(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0009】
(第1の実施形態)
以下、第1の実施形態について説明する。
先ず、本実施形態に係るナノインプリント用テンプレートの構成について説明する。
図1は、本実施形態に係るナノインプリント用テンプレートを示す平面図である。
図2は、本実施形態に係るナノインプリント用テンプレートのアライメント領域を示す平面図である。
図3(a)は、本実施形態に係るナノインプリント用テンプレートの孤立パターンを示す平面図であり、(b)は断面図である。
【0010】
図1に示すように、本実施形態に係るナノインプリント用テンプレート1(以下、単に「テンプレート1」ともいう)は、可視光線及び紫外線を透過させる透明材料、例えば、石英からなり、その形状は矩形の板状である。テンプレート1の上面及び下面は、例えば、一辺の長さが約150mmの正方形である。テンプレート1の下面の中央部には、円形の掘込10が形成されている。掘込10の底面には、例えば矩形のデバイスパターン領域11が設定されており、その周囲、例えば、デバイスパターン領域11の4つの角部付近には、アライメント領域12が設定されている。なお、アライメント領域12は、デバイスパターン領域11内に配置されていてもよい。
【0011】
デバイスパターン領域11においては、被加工材であるウェーハ101(
図5(a)参照)に形成しようとするデバイスパターンが形成されている。なお、テンプレート1の「パターン」とは、テンプレート1の原板である石英板に形成された凹部又は凸部をいう。アライメント領域12においては、ウェーハ101とテンプレート1の位置合わせに用いるアライメントパターンが形成されている。アライメントパターンは例えば石英板の凹部によって構成されており、凹部の底面には遮光膜、例えば、クロム膜が形成されている。以下、「パターンの形状」というときは、上方又は下方から見た平面形状をいうものとする。
【0012】
図2に示すように、アライメント領域12においては、孤立パターン領域21、X軸位置合わせ用周期パターン領域22、Y軸位置合わせ用周期パターン領域23が設定されている。
【0013】
図3(a)及び(b)に示すように、孤立パターン領域21においては、1つの主パターン31が設けられている。主パターン31の形状は例えば正方形であり、主パターン31の各辺はX方向及びY方向に延びている。主パターン31の一辺の長さは、位置合わせに用いる光(以下、「照明光」という)の波長λよりも大きい。照明光の波長λは、ナノインプリント法で用いるレジスト材料を硬化させないために、500nm(ナノメートル)以上であることが好ましい。一方、波長λが長すぎると、照明光がシリコンからなるウェーハ101を透過してしまい、位置合わせの精度が低下するため、波長λは800nm以下であることが好ましい。本実施形態においては、照明光の波長λは500nmとする。また、主パターン31の一辺の長さは、例えば3μm(ミクロン)である。
【0014】
主パターン31のX方向両側及びY方向両側には、補助パターン32が設けられている。主パターン31のX方向両側に設けられた補助パターン32の形状は、Y方向を長手方向とする長方形である。主パターン31のY方向両側に設けられた補助パターン32の形状は、X方向を長手方向とする長方形である。主パターン31のX方向両側及びY方向両側のそれぞれにおいて、補助パターン32は少なくとも1本設けられていれば効果が得られるが、2本以上設けられていることが好ましく、3本以上設けられていることがより好ましい。本実施形態においては、補助パターン32は、主パターン31のX方向両側及びY方向両側にそれぞれ3本設けられている。主パターン31及び補助パターン32の凹部の底面には、例えば、クロム膜36が形成されている。後述する他のアライメントパターンについても同様である。
【0015】
主パターン31のX方向両側及びY方向両側のそれぞれにおいて、補助パターン32は周期的に配列されている。補助パターン32の配列周期P1は、照明光の波長λの3倍以下とする。すなわち、P1≦3×λとする。なお、補助パターン32が1本のみ設けられている場合は、主パターン31と補助パターン32との距離と、補助パターン32の幅との合計長さを、配列周期P1とする。例えば、配列周期P1は1000nmであり、補助パターン32の幅は500nmであり、補助パターン32の長さは3μmである。
【0016】
一方、
図2に示すように、X軸位置合わせ用周期パターン領域22においては、Y方向に延びるラインアンドスペース(L/S)状のパターン35が形成されている。パターン35はX方向に沿って周期的に配列されている。Y軸位置合わせ用周期パターン領域23においては、X方向に延びるL/S状のパターン35が形成されている。パターン35はY方向に沿って周期的に配列されている。領域22及び23において、パターン35の配列周期は、例えば、約2μmである。
【0017】
次に、本実施形態に係るテンプレートの使用方法、すなわち、集積回路装置の製造方法について説明する。
図4は、本実施形態に係る集積回路装置の製造方法において使用する光学系を示す図である。
【0018】
先ず、本実施形態において使用するアライメント装置について説明する。
図4に示すように、本実施形態において使用するアライメント装置200においては、位置合わせ用顕微鏡201が設けられており、位置合わせ用顕微鏡201のX方向両側及びY方向両側に、合計4つの照明202が設けられている。そして、位置合わせ用顕微鏡201の直下にテンプレート1を配置し、その直下にウェーハ101を配置する。位置合わせ用顕微鏡201は、透明なテンプレート1を介して、ウェーハ101を観察可能である。
【0019】
照明202を点灯させることにより、照明202から出射した照明光の一部が、テンプレート1内を通過し、テンプレート1の下面に形成されたアライメントパターンに到達して、回折する。この回折光のうち、0次光を除く回折光のいずれかが、位置合わせ用顕微鏡201に入射する。また、照明光の他の一部は、テンプレート1を透過し、ウェーハ101に形成されたアライメントパターンに到達し、回折する。この回折光のうち、0次光を除く回折光のいずれかが、位置合わせ用顕微鏡201に入射する。これにより、位置合わせ用顕微鏡201は、各アライメントパターンの暗視野像を取得することができる。この暗視野像に基づいて、ウェーハ101とテンプレート1との位置合わせを行う。
【0020】
次に、本実施形態において加工するウェーハについて説明する。
図5(a)は、本実施形態のウェーハを示す平面図であり、(b)はウェーハのアライメント領域を示す平面図である。
【0021】
図5(a)に示すように、本実施形態において加工するウェーハ101は、既にいくつかの工程を経たものである。ウェーハ101においては、シリコンウェーハ上に1枚以上の絶縁膜及び1枚以上の導電膜が形成されている。絶縁膜及び導電膜はそれぞれパターニングされている。ウェーハ101においては、後の工程でダイシングされて各チップとなるデバイス領域111が設定されており、デバイス領域111の周囲にはアライメント領域112が設定されている。なお、アライメント領域112はデバイス領域111の内部に配置されていてもよい。
【0022】
図5(b)に示すように、アライメント領域112においては、孤立パターン領域121及び周期パターン領域122が設定されている。孤立パターン領域121においては、パターン131が形成されている。パターン131の形状は、テンプレート1の主パターン31の形状と同様である。
【0023】
周期パターン領域122においては、複数の長方形のパターン132が、X方向及びY方向に沿って市松模様状に配列されている。「市松模様状の配列」とは、隣り合うパターン132の辺同士は接触しておらず、角同士が接触しており、パターン132の全ての角は他の1つのパターン132の角と接触した配列である。各パターン132におけるX方向の長さは例えば約2μmであり、Y方向の長さは例えば4.5μmである。但し、パターン132の配列周期は、テンプレート1のパターン35の配列周期、その整数倍の長さ、又は、その整数分の1の長さに対して、数%程度異なっている。
【0024】
次に、本実施形態に係るテンプレートを用いたナノインプリント法によるウェーハ101の加工方法を説明する。
図6は、本実施形態に係る半導体装置の製造方法を示すフローチャート図である。
【0025】
先ず、
図6のステップS1に示すように、ウェーハ101上にレジスト材料を塗布して、レジスト膜を形成する。この段階では、レジスト材料は半固体である。
【0026】
次に、
図6のステップS2に示すように、ラフアライメントを行い、ウェーハ101とテンプレート1とを概略的に位置合わせする。具体的には、ウェーハ101上にテンプレート1を配置する。そして、アライメント装置200の4つの照明202を全て点灯させ、位置合わせ用顕微鏡201によって暗視野像を取得しつつ、ウェーハ101の孤立パターン領域121のパターン131に、テンプレート1の孤立パターン領域21の主パターン31が重なるように、テンプレート1の位置をウェーハ101に対して調整する。これにより、ウェーハ101に対するテンプレート1の位置のずれが、パターン35の2分の1周期(半周期)未満となる。
【0027】
このとき、照明202から出射した照明光が、パターン131及び主パターン31によって回折し、0次光以外の回折光が位置合わせ用顕微鏡201に入射する。
図3(a)に示すように、テンプレート1の孤立パターン領域21においては、1つの主パターン31の周囲に補助パターン32が設けられているため、主パターン31のエッジから高次回折光が出射することを抑制できる。
【0028】
次に、
図6のステップS3に示すように、テンプレート1をウェーハ101上のレジスト膜に押し付ける。これにより、レジスト膜が変形して、テンプレート1のデバイスパターンが転写される。この結果、レジスト膜がレジストパターンに加工される。
【0029】
次に、
図6のステップS4に示すように、ファインアライメントを行い、ウェーハ101とテンプレート1とを精密に位置合わせする。具体的には、アライメント装置200の4つの照明202を全て点灯させた状態で、ウェーハ101の周期パターン領域122における市松模様状に配列されたパターン132に、テンプレート1のX軸位置合わせ用周期パターン領域22におけるL/S状のパターン35を重ねる。このとき、ウェーハ101のパターン132の周期は、テンプレート1のL/S状のパターン35の周期、その整数倍の長さ、又はその整数分の1の長さから僅かに異なっているため、モアレが発生する。このモアレの明暗縞の位置は、ウェーハ101に対するテンプレート1の位置のずれを拡大して反映する。すなわち、ウェーハ101に対してテンプレート1が僅かに動くと、モアレの明暗縞の位置が大きく動く。従って、このモアレの明暗縞の位置を利用して、テンプレート1のX方向における位置を、ウェーハ101に対して精密に調整することができる。
【0030】
なお、本実施形態におけるモアレを利用した位置合わせでは、テンプレート1がウェーハ101に対してパターン35の2分の1周期分以上ずれていても、それを検出することはできない。しかしながら、ステップS2に示すラフアライメントにおいて、ウェーハ101に対するテンプレート1の位置のずれはパターン35の2分の1周期未満とされているため、モアレを利用したファインアライメントでは、ずれが2分の1周期以上である可能性を考慮する必要はない。
【0031】
同様に、ウェーハ101のパターン132に、テンプレート1のY軸位置合わせ用周期パターン領域23に形成されたL/S状のパターン35を重ねる。そして、モアレの明暗縞の位置を利用して、テンプレート1のY方向における位置を、ウェーハ101に対して精密に調整する。
【0032】
次に、
図6のステップS5に示すように、テンプレート1を介して、レジストパターンに対して紫外線を照射する。これにより、レジストパターンが硬化する。
次に、
図6のステップS6に示すように、テンプレート1をウェーハ101及びレジストパターンから剥離する。
次に、
図6のステップS7に示すように、レジストパターンをマスクとして、RIE(Reactive Ion Etching:反応性イオンエッチング)等のエッチングを施すことにより、ウェーハ101を加工する。このような工程を繰り返すことにより、集積回路装置が製造される。
【0033】
なお、ステップS3に示すテンプレート1の押圧と、ステップS4に示すファインアライメントは、順番を入れ替えてもよい。すなわち、ファインアライメントの後、テンプレート1をレジスト膜に押し付けてもよい。
【0034】
次に、本実施形態の効果について説明する。
本実施形態に係るテンプレート1においては、孤立パターン領域21において、主パターン31の周囲に補助パターン32が設けられているため、主パターン31のエッジから高次回折光が発生しにくい。特に、補助パターン32の配列周期P1が照明光の波長λの3倍以下であると、3次光以上の回折光を効果的に抑制できる。このため、
図6のステップS4に示すファインアライメントにおいて、ウェーハ101の周期パターン領域122とテンプレート1のX軸位置合わせ用周期パターン領域22を重ねてモアレを観察するとき、及び、ウェーハ101の周期パターン領域122とY軸位置合わせ用周期パターン領域23を重ねてモアレを観察するときに、主パターン31のエッジの明るさを抑え、モアレの明暗縞を容易に観察できる。この結果、ウェーハ101とテンプレート1の位置合わせの精度が向上する。
【0035】
これに対して、仮に、主パターン31の周囲に補助パターン32が設けられていないと、例えば、ウェーハ101の周期パターン領域122とテンプレート1のX軸位置合わせ用周期パターン領域22を重ねてモアレを観察するときに、主パターン31のエッジから高次回折光が多量に出射する。このため、主パターン31のエッジが明るすぎて、モアレの観察が困難になる。この結果、モアレの明暗縞の計測精度が低下し、ファインアライメントの精度が低下する。
【0036】
以下、本実施形態の効果を示す第1の試験例について説明する。
図7は、横軸にサンプルをとり、縦軸に光強度をとって、本試験例の結果を示すグラフ図である。
【0037】
本試験例においては、照明光の波長λを500nmとして、
<1>位置合わせ用顕微鏡201に到達するモアレの光強度、
<2>補助パターン32を設けない場合の孤立パターン領域21の光強度、
<3>主パターン31のX方向両側及びY方向両側に各3本の補助パターン32を設け、配列周期P1を2000nmとした場合の孤立パターン領域21の光強度、
<4>主パターン31のX方向両側及びY方向両側に各3本の補助パターン32を設け、配列周期P1を1000nmとした場合の孤立パターン領域21の光強度、
を測定した。
【0038】
図7に示すように、補助パターン32を設けない場合は、孤立パターン領域21から出射する光強度が、モアレの光強度の約2倍となった。補助パターン32を設けても、補助パターン32の配列周期P1を2000nmとした場合には、孤立パターン領域21から出射される光強度は、補助パターン32を設けない場合と略同じであった。一方、補助パターン32を設け、配列周期P1を1000nmとした場合には、孤立パターン領域21から出射される光強度は、補助パターン32を設けない場合と比較して、明らかに低下した。
【0039】
次に、本実施形態の効果を示す第2の試験例について説明する。
図8は、横軸に補助パターンの幅をとり、縦軸に孤立パターン領域の光強度をとって、本試験例の結果を示すグラフ図である。
本試験例においては、補助パターン32の配列周期P1を相互に異ならせると共に、補助パターン32の幅を相互に異ならせた複数のサンプルを作製した。補助パターン32の配列周期P1は、600nm、800nm、1000nmとした。また、補助パターン32の幅は、100nm、300nm、500nmとした。そして、これらのサンプルを用いて、孤立パターン領域21の光強度を測定した。
【0040】
図8に示すように、配列周期P1が600nm、800nm、1000nmのサンプル間においては、配列周期P1が1000nmであるサンプルの光強度が最も低く、次いで、配列周期P1が800nmであるサンプルの光強度が低く、配列周期P1が600nmであるサンプルの光強度が最も高かった。また、配列周期P1が同じである場合には、補助パターン32の幅が100nmのサンプルの光強度が最も低く、次いで、補助パターン32の幅が300nmのサンプルの光強度が低く、補助パターン32の幅が500nmのサンプルの光強度が最も高かった。
【0041】
(第2の実施形態)
次に、第2の実施形態について説明する。
図9(a)は本実施形態に係るテンプレートのアライメント領域を示す平面図であり、(b)は本実施形態のウェーハのアライメント領域を示す平面図であり、(c)はテンプレート及びウェーハのアライメント領域を示す断面図である。
【0042】
図9(a)に示すように、本実施形態に係るナノインプリント用テンプレート2のX軸位置合わせ用周期パターン領域22においては、Y方向に延びるL/S状のパターン35が形成されている。X方向におけるパターン35の配列周期は、例えば、1030nmである。
【0043】
図9(b)に示すように、本実施形態のウェーハ102の周期パターン領域122においては、長方形のパターン132が市松模様状に配列されている。各パターン132におけるX方向の長さは例えば1000nmであり、Y方向の長さは例えば2250nmである。
【0044】
そして、
図9(a)〜(c)に示すように、テンプレート2のパターン35は、ウェーハ102におけるパターン132が配列された領域に対応する領域、例えば、周期パターン領域122の直上域に対して、X方向両側に1周期分ずつ多く配置されている。
図9(a)及び(c)においては、この追加されたパターン35を「パターン35a」として示す。なお、追加のパターン35aは、パターン132が配列された領域に対応する領域のX方向両側に、2周期分ずつ配置されていることが好ましい。
【0045】
テンプレート2における上記以外の構成は、第1の実施形態に係るテンプレート1(
図1〜
図3(b)参照)と同様である。但し、補助パターン32は設けられていなくてもよい。また、本実施形態に係る半導体装置の製造方法は、
図6に示すとおりである。但し、本実施形態においては、ナノインプリント用テンプレートとして、上述のテンプレート2を使用する。
【0046】
次に、本実施形態の効果について説明する。
本実施形態によれば、テンプレート2のパターン35が、ウェーハ102におけるパターン132が配列された領域よりも、X方向両側に1周期分ずつ多く配置されているため、パターン132によって回折された光を、パターン35によって効率よく利用することができる。これにより、パターン132とパターン35の相互作用によって生じるモアレの光強度が高くなり、位置合わせが容易になる。この結果、ウェーハ102とテンプレート2との間で、精度が高い位置合わせが可能となる。なお、テンプレート2はウェーハ102と比較してスペースの制約が緩いため、追加のパターン35を設けることによる不利益は、ほとんど生じない。
【0047】
(第3の実施形態)
次に、第3の実施形態について説明する。
図10(a)は本実施形態に係るテンプレートのアライメント領域を示す平面図であり、(b)は本実施形態において使用するウェーハのアライメント領域を示す平面図である。
図11(a)はテンプレートのアライメント領域とウェーハのアライメント領域を重ねた状態を示す平面図であり、(b)は横軸にX方向における位置をとり縦軸に光強度をとって、テンプレートとウェーハを重ねた場合の光強度分布を示すグラフ図である。
【0048】
図10(a)に示すように、本実施形態に係るナノインプリント用テンプレート3においては、アライメント領域12のX軸位置合わせ用周期パターン領域22において、Y方向に延びるL/S状のパターン35が形成された領域のX方向両側に、Y方向に延びる補助パターン38が形成されている。また、パターン35が形成された領域のY方向両側に、X方向に延びる補助パターン39が形成されている。Y軸位置合わせ用周期パターン領域23においても同様に、補助パターン38及び39が形成されている。
【0049】
補助パターン38及び39の大きさは、位置合わせ用顕微鏡201の解像力以下であるが、ウェーハ103には転写されるような大きさとする。補助パターン38及び39の幅は、パターン35の幅よりも細くする。
【0050】
例えば、
図10(a)に示すテンプレート3のX軸位置合わせ用周期パターン領域22において、X方向におけるパターン35の配列周期を2120nmとし、パターン35の幅を配列周期の半分、すなわち、1060nmとし、
図10(b)に示すウェーハ103の周期パターン領域122において、パターン132のX方向における配列周期を2000nmとし、Y方向における配列周期を4500nmとする。このとき、補助パターン38の幅は500nmとし、補助パターン38と、これに最も近いパターン35との距離を1200nmとする。また、補助パターン39の幅、すなわち、Y方向の長さは300nmとし、補助パターン39とパターン35との距離を300nmとする。
【0051】
図11(a)に示すように、
図10(a)に示すテンプレート3のX軸位置合わせ用周期パターン領域22と、
図10(b)に示すウェーハ103の周期パターン領域122を重ねると、モアレが発生する。このとき、補助パターン38を設けないと、
図11(b)に破線で示すように、X軸位置合わせ用周期パターン領域22のX方向両端部において、光強度が強くなる。これは、領域22の端部は周期性が非対称となるため、高次の回折光が発生するためと推定される。これにより、相対的にモアレが暗くなり、明暗縞の観察が困難になる。一方、補助パターン38を設けることにより、
図11(b)に実線で示すように、領域22のX方向両端部における光強度が低下する。
【0052】
同様に、補助パターン39を設けないと、領域22のY方向端部において光強度が強くなる。一方、補助パターン39を設けることにより、領域22のY方向両端部における光強度が低下する。従って、補助パターン38及び39を設けることにより、領域22の端部における光強度を抑え、モアレの観察が容易になる。なお、補助パターン38及び39は、領域22の片側に複数本ずつ設けてもよい。
【0053】
Y軸位置合わせ用周期パターン領域23についても同様であり、パターン35を囲むように補助パターン38及び39を設けることにより、領域23の端部の光強度を抑え、モアレの観察を容易にすることができる。この結果、ウェーハ103に対してテンプレート3を精度良く位置合わせすることができる。
本実施形態における上記以外の構成、製造方法及び効果は、前述の第1の実施形態と同様である。但し、補助パターン32は設けられていなくてもよい。また、本実施形態に係る集積回路装置の製造方法においては、被加工材としてウェーハ103を使用し、ナノインプリント用テンプレートとして、上述のテンプレート3を使用する。
【0054】
(第4の実施形態)
次に、第4の実施形態について説明する。
図12(a)は本実施形態に係るテンプレートのアライメント領域を示す平面図であり、(b)は本実施形態のウェーハのアライメント領域を示す平面図である。
なお、
図12(a)及び(b)は、Y方向においては1周期分の長さのみを示している。
【0055】
図12(a)に示すように、本実施形態においては、テンプレート4のX軸位置合わせ用周期パターン領域22におけるパターン35の幅、すなわち、X方向の長さを、X方向の位置を変数とした窓関数に基づいて決定する。なお、パターン35の中心は周期的に配置する。
【0056】
また、
図12(b)に示すように、ウェーハ104の周期パターン領域122において、パターン132のX方向の長さを、X方向の位置を変数とした窓関数に基づいて決定する。パターン132の中心は周期的に配置する。
【0057】
同様に、テンプレート4のY軸位置合わせ用周期パターン領域23におけるパターン35の幅、すなわち、Y方向の長さを、Y方向の位置を変数とした窓関数に基づいて決定する。また、ウェーハ104の周期パターン領域122において、パターン132のY方向の長さを、Y方向の位置を変数とした窓関数に基づいて決定する。なお、
図12(a)及び(b)においては、X軸位置合わせ用周期パターン領域22のみを図示している。
【0058】
窓関数とは、通信技術において信号を一定期間サンプリングしてデジタル化する際に、サンプリング期間の始期と終期において信号強度を調整することにより、不要なノイズを抑制するための関数であり、信号強度に乗じて用いられる。窓関数は、一定範囲の内部では正の値をとり、この範囲の外部ではゼロとなり、この範囲の中央部から端部に向かって連続的に減少する。但し、減少の態様は窓関数の種類によって異なる。
【0059】
一般に、窓関数は連続関数であるが、本実施形態においては、パターンの幅の基準値に、そのパターンの位置に応じた窓関数を乗じて、そのパターンの幅とする。パターンの位置は不連続な値をとるため、窓関数も不連続な値となり、パターンの幅も不連続な値となる。
【0060】
本実施形態においては、窓関数として、例えばテューキー(Tukey)の窓関数を使用する。テューキーの窓関数は、下記数式1によって表される。但し、xはパターンのX方向における位置であり、W(x)はパターンの幅の基準値に乗じる係数である。なお、窓の幅は1に規格化している。また、(r/2)は窓の端部の幅を規定する変数であり、本実施形態においては、例えば、位置合わせ用顕微鏡201の解像度程度の値とし、例えば、5μmとする。
【0062】
図13は、横軸に変数をとり、縦軸に関数の値をとって、テューキーの窓関数を示すグラフ図である。
図13に示すように、テューキーの窓関数は、所定の範囲(0≦x≦1)の中央部(r/2≦x≦1−r/2)においては、一定の値、例えば1をとり、中央部から両端部に向かって連続的に減少する。
【0063】
図14は、横軸に位置をとり、縦軸に光強度をとって、テンプレートとウェーハを重ねた場合の光強度分布を示すグラフ図である。
図14に破線で示すように、パターンの幅に窓関数を適用しない場合は、領域22の両端部において、光強度が著しく高くなり、領域22の中央部において、モアレの観察が困難になる。一方、
図14に実線で示すように、パターンの幅に窓関数を適用した場合は、領域22の両端部において光強度が抑制され、窓関数を適用しない場合の約30分の1程度になる。これにより、中央部においてモアレの観察が容易になる。
【0064】
次に、本実施形態の効果について説明する。
本実施形態によれば、周期的に配列されたパターン35及び132の幅を窓関数に応じて変化させることにより、領域22のX方向両端部及び領域23のY方向両端部における光強度が抑制され、モアレの観察が容易になる。これにより、ウェーハ104に対するテンプレート4の精密な位置合わせが可能となる。
【0065】
本実施形態における上記以外の構成、製造方法及び効果は、前述の第1の実施形態と同様である。但し、補助パターン32は設けられていなくてもよい。
なお、本実施形態においては、ウェーハ及びテンプレートの双方に窓関数を適用する例を示したが、いずれか一方のみに適用しても、一定の効果を得ることができる。
【0066】
(第4の実施形態の変形例)
次に、第4の実施形態の変形例について説明する。
本変形例においては、窓関数としてブラックマン・ハリスの窓関数を使用する。
図15(a)は本変形例に係るテンプレートのアライメント領域を示す平面図であり、(b)は本変形例のウェーハのアライメント領域を示す平面図である。
図16は、横軸に変数をとり、縦軸に関数の値をとって、ブラックマン・ハリスの窓関数を示すグラフ図である。
図17は、横軸に位置をとり、縦軸に光強度をとって、テンプレートとウェーハを重ねた場合の光強度分布を示すグラフ図である。
ブラックマン・ハリスの窓関数は、下記数式2によって表される。
【0068】
図15(a)に示すように、本実施形態に係るテンプレート4aにおいては、パターン35の幅がブラックマン・ハリスの窓関数に従って決定されている。すなわち、X軸位置合わせ用周期パターン領域22のX方向中央部に配置されたパターン35の幅が最も広く、X方向両端部に向かうにつれて狭くなっている。同様に、
図15(b)に示すように、本実施形態のウェーハ104aにおいても、パターン132の幅がブラックマン・ハリスの窓関数に従って決定されている。
【0069】
図16に示すように、ブラックマン・ハリスの窓関数は、変数nの中央値において関数W(n)が最大値をとり、変数nが中央値から離れるにつれて、関数W(n)の値が小さくなる。
図17に示すように、本変形例によれば、領域22の端部において、ノイズを100分の1程度まで低減することができる。また、ブラックマン・ハリスの窓関数を用いた場合は、パターンが形成された領域のX方向中央部が特に強調されるため、中央部の1本のモアレで位置合わせを行うことができる。
【0070】
本変形例における上記以外の構成、製造方法及び効果は、前述の第4の実施形態と同様である。
なお、第4の実施形態及び本変形例においては、テンプレート及びウェーハにおいて、同じ窓関数を適用する例を示したが、これには限定されず、相互に異なる窓関数を適用してもよい。また、テンプレート及びウェーハの少なくとも一方に適用する関数は、例えばX軸位置合わせ用周期パターン領域22において、X方向中央部のパターン35に対してX方向周辺部のパターン35が相対的に細くなるような関数であればよく、上述のテューキーの窓関数及びブラックマン・ハリスの窓関数には限定されない。
【0071】
(第5の実施形態)
次に、第5の実施形態について説明する。
図18(a)は本実施形態に係るテンプレートのアライメント領域を示す平面図であり、(b)は本実施形態のウェーハのアライメント領域を示す平面図である。
図19は、横軸に位置をとり、縦軸に光強度をとって、テンプレートとウェーハを重ねた場合の光強度分布を示すグラフ図である。
図19の横軸は、パターン35及び132の長手方向における位置を表している。
【0072】
図18(a)に示すように、本実施形態に係るテンプレート5においては、X軸位置合わせ用周期パターン領域22において、Y方向に延びるパターン35が複数の部分に分かれている。1本のパターン35を構成する複数の部分は、Y方向に沿って配列されている。そして、各部分の幅は、その部分のY方向における位置を変数とした窓関数の値に基づいている。同様に、Y軸位置合わせ用周期パターン領域23においては、X方向に延びるパターン35が複数の部分に分かれている。1本のパターン35を構成する複数の部分は、X方向に沿って配列されている。そして、各部分の幅は、その部分のX方向における位置を変数とした窓関数の値に基づいている。すなわち、テンプレート5においては、各パターン35の幅が、パターン35の長手方向の位置によって不連続的に異なる。
【0073】
図18(b)に示すように、本実施形態のウェーハ105においては、周期パターン領域122において、パターン132の幅、すなわち、X方向の長さに、パターン132の長手方向における位置を変数とした窓関数を適用している。
【0074】
これにより、
図19に示すように、パターン35及び132の長手方向両端部において、高次回折光を抑制し、光強度を低減することができる。なお、
図19は、モアレの明暗縞の暗部の光強度を示している。明部の光強度は、
図19の縦軸に示す単位で2程度である。
【0075】
本実施形態によれば、パターン35及び132の長手方向両端部の光強度を抑え、モアレの観察を容易にすることができる。これにより、ウェーハ105に対するテンプレート5の位置合わせの精度が向上する。
【0076】
また、本実施形態によれば、パターン35の幅を不連続的に変化させている。これにより、パターン35を長方形を組合せて作成することができ、テンプレート5の原版となるマスクを作製する際に、パターンデータを低減することができる。
【0077】
なお、テンプレート5の原版となるマスクを作製する際に、大量のパターンデータを扱える場合は、パターン35の幅を連続的に変化させてもよい。この場合、パターン35の端縁は、少なくとも一方が曲線となる。
【0078】
また、本実施形態においては、パターン35の幅方向の中心は、Y方向における位置に依存して変位しているが、Y方向の両端部は位置合わせには使用しないため、実質的な問題は生じない。なお、パターン35の幅方向の中心が、Y方向に延びる直線上に位置するようにしてもよい。
【0079】
更に、本実施形態は、前述の第4の実施形態と組み合わせて実施してもよい。すなわち、パターン35及び132の幅を、X方向における位置を変数とした窓関数、及び、Y方向における位置を変数とした窓関数の双方に基づいて決定してもよい。
【0080】
(第6の実施形態)
次に、第6の実施形態について説明する。
図20(a)〜(c)は、本実施形態に係るナノインプリント法におけるX方向の位置合わせ方法を示す図であり、(a)は照明の配置を示し、(b)はテンプレートのX軸位置合わせ用周期パターン領域を示し、(c)はウェーハの周期パターン領域を示す。
図21(a)〜(c)は、本実施形態に係るナノインプリント法におけるY方向の位置合わせ方法を示す図であり、(a)は照明の配置を示し、(b)はテンプレートのY軸位置合わせ用周期パターン領域を示し、(c)はウェーハの周期パターン領域を示す。
【0081】
本実施形態に係る集積回路装置の製造方法においては、
図6のステップS4に示すファインアライメントにおいて、位置を調整する方向からは光を照射せずに、位置を調整する方向に対して交差、例えば、直交する方向から光を照射する。これにより、周期パターン領域の端部が光ることを抑制できる。
【0082】
以下、具体的に説明する。
図20(a)〜(c)に示すように、ウェーハ106とテンプレート6とを、X方向において位置合わせするときには、アライメント装置200において、位置合わせ用顕微鏡201のX方向両側に配置された照明202xを消灯し、位置合わせ用顕微鏡201のY方向両側に配置された照明202yのみを点灯する。これにより、テンプレート1のX軸位置合わせ用周期パターン領域22において、パターン35の配列方向(X方向)を含む平面(XZ平面)に沿っては照明光が入射せず、パターン35が延びる方向(Y方向)を含む平面(YZ平面)に沿ってのみ照明光が入射する。これにより、領域22のX方向両端部から高次回折光が出射することを抑制できる。この結果、モアレを利用したX方向の位置合わせを、高い精度で行うことができる。
【0083】
また、
図21(a)〜(c)に示すように、ウェーハ106とテンプレート6とを、Y方向において位置合わせするときには、アライメント装置200において、照明202xのみを点灯し、照明202yを消灯する。これにより、テンプレート1のY軸位置合わせ用周期パターン領域23において、パターン35の配列方向(Y方向)を含む平面(YZ平面)に沿っては照明光が入射せず、パターン35が延びる方向(X方向)を含む平面(XZ平面)に沿ってのみ照明光が入射する。これにより、領域23のY方向両端部から高次回折光が出射することを抑制できる。この結果、モアレを利用したY方向の位置合わせを、高い精度で行うことができる。
【0084】
このように、本実施形態によれば、パターン35の配列方向からは照明光を入射させずに、パターン35が延びる方向からのみ照明光を入射させることにより、パターン35が配列された領域の配列方向における両端部が光り、モアレの観察を阻害することを抑制できる。
本実施形態における上記以外の構成、製造方法及び効果は、前述の第1の実施形態と同様である。但し、補助パターン32は設けられていなくてもよい。
【0085】
以上説明した実施形態によれば、被加工材に対して精密に位置合わせ可能なナノインプリント用テンプレート及び集積回路装置の製造方法を実現することができる。
【0086】
以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明及びその等価物の範囲に含まれる。また、前述の実施形態は、相互に組み合わせて実施することもできる。
【0088】
(付記1)(第1の実施形態)
第1パターン(31)と、
第1方向(X)における長さが前記第1パターンよりも短い1以上の第2パターン(32)と、
前記第1方向における長さが前記第1パターンよりも短い1以上の第3パターン(32)と、
を備え、
前記第1方向において、前記第1パターンは、前記1以上の第2パターンと前記1以上の第3パターンとの間に配置されたナノインプリント用テンプレート。
(付記2)
前記第1方向において、前記1以上の第2パターンの配列周期(P1)、及び、前記1以上の第3パターンの配列周期(P1)は、位置合わせ用の照明光の波長(λ)の3倍以下である付記1記載のナノインプリント用テンプレート。
(付記3)
前記第1方向に対して交差した第2方向(Y)における長さが前記第1パターンよりも短い1以上の第4パターン(32)と、
前記第2方向における長さが前記第1パターンよりも短い1以上の第5パターン(32)と、
をさらに備え、
前記第2方向において、前記第1パターンは、前記1以上の第4パターンと前記1以上の第5パターンとの間に配置された付記1または2に記載のナノインプリント用テンプレート。
(付記4)
前記第2方向において、前記第4パターンの配列周期(P1)、及び、前記第5パターンの配列周期(P1)は、前記照明光の波長(λ)の3倍以下である付記3記載のナノインプリント用テンプレート。
(付記5)
前記第1方向に沿って周期的に配列された複数のパターン(35)をさらに備えた付記1〜4のいずれか1つに記載のナノインプリント用テンプレート。
(付記6)(第3の実施形態)
第1方向(Y)に延び、前記第1方向に対して交差する第2方向(X)に沿って周期的に配列された複数の第1パターン(35)と、
前記複数の第1パターンの前記第2方向両側に配置され、前記第1方向に延び、前記第2方向における長さが前記第1パターンの前記第2方向における長さよりも短い第2パターン(38)と、
を備えたナノインプリント用テンプレート。
(付記7)
前記複数の第1パターンの前記第1方向両側に配置され、前記第2方向に延び、前記第1方向における長さが前記第1パターンの前記第2方向における長さよりも短い第3パターン(39)をさらに備えた付記6記載のナノインプリント用テンプレート。
(付記8)(第4の実施形態)
第1方向(Y)に延び、前記第1方向に対して交差する第2方向(X)に沿って周期的に配列された複数の第1パターン(35)を備え、
前記複数の第1パターンのうち、前記第2方向における最外部に配置された前記第1パターンの幅は、前記第2方向における中央部に配置された前記第1パターンの幅よりも小さいナノインプリント用テンプレート。
(付記9)
前記第1パターンの幅は、前記第2方向における前記第1パターンの位置を変数とした窓関数の値に基づいている付記8記載のナノインプリント用テンプレート。
(付記10)(第5の実施形態)
第1方向(Y)に延び、前記第1方向に対して交差する第2方向(X)に沿って周期的に配列された複数の第1パターン(35)を備え、
前記第1パターンの前記第1方向両端部の幅は、前記第1パターンの前記第1方向中央部の幅よりも小さいナノインプリント用テンプレート。
(付記11)
各前記第1パターンは、前記第1方向に沿って配列された複数の部分を有し、前記部分の幅は、前記第1方向における前記部分の位置を変数とした窓関数の値に基づいている付記10記載のナノインプリント用テンプレート。
(付記12)(第2の実施形態)
複数の第1パターン(132)が第1方向(X)に沿って周期的に配列された被加工材(102)上にレジスト膜を形成する工程と(S1)、
複数の第2パターン(35)が前記第1方向に沿って周期的に配列されたテンプレート(2)を前記レジスト膜に押し付けることにより、前記レジスト膜を変形させる工程と(S3)、
前記第1パターン及び前記第2パターンに光を照射することにより、前記被加工材に対する前記テンプレートの位置を決定する工程と(S4)、
変形した前記レジスト膜を硬化させる工程と(S5)、
前記テンプレートを前記レジスト膜から剥離させる工程と(S6)、
前記レジスト膜をマスクとして前記被加工材を加工する工程と(S7)、
を備え、
前記被加工材に対する前記テンプレートの位置を決定した後、前記第2パターンは、前記第1パターンが形成された領域に対応する領域の前記第1方向両側にも配置される集積回路装置の製造方法。
(付記13)(第6の実施形態)
複数の第1パターン(132)が第1方向(X)に沿って周期的に配列された被加工材(106)上にレジスト膜を形成する工程と(S1)、
前記第1方向に対して交差した第2方向(Y)に延びる複数の第2パターン(35)が前記第1方向に沿って周期的に配列されたテンプレート(6)を前記レジスト膜に押し付けることにより、前記レジスト膜を変形させる工程と(S3)、
前記第1パターン及び前記第2パターンに対して、前記第2方向とのなす角度が前記第1方向とのなす角度よりも小さくなるような方向から光を照射することにより、前記被加工材に対する前記テンプレートの前記第1方向における位置を決定する工程と(S4)、
変形した前記レジスト膜を硬化させる工程と(S5)、
前記テンプレートを前記レジスト膜から剥離させる工程と(S6)、
前記レジスト膜をマスクとして前記被加工材を加工する工程と(S7)、
を備えた集積回路装置の製造方法。
(付記14)
前記第1パターンは前記第2方向に沿っても周期的に配列されており、
前記テンプレートには、前記第1方向に延びる複数の第3パターン(35)が前記第2方向に沿って周期的に配列されており、
前記第3パターン及び前記第2パターンに対して、前記第1方向とのなす角度が前記第2方向とのなす角度よりも小さくなるような方向から光を照射することにより、前記被加工材に対する前記テンプレートの前記第2方向における位置を決定する工程をさらに備えた付記13記載の集積回路装置の製造方法。