(58)【調査した分野】(Int.Cl.,DB名)
前記制御部は、前記冷媒漏洩センサによって冷媒の漏洩が検知された場合において、前記冷媒回路に封入されている冷媒が可燃性であるときには、前記室内ファンを駆動させ、さらに、冷媒の漏洩を報知すること
を特徴とする請求項1に記載の空気調和機。
前記制御部は、前記冷媒漏洩センサによって冷媒の漏洩が検知された場合において、前記冷媒回路に封入されている冷媒が不燃性であるときには、前記室内ファンを駆動させずに、冷媒の漏洩を報知すること
を特徴とする請求項1に記載の空気調和機。
前記制御部は、前記圧縮機の吸込側・吐出側における冷媒の過熱度に基づいて、前記冷媒回路に封入されている冷媒の種類を特定し、さらに、当該種類の冷媒が可燃性であるか否かに基づいて、前記室内ファンを制御すること
を特徴とする請求項1に記載の空気調和機。
【発明を実施するための形態】
【0009】
≪第1実施形態≫
<空気調和機の構成>
図1は、第1実施形態に係る空気調和機100の構成図である。
なお、
図1では、暖房運転中に冷媒が流れる向きを実線で示し、冷房運転中に冷媒が流れる向きを破線で示している。
空気調和機100は、冷房、暖房等の空調を行う機器である。空気調和機100の種類は、床置き式であってもよいし、また、天埋め式や壁掛け式であってもよい。
【0010】
図1に示すように、空気調和機100は、冷媒回路10と、室外ファンFoと、室内ファンFiと、阻止弁V1,V2と、を備えている。また、空気調和機100は、前記した構成の他に、各センサ21〜25と、室外制御回路31(制御部)と、室内制御回路32(制御部)と、リモコンReと、を備えている。
【0011】
冷媒回路10は、冷凍サイクル(ヒートポンプサイクル)で冷媒が循環する回路である。
図1に示すように、冷媒回路10は、圧縮機11と、四方弁12と、室外熱交換器13と、膨張弁14と、室内熱交換器15と、を備えている。
【0012】
圧縮機11は、ガス状の冷媒を圧縮する機器である。圧縮機11の種類は特に限定されず、スクロール式、ピストン式、ロータリ式、スクリュー式、遠心式等の圧縮機が用いられる。なお、
図1では図示を省略しているが、圧縮機11の吸込側にアキュムレータ(気液分離器)が設けられている。
【0013】
室外熱交換器13は、その伝熱管(図示せず)を通流する冷媒と、室外ファンFoから送り込まれる外気と、の間で熱交換が行われる熱交換器である。
室外ファンFoは、室外熱交換器13に外気を送り込むファンであり、室外熱交換器13の付近に設置されている。
【0014】
室内熱交換器15は、その伝熱管(図示せず)を通流する冷媒と、室内ファンFiから送り込まれる室内空気(空調対象空間の空気)と、の間で熱交換が行われる熱交換器である。
室内ファンFiは、室内熱交換器15に室内空気を送り込むファンであり、室内熱交換器15の付近に設置されている。
【0015】
膨張弁14は、「凝縮器」(室外熱交換器13及び室内熱交換器15の一方)で凝縮した冷媒を減圧する機能を有している。なお、膨張弁14によって減圧された冷媒は、「蒸発器」(室外熱交換器13及び室内熱交換器15の他方)に導かれる。
【0016】
四方弁12は、空気調和機100の運転モードに応じて、冷媒の流路を切り替える弁である。例えば、冷房運転時(
図1の破線矢印を参照)には、圧縮機11、室外熱交換器13(凝縮器)、膨張弁14、及び室内熱交換器15(蒸発器)が、四方弁12を介して環状に順次接続されてなる冷媒回路10において、冷凍サイクルで冷媒が循環する。
【0017】
また、暖房運転時(
図1の実線矢印を参照)には、圧縮機11、室内熱交換器15(凝縮器)、膨張弁14、及び室外熱交換器13(蒸発器)が、四方弁12を介して環状に順次接続されてなる冷媒回路10において、冷凍サイクルで冷媒が循環する。このように冷媒回路10では、圧縮機11、「凝縮器」、膨張弁14、及び「蒸発器」を順次に介して、冷凍サイクルで冷媒が循環するようになっている。
【0018】
なお、
図1に示す例では、圧縮機11、四方弁12、室外熱交換器13、膨張弁14、室外ファンFo等が、室外機Hoに設けられている。一方、室内熱交換器15や室内ファンFi等が、室内機Hiに設けられている。
【0019】
阻止弁V1,V2は、空気調和機100の据付作業後に開弁されることで、それまで室外機Hoに封入されていた冷媒を冷媒回路10の全体に行き渡らせるための弁である。
【0020】
吐出圧力センサ21は、圧縮機11から吐出される冷媒の圧力(吐出圧力)を検出するセンサであり、圧縮機11の吐出口の付近に設置されている。
吐出温度センサ22は、圧縮機11から吐出される冷媒の温度(吐出温度)を検出するセンサであり、圧縮機11の吐出口の付近に設置されている。
【0021】
吸込圧力センサ23は、圧縮機11に吸い込まれる冷媒の圧力(吸込圧力)を検出するセンサであり、圧縮機11の吸込口の付近に設置されている。
吸込温度センサ24は、圧縮機11に吸い込まれる冷媒の温度(吸込温度)を検出するセンサであり、圧縮機11の吸込口の付近に設置されている。
吐出圧力センサ21、吐出温度センサ22、吸込圧力センサ23、及び吸込温度センサ24の各検出値は、室外制御回路31に出力される。
【0022】
冷媒漏洩センサ25は、冷媒回路10における冷媒の漏洩を検知するセンサであり、冷媒の漏洩を検知しやすい所定箇所に設置されている。このような冷媒漏洩センサ25として、半導体式、赤外線式、接触燃焼式、電気化学式等の各種センサを用いることができる。
【0023】
なお、室内機Hiが床置き式である場合には、室内機Hiの底板(図示せず)の上に冷媒漏洩センサ25が設置されることが多い。例えば、室内熱交換器15の伝熱管(図示せず)の接続箇所から冷媒が漏れ出した場合、空気よりも冷媒のほうが比重が大きいため、ガス状の冷媒が沈降して底に溜まる。そして、冷媒漏洩センサ25は、自身が検出した冷媒の濃度が所定閾値以上である場合に冷媒漏れを検知し、さらに、冷媒漏れの検知信号を室内制御回路32に出力するようになっている。
【0024】
室外制御回路31は、例えば、マイコンであり、図示はしないが、CPU(Central Processing Unit:図示せず)、ROM(Read Only Memory)、RAM(Random Access Memory)、各種インタフェース等の電子回路を含んで構成されている。そして、ROMに記憶されたプログラムを読み出してRAMに展開し、CPUが各種処理を実行するようになっている。室外制御回路31は、各センサ21〜24の検出値等に基づいて、圧縮機11、膨張弁14、室外ファンFo等を制御する。
【0025】
室内制御回路32は、例えば、マイコンであり、通信線(一点鎖線の矢印)を介して室外制御回路31に接続されている。室内制御回路32は、室外制御回路31から受信する情報やリモコンReからの信号に基づいて、室内ファンFi等を制御する。
【0026】
リモコンReは、ユーザによって操作され、室内機Hiに所定の赤外線信号を送信する。例えば、運転/停止、設定温度の変更、タイマの設定、運転モードの変更求等の指令信号が、リモコンReから室内機Hiに送信される。また、冷媒漏洩センサ25によって冷媒漏れが検知された場合、その旨の情報が室内機HiからリモコンReに送信され、さらに、リモコンReに表示されるようになっている。
【0027】
なお、ビル用マルチエアコン(Variable Refrigerant Flow:VRF)やパッケージエアコン(Packaged Air Conditioning systems:PAC)等で用いられる集中リモコンも、リモコンReに含まれるものとする。
【0028】
図2は、空気調和機100の室内制御回路32を含む機能ブロック図である。
図2に示すように、室内制御回路32は、通信部321と、制御部322と、記憶部323と、を備えている。
通信部321は、冷媒漏洩センサ25から信号を取得したり、室外制御回路31との間で所定のデータをやり取りしたりするためのインタフェースである。
【0029】
制御部322は、冷媒回路10に封入されている冷媒が可燃性であるか否かに基づいて、室内ファンFi等を制御する機能を有している。
図2に示すように、制御部322は、データ取得部322aと、冷媒種類特定部322bと、運転制御部322cと、を備えている。
データ取得部322aは、通信部321を介して、冷媒漏洩センサ25や室外制御回路31から所定のデータを取得する。データ取得部322aによって取得されたデータは、記憶部323に格納される。
【0030】
冷媒種類特定部322bは、例えば、圧縮機11(
図1参照)の吸込側・吐出側における冷媒の過熱度に基づいて、冷媒回路10に封入されている冷媒の種類を特定する。なお、冷媒種類特定部322bが実行する処理については後記する。
運転制御部322cは、所定のプログラムに基づいて、室内ファンFi等を制御する。
【0031】
記憶部323には、データ取得部322aによって取得されたデータが一時的に格納される。また、記憶部323には、後記する吐出過熱度の目標値や、冷媒の物性データ(凝縮温度や蒸発温度の算出に用いられるデータ)が、冷媒の種類(例えば、冷媒R410Aや冷媒R32)に対応付けて、予め格納されている。
【0032】
<冷媒の物性について>
以下では、一例として、2種類の冷媒R410A及び冷媒R32のうち、いずれか一方が冷媒回路10(
図1参照)に封入される場合について説明する。なお、冷媒R410Aは、冷媒R32及び冷媒R125が混合されてなるHFC系の混合冷媒である。この冷媒R410Aは、蒸気圧力が比較的高く、冷凍サイクルの高効率化を図りやすいという特長がある。
【0033】
一方、冷媒R32は、HFC系の単一冷媒である。この冷媒R32は、GWP(Global Warming Potential:地球温暖化係数)が冷媒R410Aよりも低く、地球温暖化の抑制に寄与できるという特長がある。
【0034】
また、冷媒R32は可燃性(微燃性)である一方、冷媒R410Aは不燃性である。本実施形態では、このような冷媒物性の違い(可燃性/不燃性)を考慮して、冷媒が漏洩した場合の制御を行うようにしている。
【0035】
なお、冷媒漏洩センサ25によって冷媒漏れが検知されるか否かの判定基準となる所定閾値(冷媒の濃度の閾値)が、冷媒の種類によって異なる値に設定されてもよい。例えば、制御部322は、冷媒回路10に封入されている冷媒が可燃性である場合の所定閾値(冷媒の濃度の閾値)を、冷媒回路10に封入されている冷媒が不燃性である場合よりも小さな値に設定する。これによって、可燃性の冷媒の漏洩を敏感に検知できる。また、冷媒R410A及び冷媒R32のうちいずれが冷媒回路10に封入されても、一つの冷媒漏洩センサ25を用いて、冷媒の漏洩を適切に検知できる。
【0036】
<制御部の処理>
図3は、空気調和機100の試運転時における処理のフローチャートである(適宜、
図1、
図2を参照)。
なお、
図3の「START」時に、空気調和機100の試運転が開始されるものとする。ここで「試運転」とは、空気調和機100の据付作業が完了した後、通常の空調運転に先立って試験的に行われる運転である。また、空気調和機100の冷媒回路10には、冷媒R410Aが封入されているか、又は、冷媒R32が封入されているものとする(いずれの冷媒が封入されていてもよい)。
【0037】
ステップS101において制御部322は、運転制御部322cによって、圧縮機11や膨張弁14を適宜に制御する。その一例を挙げると、制御部322は、圧縮機11の吐出側における冷媒の過熱度の目標値Kd1に基づいて、圧縮機11や膨張弁14の制御指令値を設定し、空気調和機100の試運転を実行する。
【0038】
前記した「過熱度」とは、冷媒の圧力に対応する飽和温度に対して、冷媒の実際の温度が何度高いかを示す数値である。なお、圧縮機11の吐出側における冷媒の過熱度を「吐出過熱度」という。また、圧縮機11の吸込側における冷媒の過熱度を「吸込過熱度」という。試運転時における吐出過熱度の目標値Kd1は、冷媒R410Aや冷媒R32の物性に基づいて、予め設定されている。
【0039】
ステップS102において制御部322は、現時点での吐出過熱度Kdが、所定の目標値Kd1に達したか否かを判定する。例えば、制御部322は、冷媒R410Aの物性に基づいて、吐出圧力センサ21の検出値に対応する凝縮温度を算出する。さらに、制御部322は、吐出温度センサ22の検出値から凝縮温度を減算することで、現時点での冷媒の吐出過熱度Kdを算出する。つまり、制御部322は、冷媒R410Aが冷媒回路10に封入されていると仮定した場合の吐出過熱度Kdを算出する。そして、制御部322は、現時点での吐出過熱度Kdが、所定の目標値Kd1(冷媒R410Aに対応する目標値Kd1)に達したか否かを判定する。
【0040】
ステップS102において吐出過熱度Kdが目標値Kd1に達した場合(S102:Yes)、制御部322の処理はステップS103に進む。一方、吐出過熱度Kdが目標値Kd1に達していない場合(S102:No)、制御部322はステップS102の処理を繰り返す。
【0041】
ステップS103において制御部322は、吸込過熱度Kiが所定閾値Ki1よりも高いか否かを、冷媒種類特定部322bによって判定する。前記した所定閾値Ki1は、冷媒の種類の判定基準となる吸込過熱度の閾値であり、予め設定されている。例えば、制御部322は、冷媒R410Aの物性に基づいて、吸込圧力センサ23の検出値に対応する蒸発温度を求める。さらに、制御部322は、吸込温度センサ24の検出値から蒸発温度を減算することで、現時点での冷媒の吸込過熱度Kiを算出する。そして、制御部322は、吸込過熱度Kiと、所定閾値Ki1と、の大小を比較する。
【0042】
ステップS103において吸込過熱度Kiが所定閾値Ki1よりも高い場合(S103:Yes)、制御部322の処理はステップS104に進む。
ステップS104において制御部322は、冷媒回路10に封入されている冷媒が、冷媒R410Aであると判定する。冷媒R410Aのほうが、冷媒R32よりも過熱蒸気になりやすいからである。このように制御部322は、圧縮機11の吸込側・吐出側における冷媒の過熱度に基づいて、冷媒回路10に封入されている冷媒の種類を特定する。
【0043】
ステップS105において制御部322は、ステップS104の判定結果を記憶する。つまり、制御部322は、冷媒回路10に実際に封入されている冷媒が、冷媒R410Aであるという情報を記憶部323に格納する。
【0044】
一方、ステップS103において吸込過熱度Kiが所定閾値Ki1以下である場合(S103:No)、制御部322の処理はステップS106に進む。
ステップS106において制御部322は、冷媒回路10に封入されている冷媒が、冷媒R32であると判定する。冷媒R32は、冷媒R410Aよりも過熱蒸気になりにくい(気液二相の状態に留まりやすい)からである。
【0045】
ステップS107において制御部322は、ステップS106の判定結果を記憶する。つまり、制御部322は、冷媒回路10に実際に封入されている冷媒が、冷媒R32であるという情報を記憶部323に格納する。
【0046】
なお、試運転前は、冷媒R410A及び冷媒R32のうちいずれが冷媒回路10に封入されているか、制御部322側では不明である。したがって、例えば、実際には冷媒R32が冷媒回路10に封入されていた場合において、ステップS102の吐出過熱度Kd、及びステップS103の吸込過熱度Kiを算出する際、冷媒R410Aの物性情報が用いられる可能性もある。
【0047】
このような場合でも、ステップS104,S106の処理で誤判定が起きないように、前記した目標値Kd1(S102)や所定閾値Ki1(S103)が適宜に設定されている。そして、ステップS105又はステップS107の処理を行った後、制御部322は試運転時の処理を終了する(END)。
【0048】
なお、冷媒R410Aと冷媒R32との間の中間的な所定の物性情報に基づいて、制御部322が、吐出過熱度Kdや吸込過熱度Kiを算出するようにしてもよい(S102、S103)。また、
図3に示す一連の処理を、室外制御回路31(
図1参照)が行うようにしてもよい。
【0049】
図4は、空気調和機100の空調運転が行われていないときのフローチャートである(適宜、
図1、
図2を参照)。
なお、
図4の「START」時には、空気調和機100の試運転(
図3参照)が既に完了しているものとする。ステップS201において制御部322は、冷媒漏洩があるか否かを判定する。すなわち、制御部322は、冷媒漏洩センサ25によって冷媒回路10における冷媒の漏洩が検知されたか否かを判定する。
【0050】
ステップS201において冷媒漏洩がない場合(S201:No)、制御部322の処理は「START」に戻る(RETURN)。一方、ステップS201において冷媒漏洩があった場合(S201:Yes)、制御部322の処理はステップS202に進む。
【0051】
ステップS202において制御部322は、冷媒回路10に封入されている冷媒が可燃性であるか否かを判定する。すなわち、制御部322は、試運転時の処理結果(
図3のS104又はS106)に基づき、冷媒回路10に封入されている冷媒が可燃性であるか否かを判定する。
【0052】
なお、冷媒R32が可燃性であり、また、冷媒R410Aが不燃性であるというデータ(次に説明するステップS203又はS204の処理を指定するデータ)は、記憶部323に予め格納されている。
【0053】
ステップS202において、冷媒回路10に封入されている冷媒が可燃性である場合(S202:Yes)、制御部322の処理はステップS203に進む。すなわち、冷媒R410A及び冷媒R32のうち、可燃性の冷媒R32が冷媒回路10に封入されていると判定した場合、制御部322の処理はステップS203に進む。
【0054】
ステップS203において制御部322は、室内ファンFiを駆動させ、さらに、冷媒漏洩を報知する。このように、空調運転が行われていないときでも、制御部322が室内ファンFiを駆動させることで、冷媒回路10から漏れ出した可燃性の冷媒が拡散(攪拌)される。つまり、空調対象空間において冷媒の濃度が局所的に高くなることを抑制し、空気調和機100の信頼性を高めることができる。また、制御部322がリモコンRe等に冷媒漏洩が生じた旨を表示させることで、冷媒回路10から冷媒が漏洩したことをユーザに報知できる。なお、冷媒漏洩の「報知」として、冷媒が漏洩した旨の警報を音声等で発するようにしてもよい。
【0055】
また、ステップS202において、冷媒回路10に封入されている冷媒が可燃性でない場合(S202:No)、制御部322の処理はステップS204に進む。すなわち、冷媒R410A及び冷媒R32のうち、不燃性の冷媒R410Aが冷媒回路10に封入されていると判定した場合、制御部322の処理はステップS204に進む。
【0056】
ステップS204において制御部322は、冷媒漏洩を報知する。すなわち、制御部322は、冷媒漏洩センサ25によって冷媒の漏洩が検知された場合において(S201:Yes)、冷媒回路10に封入されている冷媒が不燃性であるときには(S202:No)、室内ファンFiを駆動させずに、冷媒の漏洩を報知する(S204)。
【0057】
なお、冷媒回路10から漏洩した冷媒が不燃性である場合には(S202:No)、空調対象空間において冷媒の濃度が局所的に高くなっても、特に問題はない。また、不燃性の冷媒が漏れても、制御部322が室内ファンFiを駆動させないことで、ユーザが違和感(空調運転が行われていないにも関わらず、室内ファンFiが駆動することに対する違和感)を覚えることがほとんどない。したがって、空気調和機の快適性・省エネ性を従来よりも高めることができる。
【0058】
ステップS203又はステップS204の処理を行った後、制御部322の処理は「START」に戻る(RETURN)。このようにして、制御部322は、
図4に示す一連の処理を繰り返す。
【0059】
なお、空調運転中に冷媒の漏洩が検知された場合には、冷媒が可燃性であるか否かに関わらず、室内ファンFiの駆動によって、ガス状の冷媒が拡散される。その後に空調運転が停止された後の制御については、
図4を用いて説明したとおりである。
【0060】
<効果>
本実施形態によれば、圧縮機11における冷媒の吸込側・吐出側の過熱度に基づいて、冷媒回路10に封入されている冷媒の種類を容易に特定できる。また、可燃性の冷媒が漏れ出した場合には(
図4のS201:Yes、S202:Yes)、制御部322が、室内ファンFiを駆動させ、さらに、冷媒漏洩を報知する(S203)。これによって、空調対象空間で冷媒の濃度が局所的に高くなることを抑制し、また、冷媒漏洩があった旨をユーザに報知できる。
【0061】
一方、不燃性の冷媒が漏れ出した場合には(
図4のS201:Yes、S202:No)、制御部322が、室内ファンFiを駆動させずに、冷媒漏洩を報知する(S204)。これによって、室内ファンFiを不必要に駆動することなく、冷媒漏洩があった旨をユーザに適切に報知できる。このように本実施形態によれば、冷媒が漏洩した際の制御を適切に行う空気調和機100を提供できる。
【0062】
また、冷媒回路10に封入されている冷媒の種類に応じた制御が、制御部32によって行われるため、冷媒R410A及び冷媒R32のうちいずれを用いる場合でも、同機種の室内機Hiを共用できる。したがって、空気調和機100を量産する際の製造コストを従来よりも削減できる。また、例えば、冷媒回路10に封入されている冷媒R410Aを冷媒R32に入れ替える場合でも、室内機Hiを交換する必要がないため、ユーザ側のコストも削減できる。
【0063】
≪第2実施形態≫
第2実施形態は、切替スイッチ41(
図5参照)の操作によって冷媒の種類が特定される点が、第1実施形態とは異なっている。なお、その他の点(冷媒回路10の構成や、冷媒R410A又は冷媒R32の使用が予め想定されている点)については、第2実施形態と同様である。したがって、第1実施形態とは異なる部分について説明し、重複する部分については説明を省略する。
【0064】
図5は、第2実施形態に係る空気調和機100Aの構成図である。
図5に示す空気調和機100Aは、第1実施形態で説明した構成(
図1参照)に加えて、切替スイッチ41(切替部)を備えている。切替スイッチ41は、冷媒回路10に封入されている冷媒の種類を示す信号が室内制御回路32A(制御部)に出力されるように、ユーザ(施工時の作業員等)によって切替操作されるスイッチである。
【0065】
切替スイッチ41は、例えば、室内機Hiの所定箇所に設置され、ユーザの操作によって切り替えられるようになっている。その一例を挙げると、冷媒回路10に冷媒R410Aが封入されている場合、ユーザによって切替スイッチ41がオン状態に切り替えられ、この切替スイッチ41から室内制御回路32Aにオン信号が出力される。また、冷媒回路10に冷媒R32が封入されている場合、ユーザによって切替スイッチ41がオフ状態に切り替えられ、この切替スイッチ41から室内制御回路32Aにオフ信号が出力される。
【0066】
室内制御回路32Aは、切替スイッチ41から入力される信号に基づいて、室内ファンFiを制御する。この室内制御回路32Aの処理について、
図6を用いて説明する。
【0067】
図6は、室内制御回路32Aが実行する処理のフローチャートである。
なお、
図6の処理は、空気調和機100の試運転の完了後に行われる。また、試運転の際、冷媒回路10に実際に封入された冷媒の種類に基づいて、ユーザ(作業員)が、切替スイッチ41を適宜に操作する。
【0068】
ステップS301において室内制御回路32Aは、切替スイッチ41からオン信号が入力されているか否かを判定する。切替スイッチ41からオン信号が入力されている場合(S301:Yes)、室内制御回路32Aの処理はステップS302に進む。
【0069】
ステップS302において室内制御回路32Aは、切替スイッチ41から入力されるオン信号に基づいて、不燃性の冷媒R410Aに対応した制御を実行する。例えば、室内制御回路32Aは、空調運転の停止中、冷媒漏洩センサ25によって冷媒の漏洩が検知された場合、室内ファンFiを駆動させずに、冷媒の漏洩を報知する。
【0070】
一方、ステップS301において切替スイッチ41からオフ信号が入力されている場合(S301:No)、室内制御回路32Aの処理はステップS303に進む。
ステップS303において室内制御回路32Aは、切替スイッチ41から入力されるオフ信号に基づいて、可燃性の冷媒R32に対応する制御を実行する。例えば、室内制御回路32Aは、空調運転の停止中、冷媒漏洩センサ25によって冷媒の漏洩が検知された場合、室内ファンFiを駆動させ、さらに、冷媒の漏洩を報知する。
【0071】
ステップS302又はステップS303の処理を行った後、室内制御回路32Aの処理は「START」に戻る(RETURN)。このようにして室内制御回路32Aは、
図6に示す一連の処理を繰り返す。
【0072】
なお、冷媒漏洩センサ25によって冷媒の漏洩が検知されるか否かの判定基準となる所定閾値(冷媒の濃度の閾値)を、室内制御回路32Aが、次のように設定してもよい。すなわち、室内制御回路32Aは、冷媒回路10に封入されている冷媒が可燃性である場合の所定閾値(冷媒の濃度の閾値)を、冷媒が不燃性である場合よりも小さな値に設定する。これによって、例えば、可燃性の冷媒の漏洩を敏感に検知できる。
【0073】
<効果>
本実施形態によれば、切替スイッチ41から入力される信号に基づき、室内制御回路32Aによって、冷媒回路10に封入されている冷媒の種類(冷媒R410A又は冷媒R32)に適した制御を行うことができる。
【0074】
≪変形例≫
以上、本発明に係る空気調和機100,100Aについて各実施形態により説明したが、本発明はこれらの記載に限定されるものではなく、種々の変更を行うことができる。
例えば、第1実施形態では、圧縮機11の吐出側・吸込側の過熱度に基づき、制御部322が、冷媒回路10に封入されている冷媒の種類を特定する処理(
図3参照)について説明したが、これに限らない。すなわち、冷媒の物性等に基づく他の周知の方法を用いて、冷媒回路10に封入されている冷媒の種類を特定するようにしてもよい。
【0075】
また、第1実施形態では、制御部322(
図2参照)が冷媒の種類を特定する構成について説明し、第2実施形態では、切替スイッチ41(
図5参照)が冷媒の種類を示す信号を出力する構成について説明したが、これに限らない。例えば、室外機Hoと室内機Hiとが電気的に接続されたとき、室外制御回路31が、室外機Hoの型式を示すデータを室内制御回路32に送信するようにしてもよい。冷媒回路10に封入されている冷媒の種類が、室外機Hoの型式によって一意に特定されることが多いからである。そして、室内制御回路32は、室外機Hoの型式を示すデータ(冷媒の種類に対応)に基づいて、冷媒漏洩時の制御を適宜に行う。
【0076】
また、各実施形態では、空気調和機100において、冷媒R410A及び冷媒R32のうちいずれか一方が使用される場合について説明したが、これに限らない。例えば、HFC系の冷媒、HCFC系の冷媒、自然冷媒等の様々な冷媒の中から任意の2種類の冷媒を管理者が事前に選択するようにしてもよい。
なお、HFC系の冷媒には、冷媒R410Aや冷媒R32の他、冷媒R125、冷媒R134a、冷媒R152a、冷媒R404A、冷媒R407C等が含まれる。また、HCFC系の冷媒には、冷媒R22、冷媒R123、冷媒R141b、冷媒R142b、冷媒R225等が含まれる。また、自然冷媒には、二酸化炭素、炭化水素、水等が含まれる。
【0077】
また、第1実施形態では、不燃性の冷媒の漏洩が検知された場合(
図4のS201:Yes、S202:No)、制御部322が、冷媒の漏洩を報知する処理(S204)について説明したが、これに限らない。例えば、不燃性の冷媒の漏洩が検知された場合、制御部322が室内ファンFiを駆動せず、また、冷媒の漏洩を報知しないようにしてもよい。また、可燃性の冷媒の漏洩が検知された場合、制御部322が室内ファンFiを駆動させる一方で、冷媒の漏洩を報知しないようにしてもよい。
【0078】
また、制御部322が、3種類以上の冷媒の中から冷媒回路10に封入されている冷媒を特定し、特定した冷媒の種類に対応する制御を行うようにしてもよい。また、制御部322が、切替スイッチ41からの情報に基づき、3種類以上の冷媒の中から冷媒回路10に封入されている冷媒を特定し、特定した冷媒の種類に対応する制御を行うようにしてもよい。
【0079】
また、第1実施形態では、制御部322が、冷媒回路10に封入されている冷媒の種類を試運転中に判定する処理について説明したが、これに限らない。例えば、制御部322が、冷媒回路10に封入されている冷媒の種類を通常の空調運転中に判定するようにしてもよい。
【0080】
また、各実施形態では、空気調和機100(
図1参照)が1台の室内機Hiを備える構成について説明したが、これに限らない。すなわち、複数台の室内機を備えるマルチ型の空気調和機にも各実施形態を適用できる。また、室内機・室外機を一体化した一体型の空気調和機にも各実施形態を適用できる。
【0081】
また、各実施形態は本発明を分かりやすく説明するために詳細に記載したものであり、必ずしも説明した全ての構成を備えるものに限定されない。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
また、前記した機構や構成は説明上必要と考えられるものを示しており、製品上必ずしも全ての機構や構成を示しているとは限らない。