたラット腎臓のホモジェネートの切片を、再現性及び変動性を評価するための品質対照として使用するために、同じスライド上に堆積させた。スライドを、1時間後にクリオスタットから引き出し、次いで20分間乾燥させ、最後にそれらの使用まで−80度で保存した。
【0095】
使用したマトリックスは、MeOH/H
2O(4:1 v:v)溶媒の5mg/mLの9AAの溶液であった;マトリックスを、自動堆積装置 Suncollect (SunChrom GmbH, Friedrichsdorf, Germany)により10つの連続層に堆積させた。第1の層を10μL/分の流速で、第2の層を20μL/分の流速で、次の層を30μL/分で塗布した。
【0096】
MS画像の取得:
30μmの空間分解能を有した100〜1,000に含まれるm/zのための「フルスキャン」モード及びネガティブモードで質量フィルタを取得するために80%の出力エネルギー及び1000Hzの反復率で使用されるSmartBeam IIレーザーを備えた質量分析計MALDI-FTICR(7T Solarix, Bruker Daltonics, Breme, Germany)を使用した。各々の質量スペクトルは、同じ場所への500連続のレーザーショットの蓄積に対応する。内部較正を、9AAマトリックス及び200m/z〜900m/zに含まれるリン脂質を使用して、実行した。質量分析計を、FTMS Control 2.0及びFlexImaging 4.0ソフトウェアパッケージ(Bruker Daltonics, Breme, Germany)を使用して、制御した。
【0097】
ブレオマイシンが肺気道の変化を誘発するので、取得のために選択した領域は、肺気道であった。
【0098】
ピークの検出:
閾値を超えた状態から変換された平均スペクトルの最大を、ピークと見做す。使用した変換は、ゼロ値のない信号の中央値で減算してから、ゼロ値のない信号の中央絶対偏差に1.4826を乗じた数で除算するものであった。これは、各々のポイントにおける信号対雑音比の近似値をもたらす。ノイズはおおよそ正規分布に従いそして実信号は平均スペクトル中に集中した測定値の半分未満に存在するという着想により、信号がFTMS Control 2による破壊的ウェーブレットによって圧縮されたようであるのでゼロ値のサプレッションは達成された。他のノイズの近似方法(例えば、局所的に発生した同じ測定値、又は1つのピークからガウス分布までの距離がノイズを表す)を試験したが、低い閾値に対して良好な結果をもたらさなかった。可能な限り検出漏れを少なくし、可能な限りのノイズを除去するために、この研究のために維持した閾値は1である。
【0099】
エクスポートされた画像:
潜在的バイオマーカに対応した検出ピークごとに、及び撮像された領域ごとに、ピークのウインドウ中の最大強度の画像を、8ビットの深度を有したグレースケールのパレットで描画し、次いで圧縮せずにJPEG形式でエクスポートした。結果の目視検査を容易にするために、単一のチャンネルしか使用しないことにした。12の領域(状態1で6つ及び状態2で6つ)の約2,000の被撮像イオンを得た。
【0100】
形態特徴づけ:
画像ごとに:
画像からノイズを取り除くために、オープニングを、サイズ2×2の構造要素を使用してグレースケールの画像に実行し、クロージングを、同じ構造要素を使用して実行した:
【数4】
式中、Oは、グレースケールの原画像であり、我々の場合には、B
1=B
2=B構造要素であり、値のブーリアンは、右下隅に中心を置いて変化し、欠測値を、最も近い行又は列を複製することによって得た。
次いで、画像を、Otsu法(我々の場合には単一の閾値による)を適用することによって、2値化する:Nピクセル、L階調、及びn
i階調値iをとるピクセルの数を含む画像のための
【数5】
の最大化;
この前か後に、ピクセル画像の表面積を算出する;
次いで、2値化された画像のオブジェクトの数を、4連結でRosenfeldとPfaltz(1996)に説明されるようにラベルをつけられた画像を生成するために利用されたラベルの集合の基数を使用して、カウントする;
最後に、単位面積当たりのオブジェクトの平均表面積を確定する。
【0101】
比較:
2つのウェルチのt検定を、一方は単位面積当たりのオブジェクトの数に基づいて、もう一方は単位面積当たりのオブジェクトの平均表面積に基づいて、両方の状態で実行した。ウェルチのt検定は小さなサイズの対になっていないサンプルにうまく適用され、かつ両方の母集団の分散が等しいことが確実ではないので、ウェルチのt検定を選択した。これ以外では、Mann-Whitney-Wilcoxon 検定を使用することが可能であろう。
【0102】
200のバイオマーカを、形態計測基準の利用に基づいて対照状態と処置済の状態との間の有意差として同定したが、そのうちのいくつかのバイオマーカは、形態計測基準を使用してしか同定されないものである。
【0103】
図9に例示されるように、アポトーシスに関係した膜成分を同定することが可能であり(m/z718.505)、それは、強度を考慮するだけでは検出不可能であった(NS:有意ではない;*:有意差)。
【0104】
モデリング:
数学モデルを、処置済の状態で同定された潜在的なバイオマーカを基礎として作成した。このモデルを、抽出された形態計測特性に基づいて試験サンプルを分類するために、探査目的のために使用した。
【0105】
本研究は、以下の目的のために継続されるであろう:
−データを標準化する;
−ピークに分子を関連づけるためにピークの同定を実行する;
−生物学的解釈を実行する;
−例えばクラウドプラットフォームを使用して、分類/機械学習を実行する。
【0106】
実施例3:他の用途
非常に多くの用途が実現可能であり、特に実施例1又は実施例2に説明された工程を使用することによって実施することが可能である。例えば、上で述べられたように、本発明は、医療及び製薬分野では、新しいバイオマーカを同定するために、分子フィルタリング及び分類、細胞及び形態カウント、疾患又は処置の経時的な評価の研究、細胞又は組織タイピングなどのために使用することができる。また、本発明によれば、サンプル中のイオン分布の表面積及び/又は体積から、前記サンプル中の前記イオンの相対的又は絶対的な定量化までが可能である。当然、本発明は、品質制御、芸術、比較及び自動オブジェクト分析、材料の組成の研究などの、他の分野においても用途が見いだされる。