【実施例】
【0045】
デンプン処理法A
本例では、デンプンを、まずアルコール媒体中で、塩基(炭酸ナトリウム)の存在下で加熱し、次に低温で中和する。抑制されたデンプンからアルコールのバルクを分離後、抑制されたデンプンを乾燥/脱溶媒に付す。
【0046】
処理法の要約:
1. 3Aエタノール(94重量%)1177gを秤量する。
2. 308gのワキシーデンプン(89%の乾燥デンプン又はd.s.)を攪拌しながらエタノールに加える。
3. 炭酸ナトリウム(乾燥デンプンに基づいて、0.7重量%、1.4重量%、2.8重量%、又は5.53重量%)を加える。
4. デンプン、アルコール、及び炭酸ナトリウムの混合物を、攪拌と制御蒸気加熱とを備えた2リットルの圧力ステンレス鋼容器に、ジャケットを介して入れる。
5. 反応器中でスラリーを指定の温度(143℃)まで加熱し、この温度で60分間維持する。
6. 反応器を35℃に冷却する。
7. ベントナイトを開いて圧力を平衡化する。
8. 50%クエン酸溶液(乾燥デンプンに基づいて、0.843重量%、1.685重量%、3.37重量%、又は6.75重量%)を使用して、シリンジを使用してベントを介して、スラリーを約pH6に中和する。
9. 30分間攪拌する。
10. フタを開く。
11. 反応器からスラリーを除去する。
12. ろ紙を使用してブルナーロート上でスラリーを濾過する。
13. 湿ったケーキを取り、ドラフト中でトレイの上に粉砕し、数時間/一晩放置した後、オーブンに入れる。これにより、3Aアルコールのほとんどは蒸発する。
14. 対流オーブン中で、50℃で一晩デンプンを乾燥させる。
15. デンプンを粉砕し、100メッシュの篩を通過させ、印をつける。
16. 脱溶媒のために、デンプンを対流オーブン中で125℃又は160℃で4時間乾燥させる。
【0047】
蒸気を用いる脱溶媒:
1. 鋼鉄容器(直径7.2”、高さ8.5”)中に3.5kgのDI水を秤量する。
2. 水を有する鋼鉄容器をオーブン(Yamato DKN 600 機械的対流オーブン、Fisher Scientific Inc.)に160℃で1時間入れる。
3. アルコール−塩基処理したデンプン(上記の手順工程16からのアルコール−塩基処理したデンプン)50gを秤量し、500メッシュの篩の上に広げ、水容器上の棚の上に直接置く。
4. デンプンを160℃で4時間、脱溶媒をする。
5. 50℃で、一晩オーブン中でデンプンを乾燥させる。
【0048】
デンプンの迅速ビスコアナライザー測定:
デンプンのペーストプロフィールを分析するために、迅速ビスコアナライザー(RVA)(Newport Scientific Pty. Ltd., Warriewood, Australia)を使用した。デンプン濃度を変化させて、約1000センチポアズ(cP)のピークペースト粘度を得た。この試験では、5%と6.65%のデンプン濃度を使用した。加熱プロフィールとRPMは、各グラフに記載されている。RVA pH6.5溶液(Cat. No. 6654-5, RICCA Chemical Company, Arlington, Texas, USA)、及び認定されたpH3.5緩衝液(Key Laboratory Services, 2363 Federal Drive, Decatur, IL)を使用した。迅速調理RVAプロフィールは、迅速調理ワキシーデンプンのRVA粘度を測定することが意図されている。デンプンをRVAカップ中に秤量し、RVA pH6.5又はpH3.5溶液を総重量28gになるように加えた。インスタントRVAプロフィールは、インスタントデンプンを分析することが意図された。デンプンをRVAカップ中に秤量し、デンプンの分散のために4.5gのプロピレングリコールを加えた。混合物をスパテラで攪拌し、完全な分散が達成されたことを確認した。RVA pH6.5溶液を総重量32gになるように加えた。初期段階でデンプンスラリーを35℃で20分間混合して、インスタントデンプンのペースト粘度を開発した。
【0049】
デンプンペーストの顕微鏡観察:
デンプンペーストを蒸留水で約1%デンプンまで希釈した。1滴のデンプン溶液を顕微鏡スライドに加え、ヨードチンキ(2%O.S.P.)又は0.2% I
2及び2%KIを含む溶液で染色した。各試料の上にカバーグラスをのせた。染色されたデンプン試料を有するスライドを、ライカ顕微鏡DM4000M(Buffalo Grove, IL 60089 United States)を使用して観察した。20×対物レンズと10×双眼レンズを使用した。0.2% I2及び2%KIを含む溶液で染色し偏光を照射したデンプン顆粒もまた、この顕微鏡を使用して観察した。
【0050】
RVA調理後のデンプンの特異的沈降容積:
特異的沈降容積(SSV)を、乾燥デンプンの質量単位当たりの膨潤したデンプン顆粒により占められるバルク容積(mL/g)として定義する。各デンプンを、迅速ビスコアナライザー(RVA)を使用して、以下の条件下で調理した:乾燥固体パーセント(DS%)=スラリー中2.5%の乾燥スラリー;38gの総スラリー;迅速調理RVAプロフィール(160rpm、95℃で20分、50℃まで冷却、総運転時間35分);pH6.5リン酸緩衝液。RVA中の水の消失は、調理前と後に秤量することにより説明される。次に、ペーストを、希釈することなく、風袋軽量済30mL遠心管に移し、秤量し、ベンチトップのSorvall Legend T+遠心分離機で、4000rpmで15分遠心分離した。上清をデカントした後、沈降容積を読んだ。SSV(mL/g)=(4000rpmで15分後のmL沈降)/(ペースト中の30mL*の乾燥デンプン含量%中のgペースト)。SSVが20mL/g〜40mL/gのデンプンは、化学的に架橋されたデンプン中で低せん断安定性又は低架橋度を有すると考えられる。SSVが16mL/g〜20mL/gのデンプンは、中程度の剪断安定性を有し、SSV<16mLの/gを有するデンプンは高剪断安定性を有する。
【0051】
デンプンの色の測定:
色は、Hunter Colorflex反射式分光光度計(Hunterlabs, Reston, VA)を使用して測定した。
【0052】
圧力セルを有するPhysica MCR 301レオメーターを使用するレトルトシミュレーション
レトルト処理をシミュレートするために、Physica MCR 301レオメーター(Anton Paar Germany GmbH, Ostfildern, Germany)が使用された。デンプンをカップ中に秤量し、RVA pH6.5溶液(Cat. No. 6654-5, RICCA Chemical Company, Arlington, Texas, USA)を、総重量25gのスラリーになるように加えた。デンプンのパーセントは、120℃で約1000mPa.sを超える粘度を与えるのに十分な程度高くなければならない。デンプンのより高い濃度が、より高度に抑制されたデンプンにとって必要である。シリンジを使用して、20gのスラリーを圧力セルに充填した。両翼スターラー(ST24/PR-2W-A1)を使用した。60℃まで初期加熱し、次に試料を60℃に維持して粘度を記録し、次に120℃(典型的なレトルト温度)までゆっくり加熱し、5分保持する。次に、デンプンスラリーは、中程度の高温(70℃)と低温(25℃)での、粘度安定性の二重記録のために、2段階で冷却される。システムは、製品の均一性を確保するために、加熱相と冷却相中に、剪断速度177分
-1で「高」剪断下にあり、及び粘度読み値を最大にして、バッチ間の差を向上させるために、高温(120℃)保持工程中に、剪断速度29.3分
-1で「低」剪断下にある。120℃で5分の保持時間中の粘度曲線は、レトルト安定性にとって重要である。120℃保持時間での上方への曲線又は線は、デンプン顆粒の膨潤と高度に抑制されたデンプンを示す。下方への曲線又は線は、ペーストの破壊を示す。測定後のペーストを、顕微鏡下で観察した。
【0053】
結果と考察(デンプン処理法A)
上記したように、ワキシーデンプンを、炭酸ナトリウム(乾燥デンプンに基づいて1.4%)を有するアルコール中で、143℃で1時間処理し、次にクエン酸で中和した。処理したワキシーデンプンを濾過して集めた。追加のアルコールをドラフト中で一晩蒸発して除去し、強制空気オーブンで、50℃で乾燥し、次に160℃で蒸気有り又は無しで4時間乾燥(脱溶媒)した。
【0054】
図1は、ワキシーデンプン(試料1−D)、143℃で1時間アルコール−塩基処理後のワキシーデンプン(試料1−A)、143℃で1時間アルコール−塩基処理し、160℃で蒸気有り(試料1−C)又は蒸気無し(試料1−B)で4時間脱溶媒した後のワキシーデンプンのRVAプロフィール(迅速調理)(5%及びpH6.5)を示す。アルコール−塩基処理単独では、RVA破壊(ピーク又は最大粘度−ピーク後の谷又は最小粘度)は約50%低下し、最終粘度は約43%増加した。RVA分析後のペーストの顕微鏡写真は、ワキシーデンプンペーストが分散され、一方、アルコール−アルカリ処理後のワキシーデンプンのデンプンペーストは、膨潤顆粒残留物(破壊された膨潤顆粒)を含有することを示し(
図2)、これは、アルコール−塩基処理が膨潤顆粒残留物を維持することを助けたが、膨潤顆粒構造を保持するのに十分ではなかったことを示した。アルコール−塩基処理後の蒸気有り又は無しの脱溶媒は、RVA破壊を排除した(
図1)。蒸気無しで脱溶媒されたアルコール−塩基処理したワキシーデンプンは、蒸気有りで脱溶媒されたものより低いRVA最終粘度を有する。RVA分析後のペーストの顕微鏡写真は、蒸気有り又は無しで脱溶媒したアルコール−アルカリ処理ワキシーデンプンのデンプンペーストの両方とも、デンプン顆粒構造を維持することを示した。特異的沈降容積(SSV)測定値は、蒸気有りで脱溶媒されたアルコール−アルカリ処理したワキシーデンプンと比較して、蒸気無しで脱溶媒されたアルコール−アルカリ処理したワキシーデンプンのより高い抑制を示し(表1)、これは、おそらくRVA中に前者のデンプン顆粒のより少ない膨潤により引き起こされたものであろう。しかし高温での乾燥デンプン(1%未満の水分)は、爆発危険物であり、従って蒸気有りの脱溶媒が、工業的スケールでより安全なプロセスと見なされる。さらに、蒸気有りで160℃の脱溶媒は、蒸気無しで脱溶媒したものより、生成物でより少ない色を生成した(表2)。
【0055】
【表1】
【0056】
【表2】
【0057】
pH3.5緩衝液中の5%試料濃度を使用して、RVA分析中に蒸気有り及び無しで脱溶媒後の、アルコール−塩基処理したワキシーデンプン中で、正の傾きが維持され(ペーストの粘度破壊無し)(
図3)、ペーストが酸性条件下で安定であることを示していた。pH3.5緩衝液を使用するRVA後のペーストの顕微鏡写真は、脱溶媒された試料中の顆粒構造を示した(
図4)。
【0058】
レオメーターを使用するレトルトシミュレーションを使用して、スープ製造において120℃でのレトルト処理をシミュレートし、高温条件下でのデンプンペーストの安定性を試験した。この試験で、120℃の保持時間でわずかに陰性のゼロの又は正の傾きを有するデンプンは、スープ及び他の高温用途で許容される可能性がある。天然のワキシーデンプンは、この基準により高温処理を必要とするスープ及び食品に適していない。脱溶媒無しのアルコール−塩基処理されたワキシーデンプンは、理想的な候補ではない。160℃で蒸気有り及び無しで脱溶媒されたアルコール−塩基処理されたワキシーデンプンは、高温処理を必要とするスープ及び食品に適している可能性がある。レトルトシミュレーション後のペーストの顕微鏡写真は、
図5に示される。蒸気有り及び無しで脱溶媒されたアルコール−塩基処理されたワキシーデンプンのデンプンペーストは、両方ともデンプン顆粒構造を維持し、これは、これらがレトルト安定である証拠を提供した。
【0059】
アルコール−塩基処理後に脱溶媒された後の非α化顆粒デンプンの、偏光を照射された試料は、
図6に示される顕微鏡画像を示した。そのRVAプロフィールは
図7に示される。天然のデンプン顆粒は、偏光で観察された時、複屈折又は典型的なマルタ十字を示す。この特性(マルタ十字を示す)は、デンプン分子が顆粒内で放射状に配向されるためにもたらされる。デンプンが水の中で加熱されると、デンプンのゼラチン化の終了により、偏光の複屈折(マルタ十字パターン)が失われる。
図6は、ワキシーデンプンがアルコール−塩基処理により処理され、次に蒸気有り又は無しで脱溶媒された時、デンプン顆粒のマルタ十字パターンが実質的に変化しないことを示し、これは、デンプンがα化されていないことを示す。α化デンプンは、インスタントプロフィールを使用するRVA中で、さらに加熱する前に35℃で初期の20分に、粘度を示し始める。α化インスタントワキシーデンプン(XPAND’R SC, a Tate & Lyle市の市販品)は、35℃で直ちに粘度を示し始め、天然のワキシーデンプン及びアルコール−アルカリ処理後脱溶媒したワキシーデンプンは、より高い温度に加熱されるまで、感知できる粘度を示し始めず、これは、これらが非α化デンプンであることを示唆した。
【0060】
ワキシーデンプンは、アルコール中で種々の量の炭酸ナトリウム(乾燥デンプンに基づいて0.7%、1.4%、2.8%、及び5.53%)を用いて143℃で1時間処理され、次にクエン酸で中和された。125℃又は160℃で4時間、脱溶媒を行った。表3は、中和のための炭酸ナトリウムとクエン酸の量の増加が、生成物のSSV値(より高い抑制)の低下を与える傾向があることを示す。高温(160℃)での同じアルコール−塩基処理デンプンは、低温(125℃)で脱溶媒された時より、抑制された生成物(より低いSSV値)を与えた。5.53%の炭酸ナトリウムを使用して処理され160℃で脱溶媒された生成物は、デンプンA〜C(市販されている抑制又は修飾されたデンプン)より抑制された。
【0061】
【表3】
【0062】
図8は、種々の量の炭酸ナトリウムを有するアルコールで処理され160℃で4時間脱溶媒された後のワキシーデンプンと、高架橋度を有するTate & Lyleの市販の化学修飾されたワキシーデンプンとの、RVAプロフィールを示す。すべての試料は、アルコール−塩基処理後に、RVA破壊を示さなかった。処理されたワキシーデンプンの粘度は、アルコール−塩基処理中の炭酸ナトリウムとその後の中和中のクエン酸の量の上昇とともに低下した。アルコール−塩基処理された試料は、RVA分析で、化学的に架橋されたデンプンのように挙動した。
【0063】
これらの同じアルコール−塩基処理された試料は、低温(125℃)で脱溶媒され、そのRVAプロフィールは
図9に示される。低温で脱溶媒された試料により、顕著に低い抑制が示された(
図9)。炭酸ナトリウムの量の低下(5.53%から0.7%へ)とともに、RVA破壊が上昇した。
【0064】
160℃で脱溶媒されたアルコール−塩基処理試料の酸安定性を、pH3.5緩衝液中でRVAを使用して試験した(
図10)。RVAプロフィールでRVA破壊は観察されず、これらの処理デンプンが酸安定性であることが示された。125℃で脱溶媒された試料により顕著なRVA破壊が示され、炭酸ナトリウムの量の低下(5.53%から0.7%へ)とともに、破壊が上昇した(
図11)。
【0065】
デンプンの高温安定性を、Physica MCR 301レオメーターを使用して試験した。アルコール処理で2.8%、1.4%、及び0.7%の炭酸ナトリウムを使用して調製し、次に160℃で脱溶媒したアルコール−塩基処理試料の粘度は、120℃で5分の保持時間で上昇を示し、これは、ペーストの破壊が無いことと高温でのペースト安定性を示した。
【0066】
図12、13、14、及び15は、RVAと、Physica MCR 301レオメーターを使用するレトルトシミュレーション後の、ペースト中のデンプン顆粒の顕微鏡写真を示す。アルコール−塩基処理試料を160℃で脱溶媒すると、無傷の膨潤デンプン顆粒が明瞭に見られた。RVAとレトルトシミュレーション後の無傷の膨潤デンプン顆粒は、本発明に従う処理後のデンプン顆粒の抑制を明瞭に示した。アルコール−塩基処理試料を125℃で脱溶媒すると、デンプン顆粒は、160℃で脱溶媒されたデンプンよりも膨潤し、一部の膨潤デンプンは破壊された。デンプン顆粒の破壊の程度は、以後の中和で使用された炭酸ナトリウムの量とクエン酸の量に反比例していた。
【0067】
デンプン処理法B
本例では、デンプンをまずアルコール媒体中の塩基で加熱し、次にクエン酸を加えてさらに加熱して塩基を中和(約6のpHを与える)する2つの熱サイクルを含む方法を使用して、デンプンを処理した。
【0068】
ワキシーデンプン(308g,水分11%)を、攪拌しながら3Aエタノール(1177g;水7.18%)に加えた。次に、無水炭酸ナトリウム(7.585g;乾燥デンプンに基づいて2.77重量%)を加えた。生じたスラリーを、攪拌と制御蒸気加熱とを備えた2リットルの高圧ステンレス鋼反応器中に、ジャケットを通して移した。スラリーを反応器中で攪拌して143℃に加熱し、この温度で60分維持した。反応器内容物を25℃に冷却後、18.5gの50%クエン酸溶液(乾燥デンプンに基づいて3.37重量%)を使用してスラリーを中和した。反応器内容物を再度攪拌しながら反応器中で143℃に加熱し、この温度で60分維持した。25℃に冷却後、スラリーをブフナーロート中でろ紙でろ過して、湿ったデンプンケーキを得た。湿ったケーキをドラフト中でトレイの上で粉砕し、数時間放置した後、オーブンに入れると、3Aアルコールのほとんどは蒸発された。次に、デンプン(以後「7629−68」と特定する)を対流オーブン中で、50℃で一晩乾燥させ、次に摩砕し、100メッシュの篩中を通過させた。
【0069】
鋼鉄容器(直径7.2”、高さ8.5”)中に3.5kgの脱イオン水を入れ、鋼鉄容器をオーブン中で、125℃で1時間加熱し、50gの処理したデンプンを500メッシュの篩の上に広げ、鋼鉄容器上の真上の棚に置き、125℃で4時間デンプンを脱溶媒することにより、蒸気によるデンプンの脱溶媒を行った。次に、デンプンを50℃のオーブン中で一晩乾燥させた。
【0070】
デンプンの迅速ビスコアナライザー測定
デンプンのペーストプロフィールを分析するために、迅速ビスコアナライザー(RVA)(Newport Scientific Pty. Ltd., Warriewood, Australia)が使用された。RVAスラリー中で、デンプン濃度5%が使用された。加熱プロフィールとRPMは各グラフに示される。RVA pH6.5緩衝液(Cat. No. 6654-5, RICCA Chemical Company, Arlington, Texas, USA)及び認可済み緩液pH3.5衝(Key Laboratory Services, 2363 Federal Drive, Decatur, IL)が使用された。95℃で20分の保持を用いるViswaxy RVAプロフィールは、迅速調理ワキシーデンプンのRVA粘度を測定することを目的とする。デンプンをRVAカップ中に秤量し、RVA pH6.5又はpH3.5溶液を、総重量28gになるように加えた。
【0071】
剪断有り及び無しで沈降容積を測定する方法
1. デンプンの水分を測定する。
2. 5%のdsデンプンを250mLの広口試料ガラスジャー中に秤量し、DI水又は1%NaCl溶液を100gになるように加える。
3. ジャーの重量を記録する(任意)。
4. ジャーを95℃の水浴に入れ、内容物を加熱しながらガラス棒を使用して3分間攪拌する。
5. ガラスジャーを取り出し、これをキャップで固定する。
6. ジャーを95℃の別の水浴シェーカー(Boekel Shakerホットタブ)に入れる。
7. 120rpmの回転振盪で、試料を95℃で20分間調理する。
8. 20分後、シェーカーから試料を取り出し、室温の別の水浴に入れ、デンプンペーストを冷却する。
9. ジャーの重量を記録する(任意)。
10. 約40〜50mLのDI水又は1%NaCl溶液を100mLのメスシリンダーに加え、20.0gの調理済みデンプンペーストを加える。残りの容積(100mLのマーク)にDI水又は1%NaCl溶液を充填する。
11. メスシリンダーをパラフィンで密封し、内容物を振盪して、均一に分布したデンプン懸濁液(1%ds)を形成させる。
12. メスシリンダーを動かさないようによけておく。
13. 24時間後、沈降容積を記録する。
14. 剪断後の沈降容積の測定のために、水又は1%NaCl溶液中の50gのデンプンペーストをブレンダーに入れる。水中のデンプンについては35Vの設定で、1%NaCl溶液中のデンプンについて25Vの設定で、20秒間剪断を行う。剪断したデンプンペーストの通常の沈降法を行う。
【0072】
デンプンペーストの顕微鏡
1. そのままのデンプンペースト(5%)20μLを顕微鏡ガラススライド上にのせる。
2. 0.02Nヨウ素ストック溶液20μLをペースト上に適用する。
3. 楊枝を使用して、ペーストとヨウ素をガラススライド上で均一に混合する。
4. 混合物上にカバーガラス片をのせ、ライカDM4000光学顕微鏡で、5×対物レンズと10×双眼レンズを使用して、透過光で試料を観察する。
5. カバーガラス下の試料の全領域を見渡して、試料全体を代表する顆粒濃度を有する画像を撮る。
6. 剪断していないデンプンペースト試料について、50×の倍率の画像中で、無傷の顆粒の数を、無傷のワキシー顆粒の総数として計測する。
7. 剪断したデンプンペースト試料について、無傷のワキシー顆粒を断片から区別するために顕微鏡画像を拡大しなければならないため、無傷の顆粒の数を用手法で計測する。
8. 断片化のパーセント=(剪断していない試料中の無傷のワキシー顆粒の数 − 剪断した試料中の無傷のワキシー顆粒の数)/剪断していない試料中の無傷のワキシー顆粒の数。
【0073】
偏光下のデンプンの顕微鏡:
デンプン(10mg)を顕微鏡スライド上に置いた。1滴の蒸留水を加え、デンプンと混合した。カバーガラスを試料の上に載せた。デンプン試料を有するスライドを、ライカ顕微鏡DM4000(Buffalo Grove, IL 60089 United States)を使用して、20×対物レンズと10×双眼レンズを使用して、偏光を照射して観察した。
【0074】
結果と考察(デンプン処理法B)
表4は、125℃と160℃での脱溶媒の前と後の、アルコール−アルカリ処理デンプンの1%NaCl中の沈降容積を示す。
【表4】
【0075】
表5は、水中の125℃と160℃での脱溶媒の前と後の、アルコール−アルカリ処理した試料7629−68の沈降容積を示し、これは、1%NaCl溶液で観察されたものより大きな沈降容積を示した。
【表5】
【0076】
125℃と160℃での脱溶媒の前と後の、アルコール−アルカリ処理した試料7629−68のRVAプロフィールを、
図16(RVA pH6.5)と
図17(RVA pH3.5)に示す。
【0077】
図18と20は、非剪断沈降容積を測定するために調製された1%NaCl中で調理されたデンプンの顕微鏡写真である。
図19と21は、1%NaCl中で調理され、次に、剪断沈降容積を測定するために調製された、ブレンダーを使用して剪断されたデンプンの顕微鏡写真である。顆粒の顕著な断片化は観察されなかった。
【0078】
天然のデンプン顆粒は、偏光で観察された時、複屈折又は典型的なマルタ十字を示す。デンプンが水の中で加熱されると、デンプンのゼラチン化の終了により、偏光の複屈折又はマルタ十字パターンが失われる。
図22及び23は、ワキシーデンプンが、2つの加熱サイクルを有するアルコール−アルカリ処理と125℃及び160℃での脱溶媒を使用して処理されると、デンプン顆粒のマルタ十字が保持されることを示し、これは、デンプンがα化されていないことを示す。
【0079】
沈降容積は、上記試験でデンプン抑制の程度を測定するために使用される。より小さい非剪断沈降容積は、調理されたデンプン顆粒のより少ない膨潤とより大きな抑制を示す。非剪断沈降容積と比較して剪断沈降容積のより小さな変化は、より高い剪断安定性を示す。これらの基準により、脱溶媒の前及び後のアルコール−アルカリ処理した試料7629−68は非常に高度に抑制されており、剪断安定性であることが証明された。RVAプロフィールもまた、脱溶媒の前及び後の試料7629−68が高度に抑制されていることを示した。
【0080】
ブレンダーを使用して25ボルトで20秒間剪断する前(
図18及び20)及び後(
図19及び21)の1%NaCl中の調理されたデンプンの顕微鏡写真は、ゼラチン化顆粒の顕著な断片化を示さない。
【0081】
ワキシーデンプンが、2つの加熱サイクルを有するアルコール−アルカリ処理と脱溶媒を使用して処理されると、デンプン顆粒のマルタ十字が保持され、これは、デンプンがα化されていないことを示す。
【0082】
デンプン処理法C
この方法では、デンプンは、炭酸ナトリウムとクエン酸が導入されているアルコール媒体中で加熱され、ここで、炭酸ナトリウムは基本的にクエン酸により中和される(すなわち、クエン酸のナトリウム塩はその場で生成される)。
【0083】
ワキシーデンプン(307g,水分10.7%)を、攪拌しながら3Aエタノール(1177g;水7.18%)に加えた。次に、無水炭酸ナトリウム(7.585g;乾燥デンプンに基づいて2.77重量%)及び18.5gの50%クエン酸溶液(乾燥デンプンに基づいて3.37重量%)を加えた。生じたスラリーを、攪拌と制御蒸気加熱とを備えた2リットルの高圧ステンレス鋼反応器中に、ジャケットを通して移した。スラリーを反応器中で攪拌して143℃に加熱し、この温度で60分維持した。25℃に冷却後、スラリーをブフナーロート中で、ろ紙でろ過して、湿ったデンプンケーキを得た。湿ったケーキをドラフト中でトレイの上で粉砕し、数時間放置した後、オーブンに入れると、3Aアルコールのほとんどが蒸発された。次に、デンプン(以後「7629−70」と特定する)を対流オーブン中で、50℃で一晩乾燥させ、次に摩砕し、100メッシュの篩中を通過させた。
【0084】
鋼鉄容器(直径7.2”、高さ8.5”)中に3.5kgの脱イオン水を入れ、鋼鉄容器をオーブン中で、125℃で1時間加熱し、50gの処理したデンプンを500メッシュの篩の上に広げ、鋼鉄容器の真上の棚に置き、125℃で4時間デンプンを脱溶媒することにより、蒸気によるデンプンの脱溶媒を行った。次にデンプンを50℃オーブン中で一晩乾燥させた。
【0085】
得られたデンプンを、デンプン処理法Bを使用して作成されたデンプンについて上記したものと同じ方法を使用して性状解析した。
【0086】
結果と考察(デンプン処理法C)
表6は、脱溶媒前と後の、アルコール中の炭酸ナトリウムとクエン酸による1回の加熱サイクルを使用して作成された抑制されたデンプンの、1%NaCl中の沈降容積を示す。
【表6】
【0087】
表7は、脱溶媒前と後の、アルコール中の炭酸ナトリウムとクエン酸による1回の加熱サイクルを使用して作成された抑制されたデンプンの、精製水中の沈降容積を示す。沈降容積は、1%NaCl溶液中で観察されたものより高かった。
【表7】
【0088】
脱溶媒前と後の、アルコール中の炭酸ナトリウムとクエン酸による1回の加熱サイクルを使用して作成された抑制されたデンプンのpH3.5及び6.5のRVAプロフィールが、
図24に示される。
【0089】
図25は、非剪断沈降容積を測定するために調製された1%NaCl中で調理されたデンプンの顕微鏡写真である。
図26は、1%NaCl中で調理され、次に、剪断沈降容積を測定するために調製された、ブレンダーを使用して剪断されたデンプンの顕微鏡写真である。
【0090】
天然のデンプン顆粒は、偏光で観察された時、複屈折又は典型的なマルタ十字を示す。デンプン分子が顆粒内で放射状に配向されるため、マルタ十字の特性がもたらされる。デンプンが水の中で加熱されると、デンプンのゼラチン化の終了により、偏光の複屈折又はマルタ十字が失われる。
図27は、ワキシーデンプンが、アルコール中の炭酸ナトリウムとクエン酸による1つの加熱サイクルと脱溶媒を使用して処理されると、デンプン顆粒のマルタ十字特性が保持されることを示し、これは、デンプンがα化されていないことを示す。
【0091】
沈降容積は、この試験でデンプン抑制の程度を測定するために使用される。より小さい非剪断沈降容積は、調理されたデンプン顆粒のより少ない膨潤とより大きな抑制を示す。非剪断沈降容積と比較して剪断沈降容積のより小さな変化は、より高い剪断安定性を示す。本例は、アルコール中の炭酸ナトリウムとクエン酸による1つの加熱サイクルを使用して作成された抑制されたデンプンが高度に抑制されており、剪断安定性であることを示す。ブレンダーを使用して25ボルトで20秒間剪断する前(
図25)及び後(
図26)の1%NaCl中で調理されたデンプンの顕微鏡写真は、調理された顆粒の顕著な断片化を示さなかった。偏光で観察すると、処理後のデンプンは複屈折又は典型的なマルタ十字を示し、これは、デンプンがα化されていないことを示す。