【文献】
Labsky, Jiri et al.,Mannosides as crucial part of bioactive supports for cultivation of human epidermal keratinocytes without feeder cells,Biomaterials,2003年,24,863-872
【文献】
S.S. Shah et al.,A mechanistic Interpretation of the zero order release from pendent chain-liked glassy and swollen hydrogels,Journal of Applied Polymer Science,1990年,41,2437-2451
【文献】
Matsui, Jun et al.,Molecular Optical Gating Devices Based on Polymer Nanosheets Assemblies,Journal of the American Chemical Society,2004年,126,3708-3709
(58)【調査した分野】(Int.Cl.,DB名)
ポリスチレン基板に、0.3wt%水またはアルコール溶液を塗布し、乾燥したとき、当該共重合体が塗布された前記ポリスチレン基板の、純水に対する接触角が、5°以上80°以下である、請求項1に記載の共重合体。
【発明を実施するための形態】
【0010】
以下、本発明の実施の形態について説明する。
【0011】
本実施形態に従う共重合体であるポリマーPは、以下の構造単位Aおよび構造単位Bを含む。
ここで、構造単位Aは、式(1)で表される構造単位であり、構造単位Bは、式(2)で表される構造単位および式(3)で表される構造単位から選択される少なくとも1つの構造単位である:
【化1】
式(1)において、R
11は、水素原子、またはメチル基であり、R
12は、NH、または酸素原子であり、*は結合を表し、mは、1〜4の整数である。式(1)において、得られるポリマーPの親水性を向上させる観点から、mは、好ましくは、2または3である。
【化2】
式(2)において、R
21は、水素原子、またはメチル基であり、Yは、式(2−1)または式(2−2)で表される基であり、Zは、酸素原子、またはNHであり、*は、結合を表す。
【化2-1】
式(2−1)および式(2−2)において、tおよびuは、1〜20の整数であり、*は、結合を表す。
【化3】
式(3)において、R
31は、水素原子、またはメチル基であり、Xは、炭素数1〜10のアルキレングリコール基、またはアルキレン基であり、vは、1〜100の整数であり、vが2以上の場合、複数のXは、それぞれ同一であっても異なっていてもよく、Wは、活性エステル基であり、*は、結合を表す。式(3)中のWにおける活性エステル構造としては、例えば、p−ニトロフェニル活性エステル基、N−ヒドロキシスクシンイミド活性エステル基、フタル酸イミド活性エステル基、5−ノルボルネン−2,3−ジカルボキシイミド活性エステル基等が挙げられる。中でもp−ニトロフェニル活性エステル基またはN−ヒドロキシスクシンイミド活性エステル基が好ましく、p−ニトロフェニル活性エステル基が最も好ましい。
【0012】
なお、本明細書において使用される、「活性エステル基」は、エステル基の片方の置換基に酸性度の高い電子求引性基を有して求核反応に対して活性化されたエステル群、すなわち反応活性の高いエステル基を意味するものとして、各種の化学合成、例えば高分子化学、ペプチド合成等の分野で慣用されているものである。実際的には、例えばある化合物中のカルボキシル基と、水酸基又はメルカプト基を有する化合物とが脱水縮合することにより生じるエステル基である。エステル基が導入されて生じるエステルとしては、フェノールエステル類、チオフェノールエステル類、N−ヒドロキシアミンエステル類、複素環ヒドロキシ化合物のエステル類等がアルキルエステル等に比べてはるかに高い活性を有する活性エステル基を有するものとして知られている。
【0013】
ポリマーPは、式(1)で表される構造単位Aを含むことにより、優れた親水性を有する。また、ポリマーPは、式(2)で表される構造単位および式(3)で表される構造単位から選択される少なくとも1つの構造単位で表される構造単位Bを含むことにより、特定の生理活性物質を固定化することができる。本発明の共重合体に固定化され得る生理活性物質としては、糖、糖鎖、糖ペプチド、抗体、タンパク質等が挙げられる。さらに、構造単位Aを含むポリマーPは、目的の生理活性物質以外のタンパク質等の物質の非特異的吸着を抑制する機能を有する。このようなポリマーPで表面処理された基材は、高い親水性を有し、細胞傷害性がほとんどなく、固定化される生理活性物質の機能への影響がなく、優れた生体適合性を有するため、バイオアッセイ等の生体物質と接触する環境で用いることができる。
【0014】
構造単位Aの原料となるモノマーとしては、式(1)の構造に対応する(メタ)アクリレートを使用でき、これらは1種単独で、または2種以上を組み合わせて用いることができる。このようなモノマーとしては、例えば、N−(2−ヒドロキシエチル)アクリルアミド(HEAA)、メタクリル酸2−ヒドロキシエチル(HEMA)等が挙げられる。また、構造単位Bの原料となるモノマーとしては、構造単位Bが式(3)で表される場合、式(3)の構造に対応する(メタ)アクリレートを使用することができる。構造単位Bが式(2)で表される場合、式(2a)で表されるような、1級アミノ基が保護基により保護されたアクリレートモノマーを使用できる。これらのモノマーは、1種単独で、または2種以上を組み合わせて用いることができる。
【化2a】
式(2a)において、R
21、YおよびZは、式(2)における定義と同様であり、Prは、保護基を表す。保護基としては、t−ブトキシカルボニル基、ベンジロキシカルボニル基、9−フルオレニルメトキシカルボニル基が好適に用いられる。
【0015】
一実施形態において、ポリマーPは、式(4)で表される構造単位Cを含んでもよい。
【化4】
式(4)において、R
41は、水素原子、またはメチル基であり、R
42、R
43およびR
44は、独立して、メトキシ基、エトキシ基、水素原子またはメチル基であり、ただし、R
42、R
43およびR
44のうち1つ、2つまたは3つは、独立して、メトキシ基、またはエトキシ基であり、*は、結合を表し、pは、2〜10の整数である。好ましい実施形態において、式(4)におけるpは、2〜6であり、より好ましくは、2〜4である。
【0016】
このような構造単位Cを有することにより、ポリマーPを基材に適用した場合、ポリマーPと基材との結合性を向上させることができる。したがって、ポリマーPが適用された基材が、加熱処理や洗浄処理等に供された場合、ポリマーPは基材から脱離することなくその表面に留まる。そのため、このような基材は、ポリマーPの脱離にともなう機能の低下が低減され、持続的な生理活性物質固定化能や親水性を有し得る。
構造単位Cの原料となるモノマーとしては、式(4)の構造に対応する(メタ)アクリレートを使用でき、これは1種単独で、または2種以上を組み合わせて用いることができる。このようなモノマーとしては、3−(メタクリロキシ)プロピルジメチルメトキシシラン、3−(メタクリルオキシ)プロピルジメチルエトキシシラン、3−(メタクリルオキシ)プロピルメチルジエトキシシラン、3−(メタクリルオキシ)プロピルメチルジメトキシシラン、3−(メタクリルオキシ)プロピルトリメトキシシラン、3−(メタクリルオキシ)プロピルトリエトキシシラン等が挙げられる。
【0017】
一実施形態において、ポリマーPは、式(5)で表される構造単位Dを含んでもよい。
【化5】
式(5)において、R
51は、水素原子、またはメチル基であり、sは、4であり、R
52は、独立して、水素原子、またはメチル基であり、*は、結合を表す。式(5)において、好ましくは、R
52はすべて水素原子であり、−N
3は、パラ位に置換されている。
【0018】
このような構造単位Dを有することにより、ポリマーPを基材に適用した場合、ポリマーPと基材との結合性を向上させることができる。そのため、ポリマーPが適用された基材は、持続的な生理活性物質固定化能や親水性を有し得る。
構造単位Dの原料となるモノマーとしては、式(5)の構造に対応する(メタ)アクリレートを使用でき、これらは1種単独で、または2種以上を組み合わせて用いることができる。このようなモノマーの例としては、メタクリロイルオキシエチル4−アジド桂皮酸エステル(MECAz)が挙げられる。
【0019】
一実施形態において、ポリマーPは、式(6)で表される構造単位および式(7)で表される構造単位から選択される少なくとも1つの構造単位Eを含んでもよい。
【化6】
式(6)において、R
61は、水素原子、またはメチル基であり、*は結合を表す。
【化7】
式(7)において、R
71は、水素、またはメチル基であり、R
72は、水素原子、またはメチル基であり、*は結合を表し、nは、2〜100の整数である。式(7)において、様々なタンパク質に対する非特異的吸着の抑制の汎用性を高める観点から、nは、4〜50であることが好ましい。
ポリマーPが式(6)で表される構造単位および式(7)で表される構造単位から選択される少なくとも1つの構造単位で表される構造単位Eを含むことにより、ポリマーPへの様々なタンパク質の非特異的吸着の抑制の汎用性を高めることが可能となる。
構造単位Eの原料となるモノマーとしては、式(6)または式(7)の構造に対応する(メタ)アクリレートを使用でき、これらは1種単独で、または2種以上を組み合わせて用いることができる。式(6)の構造に対応する(メタ)アクリレートモノマーとしては、2−メタクリロイルオキシエチルホスホリルコリン(MPC)が挙げられる。また、式(7)の構造に対応する(メタ)アクリレートモノマーとしては、メトキシポリエチレングリコールメタクリレート(PEGMA)、メタクリル酸ジエチレングリコールモノメチルエーテル(DEGM)等が挙げられる。
【0020】
一実施形態において、ポリマーPは、式(8)で表される構造単位Fを含む。
【化8】
式(8)において、R
81は、水素原子、またはメチル基であり、R
82は、炭素数1〜10の直鎖または分枝鎖のアルキル、あるいは炭素数3〜8の脂環式アルキル、あるいはこれらの組み合わせであり、*は、結合を表す。
炭素数1〜10の直鎖または分枝鎖のアルキルとしては、メチル、エチル、プロピル、メチルエチル、ブチル、1,2−ジメチルエチル、ペンチル、1−メチルブチル、2−メチルブチル、およびヘキシル等が挙げられる。炭素数3〜8の脂環式アルキルとしては、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル等が挙げられる。
【0021】
このような構造単位Fを有することにより、ポリマーPを基材に適用した場合、ポリマーPと基材との結合性を向上させることができる。そのため、ポリマーPが適用された基材は、持続的な生理活性物質固定化能や親水性を有し得る。
構造単位Fの原料となるモノマーとしては、式(8)の構造に対応する(メタ)アクリレートを使用でき、これは1種単独で、または2種以上を組み合わせて用いることができる。このようなモノマーとしては、n−ブチルメタクリレート、シクロヘキシルメタクリレート等が挙げられる。
【0022】
ポリマーPは、ランダム共重合体またはブロック共重合体であり得る。ランダム共重合体は、これを塗布した基材表面において均一な細胞非接着性が得られるため好ましい。
【0023】
ポリマーPにおける構造単位Aの含有率(モル%)は、10モル%以上99モル%以下であり、好ましくは、15モル%以上70%モル%以下であり、より好ましくは、15モル%以上50モル%以下である。また、ポリマーPにおける構造単位Bの含有率(モル%)は、1モル%以上50モル%以下であり、好ましくは2モル%以上40モル%以下である。上記範囲で構造単位Aおよび構造単位Bが含まれることにより、得られるポリマーPは、生理活性物質を固定化する機能を有するとともに、優れた親水性を有する。
【0024】
ポリマーPが、構造単位C〜Fの少なくとも1つを含む場合、ポリマーPにおける構造単位C〜Fの合計の含有率は、1モル%以上89モル%以下であり、好ましくは、10モル%以上70モル%以下であり、より好ましくは、20モル%以上60モル%以下である。上記範囲で構造単位C〜Fの少なくとも1つを含むポリマーPは、良好な親水性および生理活性物質固定化能を維持しつつ、基材への結合性を有する。
【0025】
ポリマーPにおける各構造単位の含有量および組成は、以下で説明するポリマーPの製造において、重合反応に用いる原料モノマーの量を調整することにより制御できる。
【0026】
また、ポリマーPの重量平均分子量Mwは、10000〜1000000であり、好ましくは、20000〜500000である。一実施形態において、ポリマーPの数平均分子量Mnは、5000〜100000であり、好ましくは、10000〜80000である。重量平均分子量および数平均分子量が上記範囲内であることにより、ポリマーPは合成時の取扱い性が良好であるとともに、優れた親水性を有する。
【0027】
なお、重量平均分子量(Mw)、および数平均分子量(Mn)は、GPC測定により得られる標準ポリスチレン(PS)の検量線から求めた、換算値を用いる。本実施形態において、測定条件は、以下の通りである。
装置:ゲルパーミエーションクロマトグラフィー装置(日本分光株式会社製、LC−2000Plusシリーズ)
カラム:東ソー社製、TSK−GELALPHA−M、ALPHA−2500
検出器:液体クロマトグラム用RI検出器
測定温度:40℃
溶媒:メタノール/水=7/3(vol/vol)混合溶媒
試料濃度:0.05wt%
【0028】
(ポリマーPの製造方法)
本発明のポリマーPの合成は、モノマー化合物の調製およびこれらの重合を含め、当該分野で公知の方法を用いて行うことができる。モノマー化合物は、市販の化合物を使用することができる。重合方法としては、例えば、ラジカル重合法が挙げられる。また、ラジカル重合法を用いる場合、ラジカル重合開始剤を用いて重合する方法が好適である。この場合、懸濁重合、溶液重合、分散重合、乳化重合等の方法を取ることができる。中でも、溶液重合が好ましい。溶液重合の際には、各モノマーを全量一括仕込みで行ってもよいし、一部を反応容器に仕込み、残りを滴下して行ってもよい。また、後述するように、基材上に重合性官能基や連鎖移動基等を導入し、基材上で上記ポリマーPを合成してもよい。
【0029】
ラジカル重合法に用いることができるラジカル重合開始剤としては、アゾ化合物および有機過酸化物のうちのいずれか1種以上を使用できる。
アゾ化合物としては、たとえば2,2'−アゾビスイソブチロニトリル(AIBN)、ジメチル2,2'−アゾビス(2−メチルプロピオネート)、1,1'−アゾビス(シクロヘキサンカルボニトリル)(ABCN)等が挙げられ、これらのうち、いずれか1種以上を使用できる。
また、有機過酸化物としては、たとえば、ジターシャリブチルパーオキサイド(DTBP)、過酸化ベンゾイル(ベンゾイルパーオキサイド,BPO)および、メチルエチルケトンパーオキサイド(MEKP)等を挙げることができ、これらのうち、いずれか1種以上を使用できる。
ラジカル重合開始剤の量(モル数)は、原料として用いるモノマーの合計モル数の0.05%〜3%とすることが好ましい。重合開始剤の量を前記範囲内で適宜設定し、かつ、反応温度、反応時間を適宜設定することで、得られるポリマーの重量平均分子量(Mw)を10000〜1000000に調整することができる。
【0030】
ポリマーPの製造に用いられる重合溶媒は、重合反応に関与せず、かつ重合体と相溶性のある溶媒であれば特に制限されず、例えば、水、メタノール、エタノール、プロパノール、t−ブタノール、ベンゼン、トルエン、ジメチルホルムアミド、ジメチルスルホキシド、テトラヒドロフラン、クロロホルム、メチルエチルケトン等のケトン系溶媒およびこれらの混合溶媒等が挙げられる。これらの溶媒は、1種単独で、または2種以上を組み合わせて用いることができる。
重合溶媒には、必要に応じて、他の添加剤を含めてもよい。
【0031】
(ポリマーPの用途)
(ポリマーPの基材への適用)
本発明のポリマーPは、ポリマーPを含むコーティング組成物を基材へ塗布することにより、当該基材の表面に適用される。基材は、無機または有機材料からなる基材を用いることができる。この場合、コーティング組成物は、ポリマーPに加え、溶剤、および必要に応じて界面活性剤等の添加剤を含み得る。溶剤としては、水、エタノール、メタノール、イソプロパノール、n−ブタノール、t−ブチルアルコール、n−ペンタノール、シクロヘキサノール等のアルコール、ベンゼン、トルエン、テトラヒドロフラン、ジオキサン、ジクロロメタン、クロロホルム、アセトン、酢酸メチル、酢酸エチル、酢酸ブチル、メチルエチルケトン、メチルブチルケトン、エチレングリコールモノエチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、シクロヘキサノン等が挙げられる。これらの溶媒は、単独で、または2種以上を組み合わせて用いることができる。中でも、アルコールが、プラスチック基材を変性させず、乾燥させやすいため好ましい。
【0032】
コーティング組成物に含まれるポリマーPの量は、適用される基材の種類、得られる膜の厚み、コーティング方法に依存して調整することができる。コーティング組成物中のポリマーPの濃度は、例えば、0.01重量%以上1.5重量%以下とすることができる。
【0033】
本発明に用いる基材としては、スライド形状基板、マイクロウェルプレート、容器、マイクロフルイディスク基板等を用いることができるが、これらに限定されることはなく、適時最適な形状を選択できる。基材の材料としては、例えば、無機物質、有機高分子物質等が挙げられる。無機物質としては、シリカ、アルミナ、ガラス、金属等が挙げられる。有機高分子物質としては、熱可塑性樹脂等が挙げられ、熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレン等の直鎖状ポリオレフィン樹脂;ポリスチレン樹脂;環状ポリオレフィン樹脂;含フッ素樹脂;ポリカーボネート樹脂等が挙げられる。中でも、耐熱性、耐薬品性、低蛍光性、成形性に特に優れる飽和環状ポリオレフィン樹脂を用いることが好ましい。本明細書において、飽和環状ポリオレフィン樹脂とは、環状オレフィン構造を有する単独重合体又は環状オレフィンとα−オレフィンとの共重合体に水素添加した飽和重合体を指す。
【0034】
ポリマーPを含むコーティング組成物を用いて基材の表面修飾を行う方法としては、基材をコーティング組成物に浸漬する方法、またはコーティング組成物を、例えば、スプレー塗布により基材に塗布する方法が挙げられるが、これらに限定されず、当該分野において公知の他の手法により表面修飾を行うことができる。なお、表面修飾とは、すべてまたは連続であるものに限られず、一部または非連続であるものも含む。
【0035】
基材表面と、これを被覆するポリマーPを含むコーティング組成物との密着性を高めるために、基材表面を活性化することが好ましい。活性化する手段としては酸素雰囲気下、アルゴン雰囲気下、窒素雰囲気下、空気雰囲気下などの条件下でプラズマ処理する方法、フッ化アルゴン、フッ化クリプトンなどのエキシマレーザーで処理する方法があるが、酸素雰囲気下でプラズマ処理する方法が好ましい。
【0036】
ポリマーPが構造単位Cを有する場合、基材を、ポリマーPを含むコーティング組成物で表面修飾した後に、50〜120℃で5分間〜100時間加熱処理するのが好ましい。構造単位Cから産生するシラノール基が基材の官能基またはポリマーPのシラノール基などと脱水縮合することにより、ポリマーPを含むコーティング組成物と基材との結合性を向上させることができる。これにより前述のように、ポリマーPを含むコーティング組成物を適用した基材が加熱処理や洗浄処理等に供された場合、ポリマーPは基材から脱離することなくその表面に留まりやすくなる。このような基材は、ポリマーPの脱離にともなう機能の低下が低減され、持続的な生理活性物質固定化能や親水性を有し得る。
【0037】
ポリマーPが構造単位Dを有する場合、基材を、ポリマーPを含むコーティング組成物で表面修飾した後に、光照射するのが好ましい。光照射する条件としては、10mJ/cm
2以上1000mJ/cm
2以下が挙げられ、50mJ/cm
2以上800mJ/cm
2以下であることが好ましく、100mJ/cm
2以上700mJ/cm
2以下であることがさらに好ましい。光照射により、構造単位Dからナイトレンを発生し、基材またはポリマーPと反応する。これにより、ポリマーPを含むコーティング組成物と基材との結合性を向上させることができる。その結果、ポリマーPを含むコーティング組成物を適用した基材が、加熱処理や洗浄処理等に供された場合、ポリマーPは基材から脱離することなくその表面に留まりやすくなる。このような基材は、ポリマーPの脱離にともなう機能の低下が低減され、持続的な生理活性物質固定化能や親水性を有し得る。
【0038】
(ポリマーPへの生理活性物質の固定化)
本発明のポリマーPが担持された基材(以下、担体という)には、各種の生理活性物質または生理活性物質含有物質を固定化することができる。生理活性物質としては、例えば、糖、糖質、糖鎖、ペプチド、タンパク質、核酸、細胞、脂質などが挙げられる。また、糖鎖または糖鎖を含む物質としては、単糖、2糖以上の糖鎖、糖アミノ酸、糖ペプチド、糖タンパク質、糖脂質、グリコサミノグリカン、グリコシルホスファチジルイノシトール、ペプチドグリカン、リポ多糖、およびそれらの誘導体などがある。なお、あらかじめポリマーPに生理活性物質または生理活性物質含有物質を固定化して生理活性物質固定化ポリマーを作製し、その後これを基材に担持させてもよい。このような生理活性物質固定化ポリマーは、基材に担持せず、粒子状等にして単独で、生体物質捕捉用のポリマーとして使用することもできる。
【0039】
基材表面に担持した本発明のポリマーPにおける生理活性物質または生理活性物質含有物質を固定化する官能基が式(2)で表される構造単位であって、生理活性物質が、糖、糖質、糖鎖などの還元末端と反応する官能基を有する場合は、還元末端を有する生理活性物質をpH4.0〜6.0の緩衝液中に溶解し、基材上にその溶液を室温〜100℃、10分〜24時間静置することにより、生理活性物質をポリマーPに固定化できる。
【0040】
一方、ポリマーPにおける生理活性物質または生理活性物質含有物質を固定化する官能基が、式(3)で表される活性エステル基など、求核性の官能基と反応する基である場合は、生理活性物質または生理活性物質含有物質は求核性の官能基を有する必要がある。求核性の官能基の一例としては、アミノ基が挙げられる。アミノ基を有する生理活性物質または生理活性物質含有物質をpH7.0〜10.0の緩衝液中に溶解し、基材上でその溶液を室温〜100℃、10分〜24時間静置することにより、このような生理活性物質をポリマーPに固定化できる。アミノ基を持たない生理活性物質または生理活性物質含有物質を用いる場合は、固定化の前にこれにアミノ基を導入する必要があるが、この場合アミノ基は生理活性物質または生理活性物質含有物質の末端に導入されることが好ましい。
こうして得られた生理活性物質または生理活性物質含有物質を固定化した担体は、十分な量の生理活性物質または生理活性物質含有物質が化学結合で強固に固定化され、さらに検出対象以外の非特異吸着を抑制できることから、該生理活性物質または生理活性物質含有物質と特異的に結合し得る物質を選択的に捕捉することができ、生体物質捕捉用担体として使用できる。例えば、担体が板状である場合、バイオチップとして好適に用いることができる。
【0041】
本発明において生理活性物質または生理活性物質含有物質をバイオチップ用担体上に固定化する際には、生理活性物質または生理活性物質含有物質を溶解または分散した液体を点着する方法を用いることが好ましい。点着後、静置すると、生理活性物質または生理活性物質含有物質が担体上の官能基と化学的に結合し、生理活性物質または生理活性物質含有物質が表面に固定化される。
【0042】
生理活性物質または生理活性物質含有物質をバイオチップ用担体上に固定化した後は、生理活性物質または生理活性物質含有物質を固定化した部分以外の担体表面の官能基を不活性化処理するのが好ましい。例えば、担体の官能基が活性エステル基やアルデヒド基などの場合はアルカリ化合物、あるいは一級アミノ基を有する化合物で行うことが好ましい。
【0043】
アルカリ化合物としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸水素ナトリウム、リン酸水素二ナトリウム、水酸化カルシウム、水酸化マグネシウム、ホウ酸ナトリウム、水酸化リチウム、リン酸カリウムなどを好ましく用いることができる。一級アミノ基を有する化合物としては、メチルアミン、エチルアミン、ブチルアミン、グリシン、9−アミノアクアジン、アミノブタノール、4−アミノ酪酸、アミノカプリル酸、アミノエタノール、5−アミノ−2,3−ジヒドロ−1,4−ペンタノール、アミノエタンチオール塩酸塩、アミノエタンチオール硫酸、2−(2−アミノエチルアミノ)エタノール、リン酸二水素2−アミノエチル、硫酸水素アミノエチル、4−(2−アミノエチル)モルホリン、5−アミノフルオレセイン、6−アミノヘキサン酸、アミノヘキシルセルロース、p−アミノ馬尿酸、2−アミノ−2−ヒドロキシメチル−1,3−プロパンジオール、5−アミノイソフタル酸、アミノメタン、アミノフェノール、2−アミノオクタン、2−アミノオクタン酸、1−アミノ−2−プロパノール、3−アミノ−1−プロパノール、3−アミノプロペン、3−アミノプロピオニトリル、アミノピリジン、11−アミノウンデカン酸、アミノサリチル酸、アミノキノリン、4−アミノフタロニトリル、3−アミノフタルイミド、p−アミノプロピオフェノン、アミノフェニル酢酸、アミノナフタレンなどを好ましく用いることができ、アミノエタノール、グリシンが最も好ましい。
【0044】
また、担体の官能基がヒドラジド基又はアミノオキシ基などの場合は、例えば、酸無水物との反応やオキソ酸との縮合により行うことができる。酸無水物は特に限定されないが、反応性からカルボン酸無水物が好ましい。カルボン酸無水物の例としては、無水酢酸、無水プロピオン酸、無水コハク酸、無水マレイン酸、無水フタル酸、無水安息香酸などが挙げられるが、中でも無水酢酸、無水コハク酸がより好ましい。また、オキソ酸も特に限定されないが、反応性からカルボン酸が好ましい。カルボン酸の例としては、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、安息香酸、ヒドロキシ安息香酸等が挙げられるが、中でもギ酸、酢酸が好ましい。
【0045】
また、前記不活性化処理工程では、担体の官能基と結合しなかった生理活性物質または生理活性物質含有物質も同時に洗浄・除去することができることが多い。除去できない場合は、不活性化処理前に基材を洗浄することで除去することが好ましい。例えば担体を超純水、界面活性剤含有緩衝液等で1〜5分間浸漬し洗浄することで、除去できる。
【0046】
生理活性物質固定化担体は、上記ポリマーPを準備する工程と、前記ポリマーPを、基材の表面に担持させる工程と、前記ポリマーPが担持された基材(担体)に、生理活性物質を固定化する工程と、前記生理活性物質が固定化された前記担体を純水またはバッファで洗浄する工程を用いて作製され得る。
純水またはバッファで洗浄する工程としては、上記のように担体の官能基と結合しなかった生理活性物質または生理活性物質含有物質も同時に洗浄・除去する工程や、過剰な検出対象物または非検出対象物を洗浄・除去する工程が挙げられる。また、担体は、前記記載のとおり、基材上に重合性官能基や連鎖移動基等を導入し、基材上で上記ポリマーPを合成することにより作製してもよいし、あらかじめポリマーPに生理活性物質または生理活性物質含有物質を固定化し、その後基材に担持させてもよい。
【0047】
このように生理活性物質または生理活性物質含有物質を固定化することによって得られた基材は免疫診断システム、マイクロアレイシステム、マイクロフルイディスクデバイスを含めた多くの分析システムにおいて使用することができる。
【0048】
上記コーティング組成物を基材に塗布し、乾燥して得られるポリマーPを含むポリマー層、または上述のような生理活性物質固定化ポリマーを含む生体分子捕捉ポリマー層の厚みは、親水性の発現とポリマー層または生体分子捕捉ポリマー層の均一性の観点から、1nm以上100nm以下とすることができる。ポリマーPを含むポリマー層または生理活性物質固定化ポリマー層の厚みは、基材の用途に基づいて適宜変更することができる。
【0049】
上記表面修飾された基材は、ポリマーPを含むポリマー層または生理活性物質固定化ポリマーを含む生体分子捕捉ポリマー層を設けることにより、その表面の純水に対する接触角を、5°以上80°以下とすることができる。
ここで、本発明において、優れた親水性とは、純水との接触角が80°以下の水濡れ性を呈する状態をいう。接触角の測定方法は、公知の方法を採用でき、たとえば、協和界面化学株式会社製「CA−Z」等の市販の装置を用いて測定する方法を採用することができる。上記方法により、純水に対する接触角が80°以下であれば、ポリマーP又は生理活性物質固定化ポリマーは優れた親水性を有し、優れた生体適合性を有すると判断することができる。
なお、好ましくは、この接触角は、5°以上60°以下であり、さらに好ましくは5°以上40°以下である。ポリマーPを含むポリマー層、または生理活性物質固定化ポリマー層の接触角は、基材の用途に基づいて変更することができ、例えば、ポリマーPを含むポリマー層、生理活性物質固定化ポリマー層の厚み、ポリマーPを構成するモノマーの種類およびその組成、ポリマー層の形成方法等を選択することにより、調整できる。
【0050】
より具体的には、本実施形態のポリマーPまたは生理活性物質固定化ポリマーは、ポリスチレン基板に、ポリマーP又は生理活性物質固定化ポリマーの0.3重量%水またはアルコール溶液を塗布し、乾燥したとき、このポリスチレン基板の、純水に対する接触角が、5°以上80°以下となり得る。好ましくは、この接触角は、5°以上60°以下であり、より好ましくは、5°以上40°以下である。
【0051】
ポリマーPは、特定の生理活性物質を固定化し得る機能を有するとともに、優れた親水性を有し、生体適合性材料として有用である。そのため、ポリマーPが塗布された基材は、生体活性物質を固定化してバイオアッセイ用機器等の物品として使用され得る。
【0052】
以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
以下、実施形態の例を付記する。
1. 構造単位Aおよび構造単位Bを含む共重合体であって、
構造単位Aは、式(1)で表される構造単位であり、
構造単位Bは、式(2)で表される構造単位および式(3)で表される構造単位から選択される少なくとも1つの構造単位である、共重合体:
【化1】
(式(1)において、R11は、水素原子、またはメチル基であり、R12は、NH、または酸素原子であり、*は結合を表し、mは、1〜4の整数である);
【化2】
(式(2)において、R21は、水素原子、またはメチル基であり、Yは、式(2−1)または式(2−2)で表される基であり、Zは、酸素原子、またはNHであり、*は、結合を表す。)
【化2-1】
(式(2−1)および式(2−2)中、tおよびuは、1〜20の整数であり、*は、結合を表す。)
【化3】
(式(3)中、R31は、水素原子、またはメチル基であり、Xは、炭素数1〜10のアルキレングリコール基、またはアルキレン基であり、vは、1〜100の整数であり、vが2以上の場合、複数のXは、それぞれ同一であっても異なっていてもよく、Wは、活性エステル基であり、*は、結合を表す。)。
2. 式(4)で表される構造単位Cを含む、1.に記載の共重合体。
【化4】
(式(4)において、R41は、水素原子、またはメチル基であり、R42、R43およびR44は、独立して、メトキシ基、エトキシ基、水素原子またはメチル基であり、ただし、R42、R43およびR44のうち1つ、2つまたは3つは、独立して、メトキシ基、またはエトキシ基であり、*は、結合を表し、pは、2〜10の整数である)。
3. 式(5)で表される構造単位Dを含む、1.または2.に記載の共重合体。
【化5】
(式(5)において、R51は、水素原子、またはメチル基であり、sは、4であり、R52は、独立して、水素原子、またはメチル基であり、*は、結合を表す。)。
4. 式(6)で表される構造単位および式(7)で表される構造単位から選択される少なくとも1つの構造単位Eを含む、1.〜3.のいずれかに記載の共重合体。
【化6】
(式(6)において、R61は、水素原子、またはメチル基であり、*は結合を表す);
【化7】
(式(7)において、R71は、水素、またはメチル基であり、R72は、水素原子、またはメチル基であり、*は結合を表し、nは、2〜100の整数である。)。
5. 式(8)で表される構造単位Fを含む、1.〜4.のいずれかに記載の共重合体。
【化8】
(式(8)において、R81は、水素原子、またはメチル基であり、R82は、炭素数1〜10の直鎖または分枝鎖のアルキル、あるいは炭素数3〜8の脂環式アルキル、あるいはこれらの組み合わせであり、*は、結合を表す。)。
6. ポリスチレン基板に、0.3wt%水またはアルコール溶液を塗布し、乾燥したとき、当該共重合体が塗布された前記ポリスチレン基板の、純水に対する接触角が、5°以上80°以下である、1.〜5.のいずれかに記載の共重合体。
7. 1.〜6.のいずれかに記載の共重合体と、前記共重合体に固定化された生理活性物質とを含む、生体分子捕捉用の生理活性物質固定化ポリマー。
8. 1.〜6.のいずれかに記載の共重合体および溶剤を含む、コーティング組成物。
9. 7.に記載の生理活性物質固定化ポリマーおよび溶剤を含む、コーティング組成物。
10. 基材と、前記基材上に形成された1.〜6.のいずれかに記載の共重合体を含むポリマー層とを備える物品。
11. 前記ポリマー層の、純水に対する接触角が、5°以上80°以下である、10.に記載の物品。
12. 前記ポリマー層が、1nm以上100nm以下の厚みを有する、10.または11.に記載の物品。
13. バイオアッセイ用である、10.〜12.のいずれかに記載の物品。
14. 前記ポリマー層に固定化された生理活性物質をさらに含む、10.〜13.のいずれかに記載の物品。
15. 基材と、前記基材上に形成された7.に記載の生理活性物質固定化ポリマーを含む生理活性物質固定化ポリマー層とを備える物品。
16. 前記生理活性物質固定化ポリマー層の、純水に対する接触角が、5°以上80°以下である、15.に記載の物品。
17. 前記生理活性物質固定化ポリマー層が、1nm以上100nm以下の厚みを有する、15.または16.に記載の物品。
18. バイオアッセイ用である、15.〜17.のいずれかに記載の物品。
【実施例】
【0053】
以下、実施例を参照して本発明を詳細に説明するが、本発明はこれらの例示に限定されるものではない。
【0054】
(合成例1)
(HEAA/AEG/シランカップリング剤ポリマーの合成)
2.12g(18.4mmol)のN−(2−ヒドロキシエチル)アクリルアミド(HEAA、東京化成工業製)、0.47g(1.0mmol)のp−ニトロフェニルオキシカルボニル−4,5−ポリエチレングリコールメタクリレート(AEG、株式会社ナード研究所製)、0.135g(0.6mmol)の3−(メタクリロキシ)プロピルジメチルメトキシシラン(Gelest社製)、および0.066g(0.4mmol)の2,2'−アゾビス(イソブチロニトリル)をエタノール10mLに溶解させた後、得られた混合溶液を反応容器内に導入した。次に、10分間アルゴンガスを吹き込んだ後密閉し、60℃で20時間反応させた。
得られた溶液を、撹拌しながら、ヘキサン:アセトン:エタノール混合溶媒(体積比6:3:1)400mL中に徐々に滴下し、滴下終了後1時間撹拌した後、静置して析出物を沈降させた。上清を除去し、残った析出物をエタノール200mLに再溶解し、エバポレーターで濃縮して、目的のポリマーを含むエタノール溶液を得た。得られたポリマー溶液の一部をサンプル瓶に移し、48時間真空乾燥させた後の重量を測定して、このポリマー溶液の濃度を算出し、この値を基に、塗布用の0.3wt%エタノール溶液を作製した。
【0055】
(合成例2)
(HEAA/AEG/シランカップリング剤/MPCポリマーの合成)
0.576g(5mmol)のN−(2−ヒドロキシエチル)アクリルアミド(HEAA、東京化成工業製)、0.235g(0.5mmol)のp−ニトロフェニルオキシカルボニル−4,5−ポリエチレングリコールメタクリレート(AEG、株式会社ナード研究所製)、0.114g(0.5mmol)の3−(メタクリロキシ)プロピルジメチルメトキシシラン(Gelest社製)、1.18g(4mmol)の2−メタクリロイルオキシエチルホスホリルコリン(MPC)、および0.033g(0.2mmol)の2,2'−アゾビス(イソブチロニトリル)をエタノール10mLに溶解させた後、得られた混合溶液を反応容器内に導入した。次に、10分間アルゴンガスを吹き込んだ後密閉し、60℃で20時間反応させた。
得られた溶液を、撹拌しながら、ヘキサン:アセトン:エタノール混合溶媒(体積比6:3:1)400mL中に徐々に滴下し、滴下終了後1時間撹拌した後、静置して析出物を沈降させた。上清を除去し、残った析出物をエタノール200mLに再溶解し、エバポレーターで濃縮して、目的のポリマーを含むエタノール溶液を得た。得られたポリマー溶液の一部をサンプル瓶に移し、48時間真空乾燥させた後の重量を測定して、このポリマー溶液の濃度を算出し、この値を基に、塗布用の0.3wt%エタノール溶液を作製した。
【0056】
(合成例3)
(HEAA/AEG/シランカップリング剤/PEGポリマーの合成)
0.576g(5mmol)のN−(2−ヒドロキシエチル)アクリルアミド(HEAA、東京化成工業製)、0.235g(0.5mmol)のp−ニトロフェニルオキシカルボニル−4,5−ポリエチレングリコールメタクリレート(AEG、株式会社ナード研究所製)、0.114g(0.5mmol)の3−(メタクリロキシ)プロピルジメチルメトキシシラン(Gelest社製)、1.87g(4mmol)のポリエチレングリコールメチルエーテルメタクリレート(分子量475、アルドリッチ社製)、および0.033g(0.2mmol)の2,2'−アゾビス(イソブチロニトリル)をエタノール10mLに溶解させた後、得られた混合溶液を反応容器内に導入した。次に、10分間アルゴンガスを吹き込んだ後密閉し、60℃で20時間反応させた。
得られた溶液を、撹拌しながら、ヘキサン:アセトン:エタノール混合溶媒(体積比6:3:1)400mL中に徐々に滴下し、滴下終了後1時間撹拌した後、静置して析出物を沈降させた。上清を除去し、残った析出物をエタノール200mLに再溶解し、エバポレーターで濃縮して、目的のポリマーを含むエタノール溶液を得た。得られたポリマー溶液の一部をサンプル瓶に移し、48時間真空乾燥させた後の重量を測定して、このポリマー溶液の濃度を算出し、この値を基に、塗布用の0.3wt%エタノール溶液を作製した。
【0057】
(合成例4)
(HEAA/アミノオキシ/シランカップリング剤ポリマーの合成)
0.864g(7.5mmol)のN−(2−ヒドロキシエチル)アクリルアミド(HEAA、東京化成工業製)、0.864g(2mmol)のN−[2−[2−[2−(t−ブトキシカルボニルアミノオキシアセチルアミノ)エトキシ]エトキシ]エチル]−メタクリルアミド(アミノオキシ、株式会社ナード研究所製)、0.114g(0.5mmol)の3−(メタクリロキシ)プロピルジメチルメトキシシラン(Gelest社製)、および0.033g(0.2mmol)の2,2'−アゾビス(イソブチロニトリル)をエタノール7mLに溶解させた後、得られた混合溶液を反応容器内に導入した。次に、10分間アルゴンガスを吹き込んだ後密閉し、60℃で20時間反応させた。
得られた溶液を、撹拌しながら、ヘキサン:アセトン:エタノール混合溶媒(体積比6:3:1)400mL中に徐々に滴下し、滴下終了後1時間撹拌した後、静置して析出物を沈降させた。上清を除去し、残った析出物をエタノール200mLに再溶解し、エバポレーターで濃縮して、目的のポリマーを含むエタノール溶液を得た。得られたポリマー溶液の一部をサンプル瓶に移し、48時間真空乾燥させた後の重量を測定して、このポリマー溶液の濃度を算出し、この値を基に、塗布用の0.3wt%エタノール溶液を作製した。
【0058】
(合成例5)
(HEAA/AEG/BMAポリマーの合成)
0.576g(5mmol)のN−(2−ヒドロキシエチル)アクリルアミド(HEAA、東京化成工業製)、0.235g(0.5mmol)のp−ニトロフェニルオキシカルボニル−4,5−ポリエチレングリコールメタクリレート(AEG、株式会社ナード研究所製)、0.64g(4.5mmol)のメタクリル酸n−ブチル(BMA、関東化学株式会社製)、0.033g(0.2mmol)の2,2'−アゾビス(イソブチロニトリル)をエタノール7mLに溶解させた後、得られた混合溶液を反応容器内に導入した。次に、10分間アルゴンガスを吹き込んだ後密閉し、60℃で20時間反応させた。
得られた溶液を、撹拌しながら、ヘキサン:アセトン:エタノール混合溶媒(体積比6:3:1)400mL中に徐々に滴下し、滴下終了後1時間撹拌した後、静置して析出物を沈降させた。上清を除去し、残った析出物をエタノール200mLに再溶解し、エバポレーターで濃縮して、目的のポリマーを含むエタノール溶液を得た。得られたポリマー溶液の一部をサンプル瓶に移し、48時間真空乾燥させた後の重量を測定して、このポリマー溶液の濃度を算出し、この値を基に、塗布用の0.3wt%エタノール溶液を作製した。
【0059】
(合成例6)
(HEAA/AEGポリマーの合成1)
1.1g(9.5mmol)のN−(2−ヒドロキシエチル)アクリルアミド(HEAA、東京化成工業製)、0.235g(0.5mmol)のp−ニトロフェニルオキシカルボニル−4,5−ポリエチレングリコールメタクリレート(AEG、株式会社ナード研究所製)、0.033g(0.2mmol)の2,2'−アゾビス(イソブチロニトリル)をエタノール7mLに溶解させた後、得られた混合溶液を反応容器内に導入した。次に、10分間アルゴンガスを吹き込んだ後密閉し、60℃で20時間反応させた。
得られた溶液を、撹拌しながら、ヘキサン:アセトン:エタノール混合溶媒(体積比6:3:1)400mL中に徐々に滴下し、滴下終了後1時間撹拌した後、静置して析出物を沈降させた。上清を除去し、残った析出物をエタノール200mLに再溶解し、エバポレーターで濃縮して、目的のポリマーを含むエタノール溶液を得た。得られたポリマー溶液の一部をサンプル瓶に移し、48時間真空乾燥させた後の重量を測定して、このポリマー溶液の濃度を算出し、この値を基に、塗布用の0.3wt%エタノール溶液を作製した。
【0060】
(合成例7)
(HEAA/AEGポリマーの合成2)
1.14g(9.9mmol)のN−(2−ヒドロキシエチル)アクリルアミド(HEAA、東京化成工業製)、0.045g(0.1mmol)のp−ニトロフェニルオキシカルボニル−4,5−ポリエチレングリコールメタクリレート(AEG、株式会社ナード研究所製)、0.033g(0.2mmol)の2,2'−アゾビス(イソブチロニトリル)をエタノール7mLに溶解させた後、得られた混合溶液を反応容器内に導入した。次に、10分間アルゴンガスを吹き込んだ後密閉し、60℃で20時間反応させた。
得られた溶液を、撹拌しながら、ヘキサン:アセトン:エタノール混合溶媒(体積比6:3:1)400mL中に徐々に滴下し、滴下終了後1時間撹拌した後、静置して析出物を沈降させた。上清を除去し、残った析出物をエタノール200mLに再溶解し、エバポレーターで濃縮して、目的のポリマーを含むエタノール溶液を得た。得られたポリマー溶液の一部をサンプル瓶に移し、48時間真空乾燥させた後の重量を測定して、このポリマー溶液の濃度を算出し、この値を基に、塗布用の0.3wt%エタノール溶液を作製した。
【0061】
(合成例8)
(HEAA/AEGポリマーの合成3)
1.13g(9.8mmol)のN−(2−ヒドロキシエチル)アクリルアミド(HEAA、東京化成工業製)、0.090g(0.2mmol)のp−ニトロフェニルオキシカルボニル−4,5−ポリエチレングリコールメタクリレート(AEG、株式会社ナード研究所製)、および0.033g(0.2mmol)の2,2'−アゾビス(イソブチロニトリル)をエタノール7mLに溶解させた後、得られた混合溶液を反応容器内に導入した。次に、10分間アルゴンガスを吹き込んだ後密閉し、60℃で20時間反応させた。
得られた溶液を、撹拌しながら、ヘキサン:アセトン:エタノール混合溶媒(体積比6:3:1)400mL中に徐々に滴下し、滴下終了後1時間撹拌した後、静置して析出物を沈降させた。上清を除去し、残った析出物をエタノール200mLに再溶解し、エバポレーターで濃縮して、目的のポリマーを含むエタノール溶液を得た。得られたポリマー溶液の一部をサンプル瓶に移し、48時間真空乾燥させた後の重量を測定して、このポリマー溶液の濃度を算出し、この値を基に、塗布用の0.3wt%エタノール溶液を作製した。
【0062】
(接触角の測定)
以下の方法を用いて、上記ポリマーからなるポリマー層の純水に対する接触角を測定した。
プラズマ処理済みの環状ポリオレフィン製のプラスチック基板を、上記の0.3重量%コーティング組成物に浸して1分間静置した。その後、この基板をコーティング組成物より取り出した。次いで、この基板の表面を乾燥させ、100℃、真空中で一晩静置することにより、表面がポリマーでコーティングされたプラスチック基板を得た。これを実施例のプラスチック基板として用いた。
比較例1として、プラズマ処理した、環状ポリオレフィン製のプラスチック基板を用いた。
【0063】
次に協和界面化学社製のCA−V型接触角計を用いて、準備したプラスチック基板の、純水に対する接触角を測定した。接触角の値は、超純水2.0μLを、測定対象の表面に滴下した後85秒の時点で測定した。結果を以下の表1に、「接触角−1」として示す。
【0064】
(生理活性物質の固定化能の測定、および生体分子の捕捉能の測定)
以下の方法を用いて、上記ポリマーからなるポリマー層への生理活性物質固定化能、および得られた生理活性物質固定化担体の生体分子に対する捕捉能を測定した。
(生理活性物質固定化能の測定)
実施例1、2、3、5、6、7、および8において、プラズマ処理済みの環状ポリオレフィン製のプラスチック基板を、それぞれ、上述の合成例1、2、3、5、6、7、8で得られた0.3重量%コーティング組成物に浸して1分間静置した後、この基板をコーティング組成物より取り出した。次いで、この基板の表面を乾燥させ、100℃、真空中で一晩静置する事で、表面がポリマーでコーティングされたプラスチック基板を得た。これを実施例のプラスチック基板として用いた。
比較例1として、プラズマ処理した、環状ポリオレフィン製のプラスチック基板を用いた。
【0065】
次に、上述のようにして得られたポリマーがコーティングされたプラスチック基板を、生理活性物質の固定化について評価した。合成例1、2、3、5、6、7、8で得られたポリマーを塗布したプラスチック基板上に、リン酸緩衝液で1mMに調製したビオチンヒドラジド溶液を1μL滴下し、37℃で1時間静置し、乾燥させた。基板を純水で洗浄後に、0.1% Tween20含有リン酸緩衝液で2g/mLに調製したCy3標識ストレプトアビジン溶液の中に基板を浸し、室温で1時間反応させた。基板を純水で洗浄して乾燥させた後、マイクロアレイ用スキャナ(GenePix 4000B、株式会社インターメディカル製)を用いて、シグナルとしてビオチンヒドラジド溶液を滴下した部分と、バックグラウンドとして滴下していない部分の、ぞれぞれのCy3の蛍光強度を測定した。測定結果を以下の表2に「蛍光強度−1」として示す。
【0066】
実施例4において、合成例4で得られたポリマーがコーティングされたプラスチック基板、および比較例のプラスチック基板を、以下の方法で生理活性物質の固定化について評価した。
まず、ポリマー合成例4で得られたポリマーを塗布したプラスチック基板を2mol/L 塩酸に浸し、室温で3時間反応させた。基板を塩酸から取り出した後、純水で洗浄し、乾燥させた。塩酸と反応させた基板と、比較例として用いた基板とに、pH5.0の300mM 酢酸ナトリウム溶液で1mMに調製したルイスX糖鎖の溶液 1μLを滴下し、80℃で1時間反応させた。基板を純水で洗浄後に、2価の金属イオンを含有したトリス緩衝液で1μg/mLに調製したBiotin標識AALレクチン溶液に基板を浸し、室温で1時間反応させた。基板を純水で洗浄後、2価の金属イオンを含有したトリス緩衝液で2μg/mLに調製したCy3標識ストレプトアビジン溶液の中に基板を浸し、室温で1時間反応させた。基板を純水で洗浄して乾燥させた後、マイクロアレイ用スキャナ(GenePix 4000B)を用いて、シグナルとしてルイスX糖鎖溶液を滴下した部分と、バックグラウンドとして滴下していない部分の、ぞれぞれのCy3の蛍光強度を測定した。結果を以下の表2に、「蛍光強度−1」として合わせて示す。
【0067】
(生体分子捕捉能の測定)
実施例1−8において、以下の方法を用いて、生理活性物質を固定化したポリマーからなるポリマー層の、生体分子に対する吸着量を測定した。
プラズマ処理済みのポリスチレン製96ウェルプレートの各ウェルに、上記の0.3重量%コーティング組成物を100μL分注し、30分静置した。溶液を排出した後、ウェルの表面を乾燥させ、60℃、真空中で一晩静置する事で、表面がポリマーでコーティングされた96ウェルプレートを得た。また、ポリスチレン製96ウェルプレートをプラズマ処理したものを、比較例1として用いた。
【0068】
次に、作製した96ウェルプレートへの、ペルオキシダーゼ標識アビジンの吸着量を測定した。まず、合成例1−8で得られたポリマーを塗布した96ウェルプレートの各ウェルに0.1M エタノールアミン水溶液を100μL分注し、室温で1時間反応させた。溶液を排出した後、純水でウェルを洗浄した。その後、0.1% Tween20含有リン酸緩衝液で2.5μg/mLに調製したペルオキシダーゼ標識アビジン溶液を、ポリマー合成例4で得られたポリマーを塗布したプレートを含む、全てのプレートの各ウェルに100μL分注し、室温で1時間反応させた。別のウェルには、0.1% Tween20含有リン酸緩衝液のみを陰性検体として各ウェルに100μL分注し、室温で1時間反応させた。溶液を排出後、0.1% Tween20含有リン酸緩衝液で各ウェルを洗浄し、市販のTMB発色キットを用いて15分発色反応を行い、反応停止後、プレートリーダーで450nmの吸光度を測定した。結果を以下の表3に、「吸光度−1」として示す。
【0069】
(測定結果)
【表1】
【表2】
*65535はシグナルの上限値を超えていることを示している。
【表3】
【0070】
ポリマー合成例1〜8で調製したポリマーのコーティング膜を有するプラスチック表面は全て、生理活性物質の固定化能と、特異的な生体分子の捕捉能、および非特異的な生体分子の吸着を抑制する性能を示した。一方で、比較例であるプラズマ処理のみを実施したプラスチック基板では生理活性物質を特異的に固定化できず、また生体分子の非特異的な吸着も抑制できていない事が示されており、ポリマーのコーティング膜による効果が示された。
【0071】
純水の接触角の測定結果から、合成例1〜8で調製したポリマーのコーティング膜を有するプラスチック表面の接触角は全て10°〜80°の範囲に入っている事が確認され、構成成分の変更により接触角が調整できる事が示された。また、実施例6〜8に示されるように、構造単位Aの含有率を上げる事で有意に接触角が低下しており、40°以下の接触角を達成できる事が示された。