特許第6861236号(P6861236)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ セント・ジュード・メディカル・インターナショナル・ホールディング・エスエーアールエルの特許一覧

(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6861236
(24)【登録日】2021年3月31日
(45)【発行日】2021年4月21日
(54)【発明の名称】磁気式位置センサ用の電界集中アンテナ
(51)【国際特許分類】
   A61M 25/095 20060101AFI20210412BHJP
   A61B 34/20 20160101ALI20210412BHJP
【FI】
   A61M25/095
   A61B34/20
【請求項の数】14
【外国語出願】
【全頁数】23
(21)【出願番号】特願2019-73565(P2019-73565)
(22)【出願日】2019年4月8日
(62)【分割の表示】特願2017-548459(P2017-548459)の分割
【原出願日】2016年3月16日
(65)【公開番号】特開2019-141633(P2019-141633A)
(43)【公開日】2019年8月29日
【審査請求日】2019年4月23日
(31)【優先権主張番号】62/133,970
(32)【優先日】2015年3月16日
(33)【優先権主張国】US
(73)【特許権者】
【識別番号】516134383
【氏名又は名称】セント・ジュード・メディカル・インターナショナル・ホールディング・エスエーアールエル
【氏名又は名称原語表記】St. Jude Medical International Holding S.a,r.l.
(74)【代理人】
【識別番号】110000110
【氏名又は名称】特許業務法人快友国際特許事務所
(72)【発明者】
【氏名】グレゴリー ケイ. オルソン
(72)【発明者】
【氏名】ライアン ケネス ビュッセラー
【審査官】 川島 徹
(56)【参考文献】
【文献】 特表2008−503248(JP,A)
【文献】 実開平06−002140(JP,U)
【文献】 米国特許出願公開第2011/0066029(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
A61M 25/095
A61B 34/20
(57)【特許請求の範囲】
【請求項1】
医療デバイス用の位置センサアセンブリであって、
内部管腔を画定する本体と、
前記本体によって支持されるワイヤ巻線と、
前記ワイヤ巻線内に配置されるコアと、
前記ワイヤ巻線の外側であり、かつ、前記本体内に配置される磁束アンテナと、
を備え、
前記磁束アンテナの透磁率は、前記コアの透磁率よりも大き
前記磁束アンテナは、前記ワイヤ巻線及び前記コアから軸方向に離間しており、
前記磁束アンテナの外径は、前記ワイヤ巻線の外径よりも大きい、位置センサアセンブリ。
【請求項2】
前記磁束アンテナは、薄い細長い材料を備える、請求項1に記載の位置センサアセンブリ。
【請求項3】
前記磁束アンテナの透磁率は、前記ワイヤ巻線の透磁率より大きい、請求項1に記載の位置センサアセンブリ。
【請求項4】
前記位置センサアセンブリは、さらに、
前記ワイヤ巻線の外側であり、かつ、前記本体内に配置される複数の前記磁束アンテナを備える、請求項1に記載の位置センサアセンブリ。
【請求項5】
前記位置センサアセンブリは、さらに、
前記ワイヤ巻線及び前記磁束アンテナを電気的に結合する導体と、
前記位置センサアセンブリ内の磁気ノイズを低減するために、前記ワイヤ巻線及び前記導体を取り囲むシールドと、
を備える、請求項1に記載の位置センサアセンブリ。
【請求項6】
管腔を画定する細長いシースと、
前記管腔内に配置された位置センサと、
前記細長いシースの外部に露出している電極と、
前記細長いシース内に、前記位置センサから離れて配置される磁気アンテナと、
を備え、
前記位置センサは、コイルを備え、
前記コイルはコアを備え、
前記磁気アンテナの透磁率は、前記コアの透磁率よりも大き
前記磁気アンテナは、前記コイル及び前記コアから軸方向に離間しており、
前記磁気アンテナの外径は、前記位置センサの前記コイルの外径よりも大きい、医療デバイス。
【請求項7】
前記コアの透磁率は、空気の透磁率より大きい、請求項6に記載の医療デバイス。
【請求項8】
前記磁気アンテナは、前記コイルの中心軸に対して略平行に延びる薄く細長い材料を備える、請求項6に記載の医療デバイス。
【請求項9】
前記医療デバイスは、さらに、
追加の磁気アンテナであって、前記磁気アンテナから離れて配置される前記追加の磁気アンテナを備える、請求項6に記載の医療デバイス。
【請求項10】
磁気式位置センサの信号出力を増大させる方法であって、
磁界の影響を受けると電流の流れを生成するコイルとコアとを備える前記磁気式位置センサを構成するステップと、
前記磁気式位置センサを医療デバイス内に取り付けるステップと、
前記コイル内へ磁界を集中させて前記電流の流れを増大させるように構成されるように、透磁率アンテナを前記コイル及び前記コアから軸方向に離間して配置するステップと、
を備え、
前記透磁率アンテナの透磁率は、前記コアの透磁率よりも大き
前記透磁率アンテナの外径は、前記磁気式位置センサの前記コイルの外径よりも大きい、方法。
【請求項11】
前記透磁率アンテナは、前記磁気式位置センサへ磁束を送るように配置される、請求項10に記載の方法。
【請求項12】
前記方法は、さらに、
前記透磁率アンテナを長細くなるように成形するステップを備える、請求項10に記載の方法。
【請求項13】
前記方法は、さらに、
前記磁気式位置センサ及び前記透磁率アンテナを導体によって接続するステップを備える、請求項10に記載の方法。
【請求項14】
前記方法は、さらに、
前記磁気式位置センサ内の磁気ノイズを低減するために、前記磁気式位置センサ及び前記導体を透磁率構造でシールドするステップを備える、請求項13に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
(関連出願の相互参照)
本出願は、本明細書に完全に記載するものとして参照により本明細書に組み込まれている、2015年3月16日出願の米国仮特許出願第62/133,970号の利益を主張するものである。
【0002】
本開示は、医療用位置決めシステム内で使用される磁気センサに関する。一実施形態では、本開示は、磁気センサの信号強度を増大させるアンテナに関する。
【背景技術】
【0003】
医療用位置決めシステムには、既知の3次元の追跡空間内で医療デバイスを追跡する能力がある。医療用位置決めシステムとともに使用される典型的な医療デバイスには、カテーテル、誘導針、ガイドワイヤなどが含まれる。これらの医療デバイスは、それぞれ、細長い可撓性のシャフトを使用することができ、心臓などの解剖学的組織上でマッピング及びアブレーションなどの様々な診断又は治療手順を実行するために、電極などの様々な動作要素がシャフト上で使用される。
【0004】
いくつかのタイプの医療用位置決めシステムは、複数の磁界を利用して、1つ又は複数のコイルを有する位置センサ内に電圧を誘導し、それらの磁界によって画定された3次元空間内でそのセンサの場所を判定する。そのようなセンサ内で誘導される電圧は、電子制御ユニットによって、センサの場所を示す信号として測定することができる。磁気式位置決めシステムの確実性及び正確性は、センサ信号の信頼性に関係する。従って、コイルで誘導される電圧の強度を増大させることが有益である。
【0005】
センサの出力強度を増大させる1つの方法は、コイル巻線内に高透磁率のコアを配置して、そのコイルによって生成される電圧を増大させることである。コアの存在は、磁力線をセンサの方へ引き寄せることによって、磁束密度を増大させる。従来、そのようなセンサコイル及びコアの組合せは、「System for Determining the Position and Orientation of a Catheter」という名称のSobeの米国特許第7,197,354号に記載されている。
【発明の概要】
【発明が解決しようとする課題】
【0006】
従来技術のコアの有効性は、センサ及びセンサが設置される医療デバイスの幾何形状によって制限される。細長い可撓性のシャフトを有する医療デバイスの場合、デバイスは、血管構造を通過して動くことができるように、例えば、19フレンチ(約6.33ミリメートル)未満の小さい直径を有することが好ましい。典型的な医療デバイスで使用されるセンサは、1フレンチ(0.33ミリメートル)以下の程度までさらに小さい可能性がある。従って、医療デバイス内の位置センサ及びセンサ内のコアに利用可能な空間は小さい。
【0007】
上記の議論は、本分野について説明することだけを意図するものであり、特許請求の範囲の否認と見なされるべきではない。
【課題を解決するための手段】
【0008】
本開示は、医療用位置決めシステムとともに使用するための医療デバイス内で使用される位置センサに関する。そのような医療デバイスは、例えばラジオ波(RF)アブレーション術を介して心不整脈を診断及び治療するためのマッピング用及びアブレーション用のカテーテルを備え得る。特に、本開示は、位置センサ内に磁束流を誘導し、それにより位置センサによって生成される信号を増大させるアンテナ、集信装置、レバー、又は、類似の構造に関する。
【0009】
一実施形態では、医療デバイスは、体内の組織の診断又は治療のために構成される。医療デバイスは、細長い変形可能な部材と、位置センサと、を備える。細長い部材は、体内に受容されるように構成され、近位端と遠位端との間に延びる管腔を有する。位置センサは、管腔内で、変形可能な部材の遠位端の近傍に配置される。位置センサは、中央通路を形成するように巻かれて、磁界の影響を受けると電流の流れを生成するように構成されているコイルと、高透磁率アンテナであって、少なくとも一部分が、磁界をコイル内へ集中させて、その結果として得られる電圧を増大させるように、中央通路の外側に配置されている、高透磁率アンテナと、を備える。
【0010】
別の実施形態では、医療デバイス用の位置センサアセンブリは、内部管腔を画定する本体と、本体によって支持されるワイヤ巻線と、ワイヤ巻線の外側であり、かつ、本体内に配置される磁束アンテナと、を備える。
【0011】
さらに別の実施形態では、医療デバイスは、管腔を画定する細長いシースと、管腔内に配置された位置センサと、細長いシースの外部に露出している電極と、シース内で位置センサから離れて配置される磁気アンテナと、を備える。
【0012】
さらに別の実施形態では、磁気式位置センサの信号出力を増大させる方法は、磁界の影響を受けると電流の流れを生成するコイルを備える磁気式位置センサを構成するステップと、位置センサを医療デバイス内に取り付けるステップと、コイル内へ磁界を集中させて電流の流れを増大させるように構成されるように、高透磁率アンテナの少なくとも一部分を磁気式位置センサの外側に配置するステップと、を備える。
【0013】
本開示の上記その他の態様、特徴、詳細、実用性、及び、利点は、以下の説明及び特許請求の範囲を読み、添付の図面を検討すれば、明らかになるであろう。
【図面の簡単な説明】
【0014】
図1】位置センサを有する医療デバイスを使用して、データを生成及び表示画面上にデータを表示する医療用撮像システムの概略図である。
図2図1の医療デバイスの遠位部分の部分横断面図であって、磁気式位置センサ用の電界集中アンテナの一実施形態を示し、アンテナが位置センサに隣接して位置している。
図3図2の磁気式位置センサ及び電界集中アンテナの横断面図であって、位置センサの中央通路内に従来のコアの存在を示す。
図4図3の磁気式位置センサ及び電界集中アンテナの概略図であって、磁束線の存在及び誘導電流の流れを示す、。
図5A】センサ増幅器を備える磁気式位置センサの一実施形態の等角図である。
図5B】磁気式位置センサの一部分を覆う磁気式位置センサ材料の透磁率と比較するとより低い透磁率の材料に加えて、より低い透磁率の追加の材料片が磁気式位置センサの端部付近に位置する、磁気式位置センサ及び磁力線の別の実施形態の横断面図である。
図5C】センサ増幅器を備えるガイドワイヤ/圧力ワイヤの等角図である。
図5D図5Cのガイドワイヤ/圧力ワイヤ及びセンサ増幅器の部分横断側面図である。
図6A】磁気式位置センサ材料の透磁率と比較するとより低い透磁率の材料のセンサ増幅器が、磁気式位置センサの一部分を覆うことができる、磁気式位置センサ及び磁力線の別の実施形態の横断面図である。
図6B図6Aの磁気式位置センサの別の実施形態の横断面図である。
図7】磁気式位置センサに対する2つの電界集中アンテナの場所を示す、医療デバイスの遠位部分の部分横断面図である。
図8A】アンテナが位置センサを通って延びる弧状の薄い膜を含む、磁気式位置センサ用の電界集中アンテナの第2の実施形態のそれぞれ径方向及び軸方向の横断面図である。
図8B】アンテナが位置センサを通って延びる弧状の薄い膜を含む、磁気式位置センサ用の電界集中アンテナの第2の実施形態のそれぞれ径方向及び軸方向の横断面図である。
図9A】アンテナが位置センサから延びる細長い薄い膜を備える、磁気式位置センサ用の電界集中アンテナの第3の実施形態のそれぞれ径方向及び軸方向の横断面図である。
図9B】アンテナが位置センサから延びる細長い薄い膜を備える、磁気式位置センサ用の電界集中アンテナの第3の実施形態のそれぞれ径方向及び軸方向の横断面図である。
図10A】アンテナが位置センサに隣接して位置決めされた複数の細長いストリップを備える、磁気式位置センサ用の電界集中アンテナの第4の実施形態のそれぞれ径方向及び軸方向の横断面図である。
図10B】アンテナが位置センサに隣接して位置決めされた複数の細長いストリップを備える、磁気式位置センサ用の電界集中アンテナの第4の実施形態のそれぞれ径方向及び軸方向の横断面図である。
図11】アンテナが位置センサから遠隔に位置する、磁気式位置センサ用の電界集中アンテナの第5の実施形態の横断面図である。
【発明を実施するための形態】
【0015】
磁気式位置センサ用の電界集中アンテナのいくつかの実施形態を本明細書に開示する。概して、これらの電界集中アンテナは、医療用位置決めシステム、特に磁気式位置決めシステムとともに使用される位置センサの出力信号を増大させるために、医療デバイス内で使用される。一実施形態では、アンテナは、磁気式医療用位置決めシステムとともに使用される医療デバイス内で使用することができる高ゲイン誘導センサを作製するのに役立つ。本開示の様々な実施形態の詳細について、特に図を参照して以下に説明する。
【0016】
図1は、患者14の臓器のモデルに対するカテーテル12の位置を判定し、ならびに、このモデル及び関連情報を表示ユニット16上に生成、及び、表示する、医療用撮像システム10の概略図である。システム10は、増幅器20及び投光器22を備える移動撮像器18と、位置センサ26及び磁界生成器28を備える磁気式位置決めシステム(MPS)24と、を備える。患者14の診断及び治療を容易にするために、医療用撮像システム10によって生成されるモデルに関する電気生理学マップ情報及び心臓の機械的活性化データが、コンピュータ・ディスプレイ16上に表示される。本開示は、システム10がカテーテル12によって収集されたデータをより良好に処理することができるように、カテーテル12内に位置する位置センサの信号出力を増大させる方法について説明する。例えば、カテーテル12は、磁気式位置決めシステム24によって生成される磁界の存在によって電圧が誘導されるコイルを備え得る。本開示の電界集中アンテナの使用により、コイルが磁界と相互作用し、それによって電流を生成する能力が増大する。
【0017】
移動撮像器18は、患者14が動作台32上に横たわっている間に関心領域30の画像を取得するデバイスである。増幅器20及び投光器22は、移動機構36を利用して位置決めされたCアーム34上に取り付けられる。一実施形態において、移動撮像器18は、患者14の心臓の2次元(2D)画像を生成する蛍光又はX線タイプの撮像システムを備える。
【0018】
磁気式位置決めシステム24は、複数の磁界生成器28及びカテーテル12を備え、カテーテル12の遠位端に位置センサ26が取り付けられ、カテーテル12の近位端にハンドル38が接続される。MPS24は、位置センサ26の出力に応じて、磁界生成器28によって生成される磁気座標系内でカテーテル12の遠位部分の位置を判定する。一実施形態では、MPS24は、St.Jude Medical,Inc.によって市販されている、患者14の心臓の3次元(3D)モデルを同時に生成するMediGuide gMPS磁気式位置決めシステムを構成する。
【0019】
Cアーム34は、患者14の上に増幅器20を位置決めし、動作台32の下に投光器22を位置決めする。投光器22は、撮像場F、例えば放射場を生成し、増幅器20はこれを受け取る。撮像場Fは、関心領域30の2D画像をディスプレイ16上に生成する。移動撮像器18の増幅器20及び投光器22は、Cアーム34によって接続され、撮像軸Aに沿って患者14の両側に配置される。撮像軸Aは、記載する実施形態で図1を参照すると垂直に延びている。移動機構36は、回転軸Aの周りでCアーム34を回転させる。回転軸Aは、記載する実施形態で図1を参照すると水平に延びている。移動機構36又は追加の移動機構を使用して、Cアーム34を他の向きに動かすこともできる。例えば、Cアーム34は、図1の平面内へ延びる軸(図示せず)の周りで回転させることができ、それにより撮像軸Aは、図1の平面内で回転可能である。従って、移動撮像器18は、x軸X、y軸Y、及びz軸Zを有する3D光学座標系と関連付けられる。
【0020】
磁気式位置決めシステム(MPS)24は、適切な有線及び/又は無線技術の使用により、カテーテル12及び磁界生成器28が、システム10と相互作用することを可能になるように位置決めされる。カテーテル12は、位置センサ26が関心領域30に位置するように、患者14の血管構造内へ挿入される。磁界生成器28は、撮像場Fと同一の広がりを有する磁界Fを関心領域30内に生成することが可能になるように、増幅器20に取り付けられる。MPS24は、磁界F内の位置センサ26の存在を検出することが可能である。一実施形態では、位置センサ26は、内容全体があらゆる目的で全体として参照により本明細書に組み込まれている、Strommerらの米国特許第6,233,476号に記載されているように、3つの相互に直交するコイルを含むことができる。従って、磁気式位置決めシステム24は、x軸X、y軸Y、及び、z軸Zを有する3D磁気座標系と関連付けられる。
【0021】
3D光学座標系、及び、3D磁気座標系は互いに独立しており、すなわち異なる尺度、原点、及び、向きを有する。移動機構36を介したCアーム34の動作により、撮像場F及び磁界Fがそれぞれの座標系内で関心領域30に対して動くことが可能になる。しかし、磁界生成器28は、移動撮像器18及びMPS24と関連付けられた座標系を位置合わせするために、増幅器20上に位置する。従って、各座標系内で生成される画像を単一の画像に組み合わせて、表示ユニット16上に示すことができる。移動撮像器18及びMPS24は、内容全体があらゆる目的で全体として参照により本明細書に組み込まれている、Strommerらの米国特許出願公開第2008/0183071号に記載されているように、協働して機能することができる。
【0022】
表示ユニット16は、増幅器20と結合される。投光器22は放射を伝送し、この放射は患者14を通過する。この放射は、関心領域30の解剖学的組織の表現として、増幅器20によって検出される。カテーテル12の画像を含めて、関心領域30を表す画像が、表示ユニット16上に生成される。Cアーム34は、関心領域30の複数の2D画像を得るように動かすことができ、これらの2D画像はそれぞれ、2D画像として表示ユニット16上に示すことができる。
【0023】
表示ユニット16は、MPS24に結合される。磁界生成器28は、3D磁気座標系の軸に対応する相互に直交する磁界を伝送する。位置センサ26は、磁界生成器28によって生成される磁界を検出する。検出された信号は、例えば当技術分野では知られているビオ・サバールの法則によって、カテーテル12の遠位端の位置及び向きに関係付けられる。従って、カテーテル12の遠位端の厳密な位置及び場所がMPS24によって得られ、関心領域30の2D画像とともに表示ユニット16に示すことができる。さらに、内容全体があらゆる目的で全体として参照により本明細書に組み込まれている、Strommerらの米国特許第7,386,339号に記載されているように、位置センサ26からのデータを使用して、関心領域30の3Dモデルを生成することができる。
【0024】
センサを形成するコイル巻線に隣接して、それに密接して、その下に、その隣に、又は、それに関連して他の位置に、高透磁性材料を配置することによって、位置センサ26の電圧出力を増大させて、位置センサとの磁界相互作用を増大させる。位置センサの電圧出力を増大させることで、位置センサによって生成される信号を増大させる。この信号は、MPS24及びシステム10によって解釈される。信号強度を改善することで、MPS24の信号対雑音比を増大させることなどによって、投光器22及び増幅器20によって表示画面16上に生成される解剖学的組織に対するカテーテル12(すなわち、位置センサ26)の配置の正確さを改善することができる。さらに、システム10内で使用されるハードウェアは、より大きい増幅レベル及び磁気伝送周波数を使用することができる。これは、磁気送信器に対する環境の影響を下げ、それにより位置誤差を小さくするために、有益である。また、信号強度を改善することで、同じ信号出力を維持しながら、センサの設計に対する形状因子をより小さくすることが可能になる。
【0025】
図2は、図1のアブレーション用カテーテル12の遠位部分の部分横断面図であって、位置センサ26及び電界集中アンテナ40を示す。カテーテル12は、さらに、シース42と、可撓性の先端44と、先端キャップ46と、電極48A、48B、48Cと、流体チューブ50と、フレックス回路52と、プラグ54と、ばねコイル56と、熱電対58と、を備える。
【0026】
チューブ50は、シース42内に同心円状に配置され、接着剤などによって取り付けられる。チューブ50は、PEEKチューブであってもよいし、又は他の適した非導電性の材料から作られてもよい。プラグ54は、チューブ50をシース42内で中心に位置決めされた状態で維持し、可撓性の先端44とシース42の接合を容易にするように、チューブ50の周りに位置決めされる。例えば、可撓性の先端44は、フランジでプラグ54に冶金接合され得る。可撓性の先端44は切れ目を含み、それにより可撓性の先端44が曲がることを可能にする。ばねコイル56は、先端キャップ46と、チューブ50を取り囲むプラグ54との間で支持され、シース42に構造上の完全性を提供し、静止状態にありかつ可撓性の先端44に力がかかっていないときは、可撓性の先端44を所定の構成で弾性的に維持する。図示の実施形態では、所定の静止構成では、可撓性の先端44の長手方向軸が、カテーテル12の中心軸と一致する直線をたどるように向けられる。
【0027】
シース42上に帯状電極48A及び48Bが設けられ、診断の目的などで使用し得る。シース42上には帯状電極48Cも設けられ、組織を切除するために使用し得る。電極48A、48B、48Cのそれぞれを、ハンドル38などのカテーテル12の近位部分に接続し、最終的にMPS24及びシステム10と接続するために、導体ワイヤ60A、60B、60Cが設けられる。先端キャップ46内に熱電対58が配置され、接着剤によって支持され得る。導体ワイヤ61が、熱電対58を、ハンドル38などのカテーテル12の近位部分に接続する。
【0028】
位置センサ26は、シース42内でチューブ50に外接する。位置センサ26は、フレックス回路52に結合される。フレックス回路52は、ハンドル38などのカテーテル12の近位部分に接続する導体62を備える。一実施形態では、位置センサ26は、磁界を受容する巻線状導体コイルを備える。アンテナ40は、(アンテナ40のない構成とは対照的に)より大量の磁束が位置センサ26と相互作用することを容易にするために、位置センサ26に密接して位置決めされる。
【0029】
動作の際、カテーテル12は、医療処置を実行することが望ましい領域(例えば、切除すべき組織付近)に可撓性の先端44が位置するように、患者の血管構造内へ挿入される。次いで、先端キャップ46、可撓性の先端44、及び/又は、帯状電極48A、48B、48Cの1つもしくは複数を通って、アブレーション用エネルギー(例えば、RFエネルギー)を送達することができる。可撓性の先端44は、組織を刺したりその他の方法で損傷したりするリスクを低減させながら、例えば帯状電極48Cが組織に接触することを可能にするように、曲がることが可能である。上述したように、帯状電極48A、48B、48Cは、患者から生理学的なデータを集めるために使用し得る。
【0030】
チューブ50は、組織の温度を制御してその部位から不純物を除去するために、アブレーション部位へ灌注流体が運ばれることを可能にする。例えば、外部貯蔵タンクからの灌注流体をハンドル38に接続することができ、それによって流体がチューブ50内へ導入され、例えば、汲み上げられる。チューブ50は、流体がチューブ50から逃げることを可能にするように、径方向ポート64を備える(又は、それを備える遠位構成要素に取り付けられる)。流体は、先端キャップ46内の先端ポート66及び上述した切れ目によって形成される可撓性の先端44内のポート68において、カテーテル12から逃げることが可能である。熱電対58により、システム10の操作者は、アブレーション部位又はその付近の温度を監視することが可能になる。
【0031】
位置センサ26は、患者内に、例えば帯状電極48Cを正確に配置することを可能にする。アンテナ40は、場所データの正確性を増大させるために、位置センサ26によって生成される信号を増大させる。以下で論じるように、アンテナ40は、位置センサ26のコイル巻線内で生成される電流を増大させるために、磁束を位置センサ26内へ通し、又は、集中させるように位置センサ26に密接して配置された1塊の高透磁率材料を備える。シース42、可撓性の先端44、流体チューブ50、ばねコイル56、及び、カテーテル12の他の構成要素の構造に関する追加の詳細は、例えば、内容全体があらゆる目的で全体として参照により本明細書に組み込まれている、de la Ramaらの米国特許出願公開第2010/0152731号、現在の米国特許第8,979,837号、及び、米国特許出願公開第2011/0313417号に見ることができる。位置センサ26、フレックス回路52、及び、他の構成要素の構造に関する追加の詳細は、内容全体があらゆる目的で全体として参照により本明細書に組み込まれている、Selaらの米国特許出願公開第2014/0200556号に見ることができる。
【0032】
図3は、図2の磁気式位置センサ26及び電界集中アンテナ40の横断面図である。図3は、中心線CLの軸に沿って同心円状に配置された流体チューブ50を概略的に示し、位置センサ26及びアンテナ40は、チューブ50に外接するように位置決めされている。ただし、他の図に示すように、センサ26及びアンテナ40は、中心線CLと軸方向に位置合わせする必要はない。図示の実施形態では、位置センサ26は、内部中央通路を有するコイル巻線(図4のコイル巻線74参照)を備え、内部中央通路内にはコア70が配置され、内部中央通路内を通ってチューブ50が延びる。位置センサ26のコイル巻線74は、中心線CLの周りに螺旋状に巻かれたある長さの銅などの導電ワイヤから形成され得る。一実施形態では、ワイヤ(図4のワイヤ76A、76B参照)の端部は、カテーテル12の近位部分の方へ延びて、フレキシブル回路52(図2)に接合される。図4に示すワイヤの引き回しに加えて、位置センサ26の配線は、位置センサ26上の異なる場所から延びることができ、カテーテル12の他の場所まで延びるように引き回し得る。コイル巻線は、ボビン又は他の支持構造(例えば、図4の構造72参照)によって支持することができる。他の実施形態では、コイル巻線は、シース42内に埋め込まれ得る。
【0033】
図3を引き続き参照すると、図示の実施形態では、位置センサ26はコア70を備え、コア70を使用して、位置センサ26のコイル巻線を通過する磁束を増大させることができる。コア70は、内容全体があらゆる目的で全体として参照により本明細書に組み込まれている、前述のSobeの米国特許第7,197,354号に記載されているものなど、高透磁率材料から構築された従来の環状コアを備える。図示の実施形態では、コア70は、位置センサ26の軸方向外側の限界を越えて延びておらず、これは製造中にコア70の周りにワイヤを巻く際に有用となることができる。他の実施形態では、コア70は、位置センサ26の軸方向外側の限界を越えて延びることができる。従って、位置センサ26の一部を含むコイル巻線74の内径は、コア70の使用に対応するのに十分に大きくする必要がある。しかし、他の実施形態では、コア70は、位置センサ26より大きい直径を有し得る。さらに他の実施形態では、位置センサ26は、コア70を備えない。
【0034】
アンテナ40は、内部中央通路を有する環状体を備え、内部中央通路を通ってチューブ50が延びる。アンテナ40は、位置センサ26に隣接して位置決めされており、位置センサ26に接触しても、遠隔テザー(例えば、図11の導体102参照)を使用することなく短い距離(例えば、位置センサ26の幅)だけ位置センサ26から離間されてもよい。アンテナ40は、磁界を受けると位置センサ26を通過する磁束線を生成し、それによってアンテナ40が存在しない場合に位置センサ26に接触する量より大量の磁界を位置センサ26に接触させるように構成される。
【0035】
図4は、図3の磁気式位置センサ26及び電界集中アンテナ40の概略図であって、磁束線MF及びMFの存在ならびに誘導電流の流れCFを示す。位置センサ26は、コア70又はボビンなどの構造72を備え得る。構造72の周りには、コイル巻線74がリードワイヤ76A及びリードワイヤ76B間に螺旋状に巻かれる。リードワイヤ76A、76Bは、コイル巻線74から延びて、フレックス回路52(図2)に接合される。図1の磁界Fなどの磁界内に配置される結果として、コイル巻線74によって磁束線MFが形成され、それによりコイル巻線74内に電流の流れCFが誘導される。リードワイヤ76A及びリードワイヤ76B間でコイル巻線74内に誘導される電圧Vは、以下の等式(1)に定義される。ここで、μ=透磁率(コア材料)、N=総巻数、A=コアの断面積(L=コアの長さ)、及びB=磁界強度(P−P又はRMSの駆動コイルの出力)である。
【0036】
【数1】
【0037】
等式(1)から分かるように、透磁率μが増大する場合、又は面積Aが増大する場合、誘導電圧Vも増大する。しかし、カテーテル12内の空間の制限、及び、カテーテル12の全体的な外径サイズの制限のため、コアの面積Aを増大させることは望ましくない。カテーテルの可撓性に必要以上に影響を及ぼすことなくコイルの巻数Nを簡単に増大させることが、常に可能であるとは限らない。例えば、軸方向の長さに巻線を追加することでセンサはより長くなり、径方向に巻線を追加することでセンサはより太くなる。これらはどちらも、カテーテルを望ましくなく堅くする可能性がある。
【0038】
位置センサ26が受容するのと同じ磁界を受ける結果、アンテナ40によって磁束線MFが形成される。磁束線MFの一部は、位置センサ26を通過する。等式(1)を参照すると、アンテナ40は、コアの透磁率μを増大させ、又はコアに影響する磁界強度Bを増大させると見なすことができる。アンテナ40の存在の結果、電圧V又は面積Aなどの位置センサ26の様々な設計パラメータを変更することができる。例えば、適切にサイズ設定されたアンテナ40を使用することによって、信号強度又はVを低減させることなく、コイル巻線74のサイズ(例えば、直径D、下記数2)を低減させることができる。加えて、アンテナ40は、また、例えば、より安価な材料から、又はフレックス回路52(図2に見ることができる)への接続方法に基づいて、位置センサ26の巻線を製作することを可能にしながら、アンテナ40の特有の構成により所望の信号強度を生成することを可能にすることができる。また、アンテナ40は、電圧Vをただ増大させるために使用される1塊の高透磁率材料として単に構成ることができ、電圧Vを増大させることで、磁気式位置決めシステム24(図1参照)で受容される位置センサ26の信号を増大させる。カテーテル12内に複数のアンテナを備えることによって、電圧Vをさらに増大させることができる。
【0039】
【数2】
【0040】
センサに増幅を加える別の方法は、高い透磁率の材料及び/又は構成要素を、センサの周りに追加する(例えば、センサの一部分に沿ってアンテナ又は可撓性もしくは剛性センサ増幅器を追加する)こと、又はセンサの端部に追加する(例えば、センサに接続されもしくは隣接する追加の材料片を追加する)ことである。高透磁率材料のセンサ増幅器によってセンサを部分的又は完全に露出させたままにすることで、センサが追加の材料によって遮蔽されることを防止する。センサ増幅器がセンサを覆うことなくセンサの上又はその付近に位置する場合、長さが長ければ長いほど、又は外径(OD)が大きければ大きいほど、材料の幾何形状の引っ張りの到達範囲が延びる。いくつかの実施形態では、より大きいODの材料は、センサのコアの透磁率より低い透磁率を有することができ、その結果、より大きい構成要素(例えば、センサ増幅器)に磁束が到達するとき、センサコアは、外側の構成要素から磁界を引き込むことができる。
【0041】
図5Aは、センサ増幅器を含む磁気式位置センサの一実施形態の等角図である。センサ増幅器41は、可撓性部分43と、磁気式位置センサ材料の透磁率と比較するとより低い透磁率の材料の剛性部分45と、を備えることができる。剛性部分45は、磁気式位置センサ47を備えることができる。可撓性部分43は、互いに接続された複数のスプライン49を備えることができる。複数のスプライン49は、2つ以上の場所で互いに接続することができる。例えば、複数のスプライン49は、可撓性部分43の両側に2つの接続を有することができ、各スプライン間で交互になることができる(例えば、スプライン49及び49が90°及び270°で接続され、スプライン49及び49が0°及び180°で接続される)。複数のスプライン49は、任意の適した場所で接続することができる。複数のスプライン49は、複数のスプライン49を分離する複数の開口51を有することができる。複数の開口51は、可撓性部分43が曲がって様々な湾曲形状を形成することを可能にすることができる。複数の開口51のサイズは、湾曲の形状を左右することができる(例えば、より小さい開口は湾曲を制限し、より大きい開口はより大きい湾曲を可能にする)。複数の開口51は、任意の適した形状又は寸法を有することができる。
【0042】
図5Aのセンサ増幅器41の剛性部分45は、(例えば、図5Aに示すように複数のリングがある場合)1つ又は複数のリング53と、1つ又は複数のリング53を互いから分離し、又は1つのリングをセンサ増幅器41の隣接部分から分離する、複数の開口55とを含むことができる。剛性部分45内の複数の開口55は、例えば、可撓性部分43と比較するとより大きい幅を有することができる。複数の開口55のサイズは、任意の適したサイズとすることができる。剛性部分45内の複数の開口55は、任意の適したサイズ又は形状を有することができる。
【0043】
剛性部分45は、さらに、各端部に固体チューブ57を備えることができる。固体チューブ57は、長さ59とすることができる。磁気式位置センサ47は、固体チューブ57の内端61間に嵌るのに十分に短いことを含めて、剛性部分45内に嵌る任意の適した長さとすることができる。別の実施形態では、磁気式位置センサ47は、固体チューブ57の内端61を越えて延びるのに十分に長いが、剛性部分45の長さを越えて延びないようにすることができる。剛性部分45は、2つ以上の磁気式位置センサ47を含むことができる。磁気式位置センサ47は、剛性部分45の中心線AAに沿って中心に位置決めすることができる。他の実施形態では、磁気式位置センサ47は、線AAに対して中心に位置決めされていない線に沿って位置することができる。
【0044】
図5Bは、磁気式位置センサ及び磁力線の別の実施形態の横断面図であり、磁気式位置センサの一部分を覆う磁気式位置センサ材料の透磁率と比較するとより低い透磁率の材料に加えて、より低い透磁率を有する追加の材料片が、磁気式位置センサの端部付近に位置する。この実施形態では、カテーテル12´´はセンサ増幅器42´を備えることができる。センサ増幅器42´は、各端部に位置する固体チューブ63と、4つの開口67によって分離された3つのリング65と、を備える。磁気式位置センサ47´は、中心管腔69を取り囲み、線BBによって表されるカテーテルの遠位部分の長手方向軸に対して中心に位置決めされる。上述したように、他の実施形態では、磁気式位置センサ47´は、線BBによって表される長手方向軸とは異なる軸と位置合わせすることもできる。図5Cは、センサ増幅器を含むガイドワイヤの等角図である。ガイドワイヤ71は、内容全体があらゆる目的で全体として参照により本明細書に組み込まれている、Samuelssonらの米国特許第9,220,461号により詳細に記載されている、及び/又は、St.Jude Medical,Inc.によって販売されているPressureWire(商標)Aeris(商標)ガイドワイヤなど、血圧などを検出するように設計されたものなどの1つ又は複数の診断センサを含むことができる。この実施形態では、ガイドワイヤ71は、センサ増幅器41´´を備えることができる。センサ増幅器41´´は、各端部に位置する固体チューブ57´及び4つの開口75によって分離された5つのリング73と、を含むことができる剛性部分45´を含むことができる。センサ増幅器は、磁気センサ47´´が開口75間の磁界を測定する能力を最適化するために、5つ以上の開口又は3つ以下の開口を含むこともできる。センサ増幅器41´´は、センサ増幅器41´´の4つの開口の75の領域内で磁気センサ47´´を取り囲むことができる。ガイドワイヤ71は、遠位端79に玉状の先端77を有することができる。玉状の先端77と剛性部分45´との間で、ガイドワイヤ71は、可撓性を有することができる。剛性部分45´は、磁気センサ47´´の剛性の形状を維持するために、可撓性が制限されている。ガイドワイヤ71は、さらに、ガイドワイヤが磁気センサ47´´に対して遠位及び近位で屈曲するのを防止しないように、剛性部分45´に隣接する可撓性部分81を有することができる。さらに、少なくとも一実施形態では、センサ増幅器41´´は、図5Aに示す増幅器41に類似したものとしてもよい。従って、センサ増幅器41´´は、少なくとも部分的にガイドワイヤ71の可撓性部分81内に位置し得るセンサ増幅器41´´の可撓性部分(例えば、図5Aの可撓性部分43参照)を備える。
【0045】
図5Dは、図5Cのガイドワイヤ及びセンサ増幅器の部分横断側面図である。ガイドワイヤ71は、センサ増幅器41´´を備えることができ、センサ増幅器41´´は、360°の可撓性範囲を提供するように、増幅器の長手方向軸の周りで90°で交互になる複数の間隙Gを有する。例えば、センサ増幅器41´´内に間隙G−1、G−2、G−3、G−4が位置することができる。所望の程度の可撓性を提供するために、任意の適した数nの間隙G(例えば、G−n)が位置することができる。複数の間隙Gを交互にすることは、異なる程度の可撓性を提供する様々なパターンで行うことができる。複数の間隙Gは、リング73の1つもしくは複数に位置することができ、又は、剛性部分45´の各端部で固体チューブ57´内に位置することができる。複数の間隙Gは、レーザ又は間隙を設けるための任意の他の適した方法によって作られた切れ目とすることができる。
【0046】
図6Aは、磁気式位置センサ及び磁力線の別の実施形態の横断面図であり、磁気式位置センサ材料の透磁率と比較するとより低い透磁率の材料のセンサ増幅器が、磁気式位置センサの一部分を覆うことができる。磁気式位置センサ85は、センサ増幅器87を備えることができ、センサ増幅器87は、磁気式位置センサ85の長さ91より短い長さ89とすることができる。従って、磁気式位置センサ85の端部は、センサ増幅器87によって覆われていない。磁界MFの流れ方向を、矢印93によって示す。この構成は、磁界MFの線を磁気式位置センサ85内へ引き込むことを可能にすることができる。この構成は、より低い透磁率の材料のセンサ増幅器87が存在しない場合に位置センサ85に接触する量より大量の磁界MFを磁気式位置センサ85に接触させることができる。センサ増幅器87は、固体の円筒形チューブとすることができる。
【0047】
他の実施形態では、センサ増幅器87に類似しているセンサ増幅器では、開口又は間隙を形成する除去された1つ又は複数の部分を有することができる。センサ増幅器から除去される1つ又は複数の部分は、磁界が磁気式位置センサ内へ「漏れる」ことを可能にすることができる。別の実施形態では、複数のリング(例えば、センサ増幅器の短い区間)が、磁気式位置センサの長さに沿って様々な場所で磁気式位置センサを取り囲むことができる。さらに別の実施形態では、センサ増幅器は、可撓性を有することができる。可撓性のセンサ増幅器は、編組材料もしくはメッシュ又は類似の構成とすることができる。可撓性のセンサ増幅器は、さらに、ミューメタル(以下でより詳細に説明する)又は類似の材料から作ることができる。
【0048】
図6Bは、図6Aの磁気式位置センサの別の実施形態の横断面図である。この実施形態では、磁気式位置センサ85は、センサ増幅器87及び追加の材料片95を備えることができる。追加の材料片95は、磁気式位置センサ材料の透磁率と比較するとより低い透磁率を有する材料とすることができ、磁気式位置センサ85の端部近傍に位置することができる。追加の材料片95は、磁気式位置センサ85の中心線CCの長手方向軸を横断して配置することができる。この構成により、一部の磁界MFの線を磁気式位置センサ85内へ偏向させることができる。磁界の流れ方向を、矢印97によって示す。この例では、2つの追加の材料片95が存在するが、他の実施形態では、これらの追加の材料片がより多く存在することもできる。追加の材料片95の長さ99は、追加の材料片95が、磁気式位置センサ85と比較すると医療デバイスの外部により近接する部分を有するような長さである。
【0049】
図7は、磁気式位置センサに対する2つの電界集中アンテナの場所を示す医療デバイスの遠位部分の部分横断面図である。2つの電界集中アンテナは、アブレーション用カテーテル12´の遠位部分に位置することができ、磁気式位置センサ26に対する電界集中アンテナ77及び電界集中アンテナ78の場所を示す。図示の実施形態では、アンテナ78は、軸方向にアンテナ77とは反対側で位置センサ26に隣接して配置される。他の実施形態では、アンテナ77、78は、位置センサ26の同じ側に位置決めすることができる。アンテナ77、78は、位置センサ26に接触することができ、位置センサ26に隣接することができ、又は、位置センサ26から離間することができる。アンテナ77、78は、図2〜4を参照して説明したアンテナ40と同様に構成することができる。例えば、アンテナ77、78は、それぞれ、コイル巻線74(図4参照)に密接して位置決めされた円筒体で構成され得る。しかし、図7の図示の実施形態では、アンテナ77、78は、位置センサ26の外径より大きい外径を有しており、それによって位置センサ内に配置するためにより小さくしなければならない従来のコアとは異なる。円筒形の形状は、チューブ50、フレックス回路52(図2参照)、又は、リードワイヤなどのカテーテル12´の他の構成要素が通過することを可能にする。
【0050】
本明細書に記載するアンテナは、任意の材料から作ることができ、透磁率がより高い材料が適している。磁力線は、高い透磁率を有する材料を、優先的に通って進む。様々な実施形態では、ミューメタル、非晶質金属合金(金属ガラス合金としても知られている)、又は、99.95%の純鉄を使用してもよい。1つの特定の種類のミューメタル及びMetglas(登録商標)の非晶質合金(METGLASは、サウス・カロライナ州コンウェーのMetglas,Inc.の登録商標である)はどちらも、本開示のアンテナとの使用に、特に適している。本明細書では、「Metglas」という用語は、METGLASという商標を有するか否か、及び、Metglas,Inc.又はその関連する実体の1つによって作製されたか否かにかかわらず、急速凝固プロセス(例えば、1秒につき華氏約百万度の冷却)を使用して作製される薄い非晶質金属合金(金属ガラス合金としても知られている)を意味する。本明細書に開示するアンテナ内で使用されるMetglasの構成要素は、概して厚さ15〜75ミクロン(すなわち、0.015〜0.075mm)の様々な幅の薄いリボン/シートであるが、より薄い又はより厚いリボン/シートを使用することもできる。1に等しい透磁率(すなわち、μ=1)を有する空気と比較すると、ミューメタルは約50,000の相対透磁率を有し、99.95%の純鉄は約200,000の相対透磁率を有し、Metglasは約1,000,000の相対透磁率を有することが分かった。
【0051】
本明細書では、「透磁率」とは、そうでないと示されない限り、材料又は要素がそれ自体の中で磁界の形成を支持する能力を指す。材料は、印加される磁界に応答して磁化度を得る。本明細書では、「高い透磁率」を有する材料は、そうでないと示されない限り、マルテンサイト系ステンレス鋼の相対透磁率を上回る相対透磁率を有する任意の材料を意味する。
【0052】
アンテナ40、77、78の特有の形状は、望ましい設計要件を実現するために変更することができる。直径D及び長さLを有する丸いアンテナ形状の場合、実験により、D/L比が小さいときに高透磁率アンテナの形状が最適化されることが示されている。そのような形状を有するアンテナは、典型的には、長く細い。
【0053】
図8A図8Bは、それぞれ、電界集中アンテナ80及び磁気式位置センサ82の径方向及び軸方向の横断面図である。位置センサ82は、図2図3を参照して論じた位置センサ26に類似しているが、コアを有していない。アンテナ80は、位置センサ82を通って軸方向に延びる弧状の薄い膜、シート、又はリボンを備える。従来のセンサコアと比較すると、1塊のアンテナ80が、位置センサ82の内部から変位し、位置センサ82の境界の外側に位置する。位置センサ82の内側部分からアンテナ80を取り除くことで、信号強度を犠牲にすることなく位置センサ82を小さくすることが可能になり、又は、センサ内に他の構成要素を配置することが可能になり、それにより医療デバイスの設計上の柔軟性を高めることができる。
【0054】
一実施形態では、アンテナ80の径方向の厚さが、アンテナ80の円周方向の幅又は軸方向の長さより数桁小さいことから、アンテナ80は薄い。例えば、アンテナ80の径方向の厚さは、約15ミクロン(すなわち15μm、すなわち0.015mm)以下とすることができる。図示の実施形態では、アンテナ80の軸方向の長さは、位置センサ82の軸方向の長さよりも長い。従って、アンテナ80は、図8A及び図8Bに示すように配置されるとき、必ず位置センサ82から延びる。しかし、他の実施形態では、アンテナ80は、位置センサ82に等しい長さ又はそれより短くすることができるが、位置センサ82から軸方向に延びるように位置決めすることができる(例えば、アンテナ84が磁気式位置センサ86と同じ長さである図9A図9Bに示す構成参照)。図8A図8Bの図示の実施形態では、アンテナ80は、中空の円筒形シェルの2分の1(すなわち、半円筒形シェル又は半円筒)を構成するが、他のほぼ円筒形(すなわち、完全な円形の横断面より小さい横断面を有する)又は弧状の形状を使用することもできる。また、アンテナは、図9A図9Bに示すように、平坦とすることができる(すなわち、弧状の横断面ではなく正方形又は長方形の横断面を有する)。
【0055】
図9A図9Bは、それぞれ、電界集中アンテナ84及び磁気式位置センサ86の径方向及び軸方向の横断面図である。アンテナ84は、位置センサ86から軸方向に延びる平坦な薄い膜を含む。アンテナ84は、図8A図8Bのアンテナ80に類似しているが、アンテナ84は平坦であり、長さが位置センサ86に軸方向に等しい。アンテナ84は、部分的に位置センサ86内に位置決めされ、部分的に位置センサ86外に位置決めされる。アンテナ84は、さらに、位置センサ86の遠位又は近位で完全に位置センサ外に配置することもできる。アンテナ84は、本開示の電界集中アンテナの別の実施形態を示し、アンテナは、位置センサ86の全体的な直径又は位置センサ86の内部の内容に対する設計上の選択肢を増大させるために、位置センサ86の内部から少なくとも部分的に移動させることができる(例えば、アンテナ84の少なくとも一部分がセンサ86の内部から延びる)。他の実施形態では、薄膜アンテナが、あらゆる遠位のループ領域を含めて、医療デバイス内で使用される細長い可撓性部材の長さの大部分に沿って延びるように構成することができる。
【0056】
図10A図10Bは、それぞれ、電界集中アンテナ88及び磁気式位置センサ90の径方向及び軸方向の横断面図である。図示の実施形態では、アンテナ88は、位置センサ90に隣接して位置決めされた複数の細長いストリップ92A〜92Cを備える。上記で論じたように、本開示の電界集中アンテナは、小さいD/L比を有するような長く細い形状を有することが望ましい。細長いストリップ92A〜92Cは丸くないが、軸方向の長さに対して薄い。様々な実施形態では、ストリップ92A〜92Cの特有の横断面形状は異なることができ、異なる厚さを有することができる。例えば、ストリップ92A〜92Cは、薄い膜、シート、又はリボンの区分を含み得る。細長いストリップ92A〜92Cは、図10Bにおいて、12時、9時、及び6時の位置に3角形のパターンで配置された状態で示す。しかし、細長いストリップ92A〜92Cは、本明細書に記載する位置センサ90との磁界の境界面に良い影響を与えるように、位置センサ90に隣接して任意の場所に位置決めすることができる。本明細書に記載する細長いストリップ92A〜92C、及び磁界強化アンテナのいずれかは、接着剤などの任意の適した手段を使用して、医療デバイス内で定位置に保持されることができる。
【0057】
図10A図10Bの実施形態では、厚さ対長さ比の小さい複数のアンテナが、位置センサ90の内部の外側に設けられている。従って、複数の小塊のアンテナの影響により、磁界との位置センサ90の境界面を増大させるという累進的な影響を与えることができる。細長いストリップ92A〜92Cは、医療デバイスにおいて位置センサに密接している任意の利用可能な空間内に電界集中アンテナが位置することを可能にすることによって、位置センサ90に対する設計上の選択肢をさらに改善する。従って、灌注チューブ、リードワイヤ、ガイドワイヤなどの他の構成要素は、コアからの干渉なく位置決めすることができ、電界集中アンテナは、利用可能な空間内に嵌ることができる。
【0058】
さらに別の実施形態では、図11に示すように、アンテナ40を位置センサ26に遠隔でつなぐことによって、位置センサ26の場所を、場所データを提供するように構成された場所から離すことができる。
【0059】
図11は、磁気式位置センサ96用の電界集中アンテナ94の横断面図であり、アンテナ94は、カテーテル100のシース98内で位置センサ96から遠隔に位置する。図11の実施形態では、電界集中アンテナ94は、導体102を介して位置センサ96に遠隔でつながれる。位置センサ96及び導体102は、シールド104内に配置される。位置センサ96は、シールド104内の開口108を通過するワイヤ106を介して接地される。シース98及びカテーテル100は、図2のシース42及びカテーテル12に類似し得る。同様に、位置センサ96は、位置センサ26又は任意の従来の磁気式位置センサに類似して構築することができる。
【0060】
アンテナ94は、カテーテル100内で、その場所について正確に知ることが望ましい場所に位置決めされる。図示のように、アンテナ94は、先端110に近接して位置決めされるが、診断用電極、切除用電極、又は任意の他の動作要素などの他の要素に近接して位置決めすることもできる。従来、位置センサは、位置センサが配置された磁界とどこで相互作用するかに基づいて、フィードバックを提供する。従って、正確な場所について知ることが望ましい動作要素に近接して位置センサを配置することが従来から望ましい。例えば、処置が実行されるべき解剖学的組織のモデル又は画像に対する表示画面16(図1に示す)上の動作要素の正確な場所について知ることが望ましい。
【0061】
図11の実施形態では、位置センサ96は、カテーテル100内の特有の場所に関わらず、シース98内で空間が利用可能な任意の場所に配置することができる。アンテナ94は、医療用位置決めシステム内のその場所について知ることが望ましい場所に配置される。アンテナ94は、その場所における磁界と相互作用し、それによって擬似位置信号を生成し、この擬似位置信号が導体102によって位置センサ96へ中継され、位置センサ96は実際の信号を生成し、システム10(図1参照)へ渡すことができる。導体102は、Metglas又はほぼ純鉄などの任意の適した高透磁率材料から製作することができる。シールド104は、位置センサ96内の磁気ノイズを低減させるように機能し、従って、位置センサ96との直接係合から磁力線を引き離すように、高透磁率材料から製作することができる。シールド104は、様々な形状を有することができる。図示の実施形態では、シールド104は、位置センサ96に類似している形状のセンサ部分104Aと、導体102に類似している形状の導体部分104Bとを備える。従って、シールド104は、カテーテル100内の空間の消費を最小にするために、遮蔽すべき要素に近接して位置決めされる。しかし、シールド104は、より容易な製作を促進するためにより簡単な円筒形の設計を有することができるが、これはより多くの空間を占める。上述したように、シールド104は、さらに、接地ワイヤ106を備える。別の方法として、接地106を省略してもよいし、開口108が設けられてもよい。他の理由においても、位置センサ96との外部通信を可能にするために、接地106及び開口108を設けることができる。
【0062】
いくつかの実施形態について、ある程度の具体性を伴って上記で説明したが、当業者であれば、本開示の精神から逸脱することなく、開示する実施形態に多数の変更を加えることができる。上記の説明内に含まれ、又は、添付の図面内に示される全ての事柄は、限定ではなく例示のみを目的とすると解釈されるものとする。本教示を逸脱することなく、詳細又は構造に変更を加えることができる。上記の説明及び以下の特許請求の範囲は、そのような修正形態及び変形形態をすべて包含するものとする。
【0063】
様々な装置、システム、及び方法の様々な実施形態について、本明細書に説明した。多数の具体的な詳細は、本明細書に説明しかつ添付の図面に示す実施形態の全体的な構造、機能、製造、及び使用に関する包括的な理解を提供するために記載されている。しかし、これらの実施形態は、そのような具体的な詳細がなくても実行することができることが、当業者には理解される。他の例では、本明細書に説明する実施形態を曖昧にしないために、よく知られている動作、構成要素、及び要素については詳細に説明されていない。本明細書に説明及び図示する実施形態は、非限定的な例であることが、当業者には理解されよう。従って、本明細書に開示する具体的な構造上及び機能上の詳細は代表例であり、実施形態の範囲を必ずしも限定するものではないことが理解されよう。実施形態の範囲は、添付の特許請求の範囲によってのみ定義される。
【0064】
本明細書全体にわたって、「様々な実施形態」、「いくつかの実施形態」、「一実施形態」、「実施形態」などの参照は、その実施形態に関連して説明する特定の特徴、構造、又は特性が、少なくとも1つの実施形態に含まれることを意味する。従って、本明細書全体にわたって様々な位置における「様々な実施形態では」、「いくつかの実施形態では」、「一実施形態では」、「実施形態では」などの語句への言及は、必ずしもすべて同じ実施形態を参照しているわけではない。さらに、1つ又は複数の実施形態では、特定の特徴、構造、又は特性を任意の適した形で組み合わせることもできる。従って、一実施形態に関連して図示又は説明する特定の特徴、構造、又は特性は、限定することなく、1つ又は複数の他の実施形態の特徴、構造、又は特性と全体的又は部分的に組み合わせることができる。
【0065】
「近位」及び「遠位」という用語は、本明細書全体にわたって、患者を治療するために使用される器具の一方の端部を操作する臨床医を参照して使用されることが理解される。「近位」という用語は、臨床医に最も近い器具の部分を指し、「遠位」という用語は、臨床医から最も遠くに位置する部分を指す。簡潔さ及び明瞭さのため、「垂直」、「水平」、「上」、及び「下」などの空間に関する用語は、本明細書では、図示の実施形態に関して使用されることがさらに理解される。しかし、外科手術器具は、多くの向き及び位置で使用することができ、これらの用語は限定的及び絶対的なものではない。
【0066】
参照により本明細書に組み込まれていると記載したあらゆる特許、公開、又は他の開示資料は、全体的又は部分的に、組み込まれた資料が既存の定義、記述、又は本開示に記載の他の開示資料と矛盾しない範囲内でのみ、本明細書に組み込まれている。従って、必要な範囲内で、本明細書に明示する開示は、参照により本明細書に組み込まれているあらゆる矛盾する資料に取って代わる。参照により本明細書に組み込まれていると記載したが、既存の定義、記述、又は本明細書に記載の他の開示資料と矛盾するあらゆる材料又はその一部は、その組み込まれている資料と既存の開示資料との間で矛盾が生じない範囲内でのみ組み込まれる。
以下の項目は、国際出願時の請求の範囲に記載の要素である。
(項目1)
体内の組織の診断又は治療のために構成された医療デバイスであって、
前記体内に受容されるように構成され、近位端と遠位端との間に延びる管腔を有する細長い部材と、
前記管腔内で、変形可能な部材の前記遠位端の近傍に配置される位置センサと、
を備え、
前記位置センサは、
中央通路を形成するように巻かれて、磁界の影響を受けると電流の流れを生成するように構成されているコイルと、
高透磁率アンテナであって、少なくとも一部分が、前記磁界を前記コイル内へ集中させて、前記電流の流れを増大させるために、前記中央通路の外側に配置されている、前記高透磁率アンテナと、
を備える、
医療デバイス。
(項目2)
前記高透磁率アンテナは、前記中央通路を通過する本体であって、前記コイルの軸方向の長さよりも長い軸方向の長さを有する前記本体を備える、項目1に記載の医療デバイス。
(項目3)
前記本体は、前記コイルの巻線方向の円周に沿って湾曲している、項目2に記載の医療デバイス。
(項目4)
前記医療デバイスは、さらに、
前記コイルに隣接して配置される複数の本体を備える、項目2に記載の医療デバイス。
(項目5)
前記高透磁率アンテナは、前記コイルに隣接して配置される第1の塊を備える、項目1に記載の医療デバイス。
(項目6)
前記第1の塊は、前記中央通路の外側で前記コイルに接触している、項目5に記載の医療デバイス。
(項目7)
前記第1の塊は、前記コイルから軸方向に離間している、項目5に記載の医療デバイス。
(項目8)
前記医療デバイスは、さらに、
前記コイルに隣接して配置され、軸方向において、前記第1の塊と対向する第2の塊を備える、項目5に記載の医療デバイス。
(項目9)
前記アンテナは、
前記センサから離間している塊と、
前記塊及び前記コイルを接続する導体と、
を備える、項目1に記載の医療デバイス。
(項目10)
前記医療デバイスは、さらに、
前記導体及び前記コイルを取り囲むように前記塊から延びるシールドを備える、項目9に記載の医療デバイス。
(項目11)
前記アンテナは、さらに、前記シールド内で前記センサに隣接する開口、又は、前記センサから前記シールドを通って延びる接地を備える、項目10に記載の医療デバイス。
(項目12)
前記アンテナは、金属ガラス材料を有する、項目1に記載の医療デバイス。
(項目13)
前記医療デバイスは、さらに、
前記コイルの前記中央通路内に完全に配置されたコアを備える、項目1に記載の医療デバイス。
(項目14)
前記高透磁率アンテナの外径が、前記コイルの外径より大きい、項目1に記載の医療デバイス。
(項目15)
前記医療デバイスは、さらに、
前記コイルを通って延びる内側チューブと、
前記コイルから前記細長い変形可能な部材の前記近位端の方へと延びる導体と,
を備える、項目1に記載の医療デバイス。
(項目16)
前記医療デバイスは、さらに、
前記細長い変形可能な部材の前記遠位端の近位に配置される動作要素と、
前記細長い変形可能な部材の前記近位端に配置され、前記遠位端の撓みを制御するように適合されたハンドルと、
を備える、項目1に記載の医療デバイス。
(項目17)
医療デバイス用の位置センサアセンブリであって、
内部管腔を画定する本体と、
前記本体によって支持されるワイヤ巻線と、
前記ワイヤ巻線の外側であり、かつ、前記本体内に配置される磁束アンテナと、
を備える位置センサアセンブリ。
(項目18)
前記アンテナは、薄い細長い材料を備える、項目17に記載のセンサアセンブリ。
(項目19)
前記アンテナは、前記ワイヤ巻線の透磁率より大きい透磁率を有する材料の塊を備える、項目17に記載のセンサアセンブリ。
(項目20)
前記センサアセンブリは、さらに、
前記ワイヤ巻線内に配置されるコアを備える、項目17に記載のセンサアセンブリ。
(項目21)
前記センサアセンブリは、さらに、
前記ワイヤ巻線の外側であり、かつ、前記本体内に配置される複数の磁束アンテナを備える、項目17に記載のセンサアセンブリ。
(項目22)
前記センサアセンブリは、さらに、
前記ワイヤ巻線及び前記磁束アンテナを電気的に結合する導体と、
前記ワイヤ巻線及び前記導体を取り囲むシールドと、
を備える、項目17に記載のセンサアセンブリ。
(項目23)
管腔を画定する細長いシースと、
前記管腔内に配置された位置センサと、
前記細長いシースの外部に露出している電極と、
前記シース内に、前記位置センサから離れて配置される磁気アンテナと、
を備える医療デバイス。
(項目24)
前記位置センサは、コイルを備える、項目23に記載の医療デバイス。
(項目25)
前記コイルは、空気の透磁率より大きい透磁率を有するコアを備える、項目24に記載の医療デバイス。
(項目26)
前記磁気アンテナの透磁率は、前記コアの透磁率より大きい、項目25に記載の医療デバイス。
(項目27)
前記磁気アンテナは、前記コイルの中心軸に対して略平行に延びる薄く細長い材料を備える、項目24に記載の医療デバイス。
(項目28)
前記医療デバイスは、さらに、
追加の磁気アンテナであって、前記磁気アンテナから離れて配置される前記追加の磁気アンテナを備える、項目24に記載の医療デバイス。
(項目29)
磁気式位置センサの信号出力を増大させる方法であって、
磁界の影響を受けると電流の流れを生成するコイルを備える前記磁気式位置センサを構成するステップと、
前記位置センサを医療デバイス内に取り付けるステップと、
前記コイル内へ磁界を集中させて前記電流の流れを増大させるように構成されるように、高透磁率アンテナの少なくとも一部分を前記磁気式位置センサの外側に配置するステップと、
を備える方法。
(項目30)
前記高透磁率アンテナは、前記磁気式位置センサへ磁束を送るように配置される、項目29に記載の方法。
(項目31)
前記方法は、さらに、
前記高透磁率アンテナを前記磁気式位置センサから離間させるステップを備える、項目29に記載の方法。
(項目32)
前記方法は、さらに、
前記高透磁率アンテナを長細くなるように成形するステップを備える、項目29に記載の方法。
(項目33)
前記方法は、さらに、
前記磁気式位置センサ及び前記高透磁率アンテナを導体によって接続するステップを備える、項目29に記載の方法。
(項目34)
前記方法は、さらに、
前記磁気式位置センサ及び前記導体を高透磁率構造でシールドするステップを備える、項目33に記載の方法。
(項目35)
コイル巻線内に画定されたセンサコア部分を備える磁気式位置センサと、
前記磁気式位置センサによって生成された信号を増幅するセンサ増幅手段と、
を備え、
前記センサ増幅手段は、前記センサコア部分の外側に配置される、
医療デバイス。
図1
図2
図3
図4
図5A
図5B
図5C
図5D
図6A
図6B
図7
図8A
図8B
図9A
図9B
図10A
図10B
図11