特許第6861833号(P6861833)IP Force 特許公報掲載プロジェクト 2015.5.11 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ゼネラル・エレクトリック・カンパニイの特許一覧
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6861833
(24)【登録日】2021年4月1日
(45)【発行日】2021年4月21日
(54)【発明の名称】単一流路構造
(51)【国際特許分類】
   F23R 3/42 20060101AFI20210412BHJP
   F02C 7/00 20060101ALI20210412BHJP
【FI】
   F23R3/42 A
   F02C7/00 D
【請求項の数】16
【全頁数】29
(21)【出願番号】特願2019-540586(P2019-540586)
(86)(22)【出願日】2017年12月6日
(65)【公表番号】特表2020-514661(P2020-514661A)
(43)【公表日】2020年5月21日
(86)【国際出願番号】US2017064795
(87)【国際公開番号】WO2018140136
(87)【国際公開日】20180802
【審査請求日】2019年9月26日
(31)【優先権主張番号】15/417,602
(32)【優先日】2017年1月27日
(33)【優先権主張国】US
(73)【特許権者】
【識別番号】390041542
【氏名又は名称】ゼネラル・エレクトリック・カンパニイ
(74)【代理人】
【識別番号】100188558
【弁理士】
【氏名又は名称】飯田 雅人
(74)【代理人】
【識別番号】100154922
【弁理士】
【氏名又は名称】崔 允辰
(74)【代理人】
【識別番号】100207158
【弁理士】
【氏名又は名称】田中 研二
(72)【発明者】
【氏名】ブランドン・アランソン・レイノルズ
(72)【発明者】
【氏名】ジョナサン・デイヴィッド・バルディガ
(72)【発明者】
【氏名】アンドリュー・スコット・ビルゼ
(72)【発明者】
【氏名】マイケル・トッド・ラドワンスキー
(72)【発明者】
【氏名】エルネスト・アンドレス・バジェホ・ルイス
(72)【発明者】
【氏名】アーロン・マイケル・ジェチ
(72)【発明者】
【氏名】マーク・ユージーン・ノエ
【審査官】 高吉 統久
(56)【参考文献】
【文献】 特開2006−002765(JP,A)
【文献】 特開2007−170807(JP,A)
【文献】 米国特許出願公開第2004/0118122(US,A1)
【文献】 特開2013−011279(JP,A)
【文献】 特開2009−293914(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
F01D 9/02
F02C 7/00
F23R 3/42
(57)【特許請求の範囲】
【請求項1】
ガスタービンエンジンのための流路組立体であって、前記流路組立体は、
前記ガスタービンエンジンの燃焼区域の燃焼器の前方端に位置決めされる燃焼器ドームと
前記燃焼区域を通じて延びる燃焼器部分、および、前記ガスタービンエンジンのタービン区域の少なくとも第1のタービン段及び第2のタービン段を通じて延びるタービン部分を含む環状の単一の外壁と
を備え、
前記タービン部分は、
前記第1のタービン段のノズル部分の外側バンドと、
前記第1のタービン段のブレード部分のシュラウドと、
前記第2のタービン段のノズル部分の外側バンドと、
前記第2のタービン段のブレード部分のシュラウドと、
を備え、
前記燃焼器部分と前記タービン部分とは1つだけの環状の単一構造として一体に形成されており、
前記流路組立体は、前記燃焼器の前記前方端から少なくとも前記燃焼区域を通じて延びる環状の壁を備え、
前記燃焼器ドームは前記環状の単一の外壁から前記環状の内壁へと径方向に延び、
前記燃焼器ドームは、前記環状の内壁および前記環状の単一の外壁に対して軸方向に移動するように構成される、流路組立体。
【請求項2】
軸方向滑り継手が、前記燃焼器ドームと、前記環状の単一の外壁および前記環状の壁の各々との間に形成される、請求項1に記載の流路組立体。
【請求項3】
前記燃焼器ドームは外側羽根と内側羽根とを備え、前記外側羽根は前記環状の単一の外壁に沿って延び、前記内側羽根は前記環状の壁に沿って延びる、請求項1に記載の流路組立体。
【請求項4】
前記環状の単一の外壁は、前記燃焼器ドームに対して径方向に移動するように構成される、請求項1に記載の流路組立体。
【請求項5】
前記環状の壁は前記燃焼器ドームに対して径方向に移動するように構成される、請求項4に記載の流路組立体。
【請求項6】
前記環状の単一の外壁の前記燃焼器部分は、前記燃焼区域の燃焼器の外側ライナをえる、請求項1に記載の流路組立体。
【請求項7】
前記環状の壁は、前記燃焼器の内側ライナと、前記第1のタービン段のノズル部分の内側バンドとを備え、前記内側ライナと前記内側バンドとは1つだけの単一構造として一体に形成される、請求項1に記載の流路組立体。
【請求項8】
前記燃焼器部分と前記タービン部分とは、前記環状の単一の外壁がセラミックマトリックス複合材構成要素であるように、セラミックマトリックス複合材料から一体に形成される、請求項1に記載の流路組立体。
【請求項9】
前記環状の内壁および前記燃焼器ドームは、セラミックマトリックス複合材料を含む、請求項8に記載の流路組立体。
【請求項10】
ガスタービンエンジンのための流路組立体であって、前記流路組立体は燃焼器から前記ガスタービンエンジンのタービン区域を通じて延び、前記タービン区域は、前記燃焼器のすぐ下流における第1のタービン段と、前記第1のタービン段のすぐ下流における第2のタービン段と、を備え、前記流路組立体は、
前記燃焼器の前方端に位置決めされる燃焼器ドームと
路の内側境界を定め、前記燃焼器の内側ライナを備える内壁と
前記流路の外側境界を定める単一の外壁であって前記単一の外壁は、前記燃焼器を通じて前記前方端から延びる燃焼器部分を有するとともに、少なくとも前記第1のタービン段および前記第2のタービン段を通じて延びるタービン部分を有する、単一の外壁と
を備え、
前記タービン部分は、
前記第1のタービン段のノズル部分の外側バンドと、
前記第1のタービン段のブレード部分のシュラウドと、
前記第2のタービン段のノズル部分の外側バンドと、
前記第2のタービン段のブレード部分のシュラウドと
を備え、
前記燃焼器部分と前記タービン部分とは1つだけの環状の単一構造として一体に形成されており、
前記燃焼器ドームは、前記内壁および前記単一の外壁と別体の構成要素である、流路組立体。
【請求項11】
軸方向滑り継手は、前記燃焼器ドームが前記内壁および前記環状の単一の外壁に対して軸方向に移動するように構成されるように、前記燃焼器ドームと前記環状の単一の外壁および前記内壁の各々との間に形成される、請求項10に記載の流路組立体。
【請求項12】
前記環状の単一の外壁は前記燃焼器ドームに対して径方向に移動するように構成され、前記内壁は前記燃焼器ドームに対して径方向に移動するように構成される、請求項11に記載の流路組立体。
【請求項13】
前記燃焼器ドームは燃料ノズル組立体に付着させられる、請求項11に記載の流路組立体。
【請求項14】
燃焼器(80)を含む燃焼区域(26)と、
前記燃焼区域のすぐ下流に位置決めされる第1のタービン段(82)、および、前記第1のタービン段のすぐ下流に位置決めされる第2のタービン段(84)を含むタービン区域(28)と
を備えるガスタービンエンジン(10)であって、
前記燃焼区域および前記タービン区域は流路(100)を定め、
前記燃焼区域は、前記燃焼区域を通る前記流路の内側境界を定める内側ライナ(122)と、前記燃焼区域を通る前記流路の外側境界を定める外側ライナ(108)と、前記燃焼器の前方端(88)において位置決めされ、前記内側ライナと前記外側ライナとの間で延びる燃焼器ドーム(118)とを含み、
前記タービン区域の前記第1のタービン段および前記第2のタービン段の各々はノズル部分(82N、84N)とブレード部分(82B、84B)とを含み、各々のノズル部分は、前記ノズル部分を通る前記流路の内側境界を定める内側バンド(124、136)と、 前記ノズル部分を通る前記流路の外側境界を定める外側バンド(110、114)とを備え、各々のブレード部分は、前記ブレード部分を通る前記流路の外側境界を定めるシュラウド(112、116)を備え、
前記外側ライナ(108)、前記外側バンド(110、114)、および前記シュラウド(112、116)は、前記外側ライナ、前記外側バンド、および前記シュラウドが1つだけの単一の外壁(102)となるように一体に形成され、
前記燃焼器ドームは、前記内側ライナおよび前記単一の外壁と別体の構成要素である、
ガスタービンエンジン。
【請求項15】
軸方向滑り継手が、前記燃焼器ドームと、前記単一の外壁および前記内側ライナの各々との間に形成される、請求項14に記載のガスタービンエンジン。
【請求項16】
前記内側ライナ、前記単一の外壁、および前記燃焼器ドームは複数のセラミックマトリックス複合材テープから各々形成され、各々のテープは、連続した繊維トウの一方向の配列の形態で補強材料を備える、請求項14に記載のガスタービンエンジン。
【発明の詳細な説明】
【技術分野】
【0001】
本主題は、概してガスタービンエンジンに関する。より詳細には、本主題は、ガスタービンエンジン内に流路を定めるための単一構造に関する。
【背景技術】
【0002】
ガスタービンエンジンは、互いと流れが連通して配置されるファンおよびコアを概して含む。また、ガスタービンエンジンのコアは、連続する流れの順番において、圧縮機区域、燃焼区域、タービン区域、および排気区域を概して含む。動作中、空気がファンから圧縮機区域の入口へと提供され、圧縮機区域では、1つまたは複数の軸流圧縮機が、空気が燃焼区域に到達するまで空気を漸進的に圧縮する。燃料が圧縮された空気と混合され、燃焼区域内で燃やされて燃焼ガスを提供する。燃焼ガスは燃焼区域からタービン区域へと経路が定められる。タービン区域を通る燃焼ガスの流れは、タービン区域を駆動し、次に排気区域を通って大気などへと経路が定められる。
【0003】
より具体的には、燃焼区域は、燃焼器ライナによって定められる燃焼室を有する燃焼器を含む。燃焼器の下流で、タービン区域は1つまたは複数の段を含み、例えば、各々の段は、複数の静止ノズル翼と、複数のブレード翼であって、それらブレード翼にぶつかる燃焼ガスの流れによって駆動されるロータに付着させられる複数のブレード翼とを含み得る。タービン区域は他の構成を有してもよく、例えば、タービンは静止ノズル翼のない二重反転タービンであってもよい。いずれにしても、流路が、燃焼器からタービン区域の段を通じて両方で延びる内側境界と外側境界とによって定められる。
【0004】
典型的には、流路を定める内側境界および外側境界は、別々の構成要素を備える。例えば、燃焼器の外側ライナ、タービン段のノズル部分の別体の外側バンド、およびタービン段のブレード部分の別体のシュラウドは、流路の外側境界の少なくとも一部分を通常定める。外側境界および内側境界の各々を形成するために別々の構成要素を利用することは、流路からの流体の漏れを最小限にするために、別々の構成要素の間の各々の接合部分において1つまたは複数のシールを必要とする可能性がある。したがって、非常に多くの部品が流路組立体を構築するために必要とされる可能性があり、これはガスタービンエンジンの複雑性および重量を増加させる可能性がある。さらに、シールが設けられ得るが、流路組立体において別々の構成要素を利用することは、流路からの流体の漏れの点をいくつかもたらしてしまう。増加した重量、複雑性、および漏れは、エンジン性能と、製造の間のエンジンの組立とに悪影響を与える可能性がある。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】米国特許第5,015,540号
【特許文献2】米国特許第5,330,854号
【特許文献3】米国特許第5,336,350号
【特許文献4】米国特許第5,628,938号
【特許文献5】米国特許第6,024,898号
【特許文献6】米国特許第6,258,737号
【特許文献7】米国特許第6,403,158号
【特許文献8】米国特許第6,503,441号
【特許文献9】米国特許出願公開第2004/0067316号
【特許文献10】米国特許出願公開第2013/0157037号
【発明の概要】
【発明が解決しようとする課題】
【0006】
したがって、改善させられた流路組立体が望まれる。例えば、燃焼区域とタービン区域の少なくとも第1の段とを通じて延びる単一の外側境界構造は有益となる。さらに、単一の内側境界構造と単一の外側境界構造とを備える流路組立体は有用である。また、一体の燃焼器ドーム、内側境界構造、および外側境界構造を備える流路組立体は助けになる。さらに、単一の外側境界構造を伴う流路組立体を有するガスタービンエンジンが有利となる。
【課題を解決するための手段】
【0007】
本発明の態様および利点は、以下の記載において一部説明されているか、本明細書から明らかとなり得るか、または、本発明の実施を通じて学習され得る。
【0008】
本開示の1つの例の実施形態では、ガスタービンエンジンのための流路組立体が提供される。流路組立体は、ガスタービンエンジンの燃焼区域の燃焼器の前方端に位置決めされる燃焼器ドームを備える。流路組立体は、燃焼区域を通じて延びる燃焼器部分、および、ガスタービンエンジンのタービン区域の少なくとも第1のタービン段を通じて延びるタービン部分を含む単一の外壁をさらに備える。燃焼器部分とタービン部分とは1つだけの単一構造として一体に形成される。流路組立体は、燃焼器の前方端から少なくとも燃焼区域を通じて延びる内壁も備える。燃焼器ドームは単一の外壁から内壁へと径方向に延び、燃焼器ドームは内壁および単一の外壁に対して軸方向に移動するように構成される。
【0009】
本開示の別の例の実施形態では、ガスタービンエンジンのための流路組立体が提供される。流路組立体は、燃焼器からガスタービンエンジンのタービン区域を通じて延びる。タービン区域は、燃焼器のすぐ下流の第1のタービン段、および、第1のタービン段のすぐ下流の第2のタービン段を含む。流路組立体は、燃焼器の前方端に位置決めされる燃焼器ドームと、流路の内側境界を定める内壁とを備える。内壁は燃焼器の内側ライナを備える。流路組立体は、流路の外側境界を定める単一の外壁をさらに備える。単一の外壁は、燃焼器の前方端から少なくとも第1のタービン段を通じて延びる。燃焼器ドームは、内壁および単一の外壁と別体の構成要素である。
【0010】
本開示のさらなる例の実施形態では、ガスタービンエンジンが提供される。ガスタービンエンジンは、燃焼器を含む燃焼区域を備える。ガスタービンエンジンは、燃焼区域のすぐ下流に位置決めされる第1のタービン段、および、第1のタービン段のすぐ下流に位置決めされる第2のタービン段を含むタービン区域も備える。燃焼区域およびタービン区域は流路を定める。燃焼区域は、燃焼区域を通る流路の内側境界を定める内側ライナと、燃焼区域を通る流路の外側境界を定める外側ライナと、燃焼器の前方端において位置決めされ、内側ライナと外側ライナとの間で延びる燃焼器ドームとを含む。タービン区域の第1のタービン段および第2のタービン段の各々はノズル部分とブレード部分とを含む。各々のノズル部分は、ノズル部分を通る流路の内側境界を定める内側バンドと、ノズル部分を通る流路の外側境界を定める外側バンドとを備える。各々のブレード部分は、ブレード部分を通る流路の外側境界を定めるシュラウドを備える。外側ライナ、外側バンド、およびシュラウドは、外側ライナ、外側バンド、およびシュラウドが1つだけの単一の外壁となるように一体に形成される。さらに、燃焼器ドームは、内側ライナおよび単一の外壁と別体の構成要素である。
【0011】
本発明のこれらおよび他の特徴、態様、および利点は、以下の記載および添付の請求項を参照してより良く理解されることになる。この明細書の一部に組み込まれ、この明細書の一部を構成する添付の図面は、本発明の実施形態を図示しており、本明細書と共に本発明の原理を説明するように供する。
【0012】
当業者を対象にしている、本発明の最良の様態を含む本発明の完全な開示および可能にする開示は、添付の図を参照している本明細書において説明されている。
【図面の簡単な説明】
【0013】
図1】本主題の様々な実施形態による例示のガスタービンエンジンの概略的な断面図である。
図2】本主題の例示の実施形態による図1のガスタービンエンジンの燃焼区域および高圧タービン区域の概略的な分解断面図である。
図3A】本主題の例示の実施形態による図2の燃焼区域および高圧タービン区域の概略的な断面図である。
図3B】本主題の他の例示の実施形態による図2の燃焼区域および高圧タービン区域の概略的な断面図である。
図3C】本主題の他の例示の実施形態による図2の燃焼区域および高圧タービン区域の概略的な断面図である。
図3D】本主題の他の例示の実施形態による図2の燃焼区域および高圧タービン区域の概略的な断面図である。
図3E】本主題の他の例示の実施形態による図2の燃焼区域および高圧タービン区域の概略的な断面図である。
図3F】本主題の例示の実施形態による図2の燃焼区域および高圧タービン区域の一体の外側境界構造および内側境界構造の一部分の部分的な斜視図である。
図4A】本主題の他の例示の実施形態による図2の燃焼区域および高圧タービン区域の概略的な断面図である。
図4B】本主題の他の例示の実施形態による図2の燃焼区域および高圧タービン区域の概略的な断面図である。
図4C】本主題の他の例示の実施形態による図2の燃焼区域および高圧タービン区域の概略的な断面図である。
図5A】本主題の他の例示の実施形態による図2の燃焼区域および高圧タービン区域の概略的な断面図である。
図5B】本主題の他の例示の実施形態による図2の燃焼区域および高圧タービン区域の概略的な断面図である。
図5C】本主題の他の例示の実施形態による図2の燃焼区域および高圧タービン区域の概略的な断面図である。
【発明を実施するための形態】
【0014】
ここで、本発明のここでの実施形態が詳細に参照され、その1つまたは複数の例が添付の図面に示されている。詳細な記載は、図面における特徴を参照するために、数字および文字の符号を用いている。図面および記載における同様のまたは類似の符号が、本発明の同様のまたは類似の部品を参照するために使用されている。本明細書で使用されているように、「第1」、「第2」、および「第3」といった用語は、ある構成要素を別の構成要素から区別するために置き換え可能に使用でき、個別の構成要素の場所または重要性を意味するように意図されていない。「上流」および「下流」といった用語は、流体通路における流体の流れに関しての相対的な方向を参照している。例えば、「上流」は、流体が流れてくる方向を指し、「下流」は、流体が流れていく方向を指す。
【0015】
ここで図面を参照すると、同一の符号は図を通じて同じ要素を指示しており、図1は、本開示の例示の実施形態によるガスタービンエンジンの概略的な断面図である。より具体的には、図1の実施形態について、ガスタービンエンジンは、ここでは「ターボファンエンジン10」として称される高バイパスターボファンジェットエンジン10である。図1に示しているように、ターボファンエンジン10は、軸方向A(参照のために提供されている長手方向中心線12と平行に延びている)と、径方向Rとを定めている。概して、ターボファン10は、ファン区域14と、ファン区域14から下流に配置されたコアタービンエンジン16とを備える。
【0016】
描写されている例示のコアタービンエンジン16は、環状の入口20を定める実質的に管状の外側ケーシング18を概して備える。外側ケーシング18は、連続する流れの関係において、ブースタまたは低圧(LP)圧縮機22および高圧(HP)圧縮機24を備える圧縮機区域と、燃焼区域26と、高圧(HP)タービン28および低圧(LP)タービン30を備えるタービン区域と、ジェット排気ノズル区域32とを包み込んでいる。高圧(HP)シャフトまたはスプール34は、HPタービン28をHP圧縮機24へと駆動可能に連結する。低圧(LP)シャフトまたはスプール36は、LPタービン30をLP圧縮機22へと駆動可能に連結する。ターボファンエンジン10の他の実施形態では、エンジン10がマルチスプールエンジンとして記載され得るように追加のスプールが設けられてもよい。
【0017】
描写した実施形態について、ファン区域14は、離間した手法でディスク42に結合された複数のファンブレード40を有するファン38を備える。描写されているように、ファンブレード40は、径方向Rに概して沿ってディスク42から外向きに延びる。ファンブレード40およびディスク42は、LPシャフト36によって長手方向軸12の周りで一体に回転可能である。一部の実施形態では、複数の歯車を有する動力歯車箱が、LPシャフト36の回転速度をより効率的な回転のファン速度へと落とすために含まれ得る。
【0018】
図1の例示の実施形態をなおも参照すると、ディスク42は、気流を複数のファンブレード40に通すような空気力学的な輪郭とされた回転可能な前ナセル48によって覆われている。また、例示のファン区域14は、ファン38、および/または、コアタービンエンジン16の少なくとも一部分を周方向で包囲する環状のファンケーシングまたは外側ナセル50を備える。ナセル50が、複数の周方向で離間した出口案内羽根52によって、コアタービンエンジン16に対して支持されるように構成され得ることは、理解されるべきである。さらに、ナセル50の下流区域54が、ナセル50とコアタービンエンジン16との間にバイパス気流通路56を定めるようにコアタービンエンジン16の外側部分にわたって延び得る。
【0019】
ターボファン10の動作の間、大量の空気58が、ナセル50の関連する入口60および/またはファン区域14を通じてターボファン10へと入る。大量の空気58がファンブレード40を通過するとき、矢印62によって指示されている空気58のうちの第1の部分はバイパス気流通路56へと方向付けられるかまたは経路が定められ、矢印64によって指示されている空気58のうちの第2の部分はLP圧縮機22へと方向付けられるかまたは経路が定められる。空気のうちの第1の部分62と空気のうちの第2の部分64との間の比は、バイパス比として一般的に知られている。そのため、空気のうちの第2の部分64の圧力は、高圧(HP)圧縮機24を通過して燃焼区域26へと経路が定められときに増加させられ、燃焼区域26では、燃料と混合されて燃焼ガス66を提供するように燃やされる。
【0020】
燃焼ガス66はHPタービン28を通じて経路が定められ、HPタービン28では、燃焼ガス66からの熱エネルギーおよび/または運動エネルギーの一部分が、外側ケーシング18に結合されたHPタービン静翼68と、HPシャフトまたはスプール34に結合されたHPタービンロータブレード70との連続する段を介して抽出され、したがってHPシャフトまたはスプール34を回転させ、それによってHP圧縮機24の動作を支援する。次に、燃焼ガス66はLPタービン30を通じて経路が定められ、LPタービン30では、燃焼ガス66からの熱エネルギーおよび運動エネルギーの第2の部分が、外側ケーシング18に結合されたLPタービン静翼72と、LPシャフトまたはスプール36に結合されたLPタービンロータブレード74との連続する段を介して抽出され、したがってLPシャフトまたはスプール36を回転させ、それによってLP圧縮機22の動作および/またはファン38の回転を支援する。
【0021】
燃焼ガス66は、その後、推力を提供するためにコアタービンエンジン16のジェット排気ノズル区域32を通じて経路が定められる。同時に、空気のうちの第1の部分62が、ターボファン10のファンノズル排気区域76から排気される前にバイパス気流通路56を通じて経路が定められるとき、空気のうちの第1の部分62の圧力が実質的に増加させられる。HPタービン28、LPタービン30、およびジェット排気ノズル区域32は、燃焼ガス66をコアタービンエンジン16に通すように経路を定めるための高温ガス路78を少なくとも部分的に定める。
【0022】
コアタービンエンジン16を有するターボファン10に関して記載されているが、本主題は他の種類のターボ機械に適用可能であり得ることは、理解されるものである。例えば、本主題は、ターボプロップ、ターボシャフト、ターボジェット、産業用ガスタービンエンジン、船舶用ガスタービンエンジン、および/もしくは補助動力ユニットとの使用、または、それらにおける使用に適してもよい。
【0023】
一部の実施形態では、ターボファンエンジン10の構成要素、具体的には、燃焼区域26、HPタービン28、および/またはLPタービン30の構成要素など、高温ガス路78内の構成要素は、高温能力を有する非金属材料であるセラミックマトリックス複合(CMC)材料を備え得る。当然ながら、HP圧縮機24の構成要素など、ターボファンエンジン10の他の構成要素がCMC材料を備えてもよい。このような構成要素のために利用される例示のCMC材料は、炭化ケイ素(SiC)、シリコン、シリカ、またはアルミナのマトリックス材料およびそれらの組合せを含み得る。サファイヤおよび炭化ケイ素(例えば、TextronのSCS-6)などのモノフィラメントと、炭化ケイ素(例えばNippon CarbonのNICALON(登録商標)、Ube IndustriesのTYRANNO(登録商用)、およびDow CorningのSYLRAMIC(登録商標))、アルミナシリケート(例えばNextelの440および480)、チョップドウイスカおよび短繊維(例えばNextelの440およびSAFFIL(登録商標))、ならびに、任意選択で、セラミック粒子(例えば、Si、Al、Zr、Yの酸化物およびそれらの組合せ)、無機充填剤(例えばパイロフィライト、ウォラストナイト、マイカ、タルク、カイヤナイト、およびモンモリロナイト)を含む粗糸および糸とを含む酸化安定性強化用繊維などのセラミック繊維が、マトリックス内に埋め込まれ得る。例えば、特定の実施形態では、セラミックの耐熱材料の被覆を含み得る繊維の束が、一方向強化テープなどの強化テープとして形成される。複数のテープが、プレフォームの構成要素を形成するために一体に(例えば、プライとして)積層され得る。繊維の束は、プレフォームを形成する前、または、プレフォームの形成の後、スラリ組成物で含浸され得る。プレフォームは、プレフォームにおける高いチャー残留物を析出するために、硬化または燃焼などの熱処理を受け、続いて、シリコンでの溶解浸透または化学蒸気浸透などの化学処理を受けて、所望の化学組成を有するCMC材料から形成された構成要素に到達する。他の実施形態では、CMC材料は、テープではなく、例えば炭素繊維生地として形成され得る。
【0024】
前述したように、CMC材料を備える構成要素は、エンジン10の燃焼区域および/またはタービン区域内など、高温ガス路78内で使用され得る。例として、燃焼区域26は、CMC材料から形成される燃焼器を含んでもよい、および/または、HPタービン28の1つまたは複数の段はCMC材料から形成されてもよい。しかしながら、CMC構成要素は、圧縮機区域および/またはファン区域など、他の区域で使用されてもよい。当然ながら、一部の実施形態では、他の高温材料および/または他の複合材料が、エンジン10の1つまたは複数の構成要素を形成するために使用されてもよい。
【0025】
図2は、本主題の例示の実施形態によるターボファンエンジン10の燃焼区域26とタービン区域のHPタービン28との概略的な断面の分解図を提供している。図3Aは、燃焼区域26およびHPタービン28を通る流路の外側境界に注目した、図2の燃焼区域26およびHPタービン28の分解した概略的な断面図を提供している。描写した燃焼区域26は、概して環状の燃焼器80を備え、燃焼区域26の下流において、HPタービン28は複数のタービン段を含む。より具体的には、描写した実施形態については、HPタービン28は第1のタービン段82と第2のタービン段84とを含む。他の実施形態では、HPタービン28は異なる数のタービン段を備えてもよく、例えば、HPタービン28は、1つのタービン段、または、3つ以上のタービン段を含んでもよい。第1のタービン段82は燃焼区域26のすぐ下流に位置決めされ、第2のタービン段84は第1のタービン段82のすぐ下流に位置決めされる。さらに、各々のタービン段82、84はノズル部分とブレード部分とを備え、第1のタービン段82はノズル部分82Nとブレード部分82Bとを含み、第2のタービン段84はノズル部分84Nとブレード部分84Bとを含む。第1のタービン段82のノズル部分82Nは燃焼区域26のすぐ下流に位置付けられ、そのため第1のタービン段82のノズル部分82Nは燃焼器排出ノズルとして称されてもよい。さらに、燃焼器80は、概して環状の燃焼器として記載され得るように概して環状の燃焼室86を定めている。
【0026】
また、以下においてより詳細に記載しているように、燃焼区域26およびHPタービン28を通る流路100が流路組立体101の外側境界および内側境界によって定められる。外側境界および内側境界は、燃焼区域26およびHPタービン28を通る燃焼ガス66のための流路を形成し、したがって、流路100は、前述した高温ガス路78の少なくとも一部分を備えてもよい。さらに、他の実施形態では、流路100は、LPタービン30およびジェット排気32を通じて延びてもよく、なおも他の実施形態では、流路100は、例えばHP圧縮機24へといった、燃焼区域26の上流で前方に延びてもよい。このようにして、燃焼区域26およびHPタービン28に関する本主題のここでの詳述は、単なる例としてであり、ガスタービンエンジンおよび流路100の異なる構成にも当てはまることは理解されるものである。
【0027】
図2の分解図に示しているように、外側境界および内側境界は、燃焼区域26およびHPタービン28のいくつかの部分を含み得る外壁102および内壁120によってそれぞれ定められ得る。例えば、燃焼器80は、燃焼器80を通る流路の外側境界を定める外側ライナ108を含む。各々のノズル部分82N、84Nは、各々のタービン段のノズル部分を通る流路の外側境界を定める外側バンドを備え、各々のブレード部分82B、84Bは、各々のタービン段のブレード部分を通る流路の外側境界を定めるシュラウドを備える。より具体的には、図2に示しているように、第1のタービン段のノズル部分82Nは外側バンド110を備え、第1のタービン段のブレード部分82Bはシュラウド112を備え、第2のタービン段のノズル部分84Nは外側バンド114を備え、第2のタービン段のブレード部分84Bはシュラウド116を備える。燃焼区域26およびHPタービン28のこれらの部分は、後でより詳細に記載されているように、外壁102の少なくとも一部分を備えてもよい。
【0028】
さらに、図2に示しているように、燃焼器80は、燃焼器80を通る流路の内側境界を定める内側ライナ122を含む。各々のノズル部分82N、84Nは、各々のタービン段のノズル部分を通る流路の内側境界を定める内側バンドを備え、各々のブレード部分82B、84Bは、各々のタービン段のブレード部分を通る流路の内側境界を定める1つまたは複数のブレードプラットフォームを備える。より具体的には、図2に示しているように、第1のタービン段のノズル部分82Nは内側バンド124を備え、第1のタービン段のブレード部分82Bはブレードプラットフォーム132を備え、第2のタービン段のノズル部分84Nは内側バンド136を備え、第2のタービン段のブレード部分84Bはブレードプラットフォーム132を備える。燃焼区域26およびHPタービン28のこれらの部分は、後でより詳細に記載されているように、内壁120の少なくとも一部分を備えてもよい。
【0029】
さらに、描写した実施形態では、燃焼器ドーム118が燃焼器80の前方端88にわたって径方向に延びている。燃焼器ドーム118は、外壁102の一部とでき、内壁120の一部とでき、外壁102と内壁120との両方の一部とでき(例えば、燃焼器ドーム118の一部分は外壁102によって定めることができ、残りの部分は内壁120によって定めることができる)、または、外壁102および内壁120とは別の構成要素とできる。また、複数のノズル翼がノズル部分82N、84Nの各々において位置決めされている。第1のタービン段のノズル部分82N内の各々のノズル翼126が外側バンド110から内側バンド124へと径方向に延び、ノズル翼126同士は長手方向中心線12の周りにおいて周方向で離間させられている。第2のタービン段のノズル部分84N内の各々のノズル翼128が外側バンド114から内側バンド136へと径方向に延び、ノズル翼128同士は長手方向中心線12の周りにおいて周方向で離間させられている。さらに、複数のブレード翼130がブレード部分82B、84Bの各々において位置決めされている。第1のタービン段のブレード部分82B内の各々のブレード翼130はブレードプラットフォーム132に付着させられ、さらにブレードプラットフォーム132は第1の段のロータ134に付着させられている。第1の段のロータ134に付着させられたブレード翼130同士は、長手方向中心線12の周りにおいて周方向で離間させられている。同様に、第2のタービン段のブレード部分84B内の各々のブレード翼130はブレードプラットフォーム132に付着させられ、さらにブレードプラットフォーム132は第2の段のロータ138に付着させられている。第2の段のロータ138に付着させられたブレード翼130同士は、長手方向中心線12の周りにおいて周方向で離間させられている。各々のブレード翼130は、外壁102、つまり、流路100の外側境界に向けて径方向外向きに延び、各々のタービンロータ134、138がそれぞれのタービン段の中で自由に回転するように、隙間が各々のブレード翼130の先端140と外壁102との間に定められる。描写されていないが、HPタービン28の各々のタービンロータ134、138はHPシャフト34(図1)に連結されている。このような手法において、ロータブレード翼130は、HPタービン28によって定められる流路100を通る燃焼ガスの流れから運動エネルギーを、HPシャフト34に加えられる回転エネルギーとして抽出できる。
【0030】
したがって、燃焼区域26およびHPタービン28を通る流路100は、内側境界と外側境界とを有する流路組立体101によって定められ、内側境界および外側境界は、燃焼区域26およびHPタービン28を通る燃焼ガス66のための流路を定める。流路組立体101の外側境界の部分は、ガス流路100の径方向外側の境界を定める単一品の外壁102へと組み込みまたは一体化されてもよい。例えば、外壁102は、燃焼区域26などの燃焼区域を通じて延びる燃焼器部分104と、HPタービン28の第1のタービン段82などのタービン区域の少なくとも第1のタービン段を通じて延びるタービン部分106とを含んでもよい。燃焼器部分104とタービン部分106とは、燃焼器部分とタービン部分とが1つだけの単一構造、つまり、単一の外壁102となるように一体に形成される。
【0031】
図3Aに描写した例示の実施形態では、外壁102は、燃焼区域26を通じて延びる燃焼器部分104と、タービン区域の少なくとも第1のタービン段82および第2のタービン段84を通じて延びるタービン部分106とを備える。他の実施形態では、タービン部分106は、より少ない段を通じて(例えば、記載しているような1つのタービン段を通じて)、または、より多くの段を通じて(例えば、HPタービン28の下流に位置決めされたLPタービン30の1つまたは複数の段を通じて)、延びてもよい。燃焼器部分104とタービン部分106とは、燃焼器部分104とタービン部分106とが単一の外壁102としてここでは称される1つだけの単一構造となるように一体に形成される。
【0032】
「単一」という用語は、ここでは、外壁102などの関連する構成要素が製造の間に1つだけの部品として作られること、つまり、最終的な単一の構成要素が1つだけの部品であることを示している。したがって、単一の構成要素は、一体化される部分が分離不可能である構造を有し、一緒に結合され、結合されると1つだけの構成要素と称されるが、構成要素の部品が区別できるままであり、1つだけの構成要素が分離不可能ではない(つまり、部品同士が再び分離できる)複数の別々の構成要素の部品を備える構成要素と異なる。最終的な単一の構成要素は、材料の実質的に連続した部品を備え得る、または、他の実施形態では、互いと永久的に接合される複数の部分を備え得る。いずれにしても、単一の構成要素を形成する様々な部分は、単一の構成要素が分離不可能な部分を伴う1つだけの部品となるように互いと一体化される。
【0033】
図3Aに示しているように、外壁102を形成する単一構造の燃焼器部分104は、燃焼器80の外側ライナ108を含む。タービン部分106は、第1のタービン段のノズル部分82Nの外側バンド110と、第1のタービン段のブレード部分82Bのシュラウド112と、第2のタービン段のノズル部分84Nの外側バンド114と、第2のタービン段のブレード部分84Bのシュラウド116とを含む。前述したように、これらの外側境界の構成要素は、外壁102である単一構造を形成するために1つだけの部品へと一体化される。したがって、図2の例示の実施形態では、外側ライナ108、外側バンド110、シュラウド112、外側バンド114、およびシュラウド116は一体に形成され、つまり、一体化された外壁102または単一の外壁102を形成するために1つだけのユニットまたは部品として構築される。
【0034】
一部の実施形態では、流路組立体101の他の部分が外壁102の単一構造へと一体化されてもよく、なおも他の実施形態では、流路組立体101が一体化された流路組立体として称され得るように、外側境界および内側境界の少なくとも一部分が1つだけの単一の構成要素として作られる。例えば、図3Bを参照すると、単一の外壁102の燃焼器部分104は、燃焼器80の前方端88にわたって延びる燃焼器ドーム118も含み得る。このようにして、図3Bの例示の実施形態では、外側ライナ108、外側バンド110、シュラウド112、外側バンド114、シュラウド116、および燃焼器ドーム118は、一体化された外壁102または単一の外壁102を形成するために1つだけのユニットまたは部品として構築される。つまり、外側ライナ108、外側バンド110、114、シュラウド112、116、および燃焼器ドーム118は、外側ライナ108、外側バンド110、114、シュラウド112、116、および燃焼器ドーム118が1つだけの単一構造となるように一体に形成される。
【0035】
別の例として、図3Cを参照すると、流路100の内側境界を定める内壁120の少なくとも一部分は、一体化された流路組立体101を形成するために外壁102と一体化され得る。図3Cの例示の実施形態では、燃焼器部分104は、内側ライナ122が図3Bに示した外壁102の単一構造と一体化されるように、内側ライナ122をさらに備える。したがって、外側ライナ108、外側バンド110、シュラウド112、外側バンド114、シュラウド116、燃焼器ドーム118、および内側ライナ122は、外側ライナ108、外側バンド110、114、シュラウド112、116、燃焼器ドーム118、および内側ライナ122が1つだけの単一構造となるように一体に形成される。図3Dの例示の実施形態では、タービン部分106は、内側バンド124が図3Cに示した流路組立体101の単一構造と一体化されるように第1のタービン段のノズル部分82Nの内側バンド124をさらに備える。したがって、外側ライナ108、外側バンド110、シュラウド112、外側バンド114、シュラウド116、燃焼器ドーム118、内側ライナ122、および内側バンド124は、外側ライナ108、外側バンド110、114、シュラウド112、116、燃焼器ドーム118、内側ライナ122、および内側バンド124が1つだけの単一構造となるように一体に形成される。図3Eの例示の実施形態では、タービン部分106は、第1のタービン段のノズル部分82Nの複数のノズル翼126の各々のノズル翼126が図3Dに示した流路組立体101の単一構造と一体化されるように複数のノズル翼126をさらに含む。したがって、外側ライナ108、外側バンド110、シュラウド112、外側バンド114、シュラウド116、燃焼器ドーム118、内側ライナ122、内側バンド124、およびノズル翼126は、外側ライナ108、外側バンド110、114、シュラウド112、116、燃焼器ドーム118、内側ライナ122、内側バンド124、およびノズル翼126が1つだけの単一構造となるように一体に形成される。
【0036】
当然ながら、第1のタービン段のノズル部分82Nのノズル翼126は、内壁120と一体化されることなく外壁102と一体化されてもよい。例えば、複数のノズル翼126は、外側ライナ108、外側バンド110、114、シュラウド112、116、およびノズル翼126が1つだけの単一構造、つまり、単一の外壁102となるように、外側ライナ108、外側バンド110、シュラウド112、外側バンド114、シュラウド116と1つだけのユニットまたは部品として形成されてもよい。他の実施形態では、単一の外壁102は、外側ライナ108、外側バンド110、シュラウド112、外側バンド114、シュラウド116、燃焼器ドーム118、およびノズル翼126が一体に形成されるかまたは1つだけのユニットまたは部品として構築されるように、燃焼器ドーム118を含んでもよい。なおも他の実施形態では、外側ライナ108、外側バンド110、シュラウド112、外側バンド114、シュラウド116、燃焼器ドーム118、内側ライナ122、およびノズル翼126が1つだけの単一の構造、つまり、単一の外壁102として一体に形成されるように、内側ライナ122が含まれてもよい。
【0037】
図3Fは、1つだけの部品の構成要素として形成された外壁102および内壁120を有する一体の流路組立体101の一部分の部分的な斜視図を提供している。図3Dに関して記載され、図3Fにおいて示されているように、燃焼ガス流路組立体101の一部の実施形態では、外側ライナ108、外側バンド110、シュラウド112、外側バンド114、シュラウド116、燃焼器ドーム118、内側ライナ122、および内側バンド124は、外側ライナ108、外側バンド110、114、シュラウド112、116、燃焼器ドーム118、内側ライナ122、および内側バンド124が1つだけの単一構造となるように一体に形成される。図3Fは、燃料ノズル組立体90および/または旋回翼92の受け入れのための複数の開口142が単一の流路組立体101の燃焼器80の前方端88に定められ得ることをさらに示している。さらに、図3Fが一体の流路組立体101の一部分だけを示していることと、その全体周囲が図3Fに示されていないが、流路組立体101が周方向および軸方向において1つだけの単一の部品であることとは、理解されるものである。このようにして、一体の流路組立体101は、外壁102と内壁120との間に、概して環状であり、つまりは概して輪の形とされた流路を定める。
【0038】
前述したような流路組立体101の外側境界および内側境界の様々な構成要素を一体化することは、既知のガスタービンエンジンと比較して、エンジン10内の別々の部品または構成要素の数を低減でき、エンジン10の重量、漏れ、および複雑性も低減できる。例えば、既知のガスタービンエンジンは、流路からの燃焼ガスの漏れを最小限にしようとするために、流路組立体の別々の部品の間の接合部分において、シールまたは封止機構を用いる。例えば単一の外壁102に関して記載したように、外側境界を一体化することで、外側の燃焼器ライナと第1のタービン段の外側バンドとの間、第1のタービン段の外側バンドと第1のタービン段のシュラウドとの間など、分割した点または接合部分が排除でき、それによって、漏れの点を排除できると共に、漏れを防止するために必要とされるシールまたは封止機構を排除できる。同様に、内側境界の構成要素を一体化することで、一体化された内側境界の構成要素同士の間の分割した点または接合部分が排除され、それによって、漏れの点と、内側境界において必要とされるシールまたは封止機構とを排除できる。したがって、望ましくない漏れ、および、不必要な重量および複雑性が、単一の構成要素を流路組立体において利用することで回避できる。単一の外壁102、単一の内壁120、および/または単一の流路組立体101の他の利点は、当業者によって理解されることになる。
【0039】
図3A図3Fにおいて示しているように、外壁102および内壁120は、それらの間に概して環状の流路を定めている。つまり、単一の外壁102は内壁120を周方向で包囲し、別の言い方をすれば、単一の外壁102は、内壁120の周りを360°で延びる単一の部品であり、それによって、それらの間に概して環状の流路または輪の形とされた流路を定めている。このようにして、燃焼器80の前方端88にわたって延びる燃焼器ドーム118は、概して環状の燃焼器ドーム118である。さらに、燃焼器ドーム118は、前方端88に位置付けられた燃料ノズル組立体90の受け入れのための開口142を定める。燃料ノズル組立体90は、例えば、燃焼室86に、圧縮機区域からの燃料および圧縮空気の混合物を提供し、その混合物は燃焼室86内で燃焼させられて、流路100を通る燃焼ガスの流れを発生させる。燃料ノズル組立体90は、燃焼器ドーム118に付着できる、または、燃焼器ドーム118および流路100に対して「浮遊」でき、つまり、燃料ノズル組立体90は燃焼器ドーム118に付着させられなくてもよい。図示した実施形態では、燃料ノズル組立体90は旋回翼92を備え、一部の実施形態では、旋回翼92は燃焼器ドーム118に付着してもよいが、代替では、旋回翼92は燃焼器ドーム118および流路100に対して浮遊できる。燃料ノズル組立体90または旋回翼92が、径方向Rと軸方向Aとの両方に沿って、または、径方向Rおよび軸方向Aの一方または他方だけに沿って、燃焼器ドーム118および流路100に対して浮遊できることは、理解されるものである。さらに、燃焼器ドーム118が、燃料ノズル組立体90の旋回翼92または他の部分を各々受け入れる複数の開口142を定めることができることは、理解されるものである。
【0040】
図3A図3Fと、後においてより詳細に論じられている図4A図4C図5A、および図5Bとにおいてさらに示しているように、流路組立体101は、収束して発散する流路100を概して定めている。より具体的には、外壁102および内壁120は概して環状の燃焼室86を定め、燃焼室86は流路100の前方部分を形成している。燃焼室86の後方または下流へ移動すると、外壁102および内壁120は、概して第1のタービン段82の領域において、互いの方へと収束する。第1のタービン段82の下流へと続いていくと、外壁102および内壁120が次に概して第2のタービン段84の領域において発散する。外壁102および内壁120は第2のタービン段84の下流で収束し続けてもよい。例えば図3Aにおいて示しており、単一の外壁102だけを参照している例示の実施形態では、第1のタービン段のノズルの外側バンド部分110と外壁102のブレードのシュラウド部分112は軸方向中心線12に向けて収束する。第2のタービン段のノズル外側バンド部分114および外壁102のブレードシュラウド部分116は、軸方向中心線12から離れるように発散する。このようにして、単一の外壁102によって形成された流路100の外側境界は収束して発散する流路100を定めている。
【0041】
図4Aおよび図4Bを見ると、本主題の他の例示の実施形態が示されている。図4Aは、一例示の実施形態による燃焼区域26およびタービン区域のHPタービン28の概略的な断面図を提供している。図4Bは、別の例示の実施形態による燃焼区域26およびタービン区域のHPタービン28の概略的な断面図を提供している。図4Cは、別の例示の実施形態による燃焼区域26およびタービン区域のHPタービン28の概略的な断面図を提供している。
【0042】
図4A図4B、および図4Cに示した実施形態では、外壁102は1つだけの単一構造として形成されており、内壁120は別の1つだけの単一構造として形成されており、一緒になって、単一の外壁102と単一の内壁120とは流路100を定めている。しかしながら、内壁120が1つだけの単一構造である必要がないことは、理解されるべきである。例えば、図4A図4B、および図4Cに示した実施形態では、内壁120は、内側バンド124とは別に形成された内側ライナ122を備えてもよい。
【0043】
図3A図3Fに関して記載しているように、図4A図4B、および図4Cの単一の外壁102は外側境界を定めており、内壁120は流路100の内側境界を定めている。一緒になって、単一の外壁102と内壁120とは流路組立体101を形成している。単一の外壁102は、燃焼区域26の燃焼器80の前方端88からHPタービン28の少なくとも第1のタービン段82を通って延びており、描写した実施形態では、単一の外壁102は前方端88からHPタービン28の第2のタービン段84の後端へと延びている。内壁120は少なくとも内側ライナ122を含み、内壁120が単一の内壁である実施形態では、単一の内壁120が燃焼器80の前方端88から第1のタービン段のノズル部分82Nを通って延びている。したがって、図4A図4B、および図4Cに示しているように、外壁102および内壁120は燃焼器80の燃焼室86を定めている。
【0044】
図3A図3Fに関して記載されている実施形態と同様に、図4A図4B、および図4Cに示した実施形態の単一の外壁102は、外側ライナ108と、外側バンド110と、シュラウド112と、外側バンド114と、シュラウド116とを含む。さらに、図4Aの例示の実施形態では、単一の外壁102は、燃焼器80の前方端88において定められた燃焼器ドーム118を含む。したがって、外側ライナ108、外側バンド110、114、シュラウド112、116、および燃焼器ドーム118は1つだけの単一構造として一体に形成または構築され、つまり、外壁102は、燃焼器ドーム118を含む1つだけのユニットまたは部品である。代替で、図4Bの例示の実施形態に示しているように、単一の外壁102は、外側ライナ108、外側バンド110、シュラウド112、外側バンド114、シュラウド116、および燃焼器ドーム118の一部分が1つだけの単一の構造として一体に形成または構築されるように、つまり、外壁102が燃焼器ドーム118の一部分を含む1つだけのユニットまたは部品となるように、燃焼器ドーム118の径方向外側部分を含む。
【0045】
さらに、図3A図3Fに関して記載した実施形態のように、図4A図4B、および図4Cに示した実施形態の内壁120は、燃焼器80の内側ライナ122を少なくとも含む。一部の実施形態では、図4Aおよび図4Bに示したように、内壁120は第1のタービン段のノズル部分82Nの内側バンド124も含む。このような実施形態では、内側ライナ122および内側バンド124は、1つだけの単一構造として、つまり、単一の内壁120と称され得る1つだけのユニットまたは部品として、一体に形成される。他の実施形態では、図4Bに示しているように、単一の内壁120は、内側ライナ122および燃焼器ドーム118の径方向内側部分が1つだけの単一構造として一体に形成または構築されるように、または、内側ライナ122、内側バンド124、および燃焼器ドーム118の径方向内側部分が1つだけの単一構造として一体に形成または構築されるように、燃焼器ドーム118の径方向内側部分を含んでもよい。つまり、一部の実施形態では、単一の内壁120は、燃焼器ドーム118の一部分を含む1つだけのユニットまたは部品である(および、内側バンド124を含んでも含まなくてもよい)。図4Cに示したようななおも他の実施形態では、単一の内壁120は、燃焼器80の前方端88において定められた燃焼器ドーム118を含む。したがって、燃焼器ドーム118および内側ライナ122(ならびに、一部の実施形態では内側バンド124)は1つだけの単一構造として一体に形成または構築され、つまり、内壁120は、燃焼器ドーム118を含む1つだけのユニットまたは部品である。
【0046】
さらに、第1のタービン段のノズル翼126は、外壁102および/または内壁120と一体化されてもよい。前述したように、第1のタービン段のノズル翼126は外壁102と一体化されてもよいが、他の実施形態では、第1のタービン段のノズル翼126は、外壁102とではなく内壁120と一体化されてもよい、または、外壁102と内壁120との両方と一体化されてもよい。壁102、120から別々に形成されるか、内壁120との1つだけの単一構造を形成するために内壁120と一体化されるか、外壁102との1つだけの単一構造を形成するために外壁102と一体化されるか、外壁102および内壁120との1つだけの単一構造を形成するために外壁102と内壁120との両方と一体化されるかに拘わらず、複数のノズル翼126が第1のタービン段のノズル部分82N内で内壁120から外壁102へと延びる。また、前述したように、第1のタービン段82は、複数のロータブレード翼130が付着させられている第1の段のロータ134を含む。第1のタービン段82の下流において、複数のノズル翼128が第2のタービン段のノズル部分84N内において内側バンド136から外壁102へと延び、第2のタービン段のブレード部分84Bは、複数のロータブレード翼130が付着させられている第2の段のロータ138を含む。
【0047】
図4A図4B、および図4Cの実施形態において、一体化された外壁102または単一の外壁102は、一体化された内壁120または単一の内壁120の周りで周方向に延びる。つまり、外壁102は内壁120を周方向で包囲する、または、単一の外壁102は内壁120の周りを360°で延びる単一の部品である。このようにして、外壁102および内壁120はそれらの間に概して環状の流路を定めている。さらに、燃焼器ドーム118は燃焼器80の前方端88にわたって延び、単一の外壁102に全体もしくは一部で一体化されるか、単一の内壁120に全体もしくは一部で一体化されるかに拘わらず、燃焼器ドーム118は概して環状の燃焼器ドーム118である。
【0048】
また、図4A図4B、および図4Cの実施形態に示した流路組立体101は、燃料ノズル組立体90の受け入れのための少なくとも1つの開口142を含む。図3A図3Fに関して記載されているように、一部の実施形態では、燃料ノズル組立体90は燃焼器ドーム118に付着してもよく、燃焼器ドーム118は、図4Aの実施形態におけるように全体で、または、残りの部分が内壁120と一体化されている図4Bに示しているように一部で、外壁102と一体化されてもよい。同じく記載しているように、燃焼器ドーム118は、燃料ノズル組立体90が単一の内壁120の燃焼器ドーム部分に付着できるように、図4Cに示しているように内壁120と全体で一体化されてもよい。他の実施形態では、燃料ノズル組立体90は燃焼器ドーム118に付着しないが、燃焼器ドーム118および流路100に対して浮遊する。描写しているように、燃料ノズル組立体90は旋回翼92を備え、旋回翼92は、燃焼器ドーム118に付着する燃料ノズル組立体90の一部分、または、燃焼器ドーム118および流路100に対して浮遊する部分であり得る。先に記載しているように、燃料ノズル組立体90または旋回翼92は、径方向Rと軸方向Aとの両方に沿って、または、径方向Rおよび軸方向Aの一方または他方だけに沿って、燃焼器ドーム118および流路100に対して浮遊してもよい。さらに、図3Fに示しているように、燃焼器ドーム118は複数の開口142を定めてもよく、各々の開口は燃料ノズル組立体90の旋回翼92または他の部分を受け入れることができる。
【0049】
図4A図4B、および図4Cをなおも参照すると、単一の外壁102および内壁120は、壁102、120が互いと合う1つまたは複数の特徴部を定めてもよく、一部の実施形態では、互いと付着させられてもよい。例えば、図4Aの実施形態では、外壁102は、燃焼器80の前方端88において外壁102の径方向内側の縁に沿ってフランジ144を定めており、内壁120は、燃焼器の前方端88において前方の縁に沿ってフランジ146を定めている。図4Bの実施形態では、外壁のフランジ144は、単一の外壁102の燃焼器ドーム部分の縁に沿って定められており、同様に、内壁のフランジ146は、単一の内壁120の燃焼器ドーム部分の縁に沿って定められている。図4Cに示しているように、外壁102は、外壁102の前方の縁に沿って外壁のフランジ144を定めており、図示した実施形態では燃焼器ドーム118を含む内壁120は、内壁120の径方向外側の縁に沿って内壁のフランジ146を定めてもよい。図4A図4B、および図4Cは、流路100が内壁120と外壁102との間で不連続であり得ること、つまり、図3C図3Fに示したような一体の内側境界および外側境界ではなく、別々の内側境界および外側境界から形成され得ることを示している。より具体的には、流路100は、外壁のフランジ144と内壁のフランジ146とが定められるところで不連続であり得る。
【0050】
したがって、図4Aの実施形態では、外壁102は、燃焼器80の径方向内側の前方部分の近くでフランジ144、146において内壁120に固定され得る。代替で、図4Aに示しているようなフランジ144、146は、壁102、120が互いと並ぶかまたは合う領域を定めてもよく、例えば、フランジ144、146は壁102、120の間で滑り継手を定め得る。図4Bの実施形態では、外壁102は、燃焼器ドーム118の径方向中心線の近くでフランジ144、146において内壁120に固定され得る。他の実施形態では、図4Bに示しているようなフランジ144、146は、壁102、120が互いと並ぶかまたは合う領域を定めてもよく、例えば、フランジ144、146は壁102、120の間で滑り継手を定め得る。図4Cの実施形態など、代替の実施形態では、外壁102は、燃焼器80の径方向外側の前方部分の近くでフランジ144、146において内壁120に固定されてもよく、または、図4Cに示しているようなフランジ144、146は、壁102、120が互いと並ぶかまたは合う領域を定めてもよく、例えば、フランジ144、146は、燃焼器80の径方向外側の前方部分において壁102、120の間で滑り継手を定め得る。なおも他の実施形態では、フランジ144、146は、外壁102および内壁120が図4A図4B、および図4Cに描写されているものと異なる場所において互いと並ぶかまたは合うように固定されるように他の場所に定められてもよい。
【0051】
任意の適切な留め具または他の付着手段が、外壁102および内壁120をフランジ144、146において固定するために使用されてもよい。例えば、複数の開口部が各々のフランジ144、146において定められてもよく、外壁のフランジ144の各々の開口部は、並べられた開口部の各々の対における留め具の受け入れのために内壁のフランジ146の開口部と並ぶことができる。外壁102と内壁120とが他の方法でも互いと付着させられ得ることは、理解されるものである。当然ながら、先に記載しているような他の実施形態では、外壁102および内壁120は互いに固定されなくてもよいが、互いに対して径方向および/または軸方向に移動してもよい。
【0052】
ここで図5A図5B、および図5Cを見ると、本主題の他の例示の実施形態によるターボファンエンジン10の燃焼区域26とタービン区域のHPタービン28との概略的な断面図が提供されている。図3B図3Fおよび図4A図4Cの実施形態と異なり、図5A図5B、および図5Cに示した実施形態の燃焼器ドーム118は、全体または一部で外壁102または内壁120のいずれかと一体にされていない。つまり、燃焼器ドーム118は、外壁102と内壁120との両方と別の構成要素である。
【0053】
したがって、図5A図5B、および図5Cに示しているように、外壁102は、エンジン10の燃焼区域26を通じて延びる燃焼器部分104と、エンジン10のタービン区域の少なくとも第1のタービン段を通じて延びるタービン部分106とを含む単一の外壁である。図5A図5Cに示した実施形態では、単一の外壁102は、燃焼区域26を通じて、2つの段82、84を含むHPタービン28の後端へと延びている。燃焼器部分104とタービン部分106とは、1つだけの単一構造、つまり、単一の外壁102として一体に形成されている。例えば、図3Aに関して図示および記載しているように、単一の外壁102の燃焼器部分104は燃焼器80の外側ライナ108を備える。単一の外壁102のタービン部分106は、第1のタービン段のノズル部分82Nの外側バンド110と、第1のタービン段のブレード部分82Bのシュラウド112と、第2のタービン段のノズル部分84Nの外側バンド114と、第2のタービン段のブレード部分84Bのシュラウド116とを備える。単一の外壁102のタービン部分106は複数のノズル翼126を含んでもよく、それらノズル翼126は、1つだけの単一構造を形成するために、つまり、1つだけのユニットまたは部品として形成するために、外側ライナ108、外側バンド110、114、およびシュラウド112、116と一体に形成または構築される。
【0054】
さらに、図5A図5B、および図5Cに描写しているように、内壁120は、燃焼器80の前方端88から少なくとも燃焼区域26を通じて延びている。例えば、内壁120は、流路100の内側境界を定める別の構成要素を備えてもよい。他の実施形態では、内壁120は、1つだけの単一構造として、つまり、1つだけのユニットまたは部品として一体に形成された内側ライナ122および内側バンド124を含む単一の内壁120であってもよい。別の例として、内壁120は、1つだけの単一構造として、つまり、1つだけのユニットまたは部品として一体に形成された内側ライナ122、内側バンド124、および第1のタービン段のノズル翼126を含む単一の内壁120であってもよい。さらに、図5A図5B、および図5Cの描写されている実施形態では、流路100は、内壁120と外壁102との間で不連続であってもよく、つまり、図3C図3Fに示したような一体の内側境界および外側境界ではなく、別々の内側境界および外側境界から形成されてもよい。より具体的には、流路100は、燃焼器ドーム118と外壁102との間と、燃焼器ドーム118と内壁120との間とで不連続であってもよい。
【0055】
特に図5Aを参照すると、燃焼器ドーム118は燃焼区域26の燃焼器80の前方端88に位置決めされており、外壁102から内壁120へと径方向に延びている。燃焼器ドーム118は、内壁120および外壁102に対して軸方向に移動するように構成されているが、1つまたは複数の燃料ノズル組立体90に付着させられ、それによって燃料ノズル組立体90によって支持されてもよい。より具体的には、燃焼器ドーム118が内壁120および外壁102に対して軸方向に移動または浮遊できるように、軸方向滑り継手150が燃焼器ドーム118と外壁102および内壁120の各々との間に形成される。燃焼器ドーム118を外壁102および内壁120に対して浮遊させることができることは、燃焼器ドーム118および燃焼器80に対する燃料ノズル組立体90の位置を制御するのを助けることができる。例えば、燃焼器ドーム118、外壁102、および内壁120は、燃料ノズル組立体90と異なる材料から作られてもよい。後でより詳細に記載しているように、例示の実施形態では、燃焼器ドーム118、外壁102、および内壁120はセラミックマトリックス複合(CMC)材料から作られ、燃料ノズル組立体90は、例えば金属合金など、金属材料から作られてもよい。このような実施形態では、CMC材料は、金属材料と異なる速さで熱的に成長または膨張する。したがって、燃焼器ドーム118を外壁102および内壁120に対して軸方向で移動させることは、燃焼器ドーム118が外壁102および内壁120に付着させられる場合より、燃焼器ドーム118および燃焼器80内での燃料ノズル組立体90の旋回翼92の浸漬のより厳しい制御を可能にすることができる。燃焼器80に対する燃料ノズル組立体90およびその構成要素の位置のより厳しい制御は、エンジン10の操作性および性能におけるばらつきを低減できる。
【0056】
さらに、外壁102および内壁120は、燃焼器ドーム118に対して軸方向および径方向に移動してもよい。燃焼器ドーム118を壁102、120から結合解除し、壁102、120と燃焼器ドーム118との間の相対移動を可能にすることで、応力結合が外壁102および内壁120と燃焼器ドーム118との間で軽減され得る。さらに、結合されていない燃焼器ドーム118と外壁102および内壁120との間の漏れが、パージおよび/または膜始動流れとして利用されてもよい。
【0057】
図5Aに示されているように、燃焼器ドーム118は外側羽根152と内側羽根154とを含む。外側羽根152は外壁102に沿って後方へ延び、内側羽根154は内壁120に沿って後方に延びる。羽根152、154は、燃焼器ドーム118が外壁102および内壁120に対して移動するとき、燃焼器ドーム118を案内するのを助けることができ、羽根152、154は、燃焼器ドーム118が軸方向に移動するとき、燃焼器ドーム118の径方向の位置または並びを維持するのを助けることもできる。羽根は、先に記載したようなパージおよび/または膜始動流れのために、ドーム118と壁102、120との間に一貫した隙間を提供できる。
【0058】
図5Bを見ると、他の実施形態では、各々の羽根152、154は、図5Aに示しているような後方ではなく、燃焼器ドーム本体156から前方に延び得る。前方に延びる羽根152、154は、燃焼器ドーム118を、例えば、燃料ノズル組立体90を支持する金属ドームに、ならびに/または、燃焼器80の前方端88における外壁102および内壁120のいずれかもしくは両方にといった、燃料ノズル組立体90/旋回翼92以外の構成要素に装着するために使用されてもよい。一部の実施形態では、燃焼器ドーム118の前方に延びる羽根152、154は、図5Bに示しているように外壁102および内壁120にピン留めまたは付着させられてもよい。なおも他の実施形態において、羽根152、154の一方は前方に延びてもよく、他方の羽根152、154は本体156に対して後方に延びてもよく、燃焼器ドーム118は燃料ノズル組立体90または別の構成要素に付着させられてもよい。
【0059】
ここで図5Cを参照すると、別の燃焼器ドーム118、外壁102、および内壁120の別の例示の実施形態が図示されている。図5Cに示された実施形態では、燃焼器ドーム118は、前方に延びる内側羽根154を含むが外側羽根152を含んでおらず、むしろ燃焼器ドーム118の外側端158が外壁102へと延びている。燃焼器ドーム118およびシールをドームの周りでの燃焼ガスの漏れに抗して保持するために、内側羽根154は、燃焼器80の前方端88において内壁120とピン留めされ、外側端158は外壁102に対してあらかじめ荷重を掛けられる。より具体的には、バネ要素160が燃焼器の前方端88において外壁102とピン留めされ、バネ要素160は、燃焼器ドーム118の外側端158を外壁102において定められたリップ162へとあらかじめ荷重を掛けるために燃焼器ドーム118の本体156に押し付く。図5Cに示された装着構成を利用することで、燃焼器ドーム118の能動的で確かな保持および封止が提供され得る一方で、ドームにおける熱応力を最小限とし、これは、燃焼器ドーム118がCMC材料から作られるときに特に有用である。
【0060】
前述したように、外壁102、内壁120、および燃焼器ドーム118はCMC材料を備え得る。より具体的には、例示の実施形態では、流路組立体101の燃焼器部分104およびタービン部分106は、結果生じる単一構造がCMC構成要素となるようにCMC材料から一体に形成される。例えば、燃焼器部分104が燃焼器80の外側ライナ108を含み、タービン部分106が第1のタービン段のノズル部分82Nの外側バンド110を含む場合、第1のタービン段のブレード部分82Bのシュラウド112と、第2のタービン段のノズル部分84Nの外側バンド114と、第2のタービン段のブレード部分84Bのシュラウド116と、外側ライナ108と、外側バンド110、114と、シュラウド114、116とは、単一のCMC外壁102を作り出すためにCMC材料から一体に形成され得る。前述したように、他の実施形態では、追加のCMC構成要素が、単一のCMC外壁102を構築するために、外側ライナ108、外側バンド110、114、およびシュラウド114、116と一体に形成されてもよい。同様に、内壁120はCMC材料から形成されてもよい。例えば、内壁120が、別の構成要素、例えば内側ライナ122、内側バンド124、136、およびブレードプラットフォーム132を備える場合、内壁120の各々の構成要素がCMC材料から形成され得る。2つ以上の構成要素が単一の内壁120を形成するために一体にされる実施形態では、構成要素は、単一のCMC内壁120を構築するためにCMC材料から一体に形成されてもよい。
【0061】
CMC材料の例、特には、SiC/Si-SiC(繊維/マトリックス)連続繊維強化セラミック複合(CFCC)材料および処理が、米国特許第5,015,540号、米国特許第5,330,854号、米国特許第5,336,350号、米国特許第5,628,938号、米国特許第6,024,898号、米国特許第6,258,737号、米国特許第6,403,158号、米国特許第6,503,441号、および米国特許出願公開第2004/0067316号に記載されている。このような処理は、複数のあらかじめ含浸された(プリプレグ)層を使用するCMCの製作を概して伴い、例えば、層材料には、マトリックス材料で含浸されたセラミック繊維、織られるかもしくは編まれたセラミック繊維の生地、または、重ねられたセラミック繊維のトウから成るプリプレグ材料があり得る。一部の実施形態では、各々のプリプレグ層が、所望のセラミック材料の補強材料、CMCマトリックス材料の1つまたは複数の前駆体、および有機樹脂結合剤を含む「テープ」の形態である。プリプレグテープは、補強材料を、セラミック前駆体および結合剤を含むスラリで含浸することで形成され得る。前駆体についての好ましい材料は、CMC構成要素のセラミックマトリックスについて望ましい特定の組成に依存することになり、例えば、所望のマトリックス材料がSiCである場合、SiC粉末および/または1つもしくは複数の炭素含有材料である。注目すべき炭素含有材料には、カーボンブラック、フェノール樹脂、および、フルフリルアルコール(C4H3OCH2OH)を含むフラン樹脂がある。他の典型的なスラリ含有物には、プリプレグテープの柔軟性を促進させる有機結合剤(例えば、ポリビニルブチラール(PVB))と、繊維強化材料の含浸を可能にするためにスラリの流動性を促進させる結合剤のための溶剤(例えば、トルエンおよび/またはメチルイソブチルケトン(MIBK))とがある。スラリは、例えばSi-SiCマトリックスの場合にシリコンおよび/またはSiC粉末といった、CMC構成要素のセラミックマトリックスに存在するように意図された1つまたは複数の微粒子の充填剤をさらに含み得る。短繊維またはチョップドウイスカ、または他の材料が、先に記載したようなマトリックス内に埋め込まれてもよい。例えば、米国特許出願公開第2013/0157037号に記載されている処理および組成など、複合材の物品を製作するための他の組成および処理と、より明確には、他のスラリおよびプリプレグテープ組成が使用されてもよい。
【0062】
結果できるプリプレグテープは他のテープと積層され、そのためテープから形成されたCMC構成要素は複数の薄層を備え、各々の薄層は個別のプリプレグテープに由来する。各々の薄層は、例えば、より十分に以下において記載されているような焼結および圧縮のサイクルの間に、セラミックマトリックス前駆体の変換によって全体または一部で形成されたセラミックマトリックスにおいて包み込まれたセラミック繊維補強材料を含む。一部の実施形態では、補強材料はトウの一方向性の配列の形態であり、各々のトウは連続した繊維またはフィラメントを含む。トウの一方向性の配列の代替が使用されてもよい。さらに、適切な繊維直径、トウ直径、および中心から中心でのトウ間隔は、具体的な用途、具体的に薄層の厚さ、薄層から形成されたテープの厚さ、および他の要因に依存することになる。先に記載したように、他のプリプレグの材料またはプリプレグでない材料が使用されてもよい。
【0063】
積層を形成するためにテープまたはプライを積層した後、積層はデバルクされ、適切な場合、プレフォームを製作するために上昇した圧力および温度に曝されながら硬化させられる。次に、プレフォームは、結合剤を分解し、溶剤を除去し、前駆体を所望のセラミックマトリックス材料へと変換するために、真空または不活性の雰囲気において加熱(焼結)させられる。結合剤の分解により、多孔性を満たしてCMC構成要素を作り出すために、例えば溶解浸透(MI)といった圧縮を受け得る多孔性のCMC本体となる。先の処理のための特定の処理技術およびパラメータは、材料の具体的な組成に依存することになる。例えば、シリコンCMC構成要素は、例えばSilcomp処理と典型的には称される処理を通じて、溶融シリコンが浸透させられる繊維材料から形成されてもよい。CMC構成要素を製造する別の技術は、泥漿鋳込み溶解浸透(MI)処理として知られる方法である。泥漿鋳込みMI方法を用いる製造の一方法では、CMCは、炭化ケイ素(SiC)を含む繊維を備え、互いに対して実質的に90°の角度での2つの織り方向を有し、実質的に同じ数の繊維が織りの両方の方向において延びる平衡した2次元(2D)の織られた生地の層を最初に提供することで製作される。「炭化ケイ素を含む繊維」という用語は、炭化ケイ素を含む組成を有する繊維を指し、好ましくは、実質的に炭化ケイ素である。例えば、繊維は、炭素によって包囲された炭化ケイ素のコアを有してもよく、または反対に、繊維は、炭化ケイ素によって包囲された、または、炭化ケイ素で封入された炭素のコアを有してもよい。
【0064】
CMC構成要素を形成するための他の技術には、ポリマー含浸焼成法(PIP)および酸化/酸化処理がある。PIP処理では、炭化ケイ素繊維プレフォームは、ポリシラザンなどのプレセラミックポリマーで浸透させられ、次に、SiCマトリックスを形成するために熱処理される。酸化/酸化処理では、アルミニウムまたはアルミノケイ酸塩の繊維があらかじめ含浸させられ、次にあらかじめ選択された形状へと積層され得る。構成要素は、炭素繊維で強化された炭化ケイ素マトリックス(C/SiC)CMCから製作されてもよい。C/SiC処理は、あらかじめ選択された形状において工具に積層された炭素繊維のプレフォームを含む。SiC/SiCのための泥漿鋳込み方法において利用されているように、工具は黒鉛材料から作られる。繊維のプレフォームは、約1200℃における化学蒸気浸透処理の間に工具によって支持され、それによってC/SiCのCMC構成要素が形成される。なおも他の実施形態では、2次元、2.5次元、および/または3次元のプレフォームがMI、CVI、PIP、または他の処理において利用されてもよい。例えば、2次元の織られた繊維の切断された層が、前述したような交互の織り方向において重ねられてもよい、または、フィラメントが、多軸繊維の構成を有する2.5次元または3次元のプレフォームを形成するために、巻かれるかまたは編まれ、3次元の織り、縫い、または編みと組み合わされてもよい。例えば、他の織るもしくは編む方法を使用して、または、2次元の織物を利用してといった、2.5次元または3次元のプレフォームを形成する他の方法が使用されてもよい。
【0065】
したがって、様々な処理が、図3Aに描写した外壁102などの単一構造を、単一のCMC構成要素として形成するために使用され得る。より明確には、CMC材料の複数の層が各々の単一構造を形成するために使用されてもよい。複数の層は、単一構造を形成する様々な部分を一体にするために互いと散在させられてもよい。例として、図3Aの単一の外壁102は、複数の外側ライナ層、複数の第1のタービン段の外側バンド層、複数の第1のタービン段のシュラウド層、複数の第2のタービン段の外側バンド層、および複数の第2のタービン段のシュラウド層から作られ得る。外側ライナ層が第1のタービン段の外側バンド層と合う場合、外側ライナ層の端は、外側ライナ部分を形成するための層を単一の外壁102の第1のタービン段の外側バンド部分を形成するための層と一体にするために、外側バンド層の端と交互にさせられてもよい。つまり、単一の外壁102を形成する層同士の間の結合部が、結合部の一方の側における層を結合部の他方の側における層に交互に置くことで形成されてもよい。このようにして、単一の外壁102を形成するための層同士は、層同士を一体にし、それによって単一の外壁102の各部分を一体にするために散在させられてもよい。当然ながら、CMC層は、単一構造を形成するために他の方法で積層されてもよい。また、複数のCMC層を積層することは、燃焼器の前方端88における開口142、外壁のフランジ144、および内壁のフランジ146など、単一構造または他の構成要素(例えば、単一の内壁120を形成するために内側バンド124と一体にされないときの内側ライナ122、または、図5Aおよび図5Bの実施形態に示しているような別の燃焼器ドーム118)の特徴を定めることを含んでもよい。
【0066】
複数のCMC層が単一のCMC構成要素プレフォームを定めるために積層された後、プレフォームは1つだけの部品である単一のCMC構成要素を製作するために硬化され、そのCMC構成要素は次に焼結され、最終的な単一のCMC構成要素を形成するために、例えばシリコン溶解浸透といった圧縮を受ける。上記の外壁102の例を続けると、外壁のプレフォームは、未焼結状態の単一の外壁102を製作するためにオートクレーブで処理されてもよい。次に、未焼結状態の単一の外壁102は、過剰な結合剤などを燃焼させるために炉に置かれ、次に、一片または一枚のシリコンと共に炉に置かれ、単一の外壁102を少なくともシリコンで溶解浸透させるために焼結され得る。より具体的には、前述したように製作されるプリプレグのテープのCMC層から形成される単一の外壁102のために、未焼成の構成要素を真空または不活性の雰囲気において加熱すること(つまり、焼結すること)は、結合剤を分解し、溶剤を除去し、前駆体を所望のセラミックのマトリックス材料へと変換する。結合剤の分解は多孔性のCMC本体をもたらし、本体は、多孔性を満たすために、例えば溶解浸透(MI)といった圧縮を受けることができる。未焼結の単一の外壁102がシリコンで焼結される前述の例では、単一の外壁102はシリコン溶解浸透を受ける。しかしながら、圧縮は、限定されることはないが、Silcomp、溶解浸透(MI)、化学蒸気浸透(CVI)、ポリマー含浸焼成法(PIP)、および酸化/酸化処理を含む任意の知られている圧縮技術を用いて、ならびに、限定されることはないが、シリコンを含む任意の適切な材料で、実施され得る。一実施形態では、圧縮および焼結は、シリコン、または他の適切な材料、または材料の組合せを構成要素へと溶解浸透させるために、1200℃超の温度における定められた雰囲気を有する真空炉または不活性雰囲気において実施され得る。圧縮されたCMC本体は、最終的な単一のCMC外壁102へと硬化する。一部の実施形態では、最終的な単一構造は、例えば、構造を公差内にするために、もしくは、前方端88における開口142を定めるために、仕上げ機械加工され得る、および/または、耐環境コーティング(EBC)が、例えば、単一構造を高温の燃焼ガス66から保護するために、単一構造に適用されてもよい。単一のCMC外壁102、単一のCMC内壁120など、CMC構成要素を形成する他の方法または処理が同様に使用され得ることは、理解されるものである。
【0067】
追加または代替で、単一の構成要素を製作するための他の処理が、単一の外壁102および/または単一の内壁120を形成するために使用されてもよく、単一構造が、他の材料から形成されてもよい。一部の実施形態では、追加の製造処理が単一の外壁102および/または単一の内壁120を形成するために使用されてもよい。例えば、熱溶解積層法(FDM)、選択的レーザー焼結(SLS)、ステレオリソグラフィ(SLA)、デジタル光処理(DLP)、直接金属レーザー焼結(DMLS)、レーザーネットシェイプ製造(LNSM)、電子ビーム焼結、または他の知られている処理などの追加の処理が、単一の外壁102および/または単一の内壁120を製作するために使用されてもよい。概して、追加の処理は、構成要素の、例えば3次元コンピュータモデルといった3次元情報を使用して構成要素を製作する。3次元情報は複数のスライスへと変換され、各々のスライスは、スライスの所定の高さについての構成要素の断面を定める。次に、構成要素は、スライスごとで、または、層ごとで、完成するまで「積み上げ」られる。超合金の金属材料、または他の適切な材料が、単一の外壁102および/または単一の内壁120を形成するために追加の処理において使用されてもよい。他の実施形態では、単一の外壁102および/または単一の内壁120は、鍛造または鋳造の処理を使用して形成されてもよい。他の適切な処理または方法が同様に使用されてもよい。
【0068】
この記載した説明は、最良の態様を含め、本発明を開示するために、および、任意の装置またはシステムを作成および使用することと、任意の組み込まれた方法を実施することとを含め、当業者に本発明を実施させることができるようにするために、例を用いている。本発明の特許可能な範囲は、請求項によって定められ、当業者の思いつく他の例を含み得る。このような他の例は、請求項の文字通りの言葉と異ならない構造的な要素を含まない場合、または、請求項の文字通りの言葉と非実質的な違いを伴う同等の構造的な要素を備える場合、請求項の範囲内にあると意図されている。
【0069】
本発明のさらなる態様は、以下の項の主題によって提供される。
【0070】
[項1]
ガスタービンエンジンのための流路組立体であって、
前記ガスタービンエンジンの燃焼区域の燃焼器の前方端に位置決めされる燃焼器ドームと、
前記燃焼区域を通じて延びる燃焼器部分、および、前記ガスタービンエンジンのタービン区域の少なくとも第1のタービン段を通じて延びるタービン部分を含む単一の外壁であって、前記燃焼器部分と前記タービン部分とは1つだけの単一構造として一体に形成される、単一の外壁と、
前記燃焼器の前記前方端から少なくとも前記燃焼区域を通じて延びる内壁と
を備え、
前記燃焼器ドームは前記単一の外壁から前記内壁へと径方向に延び、
前記燃焼器ドームは、前記内壁および前記単一の外壁に対して軸方向に移動するように構成される、流路組立体。
【0071】
[項2]
軸方向滑り継手が、前記燃焼器ドームと、前記単一の外壁および前記内壁の各々との間に形成される、任意の前項に記載の流路組立体。
【0072】
[項3]
前記燃焼器ドームは外側羽根と内側羽根とを備え、前記外側羽根は前記単一の外壁に沿って延び、前記内側羽根は前記内壁に沿って延びる、任意の前項に記載の流路組立体。
【0073】
[項4]
前記単一の外壁は、前記燃焼器ドームに対して径方向に移動するように構成される、任意の前項に記載の流路組立体。
【0074】
[項5]
前記内壁は前記燃焼器ドームに対して径方向に移動するように構成される、任意の前項に記載の流路組立体。
【0075】
[項6]
前記単一の外壁の前記燃焼器部分は、前記燃焼区域の燃焼器の外側ライナを備え、前記タービン部分は、
前記第1のタービン段のノズル部分の外側バンドと、
前記第1のタービン段のブレード部分のシュラウドと、
第2のタービン段のノズル部分の外側バンドと、
前記第2のタービン段のブレード部分のシュラウドと
を備える、任意の前項に記載の流路組立体。
【0076】
[項7]
前記内壁は、前記燃焼器の内側ライナと、前記第1のタービン段のノズル部分の内側バンドとを備え、前記内側ライナと前記内側バンドとは1つだけの単一構造として一体に形成される、任意の前項に記載の流路組立体。
【0077】
[項8]
前記燃焼器部分と前記タービン部分とは、前記単一の外壁がセラミックマトリックス複合材構成要素であるように、セラミックマトリックス複合材料から一体に形成される、任意の前項に記載の流路組立体。
【0078】
[項9]
前記内壁および前記燃焼器ドームはセラミックマトリックス複合材料を備える、任意の前項に記載の流路組立体。
【0079】
[項10]
ガスタービンエンジンのための流路組立体であって、前記流路組立体は燃焼器から前記ガスタービンエンジンのタービン区域を通じて延び、前記タービン区域は、前記燃焼器のすぐ下流における第1のタービン段と、前記第1のタービン段のすぐ下流における第2のタービン段とを備え、前記流路組立体は、
前記燃焼器の前方端に位置決めされる燃焼器ドームと、
流路の内側境界を定め、前記燃焼器の内側ライナを備える内壁と、
前記流路の外側境界を定め、前記燃焼器の前記前方端から少なくとも前記第1のタービン段を通じて延びる単一の外壁と
を備え、
前記燃焼器ドームは、前記内壁および前記単一の外壁と別体の構成要素である、流路組立体。
【0080】
[項11]
軸方向滑り継手は、前記燃焼器ドームが前記内壁および前記単一の外壁に対して軸方向に移動するように構成されるように、前記燃焼器ドームと前記単一の外壁および前記内壁の各々との間に形成される、任意の前項に記載の流路組立体。
【0081】
[項12]
前記単一の外壁は前記燃焼器ドームに対して径方向に移動するように構成され、前記内壁は前記燃焼器ドームに対して径方向に移動するように構成される、任意の前項に記載の流路組立体。
【0082】
[項13]
前記燃焼器ドームは燃料ノズル組立体に付着させられる、任意の前項に記載の流路組立体。
【0083】
[項14]
前記燃焼器ドームは外側羽根と内側羽根とを備え、前記外側羽根は前記単一の外壁に沿って延び、前記内側羽根は前記内壁に沿って延びる、任意の前項に記載の流路組立体。
【0084】
[項15]
前記外側羽根は前記燃焼器ドームの本体から前方に延び、前記内側羽根は前記燃焼器ドームの前記本体から前方に延びる、任意の前項に記載の流路組立体。
【0085】
[項16]
前記燃焼器ドームは、外側端と、本体から前方へ延びる内側羽根とを備え、前記内側羽根は、前記燃焼器の前記前方端において前記内壁とピン留めされ、バネ要素が前記燃焼器の前記前方端において前記外壁とピン留めされ、前記バネ要素は、前記外側端を前記外壁に対してあらかじめ荷重を掛けるために前記燃焼器ドームの前記本体に押し付く、任意の前項に記載の流路組立体。
【0086】
[項17]
燃焼器を含む燃焼区域と、
前記燃焼区域のすぐ下流に位置決めされる第1のタービン段、および、前記第1のタービン段のすぐ下流に位置決めされる第2のタービン段を含むタービン区域と
を備えるガスタービンエンジンであって、
前記燃焼区域および前記タービン区域は流路を定め、
前記燃焼区域は、前記燃焼区域を通る前記流路の内側境界を定める内側ライナと、前記燃焼区域を通る前記流路の外側境界を定める外側ライナと、前記燃焼器の前方端において位置決めされ、前記内側ライナと前記外側ライナとの間で延びる燃焼器ドームとを含み、
前記タービン区域の前記第1のタービン段および前記第2のタービン段の各々はノズル部分とブレード部分とを含み、各々のノズル部分は、前記ノズル部分を通る前記流路の内側境界を定める内側バンドと、前記ノズル部分を通る前記流路の外側境界を定める外側バンドとを備え、各々のブレード部分は、前記ブレード部分を通る前記流路の外側境界を定めるシュラウドを備え、
前記外側ライナ、前記外側バンド、および前記シュラウドは、前記外側ライナ、前記外側バンド、および前記シュラウドが1つだけの単一の外壁となるように一体に形成され、
前記燃焼器ドームは、前記内側ライナおよび前記単一の外壁と別体の構成要素である、ガスタービンエンジン。
【0087】
[項18]
軸方向滑り継手が、前記燃焼器ドームと、前記単一の外壁および前記内側ライナの各々との間に形成される、任意の前項に記載のガスタービンエンジン。
【0088】
[項19]
前記内側ライナ、前記単一の外壁、および前記燃焼器ドームは複数のセラミックマトリックス複合材テープから各々形成され、各々のテープは、連続した繊維トウの一方向の配列の形態で補強材料を備える、任意の前項に記載のガスタービンエンジン。
【0089】
[項20]
前記燃焼器ドーム、前記単一の内壁、および前記単一の外壁はセラミックマトリックス複合材料を備え、前記セラミックマトリックス複合材料は、マトリックス材料であらかじめ含浸されたセラミック繊維を備える、任意の前項に記載のガスタービンエンジン。
【符号の説明】
【0090】
10 高バイパスターボファンジェットエンジン、ターボファンエンジン、エンジン
12 長手方向中心線、軸方向中心線
14 ファン区域
16 コアタービンエンジン
18 外側ケーシング
20 入口
22 ブースタ、低圧(LP)圧縮機
24 高圧(HP)圧縮機
26 燃焼区域
28 高圧(HP)タービン
30 低圧(LP)タービン
32 ジェット排気ノズル区域
34 軸、HPシャフト
36 軸
38 ファン
40 ファンブレード
42 ディスク
48 前ナセル
50 外側ナセル
52 出口案内羽根
54 下流区域
56 バイパス気流通路
58 空気
60 入口
62 空気58のうちの第1の部分
64 空気58のうちの第2の部分
66 燃焼ガス
68 HPタービン静翼
70 HPタービンロータブレード
72 LPタービン静翼
74 LPタービンロータブレード
76 ファンノズル排気区域
78 高温ガス路
80 燃焼器
82 第1のタービン段
82B ブレード部分
82N ノズル部分
84 第2のタービン段
84B ブレード部分
84N ノズル部分
86 燃焼室
88 前方端
90 燃料ノズル組立体
92 旋回翼
100 流路
101 流路組立体
102 単一の外壁、外壁
104 燃焼器部分
106 タービン部分
108 外側ライナ
110 外側バンド
112 シュラウド
114 外側バンド
116 シュラウド
118 燃焼器ドーム
120 内壁
122 内側ライナ
124 内側バンド
126、128 ノズル翼
130 ブレード翼
132 ブレードプラットフォーム
134 第1の段のロータ
136 内側バンド
138 第2の段のロータ
140 先端
142 開口
144 外壁のフランジ
146 内壁のフランジ
150 軸方向滑り継手
152 外側羽根
154 内側羽根
156 燃焼器ドーム本体
158 外側端
160 バネ要素
162 リップ
A 軸方向
R 径方向
図1
図2
図3A
図3B
図3C
図3D
図3E
図3F
図4A
図4B
図4C
図5A
図5B
図5C