特許第6861727号(P6861727)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ トルンプフ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフトの特許一覧

特許6861727フラクタル電極を備えた電気吸着グリッパ
<>
  • 特許6861727-フラクタル電極を備えた電気吸着グリッパ 図000002
  • 特許6861727-フラクタル電極を備えた電気吸着グリッパ 図000003
  • 特許6861727-フラクタル電極を備えた電気吸着グリッパ 図000004
  • 特許6861727-フラクタル電極を備えた電気吸着グリッパ 図000005
  • 特許6861727-フラクタル電極を備えた電気吸着グリッパ 図000006
  • 特許6861727-フラクタル電極を備えた電気吸着グリッパ 図000007
  • 特許6861727-フラクタル電極を備えた電気吸着グリッパ 図000008
  • 特許6861727-フラクタル電極を備えた電気吸着グリッパ 図000009
  • 特許6861727-フラクタル電極を備えた電気吸着グリッパ 図000010
  • 特許6861727-フラクタル電極を備えた電気吸着グリッパ 図000011
  • 特許6861727-フラクタル電極を備えた電気吸着グリッパ 図000012
  • 特許6861727-フラクタル電極を備えた電気吸着グリッパ 図000013
  • 特許6861727-フラクタル電極を備えた電気吸着グリッパ 図000014
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6861727
(24)【登録日】2021年4月1日
(45)【発行日】2021年4月21日
(54)【発明の名称】フラクタル電極を備えた電気吸着グリッパ
(51)【国際特許分類】
   H01L 21/677 20060101AFI20210412BHJP
   H02N 13/00 20060101ALI20210412BHJP
   B25J 15/06 20060101ALI20210412BHJP
【FI】
   H01L21/68 B
   H02N13/00 D
   B25J15/06 Z
【請求項の数】12
【全頁数】13
(21)【出願番号】特願2018-554037(P2018-554037)
(86)(22)【出願日】2017年4月7日
(65)【公表番号】特表2019-514221(P2019-514221A)
(43)【公表日】2019年5月30日
(86)【国際出願番号】EP2017058344
(87)【国際公開番号】WO2017178355
(87)【国際公開日】20171019
【審査請求日】2020年1月22日
(31)【優先権主張番号】102016206193.3
(32)【優先日】2016年4月13日
(33)【優先権主張国】DE
(73)【特許権者】
【識別番号】591088401
【氏名又は名称】トルンプフ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト
【氏名又は名称原語表記】Trumpf GmbH+Co.KG
(74)【代理人】
【識別番号】100114890
【弁理士】
【氏名又は名称】アインゼル・フェリックス=ラインハルト
(74)【代理人】
【識別番号】100098501
【弁理士】
【氏名又は名称】森田 拓
(74)【代理人】
【識別番号】100116403
【弁理士】
【氏名又は名称】前川 純一
(74)【代理人】
【識別番号】100135633
【弁理士】
【氏名又は名称】二宮 浩康
(74)【代理人】
【識別番号】100162880
【弁理士】
【氏名又は名称】上島 類
(72)【発明者】
【氏名】アレクサンダー ハインツ
【審査官】 杢 哲次
(56)【参考文献】
【文献】 特表2004−531907(JP,A)
【文献】 特開2002−345273(JP,A)
【文献】 特開2004−319700(JP,A)
【文献】 特開2004−235563(JP,A)
【文献】 特開2007−324260(JP,A)
【文献】 特開2001−320207(JP,A)
【文献】 国際公開第2014/157030(WO,A1)
【文献】 特表2003−521146(JP,A)
【文献】 欧州特許出願公開第2413347(EP,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 21/677
B25J 15/06
H02N 13/00
(57)【特許請求の範囲】
【請求項1】
ワークピース(53;54;64)を保持する電気吸着グリッパ(60a;60b)であって、
第1の電極(41;51)および第2の電極(42;52)を含み、
前記電極(41,42;51,52)は、当該電極(41,42;51,52)の平面視において相互に係合するように形成されており、
少なくとも当該電極(41,42;51,52)の平面視における一部領域において、前記第1の電極(41;51)および前記第2の電極(42;52)は、2次以上の2次元フラクタル空間充填曲線の境界線に対応して形成されており、
前記境界線は、特に、前記空間充填曲線のグリッドに対して半分のグリッド距離だけ各グリッド方向にオフセットされた補助グリッドにおける前記空間充填曲線の軌跡の両側の取り囲みによって生じる、
電気吸着グリッパ(60a;60b)。
【請求項2】
前記第1の電極(41;51)および前記第2の電極(42;52)は、前記空間充填曲線の前記境界線の第1の部分(T1)および第2の部分(T2)に対応して形成されており、前記境界線の前記第1の部分(T1)および前記第2の部分(T2)は、前記空間充填曲線の始端領域(A)と終端領域(E)とにおいて、相互に分離されている、請求項1に記載の電気吸着グリッパ(60a;60b)。
【請求項3】
前記空間充填曲線は、3次以上であり、好ましくは4次以上である、請求項1または2に記載の電気吸着グリッパ(60a;60b)。
【請求項4】
前記空間充填曲線は、ヒルベルト曲線(11;31)である、請求項1から3までのいずれか1項に記載の電気吸着グリッパ(60a;60b)。
【請求項5】
前記電気吸着グリッパ(60)は、厳密に2つの電極(41,42;51,52)、詳細には、前記第1の電極(41;51)および前記第2の電極(42;52)を有している、請求項1から4までのいずれか1項に記載の電気吸着グリッパ(60a;60b)。
【請求項6】
前記第1の電極(41;51)および前記第2の電極(42;52)は、それらの各境界線の終端および/または角が丸み付けされて形成されている、請求項1から5までのいずれか1項に記載の電気吸着グリッパ(60a;60b)。
【請求項7】
前記電極(41,42;51,52)の平面視において、前記第1の電極(41;51)と前記第2の電極(42;52)との間の最小距離(AB)は、3.0mm以下であり、好ましくは1.0mm以下であり、特に好ましくは0.3mm以下である、請求項1から6までのいずれか1項に記載の電気吸着グリッパ(60a;60b)。
【請求項8】
前記電極(41,42;51,52)の平面視における一部領域において、前記第1の電極(41;51)および前記第2の電極(42;52)は、均一な幅(B)で形成されている、請求項1から7までのいずれか1項に記載の電気吸着グリッパ(60a;60b)。
【請求項9】
前記電極(41,42;51,52)の平面視における一部領域において、前記第1の電極(41;51)および/または前記第2の電極(42;52)は、誘電体絶縁フィルム(61)上に印刷され、前記フィルム(61)は、ホルダ構造体(62)に接着されている、請求項1から8までのいずれか1項に記載の電気吸着グリッパ(60a;60b)。
【請求項10】
前記一部領域において、前記第1の電極(41;51)および前記第2の電極(42;52)は、共通の平面(GE)内に配置されている、請求項1から9までのいずれか1項に記載の電気吸着グリッパ(60a;60b)。
【請求項11】
前記一部領域において、前記第1の電極(41;51)は、第1の平面(EB1)内に配置され、前記第2の電極(42;52)は、第2の平面(EB2)内に配置されており、前記第1の平面(EB1)および前記第2の平面(EB2)は、共平面であり、かつ、相互に離間されて配置されている、請求項1から9までのいずれか1項に記載の電気吸着グリッパ(60a;60b)。
【請求項12】
2つの前記電極への分割のための取り囲みが少なくとも2箇所において中断されており、特に前記空間充填曲線の始端と終端とが不完全に取り囲まれている、請求項1から11までのいずれか1項に記載の電気吸着グリッパ(60a;60b)。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、第1の電極と第2の電極とを含み、前記電極が、当該電極の平面視において相互に係合して形成されている、ワークピースを保持するための電気吸着グリッパに関する。
【背景技術】
【0002】
電気吸着グリッパは、ワークピースを吸着面に保持するために使用され、例えば、工場生産プロセス、特にリンクされた生産プロセスにおいて、ワークピースの搬送に使用される。
【0003】
高電圧が印加される少なくとも1つの電極が吸着面に形成されると、電極と周囲との間は強い電界が支配する。吸着面に当接するワークピースは、電界のスイッチオンの際に当該ワークピース内で誘起される逆電荷への静電吸引に基づき、吸着面に吸着したままである。電極は、薄い絶縁フィルムによってワークピースとの直接接触から保護することができる。導電性ワークピースの場合には、さらに典型的には、交互に高電圧が印加される2つの電極が使用される。
【0004】
電気吸着グリッパ用の典型的な電極は、櫛状構造を有する。したがって、吸着面に平行なワークピースに対する保持力は、好ましい方向を有しており、すなわち、櫛の歯に平行な保持力は、歯に垂直な保持力よりも著しく小さい。この異方性は、特に、係合すべきワークピースの配向が変化する場合には、望ましくない。なぜならば、保持力は、望ましくない状況下においては、非常に小さくなるまで落ち込む可能性があり、特に、確実なグリップのためには小さすぎる可能性があるからである。典型的な電気吸着グリッパは、例えば、国際公開第2007/143662号(WO2007/143662A2)、独国特許発明第69523393号明細書(DE69523393T2)または独国特許発明第102014215333号明細書(DE102014215333B3)に開示されている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】国際公開第2007/143662号
【特許文献2】独国特許発明第69523393号明細書
【特許文献3】独国特許発明第102014215333号明細書
【特許文献4】欧州特許出願公開第2413347号明細書
【特許文献5】米国特許出願公開第2014/0272272号明細書
【発明の概要】
【発明が解決しようとする課題】
【0006】
発明の課題
本発明が基礎とする課題は、吸着面と平行に、ワークピースに対して、方向に依存しない大きな保持力を確実に与えることができる電気吸着グリッパを提供することである。
【課題を解決するための手段】
【0007】
発明の簡単な説明
前記課題は、本発明によれば、第1の電極および第2の電極を含み、前記電極が、当該電極の平面視において相互に係合するように形成され、ここで、少なくとも当該電極の平面視における一部領域において、第1の電極および第2の電極が、2次以上の2次元フラクタル空間充填曲線の境界線に対応して形成されている、ワークピースを保持する電気吸着グリッパによって、解決される。
【0008】
本発明は、電気吸着グリッパの電極を、フラクタルパターンに基づいて形成することを提案している。このフラクタルパターンによれば、吸着面に平行な保持力のもとでの優先方向を良好に回避することが可能になる。このことは、電極の中心以外で把持されるかまたは電気吸着面よりも著しく小さいワークピースにとっても当て嵌まる。
【0009】
さらに、第1の電極および第2の電極は、2次元フラクタル空間充填曲線の境界線(すなわち、囲み線)または境界線(囲み線)の各部分に従って形成されている。したがって、2つの電極は、空間充填曲線自体をシミュレートしない。これによって、電極間の絶縁幅を特に小さくしたり、または、電極間の絶縁面の割合を吸着面全体に比較して特に少なくしたりして管理することが可能になる。これは、より大きな電界強度および/またはより長い電極長を可能にさせ、このことは、より大きな保持力のために使用することができる。バイポーラ電極幾何学形状は、本発明の枠内における電気吸着に対して非常に好適である。
【0010】
本発明に係る電気吸着グリッパは、様々なワークピースサイズ、ワークピース幾何学形状およびワークピース配向に対して汎用的に使用することができ、特に(フレキシブル絶縁層、場合によってはフレキシブル支持構造体も有する)フレキシブル電気吸着グリッパに汎用的に使用することができる。
【0011】
電極幾何学形状は、基本的には(空間充填曲線の相応に高い寸法によって)任意に小さくスケーリングすることができる。これらの電極は、規則的な大規模スケールパターンを有していない。電極の介在空間の電界は、最大限に異なるように配向されている。電気吸着グリッパを用いて取り扱われる典型的なスタンピング/レーザ部品は、1.3〜1.6のフラクタル寸法を有し、ひいては、グリッパの電極(寸法2)とは大きく異なる寸法を有する。最大数の電極介在空間は、全方向においてワークピースによって均一に覆われ得る。
【0012】
境界線は、空間充填曲線のグリッドに対して半分のグリッド距離だけ各グリッド方向にオフセットされた補助グリッドにおける空間充填曲線の軌跡の両側の取り囲みによって生じる。この取り囲みは、2つの電極への分割のために(少なくとも)2箇所において中断されており、好ましくは、ここでは、空間充填曲線の始端(第1の端部)と終端(第2の端部)とが不完全に取り囲まれている。これにより、2つの電極に対して関連する境界線の2つの別個の構造体が生じる。境界線はまた、空間充填曲線の最大の拡幅によっても生じ、そのため、これは直線上で空間充填曲線の外側輪郭から自身に当接する。この場合、例えば空間充填曲線の始端および終端には、それぞれ中断が設けられる。
【0013】
フラクタル空間充填曲線は、一般に、グリッド上の直線的な連続で相互接続された複数の点を介して定義されている基準要素(基準曲線、ジェネレータ)に基づいている(例えば1つのヒルベルト曲線の場合、「U」字型の2×2グリッド配列)。次の高次に移行する場合、基準要素の各グリッド点は、縮小された基準要素によって置き換えられる。縮小された基準要素は、ここでは、次のように配向されている。すなわち、置き換えられる(より大きな)基準要素のグリッド点の接続に対応するように、その始端と終端とが相互接続のために隣接して存在するように配向される。この基準要素は専ら空間充填曲線の1次(反復)を表す。縮小された基準構造体によるこれらのグリッド点の置き換えの後では、2次(反復)が得られる。さらに、縮小された基準構造体のグリッド点の置き換えによれば、3次(反復)が直ちに得られる。
【0014】
フラクタル基本構造は、例えば、以下の文献:欧州特許出願公開第2413347号明細書(EP2413347A1)、米国特許出願公開第2014/0272272号明細書(US2014/0272272A1)に記載されている。
【0015】
フラクタル空間充填曲線の境界線(境界構造体)に対応する電極の軌跡は、当該電極の平面視(投影)において、電気吸着グリッパのワークピースに面する吸着面から、当該吸着面に垂直な方向において形成される。この平面視(投影)においては、電極も相互に係合する。ここでは、これらの電極が、共通の平面内に配置されてもよいし、あるいは、異なる平面内に配置されてもよいことに留意されたい。また、所望の場合には、複数の平面への各電極の分配も同様に可能である。
【0016】
発明の好ましい実施形態
本発明に係る電気吸着グリッパの好ましい実施形態においては、第1の電極および第2の電極は、空間充填曲線の境界線の第1の部分および第2の部分に対応して形成されており、ここで、境界線の第1の部分および第2の部分は、空間充填曲線の始端領域と終端領域とにおいて、相互に分離されていることが想定される。空間充填曲線の始端および終端における境界線が中断している場合、空間充填曲線の境界線(または囲み線)は、簡単な方法で単に2つの電極に分割することができ、それによって、全部で2つだけの端子も2つの電極のために必要になる。空間充填曲線の各区間は、その2つの両側が始端および終端においても異なる電極によって取り囲まれているので、局所的電界の方向の変化は最小限の空間で起こり得る。
【0017】
好ましくは一実施形態においては、空間充填曲線が3次以上であり、好ましくは4次以上である。これにより、電極に比較して非常に小さい構造体も確実に把持することができる。
【0018】
好ましくは、さらに一実施形態においては、空間充填曲線は、ヒルベルト曲線である。このヒルベルト曲線に基づく電極設計は、計画と置き換えが比較的容易である。代替的に、本発明の枠内では、他のタイプのFASS曲線、例えばペアノ曲線を空間充填曲線として使用することができる。一般には、その基準要素が2×2または3×3グリッド上に表示可能である空間充填曲線が好ましい。
【0019】
同様に好ましくは、一実施形態においては、電気吸着グリッパは、厳密に2つの電極、詳細には第1の電極および第2の電極を有している。これにより、電気吸着グリッパの構造は特に簡単に維持される。特に、単に2つの端子が電極の共通の平面内に必要である。
【0020】
好ましい実施形態においては、第1の電極および第2の電極は、それらの各境界線の終端および/または角が丸み付けされて形成されている。このことは、高電圧の際の電極における電界強度ピークまたは電圧降下を回避させる。好ましくは、丸み付けにおける曲率半径は、電極の局所的な幅の1/10より大きく、特に好ましくは、電極の局所的な幅の1/4よりも大きい。
【0021】
好ましくは、さらに一実施形態においては、電極の平面視において、第1の電極と第2の電極との間の最小距離は、3.0mm以下であり、好ましくは1.0mm以下であり、特に好ましくは0.3mm以下である。短い(最小)距離により、高い電界強度、ひいては高い保持力を達成することができる。上述した距離は、金属シートを把持するような典型的な用途に対して好適である。
【0022】
同様に好ましくは、一実施形態においては、電極の平面視における一部領域において、第1の電極および第2の電極は、均一な幅で形成されている。このことは、構造を簡素にさせて、吸着面における保持力の均一な分布を提供する。局所的な電流ピークは回避される。
【0023】
好ましくは、別の一実施形態でも、電極の平面視における一部領域において、第1の電極および/または第2の電極は、誘電体絶縁フィルム上に印刷され、このフィルムがホルダ構造体に接着されている。この製造方法は実際に実証されており、本発明による電極構造体と良好に置き換え可能である。このホルダ構造体は、典型的には、(例えばロボットアームを備えた)自動化ユニットに取り付けられる。
【0024】
好ましくは、一実施形態においては、一部領域において、第1の電極および第2の電極は、共通の平面内に配置されている。このことは製造を容易にさせ、大きな保持力のために特に強い電界強度を生成することができる。
【0025】
同様に好ましくは、一実施形態においては、一部領域において、第1の電極は第1の平面内に配置され、第2の電極は第2の平面内に配置されており、ここで第1の平面および第2の平面は共平面であり、かつ、相互に離間されて配置されている。この構造形態においては、電極間の絶縁を特に簡単に保証することができ、さらに、その構造は比較的簡素である。これらの平面に垂直に測定された2つの平面間の距離は、典型的には10μm〜200μmにすぎず、多くの場合、プラスチックフィルムの厚さによって決定される。
【0026】
本発明の対象のさらなる利点は、明細書および図面から明らかとなる。また、上述した特徴およびさらに別の構成の特徴は、本発明によればそれぞれそれ自体単独でも、あるいは任意に複数組み合わせたものでも利用することができる。図示し、説明した実施形態は、完結したリストとして理解されるべきではなく、むしろ本発明を示すための例示的性質を有している。
【0027】
発明および図面の詳細な説明
本発明は図面に示されており、以下においては、本発明を実施例に基づき、より詳細に説明する。
【図面の簡単な説明】
【0028】
図1】本発明による電極幾何学形状の構造体を説明するための、境界線を有する1次のヒルベルト曲線の概略図。
図2】本発明による電極幾何学形状の構造体を説明するための、境界線を有する2次のヒルベルト曲線の概略図。
図3】本発明による電極幾何学形状の構造体を説明するための、境界線を有する3次のヒルベルト曲線の概略図。
図4】本発明に係る電気吸着グリッパの図3に由来する電極幾何学形状の概略図。
図5図4の電極幾何学形状であるが、丸み付けされた終端および角を有しているケースでの電界説明を伴った概略図。
図6】本発明に係る電気吸着グリッパに対する4次のヒルベルト曲線に基づく電極幾何学形状の概略図。
図7】複数の同心の環状構造体を有するワークピースによって覆われている図6の電極幾何学形状の概略図。
図8】規則的なグリッド構造体を有するワークピースによって覆われている図6の電極幾何学形状の概略図。
図9a】共通の平面内に第1および第2の電極を有する、ワークピースを把持する際の本発明に係る電気吸着グリッパの概略的断面図。
図9b】共平面内に第1および第2の電極を有する、ワークピースを把持する際の本発明に係る電気吸着グリッパの概略的断面図。
図10】本発明による電極幾何学形状の構造体を説明するために、境界線を有する1次のペアノ曲線の概略図。
図11】係数3だけ縮小させた図10のペアノ曲線の概略図。
図12】本発明による電極幾何学形状の構造体を説明するための、境界線を有する2次のペアノ曲線の概略図。
【発明を実施するための形態】
【0029】
図1乃至図3においては、本発明の枠内で電気吸着グリッパのための電極幾何学形状をどのように見出すことができるかをヒルベルト曲線に基づき例示的に説明する。
【0030】
図1は、まず(白抜きのバーによって)1次のヒルベルト曲線1(基準曲線、ジェネレータ)を示している。次数は反復とも称される。
【0031】
(黒の太線で示された)グリッド2には、4つのグリッド点G1,G2,G3,G4が矩形の配列で存在している(いわゆる2×2配列)。(白抜きの矩形で示された)これらのグリッド点G1〜G4は、ヒルベルト曲線1によって直線的な連続で接続されている。この1次のヒルベルト曲線1は、U字型の(ここでは、回り込んだ)形状を有している。この1次のヒルベルト曲線1は、グリッド点G1の始端Aから始まって、グリッド点G4の終端Eで終わっている。
【0032】
(黒の細線で示された)補助グリッド3には、矩形のパターンで、ここでは全部で9つの(黒の矩形で示された)補助グリッド点H1〜H9が存在している。補助グリッド3は、絶対値の点でグリッド2と同じ大きさのグリッド距離GAを有するが、グリッド2に対して、半分のグリッド距離だけグリッド2の2つのグリッド方向(すなわち、右および上)にオフセットされている。
【0033】
1次のヒルベルト曲線1の軌跡は、ここでは、補助グリッド3の境界線によって取り囲むことができる。ここでは、前述のグリッドのグリッド点G1〜G4に(対角線上で)隣接して存在する補助グリッド点H1〜H9のみが必要であることに留意されたい。境界線は、ここでは、補助グリッド3内のすべてが直線上で(左右または上/下方向にも)相互に隣接する補助グリッド点H1〜H9を相互接続し、それらの各接続は、ヒルベルト曲線1と交差しない。しかしながら、ここでは、少なくとも1つの縁部接続部4は、(グリッド点G1における)始端Aにおいて、および縁部側接続部5は(グリッド点G4における)終端Eにおいて開かれたままにされる。ここでは代替的に、接続部4a,5aも、接続部4,5の代わりに開かれたままにされてもよく、あるいはすべての接続部4,4a,5,5aが開かれたままにされてもよいことに留意されたい。
【0034】
次いで取り囲みにより、境界線の(斜線で示された)第1の部分T1が生じ、この第1の部分T1は、ここでは、補助グリッド3に沿って補助グリッド点H1,H2,H6,H9,H8,H7を接続している。さらに取り囲みにより、境界線の(点線で示された)第2の部分T2が生じ、この第2の部分T2は、ここでは、補助グリッド3に沿って補助グリッド点H4,H5を接続している。
【0035】
2次のヒルベルト曲線11に達するために、ここでは、図1からの各グリッド点G1〜G4が、対応して(ここでは、係数2だけ)縮小された1次のヒルベルト曲線1a〜1dによって置き換えられる。これについては図2参照。縮小された1次のヒルベルト曲線1a〜1dは、それらの始端Aa〜Adおよび終端Ea〜Edを介して接続部12,13,14によって次のように接続される。すなわち、反復前の最初に配向された1次のヒルベルト曲線1(図1参照)におけるグリッド点G1〜G4が接続されていたように接続される。それぞれ縮小された1次のヒルベルト曲線1a〜1dの配向は、それに合わせて例えば回転および/または鏡映(この場合、ここでは回転で十分である)によって対応して選択されている。具体的には、ヒルベルト曲線1a(以前のグリッド点G1)は、接続部12を介してヒルベルト曲線1b(以前のグリッド点G2)に接続されている。さらに、ヒルベルト曲線1b(以前のグリッド点G2)は、接続部13を介してヒルベルト曲線1c(以前のグリッド点G3)に接続されている。最後に、ヒルベルト曲線1c(以前のグリッド点G3)は、接続部14を介してヒルベルト曲線1d(以前のグリッド点G4)に接続されている。ここでは、2次元フラクタル空間充填曲線(ヒルベルト曲線など)の反復的な構造体は、そのように既知であることに留意されたい。
【0036】
それらの全部で16個のグリッド点(例示的にG1で示されている白い矩形参照)も(黒の太線による)グリッド2上に存在している2次のヒルベルト曲線11については、ここでも境界線が補足可能である。この目的のために、グリッド2に対して半分のグリッド距離だけ各グリッド方向にオフセットされた(黒の細線による)補助グリッド3が、複数の補助グリッド点(例示的にH1で示されている黒の矩形参照)と共に使用される。境界線の構造体に対して、相互に(直線上で)隣接するすべての補助グリッド点は、それらの接続部がヒルベルト曲線11と(その接続部12,13,14も含めて)交差しない限り、相互接続される。ヒルベルト曲線11の始端Aおよび終端Eのグリッド点に隣接して、それぞれ少なくとも1つの外部接続部15,16は開かれたままであり、代替的にまたは付加的に、接続部15a,16aも開かれたままであってもよい。
【0037】
ここでは、(斜線で示されている)境界線の第1の部分T1および(点線で示されている)境界線の第2の部分T2が生じており、これらは相互に分離されている。2次のヒルベルト曲線11に対する境界線のこれらの部分T1およびT2は、既に電気吸着グリッパの電極構造体のために使用することができる。しかしながら、多くの場合、少なくとも3次の空間充填曲線が電極構造体のための基礎として用いられる。
【0038】
1次から2次への場合と同様の方法によって、ヒルベルト曲線の2次から3次への(および相応にさらにより高次への)構造体に対しても処理することができる。図3は、3次のヒルベルト曲線31の構造体を示し、ここではそれぞれ、2次のヒルベルト曲線11のグリッド点(図2の白抜きの矩形参照)が1次の縮小されたヒルベルト曲線によって置き換えられており、これは2次のヒルベルト曲線11に設けられた接続部を引き継ぐのに適するように配向されている。3次のヒルベルト曲線31は、空間を充填するように全部で64個のグリッド点(例示的にグリッド点G1で示されている白い矩形参照)上を延在している。
【0039】
3次のヒルベルト曲線31のグリッド2に対して各方向に半分のグリッド距離だけオフセットされた補助グリッド3とその補助グリッド点(例示的に補助グリッド点H1で示された黒の矩形参照)とを介して、2つの別個の部分T1,T2を伴う境界線を得ることができる。(直線的に)隣接するこれらの補助グリッド点はヒルベルト曲線81と交差することなく接続され、この場合、ここでは、始端Aおよび終端Eにおける接続部15,16は開かれたままにされる。
【0040】
ここでは、部分T1上の各補助グリッド点は、少なくとも1つの対角線上または直線上で隣接する部分T2上の補助グリッド点を有し、その逆も成り立つことに留意されたい。
【0041】
図4においては、より良好に分かり易くするために、図3の境界線の部分T1(斜線部分)および部分T2(点線部分)のみが示されている。これらは、本発明に係る電気吸着グリッパに対する第1の電極41および第2の電極42の幾何形状のためのひな型として使用することができる。電極41,42は、ここでは、電気吸着グリッパのワークピースに面する接着面からの平面視で示されており、2つの電極41,42は、ここでは、共通の平面内に存在している(しかしながら、電極は、代替的に例えば相前後して存在する平面内に配置されてもよい)。電極41,42間の空間は、電極間の電気的絶縁に用いられる、例えば、絶縁プラスチックで充填することもできるし、あるいは、単純に空けたままにすることも可能である。電極41,42は、多くの場合、銅、金もしくは銀またはこれらの金属を含む合金からなる。ここでは、これらの電極41,42の幅Bは、基本的には(これらの電極41,42間の所要の絶縁が保証されている限り)任意に選択することができることに留意されたい。しかしながら、典型的には、これらの電極41,42の幅Bは、2つの電極41,42のもとでも、それぞれの電極41,42の内部でも同じである。それに応じて、電極41,42の平面視においても、電極41,42間の(最小)距離ABは、典型的にはどこでも同じである。
【0042】
電極41,42間に高電圧を使用することにより、電極41,42の角を(電極41,42端部における角も含めて)丸み付けして形成することができる。図4の構造形態に十分に対応する図5に示されている構造形態においては、すべての外側の角は、ここでは、半分の電極幅に相当する曲率半径で丸み付けされている。同様に、内側の角も丸み付けされて形成されている。これにより、電圧フラッシュオーバーが回避または抑制される。
【0043】
図5は付加的に、電極41,42の使用の枠内で異なる電位で生じる(例示的に磁力線43でマークされた)局所的電界の様々な配向も示している。これらの配向は非常に短い距離にわたって変化しており、そのため、遅くともほぼグリッド距離GAの後に、電界方向の変化が始まる。さらに、高電圧源(図示せず)に対する電極41,42のまだ2つの電気的端子44,45が示されている。これらの端子44,45は、電極41,42の共通の平面(ここでは図平面)内に(少なくとも部分的に)存在している。端子44,45の空間的配列は、電気吸着グリッパの幾何学的条件によるものであり、空間充填曲線またはその境界線に起因するものではない。換言すれば、端子44,45なしの電極41,42の平面視における一部領域においてのみ、ここでの電極41,42は、フラクタル空間充填曲線の境界線に対応する。
【0044】
図6は、4次のヒルベルト曲線に基づく第1の電極51および第2の電極52を有する本発明のための電極配列を示す。図7において複数の同心の環状構造体で形成されたワークピース53で覆われている場合、非常に多くの(例えば30を超える)局所的電極介在空間における電界線は、すべての方向(特に左右および上下方向)でほぼ同じ割合で入射することができ、電極51,52の平面(ここでは、図平面)内で保持力の顕著な優先方向は存在しない。規則的な矩形のグリッド構造体を有するワークピース54で覆われている場合でも(図8参照)、非常に多くの(例えば30を超える)局所的電極介在空間における電界線は、すべての配向方向においてほぼ等しい割合で覆われ、それによって、ここでもすべての方向において実質的に等しい高い保持力が生じる。
【0045】
図9aは、本発明に係る電気吸着グリッパ60aの断面を概略的に示す。例えばPET,PENまたはPIからなる絶縁フィルム(誘電体フィルム)61上には、例えば図4または図5に示すような幾何学形状を有する2つの電極41,42が印刷されている。各電極41,42は、図示の断面では多重に切断されるが、各電極41,42自体は関連しており、そのため、同じ電極41,42のすべての電極部分は同じ電位にあることに留意されたい(ここでは、電極部分の電気的接続によって示される)。電極41,42は、(導体線路から見て)図示の実施形態では共平面GE内に配置されている。絶縁フィルム61は、電極41,42と共にホルダ構造体(支持構造体とも称する)62に取り付けられており、ここでの絶縁フィルム61は、電極41,42を外側に向かって覆う。電極41,42は、さらに一般に、例えばさらなる絶縁フィルム(詳細には図示せず)によって、ホルダ構造体62に対しても電気的に絶縁されている。絶縁フィルム61の表側は、ワークピース64(ここでは、金属シート)を当てることができる把持面(吸着面とも称される)63を形成する。高電圧源65により、電極41は、例示的に正の電位に接続され、電極42は負の電位に接続される。電極41,42は、ここでは、空隙66を超えてワークピース64内に逆の符号を有する逆電荷を誘起し、これによって、静電吸引が電気吸着グリッパ60aとワークピース64との間に生じる。それに応じて、高電圧が電極41,42に印加される限り、ワークピース64は電気吸着グリッパ60aに保持される。電気吸着グリッパ60aは、ワークピース64を搬送するために、典型的には自動化ユニット(例えばロボットアーム)と共に構成されている(詳細には図示せず)。
【0046】
図9bは、代替的な本発明に係る電気吸着グリッパ60bの断面を概略的に示す。図9aからの電気吸着グリッパ60aとは異なり、ここでは、電極41は、第1の平面EB1内(図示の実施形態ではホルダ構造体62の内部)に存在し、第2の電極42は、第2の平面EB2内に存在し、絶縁フィルム61上に印刷されている。これらの平面EB1,EB2は、共平面に(相互に平行に)形成されており、これらの電極41,42は相前後して存在している。それぞれ電極41,42の中心から中心まで測定された、これらの平面EB1,EB2の距離AEは、ここでは、電極41,42の厚さDEよりもわずかに大きい。
【0047】
図9aまたは図9bにおいて、把持面(吸着面)63に垂直な方向において当該把持面(吸着面)63の側から電気吸着グリッパ60a,60bを見れば、当該把持面(吸着面)63の平面視または投影視において、例えば図4または図5に示されているような本発明による電極幾何学的形状が生じる。
【0048】
図10乃至図12においては、ペアノ曲線に基づく本発明による電極幾何学形状の構造体を説明する。
【0049】
図10には、まず1次のペアノ曲線71が示されている。この1次のペアノ曲線71は、3×3配列グリッドの全部で9つのグリッド点(これらは白抜きの矩形で書き込まれている)に基づいており、ここでは、例示的に、1次のペアノ曲線71の始端Aを同時に表すグリッド点G1と、1次のペアノ曲線71の終端Eを同時に表すグリッド点G2とが書き込まれている。これらのグリッド点は、ペアノ曲線によって直線的に相互接続されており、この1次のペアノ曲線71(第1の反復)は、ほぼS字状の軌跡を有する。
【0050】
半分のグリッド距離だけ各グリッド方向にオフセットさせて複数の補助グリッド点(斜線、点線および破線の矩形)を配置することができ、それらのうちから例示的に補助グリッド点H1が書き込まれている。直線上で隣接する補助グリッド点の接続部は(それらがペアノ曲線71と交差しない限り)、ペアノ曲線71の境界線を画定する。さらに、ここでは、始端Aおよび終端Eに隣接する外部接続部は省略されている。それに応じて、境界線の部分T1(斜線部分)およびT2(点線部分)が生じる。
【0051】
グリッド点を、ここでは、係数3だけ縮小させた1次のペアノ曲線71aによって置き換えることにより(図11参照)、2次のペアノ曲線81を得ることができる(図12参照)。縮小されたペアノ曲線は、それぞれ、ここでは鏡映によって、元の1次のペアノ曲線71の接続部が調整できるように配向される。これについては、2次のペアノ曲線81の接続部82(太線の囲みを有する)に留意されたい。
【0052】
縮小された1次のペアノ曲線71aに属する(図11参照)、境界線の部分T1a、T2aを含めた2次のペアノ曲線81を統合するならば、2次のペアノ曲線81の部分T1,T2を得るために、これらの境界線も接続部83,84に接続させるべきである。同じ境界線またはそれらの部分T1,T2は、グリッド点(白い矩形)を半分のグリッド距離だけ各グリッド方向にシフトさせることによって生じる補助グリッド点(斜線、点線および破線の矩形)を介して、ペアノ曲線81との交差を避けつつ、ここでは、それぞれペアノ曲線81の始端Aおよび終端Eにおける2つの外部接続部85,85a、86,86aは空けたまま、直線上で隣接する補助グリッド点の接続によって得られる。
【0053】
2次のペアノ曲線81の境界線の2つの別個の部分T1(斜線部分)およびT2(点線部分)は、本発明に係る電気吸着グリッパのための電極幾何学形状として用いることができる。
図1
図2
図3
図4
図5
図6
図7
図8
図9a
図9b
図10
図11
図12