【実施例】
【0123】
以下の実施例は、例示の目的で提示されており、限定として解釈されるべきではない。
【0124】
実施例1
γcアンタゴニストペプチドの阻害活性の評価方法
本発明の実施形態に従って調製した、γcサイトカインファミリーの1メンバーの作用を阻害するカスタムペプチド誘導体の能力を哺乳動物細胞アッセイを使用して測定することにより、当該γcサイトカインファミリーメンバーに対する哺乳動物細胞の増殖応答を測定する。
【0125】
6種のγcサイトカインの評価のために、指標細胞株(American Type Culture Collectionより入手可能なマウスCD8T細胞株CTLL−2、ならびにマウス肥満細胞株PT−18およびそのサブクローンPT−18β)をヒトIL−2Rβ遺伝子でトランスフェクトし、IL−2およびIL−15に対する応答性を細胞に付与し(Tagayaら, 1996, EMBO J. 15:4928-39)、γcサイトカインの増殖促進活性の定量に用いる(方法論についてはWiley and Sonsから出版されているCurrent protocols in Immunology参照)。広範囲の濃度にわたり比色定量WST−1アッセイを用いて測定すると、指標細胞は半線形な用量依存的応答を示す(試薬および方法の詳細については、クロンテックPT3946−1および関連するユーザーマニュアルを参照;これらは参照により本明細書に援用される)。
【0126】
指標細胞株において最大応答値の50%および95%の応答を惹起するのに適切なサイトカイン用量を決定してから、サイトカインと指標細胞とを含む各ウェルに様々な濃度(1pM〜10μM)の精製または合成カスタムペプチド誘導体を添加する。サイトカイン刺激性細胞増殖に対する阻害作用の指標として450nmにおける光吸収度の低下を使用する。通常、サイトカインで刺激した指標細胞株とサイトカインとを含むウェルは2.0〜3.0の吸光度を示すが、阻害ペプチドを添加するとその吸光度は0.1〜0.5まで低下する。
【0127】
実施例2
BNZ−γペプチドによるIL−9およびIL−15の増殖促進活性の特異的阻害
上記のPT−18β細胞を使用して、選択したγcサイトカインの増殖促進活性に対するBNZ−γペプチドの特異的阻害能を測定した(
図3A)。PT−18β細胞の増殖を補助する非γcサイトカインであるIL−3をネガティブコントロールとして使用した。簡潔に述べると、HEK293T細胞により産生されたBNZ−γペプチドを異なる希釈倍率で希釈し(BNZ−γ発現構築物でトランスフェクトしたHEK293T細胞の上清の1:20または1:50希釈液)、これらの希釈液のいずれかとともにまたはBNZ−γペプチドを使用せずにIL−3、IL−9、IL−15またはIL−4(培養物中の各サイトカインの濃度:1nM)の存在下でPT−18β細胞をインキュベートした。
【0128】
BNZ−γペプチドおよびサイトカインを導入した2日後に、WST−1アッセイを用いて細胞の増殖応答を測定した。IL−3(非γcサイトカイン)の増殖促進活性はBNZ−γによって阻害されなかった。これに対して、IL−15およびIL−9の活性は、BNZ−γペプチドによって顕著に低下した(p<0.01、スチューデントt検定)。別のγcサイトカインであるIL−4によって刺激された細胞増殖は、BNZ−γペプチドの添加による影響を受けなかった。IL−3、IL−9、IL−15およびIL−4についての結果を
図3Aに示す。
【0129】
同様のアッセイにおいてマウス細胞株CTTL2を使用した。このアッセイでは、10%ウシ胎仔血清を含むRPMIにおいて0.5nM組換えIL−2とともに細胞を培養した。増殖アッセイを構築するために、細胞を3回洗浄してサイトカインを洗い流した。終濃度を50pMとしたIL−2またはIL−15を含む96ウェルプレートの各ウェルに1×10
5個の細胞を播種した。様々な濃度のBNZ−γペプチド(0.1μg/ml、1μg/mlおよび10μg/ml)を各ウェルに添加した。細胞を20時間培養し、培養終了の4時間前に
3Hチミジンをプレートに添加した。プレートリーダーを使用して細胞を回収した。データを
図3Bに示す。
【0130】
実施例3
細胞増殖マーカーとしての3Hチミジンの取り込みを分析することによる、γcサイトカイン活性の阻害の測定方法
3H−チミジン取り込みアッセイを用いて、γcサイトカインにより誘導された指標細胞集団の増殖に対するアンタゴニストカスタムペプチド誘導体による阻害を測定する。簡潔に述べると、サイトカイン存在下において増殖中の20〜50,000個の細胞に、放射性同位体で標識したチミジン(1μCi)を添加する。慣用のハーベスター装置(たとえば、パーキンエルマー社製Filtermateユニバーサルハーベスター)を使用して、細胞に結合した放射能をガラス繊維フィルターで捕捉し、次いで、βカウンター(たとえば、1450Triluxマイクロプレートシンチレーションカウンター)を使用して放射能を測定することにより、細胞に取り込まれた放射能を測定する。
【0131】
実施例4
細胞増殖マーカーとしての細胞追跡色素の取り込みを分析することによる、γcサイトカイン活性の阻害の測定方法
選択したγcサイトカインの存在下、または選択したγcサイトカインおよび選択したカスタムペプチド誘導体の存在下で、指標細胞をインキュベートする。次いで、インビトロにおいて、たとえばCMFDA(インビトロジェン社製C2925)などの細胞追跡色素を使用して細胞集団を標識し、細胞分裂ごとの細胞内緑色蛍光の減衰をフローサイトメーター(たとえばベクトン・ディッキンソン社製FACScalibur)を使用してモニターする。通常、γcサイトカインによる刺激に応答して、細胞分裂回数に対応する7〜10個の異なるピークが緑色蛍光チャネルに現われる。選択したγcサイトカインおよびアンタゴニストカスタムペプチド誘導体とともにインキュベートした細胞では、ピークの数は1〜3個にまで低減され、その数は阻害の程度によって決まる。
【0132】
実施例5
アンタゴニスト(BNZ−γおよびその誘導体)による細胞内シグナル伝達の阻害
γcサイトカインとその受容体との結合は、細胞増殖を刺激するだけでなく、多様な細胞内事象を引き起こす(Rochmanら, 2009 Nat. Rev. Immunol. 9:480-90およびPesuら, 2005 Immunol. Rev. 203:127-142)。γcサイトカインがその受容体に結合すると、即座にJak3(ヤヌスキナーゼ3)と称されるチロシンキナーゼが形質膜上の受容体に動員される。このキナーゼは、γcサブユニット、STAT5(シグナル伝達兼転写活性化因子5)、PI3(ホスファチジルイノシトール3)キナーゼのサブユニットなどの多種類のタンパク質のチロシン残基をリン酸化する。これらのタンパク質のリン酸化のうち、STAT5のリン酸化は、γcサイトカインによって引き起こされる細胞増殖と関連することが多くの研究において示唆されている(HennighausenおよびRobinson, 2008 Genes Dev. 22:711-21における検討)。公表されているこれらの資料に従って、BNZ−γペプチドが、IL−15によって刺激されたPT−18β細胞におけるSTAT5分子のチロシンリン酸化を阻害するかどうかを試験した(
図3Cに結果を示す)。
【0133】
BNZ−γペプチドの存在下または非存在下において、IL−15でPT−18β細胞を刺激した。細胞質タンパク質は、Tagayaら, 1996 EMBO J. 15:4928-39に記載されているような慣用の方法で細胞から抽出した。抽出した細胞質タンパク質を標準SDS−PAGE(ドデシル硫酸ナトリウムポリアクリルアミドゲル電気泳動)を使用して分画し、抗リン酸化STAT5抗体(Cell Signaling Technology、カタログNo.9354、ダンヴァーズ、マサチューセッツ州)を用いた免疫ブロット法によりリン酸化状態を確認した(
図3C、上部参照)。次いで、各レーンの総タンパク質量がほぼ同じであることを確認するために、膜を剥離し、抗STAT5抗体(Cell Signaling Technology、カタログNo.9358)を用いて再度試験を行った(
図3C、下部参照)。
【0134】
これらの結果により、シグナル伝達の指標となるSTAT5のチロシンリン酸化はPT−18β細胞においてIL−15により誘導されること、およびSTAT5のチロシンリン酸化はBNZ−γペプチドによって顕著に低下することが実証された。
【0135】
実施例6
BNZ−γから誘導されるアンタゴニストペプチドの論理的設計
ペプチド誘導体は、D/E−F−L−E/Q/N−S/R−X−I/K−X−L/I−X−Q(配列番号2)(式中、Xは任意のアミノ酸を示す)で示されるコア配列の特定のアミノ酸を、
図2に示したような同一の物理化学的特性を有するアミノ酸で置換することにより調製する。
【0136】
あるいは、カスタムペブチドまたはこれらのペプチド誘導体は、γcサイトカインファミリーの異なるメンバーのDヘリックス領域の配列アライメントに基づいて調製してもよい。たとえば、
図5に示すように、γcサイトカインファミリーメンバーに保存された1つ以上の配列(配列番号4〜9)を組み合わせて、配列番号3などのペプチドを形成してもよい。
【0137】
実施例7
アンタゴニストカスタムペプチド誘導体の阻害特異性を同定する方法
6種のγcサイトカインに応答したサイトカイン応答性細胞株の増殖に対するカスタムペプチド誘導体の阻害能を分析することによって、アンタゴニストカスタムペプチド誘導体のγcサイトカイン阻害特異性を決定する。たとえば、マウス細胞株CTLL−2は、候補ペプチドがIL−2およびIL−15の機能を阻害するかどうかを判断するために使用される。PT−18(β)細胞は、候補ペプチドがIL−4およびIL−9の機能を阻害するかどうかを判断するために使用される。PT−18(7α)細胞は、候補ペプチドがIL−7の機能を阻害するかどうかを判断するために使用される。PT−18(21α)細胞は、候補ペプチドがIL−21の機能を阻害するかどうかを判断するために使用される。PT−18(β)は、遺伝子導入によりヒトIL−2Rβを外因的に発現するPT−18細胞のサブクローンである(Tagayaら, 1996参照)。PT−18(7α)は、遺伝子導入によりヒトIL−7Rαを発現するサブクローンである。PT−18(21Rα)細胞はヒトIL−21Rαを発現する。
【0138】
別の方法においては、様々なサイトカインに応答する別の細胞株が使用される。このような細胞株として、ATCCより市販されているヒトNK細胞株NK92(カタログNo.CRL−2407)が挙げられる。この細胞株はIL−2依存性細胞株であり、IL−9、IL−7、IL−15、IL−12、IL−18、IL−21などの他のサイトカインにも応答性を示す(Gongら, 1994 Leukemia 8: 652-658、Kingemannら, 1996, Biol Blood Marrow Transplant 2:68;75、およびHodge DLら, 2002 J. Immunol. 168:9090-8)。
【0139】
実施例8
γcアンタゴニストペプチドの調製
カスタムγcアンタゴニストペプチド誘導体は、手動の工程および自動の工程によって化学的に合成される。
【0140】
手動合成:1つのアミノ酸のカルボキシル基またはC末端を、別のアミノ酸のアミノ基またはN末端とカップリングすることを含む古典的な液相合成を使用する。別の方法においては、固相ペプチド合成(SPPS)が使用される。
【0141】
自動合成:多数の民間企業が有償で自動ペプチド合成を提供している。このような会社では、アプライドバイオシステムズ(ABI)により提供されている合成機などの様々な市販のペプチド合成機が使用されている。カスタムγcアンタゴニストペプチド誘導体は自動ペプチド合成機で合成される。
【0142】
実施例9
組換え技術を使用したカスタムγcアンタゴニストペプチド誘導体の生物学的製造
カスタムγcアンタゴニストペプチド誘導体は、BNZ−γペプチドまたは配列番号3の配列を含むペプチドもしくはその誘導体の構造を強化もしくは安定化させ、その生物学的活性を向上させる公知のヒトタンパク質由来ペプチド、適切なタグペプチド、またはシグナルペプチドを含むペプチド前駆体として生物学的に合成される。所望に応じて、ペプチドのN末端の前に適切な酵素切断配列を設計し、最終的に得られるタンパク質からタグペプチドまたは任意のペプチド部分を取り除いてもよい。
【0143】
カスタムペプチド誘導体をコードし、3’末端に終止コドンを有するヌクレオチド配列を、市販のベクターに挿入する。この市販のベクターは、カスタムペプチド誘導体および終止コドンをコードするヌクレオチド配列とタグ部分との間を切断する適切なタンパク質分解酵素(たとえばエンテロキナーゼ)によって認識されかつ消化される特殊なペプチド配列と、大腸菌のチオレドキシンに由来するタグ部分とを有する。適切なベクターの一例として、インビトロジェン社(カリフォルニア州)より入手可能なpThioHisプラスミドが挙げられる。他の発現ベクターを使用してもよい。
【0144】
実施例10
免疫化を目的としたカスタムペプチドおよびその誘導体の担体タンパク質との共役ならびに抗カスタムペプチド抗体の作製
BNZ−γおよび他のカスタムペプチド誘導体(配列番号3の配列含むペプチドまたはその誘導体など)は、動物を免疫化してポリクローナル抗体およびモノクローナル抗体を得るために用いられる。グルタルアルデヒドまたはm−マレイミドベンゾイル−N−ヒドロキシスクシンイミドエステルを使用した慣用の方法によって、適切な担体タンパク質(たとえば、ウシ血清アルブミン、キーホールリンペットヘモシアニン(KLH)など)のN末端またはC末端にペプチドを共役させる。次いで、適切なアジュバントとともに共役ペプチドを用いて、ウサギ、げっ歯類、ロバなどの動物を免疫化する。慣用の方法を用いて、得られた抗体の特異性を試験する。得られた抗体が免疫原性ペプチドと反応する場合、実施例1〜3に記載の細胞増殖アッセイを用いて各γcサイトカイン活性に対する阻害能を試験する。これらのペプチドおよびペプチド誘導体が複合体であることから、2種の異なるサイトカインを同時に認識する単一の抗体を作製することが可能である。
【0145】
実施例11
カスタムγcアンタゴニストペプチド誘導体の大量生産方法
組換えタンパク質の大量生産は、他の文献に記載されているような無細胞系を使用して行う(Takaiら, 2010 Curr. Pharm. Biotechnol. 11(3):272-8参照)。簡潔に述べると、γcアンタゴニストペプチドとタグとをコードするcDNAを適切なベクターにサブクローン化し(Takaiら, 2010 Curr. Pharm. Biotechnol. 11(3):272-8参照)、インビトロ転写を行った後、直ちにインビトロ翻訳を行うことによって、タグ付加ペプチドを産生させる。次いで、タグ付加エピトープを認識する固相化抗体を使用して、得られたプロポリペプチドを精製し、タンパク質分解酵素で処理する。慣用の18%トリシンSDS−PAGE(インビトロジェン)および慣用のクマシー染色を使用して、溶離物(目的のカスタムペプチド誘導体がそのほとんどを占める)の純度を試験する。ペプチドの純度が所望の数値(>98%)に達していない場合、混合物を慣用のHPLC(高速液体クロマトグラフィー)でさらに精製する。
【0146】
実施例12
HAM/TSPにおけるサイトカインの機能をブロックするための、カスタムγcアンタゴニストペプチド誘導体の使用
HTLV−1関連脊髄症(HAM)/熱帯性痙性不全対麻痺(TSP)は、ヒトTリンパ球向性ウイルス1型(HTLV−I)に感染した患者の一部に見られる慢性進行性脊髄症である。脊髄におけるリンパ球の浸潤は、HTLV−Iに対する免疫応答に関連しており、特定のサイトカインの放出をもたらす。これらのサイトカインのうちいくつかは神経をさらに損傷させる。
【0147】
HAM/TSP患者は、自己免疫疾患に類似した免疫亢進状態を示す(Ohら, 2008 Neurol Clin. 26:781-785)。HAM/TSP患者がこのような亢進状態を有することは、HAM/TSP患者のT細胞を外因性サイトカインの非存在下において約1週間にわたりエクスビボ培養し、その自発的増殖能を確認することによって証明できる。HAM/TSP患者におけるT細胞の自発的増殖は、IL−2、IL−9およびIL−15のオートクリンループ/パラクリンループに少なくとも部分的に起因する。IL−2受容体またはIL−15受容体に対するブロッキング抗体を添加することによって、HAM/TSPエクスビボ培養系におけるT細胞の自発的増殖を阻害できることが示されている。
【0148】
これらの観察結果およびエクスビボ研究より得られた他のデータは、HAM/TSPの臨床的治療のために2種のモノクローナル抗体(抗IL−2受容体αまたは抗Tacと抗IL−15受容体β鎖)を用いることの論理的根拠となるものである(Azimiら, 2001 Proc. Natl. Acad. Sci. 98:14559-64およびAzimiら, 1999 J. Immunol 163:4064-72)。
【0149】
本明細書に記載の実施形態による抗サイトカイン受容体アンタゴニストは、HAM/TSPの治療のための治療用免疫調節剤として有益なだけではない。本発明の実施形態による抗サイトカイン受容体アンタゴニストがHAM/TSPにおいて免疫応答を調節できることは、この抗サイトカイン受容体アンタゴニストを他の自己免疫疾患の治療においても使用できるという概念を裏付けるものである。
【0150】
本明細書に記載の実施形態によるカスタムγcアンタゴニストペプチド誘導体の有効性を実証するために、HAM/TSPエクスビボ培養系を使用したT細胞自発的増殖アッセイにおいて、BNZ−γペプチドがHTLV−Iに対する免疫応答をブロックする能力を試験した。増殖アッセイは、BNZ−γ添加または非添加のHAM/TSP患者血液サンプルを用いて実施した。このアッセイにより、BNZ−γが、エクスビボのHAM/TSP患者血液培養物中に存在するIL−2およびIL−15などのサイトカインの機能をブロックして、これらのサンプルにおけるT細胞の自発的増殖を抑制する能力を評価した。
【0151】
エクスビボのT細胞自発的増殖アッセイにおいて、HAM/TSP患者から得られたPBMCを96ウェルプレート1ウェルあたり1×10
6個播種し、RPMI−10%FCS中で培養した。BNZ−γペプチドの濃度を段階的に増加させて各ウェルに添加した。コントロールとして、関連性がないペプチドを同様の方法で使用した。細胞はCO
2インキュベーターにおいて37℃で3日間、4日間および6日間でインキュベートした。
3H−チミジン1μCiを細胞に添加した。さらに6時間インキュベートした後、細胞を回収し、増殖率を測定した。代表的なHAM/TSP患者におけるデータを
図4A〜Dに示す。
図4A〜4Dに示すように、BNZ−γペプチドは約1μg/mlの濃度においてHAM/TSP培養物中のT細胞の自発的増殖を阻害する。
【0152】
他の免疫学的マーカーについてもこのアッセイにおいて測定した。四量体のウイルスタンパク質を使用したエクスビボ培養において、ウイルスに特異的なCD8細胞のパーセンテージを測定した。T細胞活性化の指標であるCD4+CD25+細胞集団、およびT細胞増殖の指標であるKi67染色をフローサイトメトリーアッセイでモニターした。
【0153】
同様のさらなるアッセイにおいて、他の形態の共役BNZ−γペプチド誘導体または配列番号3の配列を含むカスタムペプチドおよびその誘導体を使用することもできる。これらペプチド誘導体は、化学合成後に共役可能なアルブミン、BSA、およびPEGを含むものである。BNZ−γペプチド共役体または配列番号3の配列を含むカスタムペプチドおよびその誘導体などのカスタムペプチドの他の生物学的形態は、該カスタムペプチドに融合される公知のタンパク質実体の領域(ヒトIgGのFc領域が挙げられるがこれに限定されない)を含むものである。
【0154】
実施例13
カスタムγcアンタゴニストペプチド誘導体の投与によりヒト患者の成人T細胞性白血病(ATL)を治療する方法
成人T細胞性白血病に罹患しているヒト患者を特定する。カスタムγcアンタゴニストペプチド誘導体(たとえば、BNZ−γ、配列番号3の配列を含むカスタムペプチド、またはその誘導体)を医師によって決定された有効量で、医師によって決定された期間にわたり患者に投与する。患者が寛解に入れば治療が有効であると判断する。
【0155】
実施例14
カスタムγcアンタゴニストペプチド誘導体の投与によりヒト患者のHAM/TSPを治療する方法
HAM/TSPに罹患しているヒト患者を特定する。カスタムγcアンタゴニストペプチド誘導体(たとえば、BNZ−γ、配列番号3の配列を含むカスタムペプチド、またはその誘導体)を医師によって決定された有効量で、医師によって決定された期間にわたり患者に投与する。患者の症状が改善した場合、または疾患の進行が停止もしくは遅延した場合に、治療が有効であると判断する。
【0156】
実施例15
サイトカインの機能をブロックするための、カスタムγcアンタゴニストペプチド誘導体の使用
少なくともIL−2およびIL−15の機能を抑制する必要のあるヒト患者を特定する。カスタムγcアンタゴニストペプチド誘導体(たとえば、配列番号3の配列を含む複合ペプチド、またはその誘導体)を医師によって決定された有効量で、医師によって決定された期間にわたり患者に投与する。患者の症状が改善した場合、または疾患の進行が停止もしくは遅延した場合に、治療が有効であると判断する。
【0157】
実施例16
カスタムγcアンタゴニストペプチド誘導体の投与によりヒト患者のセリアック病を治療する方法
セリアック病に罹患しているヒト患者を特定する。カスタムγcアンタゴニストペプチド誘導体(たとえば、配列番号3の配列を含む複合ペプチド、またはその誘導体)を医師によって決定された有効量で、医師によって決定された期間にわたり患者に投与する。患者の症状が改善した場合、または疾患の進行が停止もしくは遅延した場合に、治療が有効であると判断する。
【0158】
参考文献
Antony, P.A., Paulos, C.M., Ahmadzadeh, M., Akpinarli, A., Palmer, D.C., Sato, N., Kaiser A., Heinrichs, C.S., Klebanoff, C.A., Tagaya, Y., and Restifo, NP., Interleukin-2-dependent mechanisms of tolerance and immunity in vivo. 2006 J. Immunol. 176:5255-66.
Azimi, N., Nagai, M., Jacobson, S., Waldmann, T.A., IL-15 plays a major role in the persistence of Tax-specific CD8 cells in HAM/TSP patients. 2001 Proc. Natl. Acad. Sci. 98:14559-64.
Azimi, N., Mariner J., Jacobson S., Waldmann T.A., How does interleukin 15 contribute to the pathogenesis of HTLV type-1 associated myelopathy/tropical spastic paraparesis? 2000 AIDS Res. Hum. Retroviruses 16:1717-22.
Azimi, N., Jacobson, S., Leist, T., Waldmann, T.A., Involvement of IL-15 in the pathogenesis of human T lymphotropic virus type-I-associated myelopathy/tropical spastic paraparesis: implications for therapy with a monoclonal antibody directed to the IL-2/15R beta receptor. 1999 J. Immunol. 163:4064-72.
Azimi, N., Brown, K., Bamford, R.N., Tagaya, Y., Siebenlist, U., Waldmann, T.A., Human T cell lymphotropic virus type I Tax protein trans-activates interleukin 15 gene transcription through an NF-kappaB site. 1998 Proc. Natl. Acad. Sci. USA 95:2452-7.
Bazan, J.F., Hematopoietic receptors and helical cytokines. 1990 Immunol. Today 11:350-354.
Bettini, M., and Vignali, D.A., Regulatory T cells and inhibitory cytokines in autoimmunity. 2009 Curr. Opin. Immunol. 21:612-8.
Bodd, M., Raki, M., Tollefsen, S., Fallang, L.E., Bergseng, E., Lundin, K.E., Sollid, L.M., HLA-DQ2-restricted gluten-reactive T cells produce IL-21 but not IL-17 or IL-22. 2010 Mucosal Immunol. 3:594-601.
De Rezende, L.C., Silva I.V., Rangel, L.B., Guimaraes, M.C., Regulatory T cells as a target for cancer therapy. 2010 Arch. Immunol. Ther. Exp. 58:179-90.
Dubois, S., Mariner, J., Waldmann, T.A., Tagaya, Y., IL-15Ralpha recycles and presents IL-15 In trans to neighboring cells. 2002 Immunity 17:537-47.
Dodge DL. Et al., IL-2 and IL-12 alter NK cell responsiveness to IFN-gamma-inducible protein 10 by down-regulating CXCR3 expression.J. Immun. 168:6090-8.
Fehniger, T.A., Suzuki, K., Ponnappan, A., VanDeusen, J.B., Cooper, M.A., Florea, S.M., Freud, A.G., Robinson, M.L., Durbin, J., Caligiuri, M.A., Fatal leukemia in interleukin 15 transgenic mice follows early expansions in natural killer and memory phenotype CD8+ T cells. 2001 J. Exp. Med. 193:219-31.
Fisher, A.G., Burdet, C., LeMeur, M., Haasner, D., Gerber, P., Cerediq, R., Lymphoproliferative disorders in an IL-7 transgenic mouse line. 1993 Leukemia 2:S66-68.
Gong JH, et al. Characterization of a human cell line (NK-92) with phenotypical and functional characteristics of activated natural killer cells. Leukemia 8: 652-658, 1994.
Hennighausen, L., Robinson, G.W., Interpretation of cytokine signaling through the transcription factors STAT5A and STAT5B. 2008 Genes Dev. 22:711-21.
Klingemann HG, et al. A cytotoxic NK-cell line (NK-92) for ex vivo purging of leukemia from blood. Biol. Blood Marrow Transplant. 2: 68-75, 1996.
Krause, C.D. and Pestka, S., Evolution of the Class 2 cytokines and receptors, and discovery of new friends and relatives. 2005 Pharmacol. and Therapeutics 106:299-346.
Kundig, T.M., Schorle, H., Bachmann, M.F., Hengartener, H., Zinkernagel, R.M., Horak, I., Immune Responses of the interleukin-2-deficient mice. 1993 Science 262:1059-61.
Le Buanec, H., Paturance, S., Couillin, I., Schnyder-Candrian, S., Larcier, P., Ryffel, B., Bizzini, B., Bensussan, A., Burny, A., Gallo, R., Zagury, D., Peltre, G., Control of allergic reactions in mice by an active anti-murine IL-4 immunization. 2007 Vaccine 25:7206-16.
Littman, D.R., Rudensky, AY., Th17 and regulatory T cells in mediating and restraining inflammation. 2010 Cell 140(6):845-58.
Miyagawa, F., Tagaya, Y., Kim, B.S., Patel, H.J., Ishida, K., Ohteki, T., Waldmann, T.A., Katz, S.I., IL-15 serves as a costimulator in determining the activity of autoreactive CD8 T cells in an experimental mouse model of graft-versus-host-like disease. 2008 J. Immunol. 181:1109-19.
Noguchi, M., Yi, H., Rosenblatt, H.M., Filipovich, A.H., Adelstein, S., Modi, W.S., McBride, O.W., Leonard, W.J., Interleukin 2 receptor gamma chain mutation results in X-linked severe combined immunodeficiency in humans. 1993 Cell 73:147-157.
OH, U., Jacobson S., Treatment of HTLV-I-Associated Myelopathy / Tropical Spastic Paraparesis: Towards Rational Targeted Therapy 2008 Neurol Clin. 2008 26: 781-785.
Orzaez, M., Gortat, A., Mondragon, L., Perez-Paya, E., Peptides and Peptide Mimics as Modulators of Apototic Pathways. 2009 Chem. Med. Chem. 4:146-160.
O'Shea, J.J., Targeting the Jak/STAT pathway for immunosuppression. 2004 Ann. Rheum. Dis. 63:(suppl II): ii67-71.
Paul, W.E., Pleiotropy and redundancy: T cell-derived lymphokines in the immune response. 1989 Cell 57:521-4.
Pesu M, Candotti F, Husa M, Hofmann SR, Notarangelo LD, and O’Shea JJ. Jak3, severe combined immunodeficiency, and a new class of immunosuppressive drugs. 2005 Immunol. Rev. 203:127-142.
Pesu, M., Laurence, A., Kishore, N., Zwillich, S., Chan, G., O’Shea, J.J., Therapeutic targeting of Janus kinases. Immunol. 2008 Rev. 223:132-142.
Rochman, Y., Spolski, R., Leonard, W.J., New Insights into the regulation of T cells by gamma c family cytokines. 2009 Nat. Rev. Immunol. 9:480-90.
Sakaguchi, S., Yamaguchi, T., Nomura, T., Ono, M., Regulatory T cells and immune tolerance. 2008 Cell 133: 775-87.
Sato, N., Sabzevari, H., Fu, S., Ju, W., Bamford, R.N., Waldmann, T.A., and Tagaya, Y., Development of an IL-15-Autocrine CD8 T-cell Leukemia in IL-15 Transgenic mice requires the cis-expression of IL-15R apha. Blood 2011 in press.
Sugamura, K., Asao, H., Kondo, M., Tanaka, N., Ishii, N., Nakamura, M., Takeshita, T., The common gamma-chain for multiple cytokine receptors. 1995 Adv. Immunol. 59: 225-277.
Sugamura, K., Asao, H., Kondo, M., Tanaka, N., Ishii, N., Ohbo, K., Nakamura, M., Takeshita, T., The interleukin-2 receptor gamma chain: its role in the multiple cytokine receptor complexes and T cell development in XSCID. 1996 Annu. Rev. Immunol. 14:179-205.
Tagaya, Y., Burton, J.D., Miyamoto, Y., Waldmann, TA., Identification of a novel receptor/signal transduction pathway for IL-15/T in mast cells. 1996 EMBO J. 15:4928-39.
Tagaya, Y., Memory CD8 T cells now join “Club 21”. 2010 J. Leuk. Biol. 87:13-15.
Takai, K., Sawasaki, T., and Endo. Y. The Wheat-Germ Cell-Free Expression System, 2010 Curr. Pharm. Biotechnol. 11:272-8.
Tanaka, T., et al., A novel monoclonal antibody against murine IL-2 receptor beta-chain. Characterization of receptor expression in normal lymphoid cells and EL-4 cells. 1991 J. Immunol. 147:2222-28.
Takeshita, T., Asao, H., Ohtani, K., Ishii, N., Kumaki, S., Tanaka, N., Manukata, H., Nakamura, M., Sugamura, K., Cloning of the Gamma chain of the Human IL2 receptor. 1992 Science 257:379-382.
Waldmann, T.A., Anti-Tac (daclizumab, Zenapax) in the treatment of leukemia, autoimmune diseases, and in the prevention of allograft rejection: a 25-year personal odyssey. 2007 J. Clin. Immunol. 27: 1-18.