(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6861555
(24)【登録日】2021年4月1日
(45)【発行日】2021年4月21日
(54)【発明の名称】炭化珪素単結晶インゴットの製造装置及び製造方法
(51)【国際特許分類】
C30B 23/06 20060101AFI20210412BHJP
C30B 29/36 20060101ALI20210412BHJP
F27B 14/14 20060101ALI20210412BHJP
【FI】
C30B23/06
C30B29/36 A
F27B14/14
【請求項の数】6
【全頁数】13
(21)【出願番号】特願2017-67248(P2017-67248)
(22)【出願日】2017年3月30日
(65)【公開番号】特開2018-168023(P2018-168023A)
(43)【公開日】2018年11月1日
【審査請求日】2019年12月4日
(73)【特許権者】
【識別番号】000002004
【氏名又は名称】昭和電工株式会社
(74)【代理人】
【識別番号】100099759
【弁理士】
【氏名又は名称】青木 篤
(74)【代理人】
【識別番号】100123582
【弁理士】
【氏名又は名称】三橋 真二
(74)【代理人】
【識別番号】100146466
【弁理士】
【氏名又は名称】高橋 正俊
(74)【代理人】
【識別番号】100173107
【弁理士】
【氏名又は名称】胡田 尚則
(74)【代理人】
【識別番号】100202418
【弁理士】
【氏名又は名称】河原 肇
(74)【代理人】
【識別番号】100144417
【弁理士】
【氏名又は名称】堂垣 泰雄
(72)【発明者】
【氏名】柘植 弘志
(72)【発明者】
【氏名】藤本 辰雄
(72)【発明者】
【氏名】勝野 正和
(72)【発明者】
【氏名】中林 正史
(72)【発明者】
【氏名】佐藤 信也
(72)【発明者】
【氏名】牛尾 昌史
【審査官】
山本 一郎
(56)【参考文献】
【文献】
特開2014−040357(JP,A)
【文献】
特開2017−154926(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C30B 23/06
C30B 29/36
F27B 14/14
(57)【特許請求の範囲】
【請求項1】
上端開口状の坩堝本体とこの坩堝本体の上端開口部を閉塞する坩堝上蓋とを有すると共に、前記坩堝本体の下部に炭化珪素原料が装填される原料装填部を有する坩堝と、この坩堝の周囲に配設される断熱体とを備え、炭化珪素原料を加熱して発生した昇華ガスを種結晶上に再結晶させる昇華再結晶法により、炭化珪素単結晶インゴットを製造する炭化珪素単結晶インゴットの製造装置であって、
前記断熱体には、前記坩堝の原料装填部の周囲に位置する断熱体下部に、厚み方向の断熱効果において断熱効果の高い高断熱部位と断熱効果の低い低断熱部位とが周方向に配置されていると共に、前記坩堝と断熱体とを坩堝の中心軸を回転軸として相対的に回転させる回転機構が設けられており、インゴット製造時には前記回転機構により坩堝と断熱体とを相対的に回転させ、坩堝の原料装填部内の温度分布を周方向に変化させながら炭化珪素単結晶インゴットを製造することを特徴とする炭化珪素単結晶インゴットの製造装置。
【請求項2】
前記断熱体下部における高断熱部位Xと低断熱部位Yとが、横断面での面積比(SX/SY)が0.5〜2.0であることを特徴とする請求項1に記載の炭化珪素単結晶インゴットの製造装置。
【請求項3】
前記断熱体下部が、厚みの厚い断熱材料により形成された高断熱部位と厚みの薄い断熱材料により形成された低断熱部位とを有することを特徴とする請求項1又は2に記載の炭化珪素単結晶インゴットの製造装置。
【請求項4】
上端開口状の坩堝本体とこの坩堝本体の上端開口部を閉塞する坩堝上蓋とを有すると共に、前記坩堝本体の下部に炭化珪素原料が装填される原料装填部を有する坩堝と、この坩堝の周囲に配設される断熱体とを備えた製造装置を用い、炭化珪素原料を加熱して発生した昇華ガスを種結晶上に再結晶させる昇華再結晶法により、炭化珪素単結晶インゴットを製造する炭化珪素単結晶インゴットの製造方法であって、
前記坩堝と断熱体とを坩堝の中心軸を回転軸として相対的に回転させる回転機構を備えていると共に、前記断熱体には、坩堝の原料装填部を取り囲む断熱体下部に、厚み方向の断熱効果において断熱効果の高い高断熱部位と断熱効果の低い低断熱部位とが周方向に配置されている製造装置を用い、
前記回転機構により、前記坩堝と断熱体とを坩堝の中心軸を回転軸にして相対的に回転させ、坩堝の原料装填部の温度分布を周方向に変化させながら炭化珪素原料を昇華させることを特徴とする炭化珪素単結晶インゴットの製造方法。
【請求項5】
前記断熱体下部における高断熱部位と低断熱部位とが、横断面での面積比(SX/SY)が0.5〜2.0であることを特徴とする請求項4に記載の炭化珪素単結晶インゴットの製造方法。
【請求項6】
前記断熱体下部を坩堝に対して0.1回転/時間以上1回転/時間以下の回転速度で相対的に回転させることを特徴とする請求項4又は5に記載の炭化珪素単結晶インゴットの製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
この発明は、種結晶を用いた昇華再結晶法によって炭化珪素単結晶を成長させ、炭化珪素単結晶インゴットを製造する際に用いられる炭化珪素単結晶インゴット製造装置、及びこの製造装置を用いて炭化珪素単結晶インゴットを製造する炭化珪素単結晶インゴットの製造方法に関する。
【背景技術】
【0002】
高熱伝導率を持ち、バンドギャップの大きい炭化珪素単結晶は、高温で用いられる電子材料や、高耐圧の求められる電子材料の基板として有用な材料である。そして、このような炭化珪素単結晶の作製法の一つとして、昇華再結晶法(レーリー法)が知られている。この昇華再結晶法は、2000℃を超える高温において原料の炭化珪素粉末を昇華させ、生成した昇華ガス(原料ガス)を低温部に再結晶化させることにより、炭化珪素単結晶を製造する方法である。また、このレーリー法において、炭化珪素単結晶からなる種結晶を用いて炭化珪素単結晶を製造する方法は、特に改良レーリー法と呼ばれ(非特許文献1)、バルク状の炭化珪素単結晶インゴットの製造に利用されている。
【0003】
この改良レーリー法においては、種結晶を用いているために結晶の核形成過程を最適化することができ、また、不活性ガスによる雰囲気圧力を10Paから15kPa程度にすることにより、炭化珪素単結晶の成長速度等の再現性を良くすることができる。このため、一般に、原料と種結晶との間で適切な温度差を設け、種結晶の上に炭化珪素単結晶を成長させることが行われている。また、得られた炭化珪素単結晶(炭化珪素単結晶インゴット)については、電子材料の基板としての規格の形状にするために、研削、切断、研磨といった加工が施されて利用されている。
【0004】
ここで、
図4を用いて、改良レーリー法の原理を説明する。
昇華再結晶法で用いる炭化珪素原料3として炭化珪素結晶粉末〔通常、アチソン(Acheson)法で作製された炭化珪素結晶粉末を洗浄・前処理したものが使用される。〕が用いられ、また、黒鉛製坩堝1として上端開口筒状の坩堝本体1aとこの坩堝本体1aの上端開口部を閉塞する坩堝上蓋1bとを備えた坩堝が用いられる。そして、前記坩堝本体1a下部の原料充填部1c内に前記炭化珪素原料3が充填され、また、前記坩堝上蓋1bの内面に炭化珪素単結晶からなる種結晶2が設置される。坩堝1内では、前記炭化珪素原料3が、アルゴン等の不活性ガス雰囲気中(10Pa〜15kPa)で2400℃以上に加熱される。この加熱の際に、坩堝1内には炭化珪素原料3側に比べて種結晶2側がやや低温になるように温度勾配が設定され、加熱されて炭化珪素原料3から昇華した炭化珪素の昇華ガスは、濃度勾配(温度勾配により形成される)により種結晶2方向へと拡散し、輸送され、この種結晶2の表面で再結晶し、結晶成長が進行して単結晶インゴット4が生成する。なお、
図4中、符号5は断熱材である。
【0005】
ところで、炭化珪素単結晶基板の口径については、電子デバイスを作製するための基板として用いる際の製造コストをできるだけ下げるために、大口径化が求められている。そして、このために、炭化珪素単結晶基板を製造するためのインゴットについては、その大口径化と同時に、一つのインゴットから多数の基板を製造することができ、また、切断加工時や研削加工時の生産性をより高めることができるように、結晶成長により得られるインゴットの長尺化も求められている。しかしながら、改良レーリー法においては、前記のような方法で結晶成長を行っているため、炭化珪素原料を結晶成長の途中で追加することが困難である。そこで、大口径かつ長尺の炭化珪素単結晶インゴットを作製するためには、小口径のインゴットを結晶成長させる場合に比べて、坩堝の原料充填部により多量の炭化珪素原料を充填する必要があり、原料充填部の径及び深さをより大きくする必要が生じるが、このように多量に充填した炭化珪素原料を結晶成長のために有効に利用するためには、原料充填部内の炭化珪素原料全体を昇華温度まで効率良く加熱し、昇華させることが不可欠になる。
【0006】
そして、坩堝内の炭化珪素原料を加熱する方法としては、一般に、高周波誘導加熱を用いて黒鉛製の坩堝を発熱させ、この発熱した坩堝を介して炭化珪素原料を加熱し、坩堝内に前述の温度勾配を形成することが行われている。また、このような高周波誘導加熱においては、誘導される高周波電流の発生が高周波の浸透深さに依存しているため、坩堝の形状によって定まる発熱分布が発生し、坩堝の側壁内面の表面近傍で強い発熱が生じ、この熱が熱伝導若しくは熱輻射により原料充填部内の炭化珪素原料へと伝達される。これを坩堝の原料充填部内に充填された炭化珪素原料に着目してみると、坩堝が円筒状でその原料充填部内に炭化珪素原料が円柱状に充填されていると、誘導加熱により円柱状の炭化珪素原料の側面が強く加熱されることから、炭化珪素原料の外周部(坩堝の原料充填部の外周部)近傍がより加熱され易く、炭化珪素原料の中心軸(坩堝の原料充填部の中心軸)近傍に比べてより高温に加熱され、炭化珪素原料に対する加熱温度が炭化珪素原料の外周部から中心軸に向けて低下する温度分布を持つ傾向がある。
【0007】
このように原料充填部が加熱されると、原料充填部内の炭化珪素原料は、その外周部近傍が高温部となり、この高温部から昇華ガスが発生して種結晶上に結晶成長が始まるが、その中心軸近傍は発熱源からの距離が遠くて低温部となり、これら高温部と低温部との間には不可避的に径方向の温度分布が生じる。そして、この低温部となる中心軸近傍の温度を昇華温度まで上昇させて原料を昇華させるためには、誘導電流の電流値を大きくして黒鉛坩堝の側壁部分の温度をより高温にする必要がある。
【0008】
このように、改良レーリー法による炭化珪素単結晶インゴットの製造においては上記の如き加熱の特徴があるため、より大きな口径のインゴットを製造するために、原料充填部の直径を大きくして原料充填量を多くすると、原料充填部の径に比例してこの原料充填部においてその内側壁近傍に位置する炭化珪素原料の量が増大することになり、昇華ガスの発生の前期(すなわち、結晶成長の前期)には昇華ガスの供給量が増大し、一方で昇華ガスの発生の後期(すなわち、結晶成長の後期)には、昇華ガスの供給量が相対的に小さくなる。そして、このような結晶成長の前期における昇華ガスの供給量が結晶成長の後期に比べて顕著に増大する現象は、原料充填部の径が大きくなればなるほど発生し易くなる。
【0009】
この昇華ガスの供給においては、一定の量を安定的に供給することが望ましく、また、欠陥の少ない結晶成長を行うためには結晶成長の前期において徐々に結晶成長を進めることが必要であることから、昇華ガスの供給量については、始めは少なめで徐々に安定した一定の量まで増大させ、更に中心軸近傍の中心部分まで効率良く加熱して行くことが望ましい。
また、炭化珪素原料の昇華は、原料充填部内に存在する原料の温度や雰囲気圧力によって決まり、そして、原料充填部内で最初に昇華が始まるのは、前述のように原料充填部においてその内側壁に接した原料部分である。このため、昇華ガスの供給を理想的に行うためには、昇華ガスの供給開始時に、原料充填部においてその内側壁に近い原料部分の温度を精密に制御することが必要であるが、炭化珪素の昇華温度は2400℃を超える高温であってその精密な制御が難しく、昇華ガスを精密に制御して理想的に供給することは難しく、その結果、結晶成長の初期に結晶多形の発生が生じて結晶性が劣化したり、転位が発生したりするといった問題が発生する。
【0010】
そこで、従来においても、原料充填部を加熱する方法について、例えば、以下に示すような幾つかの提案がされている。
坩堝の原料充填部の底壁部(坩堝底壁部)の温度低下を防ぐために前記坩堝底壁部に断熱材を配置することで、原料充填部の下部における再結晶化を抑制し、効率的に原料を加熱する方法が開示されている(特許文献1)。また、原料充填部の坩堝の側壁の形状を工夫し、原料内部の温度分布を均一化する方法が開示されている(特許文献2)。更に、このような坩堝底壁部を直接加熱する方法として、坩堝底壁部の下に誘導加熱コイルを配置する方法が開示されている(特許文献3)。更にまた、坩堝側壁部分に発熱部材を配置し、原料部の温度制御性を向上させる方法が開示されている(特許文献4)。そして、種結晶近傍部分の温度分布を非軸対称温度分布とすることで、成長した結晶の品質を高くする方法が開示されている(特許文献5)。
【先行技術文献】
【特許文献】
【0011】
【特許文献1】特開2010-76,990号公報
【特許文献2】特開2007-230,846号公報
【特許文献3】特開2013-216,549号公報
【特許文献4】特開2014-234,331号公報
【特許文献5】特開2012-131,679号公報
【非特許文献】
【0012】
【非特許文献1】Yu. M. Tairov and V. F. Tsvetkov, Journal of Crystal Growth, 52 (1981) pp.146
【発明の概要】
【発明が解決しようとする課題】
【0013】
しかしながら、特許文献1の方法では、発熱部分が坩堝の側壁部分であることから、原料充填部の中心軸近傍の温度が外周部の温度よりも低下するという問題が依然とし残り、大口径化のために坩堝の口径を増大させた場合に、原料充填部の中心軸近傍の原料を効率良く加熱するという目的のためには採用し難い方法である。また、特許文献2の方法では、坩堝側壁の発熱分布が変化することに伴い、種結晶上に成長している結晶成長部分近傍での発熱分布も変化し、しかも、前記結晶成長は等温線に沿って進むと考えられることから、発熱分布の変化に伴って成長する結晶の成長面形状も影響を受けるので、原料充填部の均温化と前記結晶成長部分の温度の最適化とを両立させることが必要となり、これら均温化と最適化の両立が非常に難しい。
【0014】
また、特許文献3の方法では、坩堝下部を直接加熱することができるが、装置の構造が複雑になると同時に、側部誘導加熱コイルと下部誘導加熱コイルとの相互作用があるために、それぞれの誘導加熱コイルに流す電流の最適化が非常に難しい。更に、特許文献4の方法では、依然として外周部分からの熱を中心部分に伝えることが必要であり、発熱した外周部分からの距離が遠い中心部分の効率的な加熱は困難である。更にまた、特許文献5の方法では、非軸対称な温度分布を坩堝内部に形成することで加熱が困難な部分を中心軸上から移動させることができるが、成長している結晶部分の温度分布の調整であり、成長している結晶から離れている原料の中心部分の温度分布を変化させるものではなく、依然として、原料の中心部分の温度が低く、その中心部分の原料を効率的に昇華させることは困難である。
【0015】
本発明は、炭化珪素単結晶の成長中に、特に結晶成長の初期において、適切な量の昇華ガスを安定して供給可能とし、坩堝の原料充填部に充填された炭化珪素原料を安定的に中心部分まで効率良く昇華させ、炭化珪素単結晶インゴット、特に限定されるものではないが、大口径かつ長尺の炭化珪素単結晶インゴットを再現性良く製造するのに適した炭化珪素単結晶インゴットの製造方法を提供することを目的とする。
【課題を解決するための手段】
【0016】
本発明者らは、高周波誘導加熱により炭化珪素単結晶インゴットを製造するに際し、炭化珪素単結晶の成長中、特に結晶成長の初期において、適切な量の昇華ガスを安定して供給するための方法について鋭意検討した。
その結果、坩堝の原料充填部の外周部分に周方向の温度分布を形成することにより、原料充填部内の炭化珪素原料について、最初に加熱される原料充填部の内側壁近傍に位置する原料部分がその全周に亘って同時に昇華温度にまで到達するのを防止し、この原料部分を部分的に昇華ガス供給可能な状態に制御してこの原料部分から昇華ガスを徐々に発生させ、昇華ガスの供給量を徐々に安定した量にまで増大させることを可能とし、また、この原料充填部の外周部分の周方向の温度分布の形成に伴い、低温となって昇華温度に到達し難い原料部分を有効に昇華させるために、坩堝と断熱体とを坩堝の中心軸を回転軸として相対的に回転させ、原料充填部の外周部分における周方向の温度分布を結晶成長中連続的に変化させることにより、原料充填部内に装填した炭化珪素原料を有効に昇華させることを可能にし、これによって、従来の軸対称な加熱の場合には困難であったインゴット製造開始時における昇華ガスの供給量を安定的に制御することが可能となり、大口径かつ長尺の炭化珪素単結晶インゴットであっても安定的に製造することが可能であることを見出し、本発明を完成した。
【0017】
すなわち、本発明の要旨は次の通りである。
(1) 上端開口状の坩堝本体とこの坩堝本体の上端開口部を閉塞する坩堝上蓋とを有すると共に、前記坩堝本体の下部に炭化珪素原料が装填される原料装填部を有する坩堝と、この坩堝の周囲に配設される断熱体とを備え、炭化珪素原料を加熱して発生した昇華ガスを種結晶上に再結晶させる昇華再結晶法により、炭化珪素単結晶インゴットを製造する炭化珪素単結晶インゴットの製造装置であって、
前記断熱体には、前記坩堝の原料装填部の周囲に位置する断熱体下部に、厚み方向の断熱効果において断熱効果の高い高断熱部位と断熱効果の低い低断熱部位とが周方向に配置されていると共に、前記坩堝と断熱体とを坩堝の中心軸を回転軸として相対的に回転させる回転機構が設けられており、インゴット製造時には前記回転機構により坩堝と断熱体とを相対的に回転させ、坩堝の原料装填部内の温度分布を周方向に変化させながら炭化珪素単結晶インゴットを製造することを特徴とする炭化珪素単結晶インゴットの製造装置。
(2) 前記断熱体下部における高断熱部位Xと低断熱部位Yとが、横断面での面積比(S
X/S
Y)が0.5〜2.0であることを特徴とする前記(1)に記載の炭化珪素単結晶インゴットの製造装置。
(3) 前記断熱体下部が、厚みの厚い断熱材料により形成された高断熱部位と厚みの薄い断熱材料により形成された低断熱部位とを有することを特徴とする前記(1)又は(2)に記載の炭化珪素単結晶インゴットの製造装置。
【0018】
(4) 上端開口状の坩堝本体とこの坩堝本体の上端開口部を閉塞する坩堝上蓋とを有すると共に、前記坩堝本体下部に炭化珪素原料が装填される原料装填部を有する坩堝と、この坩堝の周囲に配設される断熱体とを備えた製造装置を用い、炭化珪素原料を加熱して発生した昇華ガスを種結晶上に再結晶させる昇華再結晶法により、炭化珪素単結晶インゴットを製造する炭化珪素単結晶インゴットの製造方法であって、
前記坩堝と断熱体とを坩堝の中心軸を回転軸として相対的に回転させる回転機構を備えていると共に、前記断熱体には、坩堝の原料装填部を取り囲む断熱体下部に、厚み方向の断熱効果において断熱効果の高い高断熱部位と断熱効果の低い低断熱部位とが周方向に配置されている製造装置を用い、
前記回転機構により、前記坩堝と断熱体とを坩堝の中心軸を回転軸にして相対的に回転させ、坩堝の原料装填部の温度分布を周方向に変化させながら炭化珪素原料を昇華させることを特徴とする炭化珪素単結晶インゴットの製造方法。
(5) 前記断熱体下部における高断熱部位と低断熱部位とが、横断面での面積比(S
X/S
Y)が0.5〜2.0であることを特徴とする前記(4)に記載の炭化珪素単結晶インゴットの製造方法。
(6) 前記断熱体下部を坩堝に対して0.1回転/時間以上1回転/時間以下の回転速度で相対的に回転させることを特徴とする前記(4)又は(5)に記載の炭化珪素単結晶インゴットの製造方法。
【発明の効果】
【0019】
本発明の炭化珪素単結晶インゴットの製造装置によれば、インゴット製造開始時における昇華ガスの供給量を適切な状態に制御することができ、結晶成長時の成長速度が安定し、品質が安定して歩留り良く炭化珪素単結晶インゴットを成長させることができる。
また、本発明の炭化珪素単結晶インゴットの製造方法によれば、結晶成長中昇華ガスの供給量を適切に制御することができるので、大口径かつ長尺の炭化珪素単結晶インゴットの製造に適しているほか、種結晶の結晶成長面に昇華ガスが効率的かつ安定的に供給されるので、種結晶の結晶成長面に対する昇華ガスの供給が変動することに起因する欠陥の発生を抑制することができ、高品質の炭化珪素インゴットを製造することができる。
更に、本発明の方法で製造された高品質の炭化珪素単結晶インゴットを用いて電子材料用の炭化珪素単結晶基板を製造すれば、炭化珪素原料に対して製造される基板の歩留りが向上し、炭化珪素単結晶基板のコスト低減を図ることができる。
【図面の簡単な説明】
【0020】
【
図1】
図1は、本発明の実施形態1に係る炭化珪素単結晶インゴットの製造装置を説明するための説明図である。
【
図2】
図2は、
図1に示す坩堝、及び断熱体の断熱体下部を構成する高断熱部位及び低断熱部位を説明するために、これらの関係を概略的に拡大して示す拡大説明図である。
【
図3】
図3は、本発明の実施形態に係る炭化珪素単結晶インゴットの製造装置を示す
図2と同様の説明図である。
【
図4】
図4は、改良レーリー法の原理を説明するための説明図である。
【発明を実施するための形態】
【0021】
以下、添付図面に示す炭化珪素単結晶インゴットの製造装置を用いて、本発明の炭化珪素単結晶インゴットの製造装置、及びこの製造装置を用いた本発明の炭化珪素単結晶インゴットの製造方法について、その実施の形態を説明する。
高断熱部位及び低断熱部位で使用される断熱材料の熱伝導率が互いに有意に異なる場合には、高断熱部位Xと低断熱部位Yとにおける横断面での面積比(S
X/S
Y)や使用する断熱材料の厚さを決定する際に、使用する断熱材料の熱伝導率の差異を考慮して決定することになる。なお、以下の説明においては、坩堝の原料装填部の周囲に位置する断熱体の断熱体下部において、その周方向に配置される厚み方向の断熱効果において断熱効果の高い高断熱部位と断熱効果の低い低断熱部位とに関して、高断熱部位で使用される断熱材料の熱伝導率と低断熱部位で使用される断熱材料の熱伝導率とが互いに同じ、又は、近似しており、実施形態において実質的に区別できない場合を含めて説明している。
【0022】
〔実施形態1〕
図1は、本発明の実施形態1に係る炭化珪素単結晶インゴットの製造装置を説明するためのものであり、この製造装置において、二重石英管13内には黒鉛製の黒鉛坩堝1(以下、「坩堝」と略す。)とこの坩堝1を取り囲むように覆う黒鉛製の断熱体5とが配設されている。そして、前記坩堝1は、上端開口筒状に形成された黒鉛製の坩堝本体1aとその上端開口部を閉塞する黒鉛製の坩堝上蓋1bとで構成されており、また、前記坩堝本体1a下部には炭化珪素原料(以下、単に「原料」という。)3を充填する原料充填部1cが位置しており、更に、前記坩堝上蓋1bの内面には炭化珪素単結晶からなる種結晶2が取り付けられている。そして、前記坩堝1は、断熱体5に対して坩堝1を相対的に回転させることができる回転機構12を備えた坩堝支持体10の上に配置される。
【0023】
なお、この
図1において、符号6は切欠き孔を示し、符号11は前記断熱体5を支持する断熱体支持体を示し、符号13は二重石英管を示し、符号14は真空排気装置を示し、符号15はArガス配管を示し、符号16はArガス用マスフローコントローラを示し、符号17は発熱部材として機能する前記坩堝1の坩堝本体1aを発熱させるための高周波誘導加熱用のワークコイルを示し、前記ワークコイル17には高周波電流を流すための図示外の高周波電源が取り付けられている。また、ワークコイル17には坩堝1に対して鉛直方向に上下動を行うための上下動駆動装置18が取り付けられている。
【0024】
本発明の実施形態1において、前記断熱体5は、
図2に示すように、坩堝本体1a上部の外周側を覆う断熱体上部5aと、坩堝本体1a下部の原料充填部1cの側面を覆う断熱体下部5bと、前記原料充填部1cの底壁部を覆う断熱体底部5cとからなり、前記断熱体下部5bは、厚み方向の断熱効果において断熱効果の高い高断熱部位Xと断熱効果の低い低断熱部位Yとで構成されている。そして、前記断熱体下部5bを構成する断熱効果の高い高断熱部位Xと断熱効果の低い低断熱部位Yとは、互いに同じ厚さであるが、互いに異なる断熱性能を有する断熱材料で形成されている。
【0025】
また、この実施形態1において、前記断熱体下部5bは、
図2に示すように、断熱効果の高い高断熱部位Xと断熱効果の低い低断熱部位Yとが互いに対をなして周方向に4回繰り返す対称形(4回対称)をなしている。また、断熱効果の高い高断熱部位Xと断熱効果の低い低断熱部位Yとは、断熱体下部5bの厚さ方向において同じ幅寸法を有しており、高断熱部位Xと低断熱部位Yとの横断面の面積比(S
X/S
Y)は周方向の長さで決まり、この
図2の場合には高断熱部位Xの部分の中心角が60°であって低断熱部位Yの部分の中心角が30°であり、高断熱部位Xと低断熱部位Yとの横断面の面積比(S
X/S
Y)が2である。この実施形態1においては、高断熱部位と低断熱部位の外周に対する面積の割合により、原料部分の外周部の周方向の温度変化が形成される。
【0026】
ここで、上記の面積比(S
X/S
Y)が大きい場合や小さい場合には、面積の割合が大きい断熱部位X又はYが断熱効果に対して支配的になり、その断熱効果の違いが大きく、又は、小さくなり過ぎると、面積の割合が小さい断熱部位Y又はXにおける原料部分の外周部の周方向の温度分布形成に与える影響が弱まり、温度変化の効果が得られ難くなるため、この面積比(S
X/S
Y)は0.5〜2.0の範囲にあることが好ましい。
【0027】
また、断熱体下部5bにおいて、上記の高断熱部位Xと低断熱部位Yとが互いに対をなして周方向に複数回繰り返す対称形については、好ましくは3対称以上6対称以下であるのがよく、2回対称では原料外周部での周方向の温度差が大きくなって本発明の効果が得られ難くなる虞があり、また、6回対称より大きくなると、断熱効果の周方向での変化が頻繁になり、原料部分の外周部の温度変化が追従できなくなって平均化されて本発明の効果が得られなくなる虞がある。
【0028】
また、原料充填部1cの周囲に位置する断熱体下部5bの高さは、この原料充填部1c内の原料の外周部においてその周方向に温度差を発生させることができればよく、いろいろな値をとることは可能である。本発明の効果をより得るためには、
図2に示すように、断熱体下部5bの高さは、好ましくは、原料装填部1cの高さに坩堝底部の厚さを加えた合計の高さの0.8〜1.2倍であるのがよく、この場合に原料充填部1c内の原料部分の外周部にその周方向の温度変化を有効に与えることができる。
【0029】
この実施形態1の製造装置において、二重石英管13内部は、真空排気装置14により高真空排気(10
-3Pa以下)とすることができ、かつArガス配管15とArガス用マスフローコントローラ16を用いて、内部雰囲気をArガスにより圧力制御することができるようになっている。そして、坩堝1の温度の計測は、坩堝1の上下部を覆う黒鉛製の断熱体下部5b及び断熱体底部5cの中央部にそれぞれ光路を設け、坩堝1の上部(坩堝上蓋1b)及び下部〔坩堝本体1a下部の原料充填部1cの底壁部(坩堝底壁部)〕からの光を取り出して、二色温度計を用いて行い、坩堝1下部の温度から原料温度を判断し、また、坩堝1上部の温度から種結晶2の温度を判断するようになっている。
【0030】
そして、この実施形態1の製造装置を用いて、種結晶2上に炭化珪素単結晶の結晶成長させる際には、坩堝1を断熱体5に対して回転させながら、坩堝1内部の上下方向に温度勾配を形成し、原料充填部1cの温度を高くして種結晶2の結晶成長部分の温度を相対的に低くさせるが、この際に、坩堝本体1a下部の原料充填部1cに充填された原料3の外周部分において、その外側に配置した断熱体下部5bにおける高断熱部位Xと低断熱部位Yとの変化に応じて、周方向に温度変化が生じる。その結果、原料3が周全体に亘って一様に昇華温度に到達することが無くなり、断熱効果の高い高断熱部位Xの部分に対応した温度の高い部分が、断熱効果の低い低断熱部位Yの部分に対応した温度の低い部分よりも、先に昇華温度に到達し、昇華ガスの供給を開始することになる。その結果、原料部分の外周部の一部から昇華ガスの供給が始まるので、インゴット製造開始時に昇華ガスの供給量が一気に過大になるのを防止することができ、結晶成長の前期における昇華ガスの供給量を適切に制御することができる。
【0031】
また、この実施形態1の製造装置では、坩堝1を断熱体5に対して回転させながら原料充填部1c内部の原料3を加熱するので、原料3に対して周方向の温度を結晶成長中に変化させることができるので、断熱効果の高い高断熱部位Xに対応した温度の高い原料部分の位置と断熱効果の低い低断熱部位Yに対応した温度の低い原料部分の位置とを時間的に変化させることができ、周方向に均一に原料3を昇華させていくことが可能となる。この際の坩堝1の回転速度については、好ましくは0.1回転/時間以上1回転/時間以下であるのがよく、この坩堝1の回転速度が速くなりすぎると、昇華する原料部分の位置の変化が速くて周方向の温度変化が平均化され、本発明の効果が得られ難くなり、反対に、坩堝1の回転速度が遅くなりすぎると、昇華する原料部分の位置の変化が遅くなって、高断熱部位Xに対応した原料部分の消費が進み、昇華できる原料3が少なくなり、昇華ガスの供給量が低減して安定した結晶成長速度が得られず、本発明の効果が得られ難くなる。
【0032】
〔実施形態2〕
図3は、本発明の実施形態2に係る炭化珪素単結晶インゴットの製造装置を説明するためのものであり、
図2に示す実施形態1の場合とは異なり、この製造装置においては、断熱体下部5bに形成される断熱効果の高い高断熱部位Xと断熱効果の低い低断熱部位Yとが坩堝半径方向に互いに厚さの異なる断熱材料で形成されており、この断熱材料の厚さの違いによって厚み方向の断熱効果を変えている。
【0033】
また、この実施形態2においては、断熱効果の高い高断熱部位Xと断熱効果の低い低断熱部位Yとが共に中心角60°で互いに対をなして周方向に3回繰り返す3回対称に構成され、断熱体下部5bにおいて周方向に厚さが変化するようになっており、更に、高断熱部位Xと低断熱部位Yとの横断面の面積比(S
X/S
Y)は、断熱材料の厚さの違いに基づいて、1である場合を示している。
【実施例】
【0034】
〔実施例1〕
実施例1においては、
図1及び
図2に示す実施形態1の炭化珪素単結晶インゴットの製造装置を用いた。断熱体下部5bは、その高さが原料充填部1cの高さに坩堝底部の厚さを加えた高さと略等しくなるように、原料充填部1cの周囲に配置した。また、断熱体下部5bを形成する高断熱部位Xと低断熱部位Yとについては、熱伝導率の比(C
X:C
Y)が0.9:1.0となる断熱材料を用い、また、これら高断熱部位Xと低断熱部位Yとの横断面の面積比(S
X/S
Y)を2(即ち、高断熱部位:低断熱部位=2:1)とし、更に、
図2に示すように4回対称の配置を採用した。
【0035】
坩堝の坩堝本体下部の原料充填部内には、アチソン法により作製された炭化珪素結晶粉末からなる炭化珪素原料2.6kgを充填し、また、坩堝の坩堝上蓋には、種結晶として、口径105mmの(0001)面を有する4Hポリタイプの炭化珪素単結晶ウェハを配置した。
このようにして準備された坩堝を、
図1に示すように、二重石英管の内部に設置し、前記手順で常法に従って炭化珪素単結晶の結晶成長を行った。すなわち、原料温度を目標温度である2300℃まで上昇させた後、二重石英管内のArの圧力を成長圧力1.3kPaまで30分かけて減圧し、原料の昇華を起こし、炭化珪素単結晶の成長を開始させ、加熱を140時間継続して炭化珪素単結晶を成長させた。また、この際に、坩堝を発熱部材に対して0.25回転/時間の一定速度で回転させた。
【0036】
この炭化珪素単結晶インゴットの製造を10回行ったところ、平均で口径が105mm程度で、高さが55mm程度の炭化珪素単結晶インゴットが得られた。X線回折及びラマン散乱により分析したところ、そのうち8回は、狙いの4Hポリタイプの結晶が得られ、マイクロパイプ等の結晶欠陥が少ない極めて高品質であることが確認された。それ以外の2回は、結晶成長の前期に異種ポリタイプ(6H等)が発生し結晶性に劣っていた。
本発明を適用することにより、結晶成長の前期の昇華ガスの供給が安定し、この結晶成長の前期での異種ポリタイプの発生を抑制することができ、結晶成長の歩留り向上が確認できた。また、電子デバイスを作製するための基板を製造するための良質の4H炭化珪素単結晶を歩留り高く製造することが判明した。
【0037】
〔実施例2〕
実施例2においては、
図1及び
図3に示す実施形態2の炭化珪素単結晶インゴットの製造装置を用いた。断熱体下部5bは、その高さが原料充填部1cの高さに坩堝底部の厚さを加えた高さの略0.9倍となるようにして、原料充填部1cの周囲に配置した。また、断熱体下部5bを形成する高断熱部位Xと低断熱部位Yとについては、同じ熱伝導率であって厚さの比(T
X:T
Y)が1:0.7である断熱材料を用い、また、これら高断熱部位Xと低断熱部位Yとの横断面の面積比(S
X/S
Y)を1(即ち、高断熱部位:低断熱部位=1:1)とし、更に、
図3に示すように3回対称の配置を採用した。
【0038】
坩堝の坩堝本体下部の原料充填部内には、アチソン法により作製された炭化珪素結晶粉末からなる炭化珪素原料を5.0kg充填し、また、坩堝の坩堝上蓋には、種結晶として、口径155mmの(0001)面を有する4Hポリタイプの炭化珪素単結晶ウェハを配置した。
このようにして準備された坩堝を、
図1に示すように、二重石英管の内部に設置し、前記手順で常法に従って炭化珪素単結晶の結晶成長を行った。すなわち、原料温度を目標温度である2300℃まで上昇させた後、二重石英管内のArの圧力を成長圧力1.3kPaまで30分かけて減圧し、原料の昇華を起こし、炭化珪素単結晶の成長を開始させ、加熱を160時間継続して炭化珪素単結晶を成長させた。また、この際に、坩堝を発熱部材に対して0.2回転/時間の一定速度で回転させた。
【0039】
この炭化珪素単結晶インゴットの製造を10回行ったところ、平均で口径が155mm程度で、高さが65mm程度の炭化珪素単結晶インゴットが得られた。X線回折及びラマン散乱により分析したところ、そのうち8回は、狙いの4Hポリタイプの結晶が得られ、マイクロパイプ等の結晶欠陥が少ない極めて高品質であることが確認された。それ以外の2回は、結晶成長の前期に異種ポリタイプ(6H等)が発生し結晶性に劣っていた。
本発明を適用することにより、結晶成長の前期の昇華ガスの供給が安定し、この結晶成長の前期での異種ポリタイプの発生を抑制することができ、結晶成長の歩留り向上が確認できた。また、電子デバイスを作製するための基板を製造するための良質の4H炭化珪素単結晶を歩留り高く製造することが判明した。
【0040】
〔実施例3〕
実施例3においては、
図1及び
図3に示す実施形態2の炭化珪素単結晶インゴットの製造装置を用いた。実施例2の場合とは異なり、断熱体下部5bの高さを原料充填部1cの高さに坩堝底部の厚さを加えた高さの略1.1倍とし、また、断熱体下部5bを形成する高断熱部位Xと低断熱部位Yとについて、厚さの比(X:Y)を1:0.5とした。なお、高断熱部位Xと低断熱部位Yとの間の横断面の面積比及び配置については、実施例2と同様に、高断熱部位Xと低断熱部位Yとの横断面の面積比(S
X/S
Y)を1(即ち、高断熱部位:低断熱部位=1:1)とし3回対称の配置を採用した。
【0041】
坩堝の坩堝本体下部の原料充填部内には、アチソン法により作製された炭化珪素結晶粉末からなる炭化珪素原料を6.0kg充填し、また、坩堝の坩堝上蓋には、種結晶として、口径155mmの(0001)面を有する4Hポリタイプの炭化珪素単結晶ウェハを配置した。
このようにして準備された坩堝を、
図1に示すように、二重石英管の内部に設置し、前記手順で常法に従って炭化珪素単結晶の結晶成長を行った。すなわち、原料温度を目標温度である2300℃まで上昇させた後、二重石英管内のArの圧力を成長圧力1.3kPaまで30分かけて減圧し、原料の昇華を起こし、炭化珪素単結晶の成長を開始させ、加熱を160時間継続して炭化珪素単結晶を成長させた。また、この際に、坩堝を発熱部材に対して0.3回転/時間の一定速度で回転させた。
【0042】
この炭化珪素単結晶インゴットの製造を10回行ったところ、平均で口径が155mm程度で、高さが80mm程度の炭化珪素単結晶インゴットが得られた。X線回折及びラマン散乱により分析したところ、そのうち8回は、狙いの4Hポリタイプの結晶が得られ、マイクロパイプ等の結晶欠陥が少ない極めて高品質であることが確認された。それ以外の2回、結晶成長の前期に異種ポリタイプ(6H等)が発生し結晶性に劣っていた。
本発明を適用することにより、結晶成長の前期の昇華ガスの供給が安定し、この結晶成長の前期での異種ポリタイプの発生を抑制することができ、結晶成長の歩留り向上が確認できた。また、電子デバイスを作製するための基板を製造するための良質の4H炭化珪素単結晶を歩留り高く製造することが判明した。
【0043】
〔比較例1〕
比較例1においては、実施例1の場合とは異なり、断熱体下部1bについて、低断熱部位Yの部分を形成することなく、実施例1の高断熱部位Xと同じ断熱材料を用い、周方向に断熱効果の変化が無い従来と同様の構成とした。それ以外は、実施例1と同様にして結晶成長を行った。
【0044】
この炭化珪素単結晶インゴットの製造を10回行ったところ、平均で口径が105mm程度で、高さが55mm程度の炭化珪素単結晶インゴットが得られた。X線回折及びラマン散乱により分析したところ、そのうち6回は、狙いの4Hポリタイプの結晶が得られ、マイクロパイプ等の結晶欠陥が少ない極めて高品質であることが確認された。それ以外の4回は、結晶成長の前期に異種ポリタイプ(6H等)が発生し結晶性に劣っていた。
本発明を適用した場合に比べ、結晶成長の前期において昇華ガスの供給が安定せず、変動が大きくて異種ポリタイプの発生頻度が高く、結晶成長の歩留りが低かった。
【符号の説明】
【0045】
1…坩堝、1a…坩堝本体、1b…坩堝上蓋、1c…原料充填部、2…種結晶、3…炭化珪素原料(原料)、4…単結晶インゴット、5…断熱体、5a…断熱体上部、5b…断熱体下部、5c…断熱体底部、X…高断熱部位、Y…低断熱部位、6…切欠き孔、10…坩堝支持体、11…断熱体支持部材、12…坩堝支持体回転機構、13…二重石英管、14…真空排気装置、15…Arガス配管、16…Arガス用マスフローコントローラ、17…ワークコイル、18…上下動駆動装置。