(58)【調査した分野】(Int.Cl.,DB名)
生体センサによって生成される生体データと、加速度センサによって生成される加速度データと、ジャイロセンサによって生成される角速度データと、環境センサによって生成される環境データとのうち少なくとも1つに基づいて複数の特徴量を算出し、当該複数の特徴量を要素として含む特徴量ベクトルを得る特徴量算出部と、
前記特徴量ベクトルの要素の少なくとも一部を符号化し、第1の状態データを生成する特徴量符号化部と、
前記第1の状態データを送信する通信部と
を具備し、
前記特徴量ベクトルは、第1の特徴量を要素として含み、
前記第1の特徴量は、第1の時間単位における生体データに基づく第1の生体特徴量と、前記第1の時間単位における加速度データおよび角速度データの少なくとも一方に基づく第1の活動特徴量と、前記第1の時間単位における環境データに基づく第1の環境特徴量とのうち少なくとも1つを含む、
ユーザ端末。
前記通信部は、前記第1の状態データよりも過去に送信した第2の状態データに対応する過去のユーザ状態から前記第1の状態データに対応する現在のユーザ状態に遷移した要因の分析結果と、前記現在のユーザ状態からより良好と定義されるユーザ状態に遷移するための改善提案との少なくとも一方を受信する、請求項1乃至請求項3のいずれか1項に記載のユーザ端末。
前記状態データ記憶部に格納された状態データに基づいて前記状態遷移モデルを生成する状態遷移モデル化部をさらに具備する、請求項5または請求項6に記載のサーバ。
生体センサによって生成される生体データと、加速度センサによって生成される加速度データと、ジャイロセンサによって生成される角速度データと、環境センサによって生成される環境データとのうち少なくとも1つに基づいて複数の特徴量を算出し、当該複数の特徴量を要素として含む特徴量ベクトルを得ることと、
前記特徴量ベクトルの要素の少なくとも一部を符号化し、状態データを生成することと、
前記状態データをユーザ端末から外部装置へ送信することと
を具備し、
前記特徴量ベクトルは、第1の特徴量を要素として含み、
前記第1の特徴量は、第1の時間単位における生体データに基づく第1の生体特徴量と、前記第1の時間単位における加速度データおよび角速度データの少なくとも一方に基づく第1の活動特徴量と、前記第1の時間単位における環境データに基づく第1の環境特徴量とのうち少なくとも1つを含む、
状態データ生成方法。
【発明を実施するための形態】
【0016】
以下、図面を参照しながら実施形態の説明を述べる。なお、以降、説明済みの要素と同一または類似の要素には同一または類似の符号を付し、重複する説明については基本的に省略する。
【0017】
(第1の実施形態)
第1の実施形態に係るユーザ端末は、例えば
図2に示される腕時計型のウェアラブル端末であってよい。このユーザ端末100は、例えば、今日の日付、現在時刻などの一般的な時計に表示される情報に加えて、ユーザの収縮期血圧(Systolic Blood Pressure)SYS、拡張期血圧(Diastolic Blood Pressure)DIAおよび脈拍数PULSEなどの生体情報を表示する。ユーザ端末100は、ユーザの生体情報を例えば一拍毎に連続測定し、最新のSYSおよびDIAを表示することができる。
【0018】
ユーザ端末100は、
図3に例示されるように、スマートデバイス(典型的にはスマートフォン、タブレット)200に接続されていてもよい。スマートデバイス200は、ユーザ端末100によって送信される状態データをグラフ化して表示したり、当該状態データをネットワークNW経由でサーバ300に送信したりする。状態データの詳細は後述される。スマートデバイス200には、状態データを管理するためのアプリケーションがインストールされていてもよい。
【0019】
サーバ300は、ユーザ端末100またはスマートデバイス200から送信された状態データを蓄積する。サーバ300は、例えばユーザの健康指導または診断に供するために、医療機関に設置されたPC(Personal Computer)などからのアクセスに応じて当該ユーザの状態データを送信してもよい。
【0020】
また、後述されるように、サーバ300は、蓄積された状態データに基づいて、ユーザ状態が変化した要因を分析したり、ユーザ状態がより良好と定義されるユーザ状態になるための改善提案を作成したりする。そして、サーバ300は、要因分析結果および改善提案を、ユーザに閲覧させるためにユーザ端末100またはスマートデバイス200に送信する。
【0021】
図1に例示されるように、第1の実施形態に係るユーザ端末100は、生体センサ110と、加速度センサ121と、環境センサ122と、時計部123と、ユーザ入力部124と、特徴量算出部131と、特徴量記憶部132と、特徴量符号化部141と、符号化パラメータ記憶部142と、状態データ記憶部143と、通信部150と、表示制御部160と、表示部170とを含む。
【0022】
生体センサ110は、ユーザの生体情報を測定(例えば連続測定)することで生体データを得て、生体データを特徴量算出部131および表示制御部160に送る。生体センサ110は、少なくとも、ユーザの血圧を測定することで血圧データを得る血圧センサ111を含む。すなわち、生体データは少なくとも血圧データを含む。血圧データは、例えば、一拍ごとの収縮期血圧および拡張期血圧の値を含み得るが、これに限られない。このほか、生体データは、心電データ、心拍データ、脈波データ、脈拍データ、体温データなどを含むことができる。各生体データは、時計部123から受け取った時刻情報に基づいて設定された測定時刻に紐づけられ得る。
【0023】
血圧センサ111は、ユーザの血圧を1拍毎に連続測定可能な血圧センサ(以降、連続型の血圧センサと称する)を含むことができる。連続型の血圧センサは、脈波伝播時間(PTT;Pulse Transit Time)からユーザの血圧を連続測定してもよいし、トノメトリ法または他の技法により連続測定を実現してもよい。
【0024】
血圧センサ111は、連続型の血圧センサに加えて、連続測定不可能な血圧センサ(以降、非連続型の血圧センサと称する)を含むこともできる。非連続型の血圧センサは、例えば、カフを圧力センサとして用いてユーザの血圧を測定する(オシロメトリック法)。
【0025】
非連続型の血圧センサ(特に、オシロメトリック法の血圧センサ)は、連続型の血圧センサに比べて、測定精度が高い傾向にある。故に、血圧センサ111は、例えば、何らかの条件が満足する(例えば、連続型の血圧センサによって測定されたユーザの血圧データが所定の高リスク状態を示唆した)ことをトリガとして、連続型の血圧センサに代えて非連続型の血圧センサを作動させることにより、血圧データをより高い精度で測定してもよい。
【0026】
加速度センサ121は、当該加速度センサ121の受ける加速度を検出することで3軸の加速度データを得る。この加速度データは、ユーザ端末100を装着しているユーザの活動状態(姿勢および/または動作)を推定するために用いることができる。加速度センサ121は、加速度データを特徴量算出部131および表示制御部160へと送る。加速度データは、時計部123から受け取った時刻情報に基づいて設定された測定時刻に紐づけられ得る。
【0027】
なお、ユーザ端末100は、加速度センサ121に代えて、または、加速度センサ121に加えて、ジャイロセンサを含んでいてもよい。ジャイロセンサは、回転を検知し、角速度データを得る。この角速度データは、ユーザ端末100を装着しているユーザの活動状態を推定するために用いることができる。ジャイロセンサは、角速度データを特徴量算出部131および表示制御部160へと送る。角速度データは、時計部123から受け取った時刻情報に基づいて設定された測定時刻に紐づけられ得る。
【0028】
環境センサ122は、ユーザ端末100の周囲の環境情報を測定することで環境データを得て、特徴量算出部131および表示制御部160へと送る。環境データは、温度データ、湿度データ、気圧データなどを含むことができる。各環境データは、時計部123から受け取った時刻情報に基づいて設定された測定時刻に紐づけられ得る。
【0029】
時計部123は、現在時刻を表す時刻情報を所定周期で発生し、生体センサ110、加速度センサ121(および/またはジャイロセンサ)、環境センサ122および表示制御部160に送る。時刻情報は、生体センサ110による生体データの測定時刻、加速度センサ121による加速度データ(および/またはジャイロセンサによる角速度データ)の測定時刻、環境センサ122による環境データの測定時刻などとして用いることができる。
【0030】
時計部123は、カレンダー機能を備えていてもよい。すなわち、時計部123は、今日の日付を表す日付情報を例えば発生し、表示制御部160に送ってもよい。例えば血圧は、毎日同じように変動するのではなく、曜日毎、季節毎に異なる変動傾向を示すことがあるので、日付情報は生体情報の分析に役立つ。
【0031】
ユーザ入力部124は、ユーザ入力を受け付けるためのボタン、ダイヤル、竜頭などである。或いは、ユーザ入力部124および後述される表示部170の組み合わせが例えばタッチスクリーンを用いて実装されてもよい。ユーザ入力は、表示部170の表示画面を制御する操作などであってよい。
【0032】
特徴量算出部131は、生体センサ110から生体データを受け取り、加速度センサ121から加速度データ(および/またはジャイロセンサから角速度データ)を受け取り、環境センサ122から環境データを受け取る。特徴量算出部131は、生体データ、加速度データ(および/または角速度データ)、および環境データに基づいて複数の特徴量を算出し、当該複数の特徴量を要素として含む特徴量ベクトルを得る。特徴量算出部131は、特徴量ベクトルを特徴量記憶部132に格納する。
【0033】
特徴量ベクトルは、第1の特徴量を要素として含むことができる。第1の特徴量は、第1の時間単位における生体データに基づく第1の生体特徴量と、当該第1の時間単位における加速度データ(および/または角速度データ)に基づく第1の活動特徴量と、当該第1の時間単位における環境データに基づく第1の環境特徴量とのうち少なくとも1つを含むことができる。第1の時間単位は、例えば1日、1週、1ヶ月または1年などであってよい。
【0034】
また、特徴量ベクトルは、第1の特徴量に加えて第2の特徴量を要素として含むことができる。第2の特徴量は、第1の時間単位よりも長い第2の時間単位における生体データに基づく第2の生体特徴量と、当該第2の時間単位における加速度データ(および/または角速度データ)に基づく第2の活動特徴量と、当該第2の時間単位における環境データに基づく第2の環境特徴量とのうち少なくとも1つを含むことができる。第2の時間単位は、例えば1週、1ヶ月または1年などであってよい。
【0035】
さらに、特徴量ベクトルは、第1の特徴量および第2の特徴量に加えて第3の特徴量を要素として含むことができる。第3の特徴量は、第2の時間単位よりも長い第3の時間単位における生体データに基づく第3の生体特徴量と、当該第3の時間単位における加速度データ(および/または角速度データ)に基づく第3の活動特徴量と、当該第3の時間単位における環境データに基づく第3の環境特徴量とのうち少なくとも1つを含むことができる。第3の時間単位は、例えば1ヶ月または1年などであってよい。
【0036】
特徴量算出部131によって算出される特徴量が
図4に例示される。
図4の例では、第1の時間単位、第2の時間単位および第3の時間単位は、それぞれ、1日、1週および1年である。
【0037】
第1の生体特徴量は、
図4においてBP
d(i)として表される。
図4では、第1の生体特徴量として、対象日における日中および夜間それぞれの血圧の最小値、最大値およびサージ回数が示されている。
【0038】
血圧サージとは、例えば、睡眠時無効吸症候群(Sleep Apnea Syndrome)の発作時に低酸素状態をトリガとして生じることがある急激な血圧変動を指す。従って、血圧サージ回数をモニタリングすることは、ユーザのSASの症状の軽重を把握するのに役立つ。
【0039】
なお、iは、1以上の整数である。
図4の例では、BP
d(1)=対象日における日中の血圧の最小値、BP
d(2)=対象日における日中の血圧の最大値、BP
d(3)=対象日における日中の血圧サージ回数、BP
d(4)=対象日における夜間の血圧の最小値、BP
d(5)=対象日における夜間の血圧の最大値、BP
d(6)=対象日における夜間の血圧サージ回数のように定めることができる。
【0040】
人間の1日の心拍は約10万回であるから、1拍毎の収縮期血圧データおよび拡張期血圧データを全て収集するだけでもデータ件数は約20万に達する。他方、
図4の例では、1日の血圧の挙動を6個の特徴量で表現することができる。このようにセンサデータを特徴量化すれば、センサデータをそのまま送信する場合に比べて送信データ量をはるかに抑制することができる。
【0041】
第1の活動特徴量は、
図4においてACT
d(i)として表される。
図4では、第1の活動特徴量として、対象日における活動量、活動時間および活動パタン、ならびに、対象日における睡眠時間および睡眠パタンが示されている。なお、第1の活動特徴量は、公知の技法を用いて、第1の時間単位における加速度データ(および/または角速度データ)に基づいてユーザの活動を推定することで算出可能である。
【0042】
第1の環境特徴量は、
図4においてENV
d(i)として表される。
図4では、第1の環境特徴量として、対象日における各環境因子の最小値、最大値および変化量が示されている。環境因子とは、環境センサ122の測定対象を指しており、例えば、温度、湿度、気圧などである。
【0043】
第2の生体特徴量は、
図4においてBP
w(i)として表される。
図4では、第2の生体特徴量として、対象週において血圧の最小値および最大値がそれぞれ測定された曜日、対象週における曜日別の血圧サージ回数、ならびに、対象週における曜日別の血圧変動が示されている。
【0044】
第2の活動特徴量は、
図4においてACT
w(i)として表される。
図4では、第2の活動特徴量として、対象週において活動量、活動時間および睡眠時間の最小値および最大値がそれぞれ測定された曜日、ならびに、対象週における活動量、活動時間および睡眠時間の曜日別のばらつきが示されている。
【0045】
図4の例では、第2の環境特徴量、すなわち、対象週の環境データに基づく特徴量は定義されていない。しかしながら、第2の環境特徴量が定義され、特徴量ベクトルの要素に加えられてもよい。また、
図4に例示されている特徴量の一部が特徴量ベクトルの要素から除外されてもよい。
【0046】
第3の生体特徴量は、
図4においてBP
y(i)として表される。
図4では、第3の生体特徴量として、対象年において血圧の最小値および最大値がそれぞれ測定された月、対象年における月別の血圧サージ回数、ならびに、対象年における月別または季節別の血圧変動が示されている。
【0047】
第3の活動特徴量は、
図4においてACT
y(i)として表される。
図4では、第3の活動特徴量として、対象年において活動量、活動時間および睡眠時間の最小値および最大値がそれぞれ測定された月、ならびに、対象年における活動量、活動時間および睡眠時間の月別のばらつきが示されている。
【0048】
第3の環境特徴量は、
図4においてENV
y(i)として表される。
図4では、第3の環境特徴量として、対象年における各環境因子の月別の最小値、最大値および平均変化量、ならびに、対象年における各環境因子の月別のばらつきが示されている。
【0049】
特徴量記憶部132は、特徴量算出部131によって生成された特徴量ベクトルを格納する。特徴量記憶部132に格納された特徴量ベクトル(の要素)は、特徴量符号化部141および表示制御部160によって必要に応じて読み出される。
【0050】
特徴量符号化部141は、特徴量記憶部132から特徴量ベクトルを読み出し、符号化パラメータ記憶部142から符号化パラメータを読み出す。特徴量符号化部141は、特徴量ベクトルの各要素を符号化パラメータを用いて符号化することによって状態データを生成する。特徴量符号化部141は、状態データを状態データ記憶部143に格納する。
【0051】
符号化パラメータは、特徴量ベクトルの各要素を2値または多値のインデックスに変換(離散化)するための1つまたは複数の閾値を含むことができる。例えば、BP
d(i)=対象日における夜間の血圧の最大値である場合に、特徴量符号化部141は、BP
d(i)が130以上であれば「1」(高)へと変換し、BP
d(i)が130よりも低ければ「0」(低)へと変換してもよい。係る符号化によれば、BP
d(i)を2値化することができる。特徴量ベクトルの各要素をこのように符号化(セグメンテーション)することで、例えば
図5に示される状態データを生成することができる。特徴量ベクトルの各要素は離散化されるので、状態データのデータサイズは特徴量ベクトルに比べて小さくなる。なお、特徴量ベクトルの要素の一部が符号化されなくてもよい(生データであってもよい)。
【0052】
閾値は、特徴量毎に設定可能である。各閾値は、例えば医療系のガイドラインに定められた値に基づいて決定されてもよいし、集団の特徴量の統計的分布などから決定されてもよい。すなわち、特徴量符号化部141は、ガイドラインに定められた値に基づいてセグメンテーションを行ってもよいし、現行のデータの分布の相関関係からセグメンテーションを行ってもよいし、または現存するデータと降圧等の効果の有無の発生確率からセグメンテーションを行ってもよい。閾値は、外部機器からネットワークNWおよび通信部150経由で符号化パラメータ記憶部142に設定されてもよい。
【0053】
符号化パラメータ記憶部142は、例えば前述の閾値を含む符号化パラメータを格納する。符号化パラメータ記憶部142に格納された符号化パラメータは、特徴量符号化部141によって必要に応じて読み出される。また、符号化パラメータは、通信部150によって受信された符号化パラメータを用いて更新されてもよい。なお、符号化パラメータを更新する仕組みは必須ではない。すなわち、符号化パラメータは、ユーザ端末100の製造時に設定され、符号化パラメータ記憶部142において静的に保持されてもよい。
【0054】
状態データ記憶部143は、特徴量符号化部141によって生成された状態データを格納する。状態データ記憶部143に格納された状態データは、通信部150および表示制御部160によって必要に応じて読み出される。
【0055】
通信部150は、ネットワークNWを介して外部機器とデータをやり取りする。通信部150は、無線通信および有線通信の一方または両方を行ってもよい。一例として、通信部150は、例えばスマートデバイス200との間でBluetooth(登録商標)などの近距離無線通信を行ってもよい。
【0056】
通信部150は、状態データ記憶部143から状態データを読み出し、当該状態データを外部機器へと送信する。また、通信部150は、外部機器から符号化パラメータを受信し、当該符号化パラメータによって符号化パラメータ記憶部142に格納されている符号化パラメータを書き換えてもよい。通信部150は、外部機器から後述される要因分析結果および改善提案を受信し、当該要因分析結果および改善提案を表示制御部160に送ってもよい。
【0057】
なお、以降の説明において、要因分析結果および改善提案は必ずしも両方とも提供される必要はなく、一方のみが提供されてもよいし、両方とも提供されなくてもよい。
【0058】
表示制御部160は、表示部170を制御する。具体的には、表示制御部160は、画面データを生成し、表示部170に送る。表示制御部160は、例えば、生体センサ110からの生体データ、加速度センサ121からの加速度データ(および/またはジャイロセンサからの角速度データ)、環境センサ122からの環境データ、時計部123からの時刻情報および日付情報、特徴量記憶部132からの特徴量、状態データ記憶部143からの状態データ、通信部150からの要因分析結果および改善提案などに基づいて画面データを生成できる。表示制御部160は、表示部170の表示画面を制御する操作に相当するユーザ入力に従って画面データを生成するために利用する情報を選択してもよい。
【0059】
表示制御部160は、状態データに基づいて画面データを生成する場合に、例えば状態データに対応するユーザ状態をランク化し、ランクの高低が視覚的に認識できるような画面データを生成してもよい。
【0060】
ユーザ状態は、状態データと一対一対応となるように定義されてもよいがこれに限られない。例えば、複数の異なる状態データが同一のユーザ状態に対応付けられるように定義されてもよい。この場合に、ユーザ状態は、例えば状態データの一部(例えば血圧に関する要素)によって決定されてもよい。例えば、生体特徴量は同一であるが活動特徴量および環境特徴量の異なる特徴量ベクトルを符号化した状態データが、同一のユーザ状態に対応付けられてもよい。この場合に、ユーザ状態は、ユーザの健康状態と読み替えることができる。状態データのうちユーザ状態の決定に関与しない要素は、例えばサーバ300において、異なるユーザ状態間の状態遷移のモデル化、ユーザ状態の変化の要因分析、ユーザ状態をより良くするための改善提案の作成などに利用されてもよい。
【0061】
表示部170は、例えば、液晶ディスプレイ、有機EL(electroluminescence)ディスプレイなどである。表示部170は、表示制御部160からの画面データを表示することで、ユーザに様々な情報を知らせることができる。具体的には、表示部170は、生体情報(例えば、血圧、心電図、心拍数、脈波、脈拍数、体温など)、加速度データ、角速度データ、活動量情報(例えば、加速度データおよび/または角速度データに基づいて計数された歩数、消費カロリーなど)、睡眠情報(例えば、睡眠時間など)、環境情報(例えば、気温、湿度、気圧など)、特徴量ベクトル(の要素)、状態データ、要因分析結果、改善提案、現在時刻、カレンダーなどを表示してもよい。
【0062】
ユーザ端末100は、
図6に例示されるように動作する。
図6の動作は周期的に実施され、その周期は例えば前述の第1の時間単位に一致してもよい。
まず、特徴量算出部131は、生体センサ110、加速度センサ121(および/またはジャイロセンサ)、および環境センサ122によって生成された各センサデータに基づいて特徴量を算出し、特徴量ベクトルを得る(ステップS401)。
【0063】
特徴量符号化部141は、ステップS401において得られた特徴量ベクトルを符号化パラメータを用いて符号化し、状態データを生成する(ステップS402)。通信部150は、ステップS402において生成された状態データをネットワークNW経由で外部機器へ送信する(ステップS403)。
【0064】
ステップS403において送信された状態データは、直接的にまたは間接的に(例えばスマートデバイス200を経由して)、サーバ300によって受信される。サーバ300は、ユーザ状態が変化した要因を分析したり、ユーザ状態がより良好と定義されるユーザ状態になるための改善提案を作成したりする。通信部150は要因分析結果および改善提案を受信し、表示部170はこれらを表示する(ステップS404)。
【0065】
以上説明したように、第1の実施形態に係るユーザ端末は、所定の時間単位におけるセンサデータに基づいて特徴量を算出し、これらの特徴量を符号化することで状態データを生成し、当該状態データを外部機器へ送信する。従って、このユーザ端末によれば、全てのセンサデータをスマートデバイスまたはサーバなどの外部機器へ送信する場合に比べて、送信データ量をはるかに抑制することができる。すなわち、センサデータの送信に関わる消費電力および通信路の負荷を小さくすることができる。さらに、センサデータに代えて状態データを蓄積することで、記憶装置(状態データ記憶部)の容量も抑制することができる。また、このユーザ端末は、状態データに対応するユーザ状態を表示したり、送信済みの状態データに基づいて提供される要因分析結果および改善提案を表示したりする。故に、このユーザ端末によれば、ユーザに行動変容を促すことができる。
【0066】
(第2の実施形態)
前述のように、第1の実施形態に係るユーザ端末から状態データを送信されたサーバは、ユーザ状態が変化した要因を分析したり、ユーザ状態がより良好と定義されるユーザ状態になるための改善提案を作成したりすることができる。第2の実施形態は係るサーバに関する。
【0067】
図7に例示されるように、第2の実施形態に係るサーバ300は、通信部301と、状態データ記憶部302と、状態遷移モデル化部303と、状態遷移モデル記憶部304と、要因分析部305と、改善提案作成部306とを含む。
【0068】
通信部301は、ユーザ端末100からネットワークNW経由で状態データを受信する。状態データには、当該状態データの送信元であるユーザ端末100(のユーザ)の識別子が付加されていてもよい。サーバ300は、係る識別子を用いて、ユーザ別に状態データを管理することができる。通信部301は、受信した状態データを(識別子に対応付けて)状態データ記憶部302に格納する。
【0069】
通信部301は、要因分析部305から要因分析結果を受け取り、改善提案作成部306から改善提案を受け取る。通信部301は、要因分析結果および改善提案をネットワーク経由でユーザ端末100またはスマートデバイス200へ送信する。
【0070】
状態データ記憶部302は、状態データを格納する。状態データ記憶部302には、例えばユーザ別の状態データを管理するデータベースが構築される。状態データ記憶部302に蓄積された状態データは、ユーザ状態の経時変化を分析するために用いることができる。状態データ記憶部302に格納された状態データは、状態遷移モデル化部303、要因分析部305および改善提案作成部306によって必要に応じて読み出される。
【0071】
状態遷移モデル化部303は、状態データ記憶部302から状態データを読み出す。状態遷移モデル化部303は、状態データに基づいて、複数の異なるユーザ状態の間での状態遷移をモデル化する。状態遷移モデル化部303は、生成した状態遷移モデルを状態遷移モデル記憶部304に格納する。
【0072】
状態遷移モデルは、例えば、各ユーザ状態から他のユーザ状態に遷移する状態遷移確率(条件付き確率)を含むことができる。状態遷移確率は、例えば、要因f
tが生じた場合にユーザ状態s
tからユーザ状態s
t+1に遷移する確率P
T(s
t+1|s
t,f
t)であり得る。要因は、内的要因(例えばユーザが取る行動)および外的要因(例えばユーザが置かれる環境)などを含み得る。また、ユーザの年齢層、性別などの静的なパラメータを条件に加えてもよい。
【0073】
状態遷移モデルは、状態遷移モデル化部303によって動的に変更されてもよいが、静的であってもよい。静的な状態遷移モデルを使用する場合には、状態遷移モデル化部303はサーバ300から取り除かれてもよい。
【0074】
状態遷移モデル記憶部304は、状態遷移モデルを格納する。状態遷移モデル記憶部304に格納された状態遷移モデルは、要因分析部305および改善提案作成部306によって必要に応じて読み出される。
【0075】
要因分析部305は、状態データ記憶部302から対象となるユーザの現在の状態データおよび過去の状態データとを読み出し、状態遷移モデル記憶部304から状態遷移モデルを読み出す。現在の状態データは、状態データ記憶部302に格納された日時が最も新しい(例えば本日の)状態データであってよく、過去の状態データは、状態データ記憶部302に格納された日時が2番目に新しい(例えば昨日の)状態データであってよい。
【0076】
要因分析部305は、状態遷移モデルを用いて、過去の状態データに対応する過去のユーザ状態s
t−1から現在の状態データに対応する現在のユーザ状態s
tに遷移した要因を分析する。要因分析部305は、例えば、過去のユーザ状態s
t−1から現在のユーザ状態s
tへの状態遷移確率P
T(s
t|s
t−1,f
t−1)を最大化する要因f
t−1(例えば、最高気温が低かったこと)を状態遷移の主要因と推定してもよい。要因分析部305は、要因分析結果(例えば状態遷移の主要因)を通信部301に送る。なお、要因分析結果の提供を行わない場合には要因分析部305はサーバ300から取り除かれてよい。
【0077】
改善提案作成部306は、状態データ記憶部302から対象となるユーザの現在の状態データを読み出し、状態遷移モデル記憶部304から状態遷移モデルを読み出す。現在の状態データは、状態データ記憶部302に格納された日時が最も新しい(例えば本日の)状態データであってよい。
【0078】
改善提案作成部306は、状態遷移モデルを用いて、現在の状態データに対応する現在のユーザ状態s
tからより良好と定義されるユーザ状態s
bに遷移するための改善提案を作成する。より良好と定義されるユーザ状態s
bは、例えば、最も高いランクと定義されるユーザ状態であってもよいし、現在のユーザ状態s
tよりも高いランクと定義される任意のユーザ状態であってもよい。改善提案作成部306は、現在のユーザ状態s
tからより良好と定義される現在のユーザ状態s
bへの状態遷移確率P
T(s
b|s
t,f
t)を最大化する要因f
t(例えば、活動量を増やすこと)を示す情報を改善提案として作成してもよい。改善提案作成部306は、改善提案を通信部301に送る。なお、改善提案の提供を行わない場合には改善提案作成部306はサーバ300から取り除かれてよい。
【0079】
・改善提案作成部306は、例えばエキスパートシステムにおいて用いられるようなIF−THENルールで記述されたテーブルから改善提案をルックアップしてもよい。
・改善提案作成部306は、ユーザ状態に紐付けられた例えばWatsonのような(高度な)事例ベースを用いて、改善提案を都度ルックアップしてもよい。
・改善提案作成部306は、上記の2つの例の一方または両方の運用を通じて収集された介入(改善提案の提供)とユーザの反応との実績に基づいて、改善提案の候補毎の成功確率を評価してもよい。さらに、この成功確率を指標として、ユーザに提供する改善提案を絞り込んでもよい。
【0080】
サーバ300は、
図8に例示されるように動作する。
まず、通信部301は、いずれかのユーザ端末100によって生成された状態データをネットワークNW経由で受信する(ステップS501)。この状態データは、例えば前述の識別子に対応付けて状態データ記憶部302に格納される。
【0081】
状態遷移モデル化部303は、ステップS501において受信された状態データを用いて状態遷移モデルを更新してもよい(ステップS502)。例えば、状態遷移モデル化部303は、この状態データに対応するユーザ状態への状態遷移確率を調整してもよい。
【0082】
なお、ステップS502は、オプションであって、例えば状態遷移モデルが静的である場合には省略可能である。また、ステップS502は、後述されるステップS503およびステップS504よりも後に行われてもよい。
【0083】
要因分析部305は、過去の状態データに対応する過去のユーザ状態からステップS501において受信された状態データに対応する現在のユーザ状態に遷移した要因を状態遷移モデルを用いて分析する(ステップS503)。
【0084】
他方、改善提案作成部306は、ステップS501において受信された状態データに対応する現在のユーザ状態からより良好と定義されるユーザ状態に遷移するための改善提案を状態遷移モデルを用いて作成する(ステップS504)。
【0085】
なお、ステップS503およびステップS504は、
図8とは逆の順序で実行されてもよいし、並列的に実行されてもよい。また、要因分析結果の提供を行わない場合にはステップS503は省略可能であるし、改善提案の提供を行わない場合にはステップS504は省略可能である。
【0086】
通信部301は、ステップS503において得られた要因分析結果とステップS504において作成された改善提案とをネットワークNW経由でユーザ端末100またはスマートデバイス200へと送信する(ステップS505)。
【0087】
以上説明したように、第2の実施形態に係るサーバは、受信した状態データを対象に、状態遷移モデルを用いた要因分析および改善提案の作成を行い、要因分析結果および改善提案をユーザ端末またはスマートデバイスへ送信する。故に、このサーバによれば、ユーザに行動変容を促すことができる。なお、このサーバが受信する状態データは、前述の第1の実施形態において説明された状態データと同一であってよい。故に、センサデータの受信に関わる消費電力および通信路の負荷を小さくすることができる。さらに、センサデータに代えて状態データを蓄積することで、記憶装置(状態データ記憶部)の容量も抑制することができる。
【0088】
上述の実施形態は、本発明の概念の理解を助けるための具体例を示しているに過ぎず、本発明の範囲を限定することを意図されていない。実施形態は、本発明の要旨を逸脱しない範囲で、様々な構成要素の付加、削除または転換をすることができる。
【0089】
上記各実施形態において説明された種々の機能部は、回路を用いることで実現されてもよい。回路は、特定の機能を実現する専用回路であってもよいし、メモリに接続され、当該メモリに格納された所定のプログラムを実行するプロセッサのような汎用回路であってもよい。
【0090】
上記各実施形態の処理の少なくとも一部は、汎用のコンピュータを基本ハードウェアとして用いることでも実現可能である。上記処理を実現するプログラムは、コンピュータで読み取り可能な記録媒体に格納して提供されてもよい。プログラムは、インストール可能な形式のファイルまたは実行可能な形式のファイルとして記録媒体に記憶される。記録媒体としては、磁気ディスク、光ディスク(CD−ROM、CD−R、DVD等)、光磁気ディスク(MO等)、半導体メモリなどである。記録媒体は、プログラムを記憶でき、かつ、コンピュータが読み取り可能であれば、何れであってもよい。また、上記処理を実現するプログラムを、インターネットなどのネットワークに接続されたコンピュータ(サーバ)上に格納し、ネットワーク経由でコンピュータ(クライアント)にダウンロードさせてもよい。
【0091】
上記各実施形態の一部または全部は、特許請求の範囲のほか以下の付記に示すように記載することも可能であるが、これに限られない。
(付記1)
メモリと、
前記メモリに接続されたプロセッサと
を具備し、
前記プロセッサは、
(a)生体センサによって生成される生体データと、加速度センサによって生成される加速度データと、ジャイロセンサによって生成される角速度データと、環境センサによって生成される環境データとのうち少なくとも1つに基づいて複数の特徴量を算出し、当該複数の特徴量を要素として含む特徴量ベクトルを得て、
(b)前記特徴量ベクトルの要素の少なくとも一部を符号化し、第1の状態データを生成し、
(c)前記第1の状態データを送信する
ように構成され、
前記特徴量ベクトルは、第1の特徴量を要素として含み、
前記第1の特徴量は、第1の時間単位における生体データに基づく第1の生体特徴量と、前記第1の時間単位における加速度データおよび角速度データの少なくとも一方に基づく第1の活動特徴量と、前記第1の時間単位における環境データに基づく第1の環境特徴量とのうち少なくとも1つを含む、
ユーザ端末。
【0092】
(付記2)
メモリと、
補助記憶装置と、
前記メモリおよび前記補助記憶装置に接続されたプロセッサと
を具備し、
前記プロセッサは、(a)第1の状態データを受信するように構成され、
前記補助記憶装置は、(b)前記第1の状態データを含む受信済みの状態データと、(c)複数の異なるユーザ状態の間での状態遷移をモデル化した状態遷移モデルとを格納し、
前記プロセッサは、(d)前記第1の状態データよりも過去に受信した第2の状態データに対応する過去のユーザ状態から前記第1の状態データに対応する現在のユーザ状態に遷移した要因を前記状態遷移モデルを用いて分析し、要因分析結果を得るようにさらに構成され、
前記第1の状態データは、生体センサによって生成される生体データと、加速度センサによって生成される加速度データと、ジャイロセンサによって生成される角速度データと、環境センサによって生成される環境データとのうち少なくとも1つに基づく複数の特徴量を要素として含む特徴量ベクトルの要素の少なくとも一部を符号化することによって得られ、
前記特徴量ベクトルは、第1の特徴量を要素として含み、
前記第1の特徴量は、第1の時間単位における生体データに基づく第1の生体特徴量と、前記第1の時間単位における加速度データおよび角速度データの少なくとも一方に基づく第1の活動特徴量と、前記第1の時間単位における環境データに基づく第1の環境特徴量とのうち少なくとも1つを含む、
サーバ。
【0093】
(付記3)
メモリと、
補助記憶装置と、
前記メモリおよび前記補助記憶装置に接続されたプロセッサと
を具備し、
前記プロセッサは、(a)第1の状態データを受信するように構成され、
前記補助記憶装置は、(b)前記第1の状態データを含む受信済みの状態データと、(c)複数の異なるユーザ状態の間での状態遷移をモデル化した状態遷移モデルとを格納し、
前記プロセッサは、(d)前記第1の状態データに対応する現在のユーザ状態からより良好と定義されるユーザ状態に遷移するための改善提案を作成するようにさらに構成され、
前記第1の状態データは、生体センサによって生成される生体データと、加速度センサによって生成される加速度データと、ジャイロセンサによって生成される角速度データと、環境センサによって生成される環境データとのうち少なくとも1つに基づく複数の特徴量を要素として含む特徴量ベクトルの要素の少なくとも一部を符号化することによって得られ、
前記特徴量ベクトルは、第1の特徴量を要素として含み、
前記第1の特徴量は、第1の時間単位における生体データに基づく第1の生体特徴量と、前記第1の時間単位における加速度データおよび角速度データの少なくとも一方に基づく第1の活動特徴量と、前記第1の時間単位における環境データに基づく第1の環境特徴量とのうち少なくとも1つを含む、
サーバ。
【0094】
(付記(4))
プロセッサが、状態データを受信することと、
プロセッサが、前記状態データに対応する現在のユーザ状態からより良好と定義されるユーザ状態に遷移するための改善提案を、複数の異なるユーザ状態の間での状態遷移をモデル化した状態遷移モデルを用いて作成することと
を具備し、
前記状態データは、生体センサによって生成される生体データと、加速度センサによって生成される加速度データと、ジャイロセンサによって生成される角速度データと、環境センサによって生成される環境データとのうち少なくとも1つに基づく複数の特徴量を要素として含む特徴量ベクトルの要素の少なくとも一部を符号化することによって得られ、
前記特徴量ベクトルは、第1の特徴量を要素として含み、
前記第1の特徴量は、第1の時間単位における生体データに基づく第1の生体特徴量と、前記第1の時間単位における加速度データおよび角速度データの少なくとも一方に基づく第1の活動特徴量と、前記第1の時間単位における環境データに基づく第1の環境特徴量とのうち少なくとも1つを含む、
改善提案作成方法。
【0095】
(付記(5))
プロセッサが、生体センサによって生成される生体データと、加速度センサによって生成される加速度データと、ジャイロセンサによって生成される角速度データと、環境センサによって生成される環境データとのうち少なくとも1つに基づいて複数の特徴量を算出し、当該複数の特徴量を要素として含む特徴量ベクトルを得ることと、
プロセッサが、前記特徴量ベクトルの要素の少なくとも一部を符号化し、状態データを生成することと
を具備し、
前記特徴量ベクトルは、第1の特徴量を要素として含み、
前記第1の特徴量は、第1の時間単位における生体データに基づく第1の生体特徴量と、前記第1の時間単位における加速度データおよび角速度データの少なくとも一方に基づく第1の活動特徴量と、前記第1の時間単位における環境データに基づく第1の環境特徴量とのうち少なくとも1つを含む、
状態データ生成方法。