(58)【調査した分野】(Int.Cl.,DB名)
p型有機半導体材料とn型有機半導体材料を有する光電変換素子であって、p型有機半導体材料が請求項1及至4のいずれか一項に記載の撮像素子用光電変換素子用材料を含む撮像素子用光電変換素子。
(A)第一の電極膜、(B)第二の電極膜及び該第一の電極膜と該第二の電極膜の間に配置された(C)光電変換部を有する光電変換素子であって、該(C)光電変換部が少なくとも(c−1)光電変換層及び(c−2)光電変換層以外の有機薄膜層を含み、かつ該(c−2)光電変換層以外の有機薄膜層が請求項1乃至4のいずれか一項に記載の撮像素子用光電変換素子用材料を含む撮像素子用光電変換素子。
【背景技術】
【0002】
近年、有機エレクトロニクスデバイスへの関心が高まっている。その特徴としてはフレキシブルな構造をとり、大面積化が可能である事、更にはエレクトロニクスデバイス製造プロセスにおいて安価で高速の印刷方法を可能にすることが挙げられる。代表的なデバイスとしては有機EL素子、有機太陽電池素子、有機光電変換素子、有機トランジスタ素子などが挙げられる。有機EL素子はフラットパネルディスプレイとして次世代ディスプレイ用途のメインターゲットとして期待され、携帯電話のディスプレイやTVなどに応用され、更に高機能化を目指した開発が継続されている。有機太陽電池素子などはフレキシブルで安価なエネルギー源として、有機トランジスタ素子などはフレキシブルなディスプレイや安価なICへと研究開発がなされている。
【0003】
有機エレクトロニクスデバイスの開発には、そのデバイスを構成する材料の開発が非常に重要である。そのため各分野において数多くの材料が検討されているが、十分な性能を有しているとは言えず、現在でも各種デバイスに有用な材料の開発が精力的に行われている。その中で、ベンゾチエノベンゾチオフェン等を母骨格とした化合物も有機エレクトロニクス材料として開発されており(特許文献1乃至3)、ベンゾチエノベンゾチオフェンのアルキル誘導体を用いた場合は、印刷プロセスで半導体薄膜を形成するのに十分な溶媒溶解度を有するが、アルキル鎖長に対する縮環数が相対的に少ないことにより低温で相転移を起こしやすく、有機エレクトロニクスデバイスの耐熱性が劣ることが問題であった。
【0004】
また、近年の有機エレクトロニクスの中で、有機光電変換素子は、次世代の撮像素子への展開が期待されており、いくつかのグループからその報告がなされている。例えば、キナクリドン誘導体、もしくはキナゾリン誘導体を光電変換素子に用いた例(特許文献4)、キナクリドン誘導体を用いた光電変換素子を撮像素子へ応用した例(特許文献5)、ジケトピロロピロール誘導体を用いた例(特許文献6)がある。
通常は、撮像素子により高い電圧を印加することで応答性を向上することができるが、同時に暗電流値も高くなってしまい、感度が落ちるという問題があった。そこで、高電圧時においても高い明暗比を維持し、感度を高めることができる、すなわち高い光電変換効率と共に低暗電流化が両立した撮像素子が求められており、この目的のために、光電変換部と電極部との間に正孔ブロック層または電子ブロック層を挿入する手法が用いられている(特許文献7)。
【0005】
正孔ブロック層および電子ブロック層は、有機エレクトロニクスデバイスの分野では一般に広く用いられており、それぞれ、デバイスの構成膜中において、電極もしくは導電性を有する膜とそれ以外の膜の界面に配置され、正孔もしくは電子の逆移動を制御する役割を果たしている。
しかしながら、従来の正孔ブロック層及び電子ブロック層では低暗電流化が不充分であり、高電圧時に高い明暗比を維持し得る高感度な撮像素子は得られていない。
【発明の概要】
【発明が解決しようとする課題】
【0008】
本発明はこのような状況を鑑みてなされたものであり、撮像素子用光電変換素子の高光電変換効率化と低暗電流化が可能な、正孔ブロック層及び電子ブロック層に適用できる撮層素子用光電変換素子用材料を提供することを目的とする。
【課題を解決するための手段】
【0009】
本発明者は上記課題を解決すべく鋭意努力した結果、下記式(1)で表される化合物を用いることにより前記課題を解決することを見出し、本発明を完成するに至った。
即ち、本発明は、下記の通りである。
[1]下記式(1)
【0010】
【化1】
【0011】
(式(1)中、R
1及びR
2は置換基を有する若しくは無置換の炭素数7乃至20のアリール基、又は置換基を有する若しくは無置換の炭素数6乃至20のヘテロアリール基を表す。)で表される化合物を含む撮像素子用光電変換素子用材料、
(2)R
1及びR
2が置換基を有する若しくは無置換の炭素数7乃至12のアリール基、又は置換基を有する若しくは無置換の炭素数6乃至12のヘテロアリール基である前項(1)に記載の撮像素子用光電変換素子用材料、
(3)R
1及びR
2が置換基を有する又は無置換のナフチル基である前項(2)に記載の撮像素子用光電変換素子用材料、
(4)式(1)で表される化合物が、下記式(2)
【0012】
【化2】
【0013】
で表される化合物である前項(3)に記載の撮像素子用光電変換素子用材料、
(5)前項(1)乃至(4)のいずれか一項に記載の撮像素子用光電変換素子用材料を含む撮像素子用光電変換素子、
(6)p型有機半導体材料とn型有機半導体材料を有する光電変換素子であって、p型有機半導体材料が前項(1)及至(4)のいずれか一項に記載の撮像素子用光電変換素子用材料を含む撮像素子用光電変換素子
(7)(A)第一の電極膜、(B)第二の電極膜及び該第一の電極膜と該第二の電極膜の間に配置された(C)光電変換部を有する光電変換素子であって、該(C)光電変換部が少なくとも(c−1)光電変換層及び(c−2)光電変換層以外の有機薄膜層を含み、かつ該(c−2)光電変換層以外の有機薄膜層が前項(1)乃至(4)のいずれか一項に記載の撮像素子用光電変換素子用材料を含む撮像素子用光電変換素子、
(8)(c−2)光電変換層以外の有機薄膜層が電子ブロック層である前項(7)に記載の撮像素子用光電変換素子、
(9)(c−2)光電変換層以外の有機薄膜層が正孔ブロック層である前項(7)に記載の撮像素子用光電変換素子、
(10)(c−2)光電変換層以外の有機薄膜層が電子輸送層である前項(7)に記載の撮像素子用光電変換素子、
(11)(c−2)光電変換層以外の有機薄膜層が正孔輸送層である前項(7)に記載の撮像素子用光電変換素子、
(12)更に、(D)正孔蓄積部を有する薄膜トランジスタ及び(E)該薄膜トランジスタ内に蓄積された電荷に応じた信号を読み取る信号読み取り部を有する前項(5)乃至(11)のいずれか一項に記載の撮像素子用光電変換素子、
(13)(D)正孔蓄積部を有する薄膜トランジスタが、更に(d)正孔蓄積部と第一の電極膜及び第二の電極膜のいずれか一方とを電気的に接続する接続部を有する前項(12)に記載の撮像素子用光電変換素子、
(14)前項(5)及至(13)のいずれか一項に記載の撮像素子用光電変換素子を複数アレイ状に配置した撮像素子、及び
(15)前項(5)及至(13)のいずれか一項に記載の撮像素子用光電変換素子または前項(14)に記載の撮像素子を含む光センサー。
【発明の効果】
【0014】
式(1)で表される本発明撮像素子用光電変換素子用材料を用いることにより、撮像素子の高光電変換効率化と低暗電流化が可能であり、高電圧時においても高い明暗比を維持し得る高感度の撮像素子用光電変換素子を提供することができる。
【発明を実施するための形態】
【0016】
本発明の内容について詳細に説明する。以下に記載する構成要件の説明は、本発明の代表的な実施態様や具体例に基づくものであるが、本発明はそのような実施態様や具体例に限定されるものではない。
【0017】
本発明の撮像素子用光電変換素子用材料の特徴は、下記一般式(1)で表される化合物を含むことにある。
【0019】
上記式(1)中、R
1及びR
2は置換基を有する若しくは無置換の炭素数7乃至20のアリール基、又は置換基を有する若しくは無置換の炭素数6乃至20のヘテロアリール基を表す。
【0020】
式(1)のR
1及びR
2が表す炭素数7乃至20のアリール基とは、構成される炭素数が7乃至20のアリール化合物から水素原子を一つ除いた残基(芳香族炭化水素基)を意味し、その具体例としては、ナフチル基、アンスリル基、フェナンスリル基、ピレニル基、ナフタセニル基、クリセニル基、フルオレニル基、フルオランテニル基及びトリフェニル基等が挙げられる。これらのうち、ナフチル基、フェナンスリル基、フルオレニル基が好ましく、ナフチル基がより好ましい。また、R
1及びR
2の両者が同一であることが好ましい。
【0021】
式(1)のR
1及びR
2が表す炭素数7乃至20のアリール基は、置換基を有していてもよい。置換基を有しているアリール基とは、アリール基上の水素原子が置換基で置換されたアリール基を意味する。アリール基が置換基を有する場合は、少なくとも一種の置換基を有していればよく、置換位置と置換基数は特に制限されない。
式(1)のR
1及びR
2が表すアリール基が有する置換基に制限はないが、例えばアルキル基、アルコキシ基、アリール基、ハロゲン原子、ヒドロキシル基、メルカプト基、ニトロ基、アルキル置換アミノ基、アリール置換アミノ基、非置換アミノ基(NH
2基)、シアノ基及び、イソシアノ基等が挙げられる。
尚、「無置換のアリール基」とは、アリール基上の水素原子が置換基で置換されていないアリール基を意味し、本明細書において「無置換の」と語句は前記と同じ意味で用いられる。
【0022】
式(1)のR
1及びR
2が表すアリール基が有する置換基としてのアルキル基は、直鎖状、分岐鎖状及び環状の何れにも限定されず、その炭素数も特に限定されないが、通常は炭素数1乃至4の直鎖状若しくは分岐鎖状のアルキル基であるか、または炭素数5乃至6の環状のアルキル基である。
式(1)のR
1及びR
2が表すアリール基が有する置換基としてのアルキル基の具体例としては、メチル基、エチル基、n−プロピル基、iso−プロピル基、n−ブチル基、iso−ブチル基、t−ブチル基、sec−ブチル基、n−ペンチル基、n−ヘキシル基、n−ヘプチル基、シクロペンチル基及びシクロヘキシル基等が挙げられ、炭素数1乃至4の直鎖又は分岐鎖のアルキル基が好ましく、炭素数1又は2の直鎖のアルキル基がより好ましい。
【0023】
式(1)のR
1及びR
2が表すアリール基が有する置換基としてのアルコキシ基の具体例としては、メトキシ基、エトキシ基、プロポキシ基、iso−プロポキシ基、n−ブトキシ基、iso−ブトキシ基、t−ブトキシ基、n−ペンチルオキシ基、iso−ペンチルオキシ基、t−ペンチルオキシ基、sec−ペンチルオキシ基、n−ヘキシルオキシ基、iso−ヘキシルオキシ基、n−ヘプチルオキシ基、sec−ヘプチルオキシ基、n−オクチルオキシ基、n−ノニルオキシ基、sec−ノニルオキシ基、n−デシルオキシ基、n−ウンデシルオキシ基、n−ドデシルオキシ基、n−トリデシルオキシ基、n−テトラデシルオキシ基、n−ペンタデシルオキシ基、n−ヘキサデシルオキシ基、n−ヘプタデシルオキシ基、n−オクタデシルオキシ基、n−ノナデシルオキシ基、n−エイコシルオキシ基、ドコシルオキシ基、n−ペンタコシルオキシ基、n−オクタコシルオキシ基、n−トリコンチルオキシ基、5−(n−ペンチル)デシルオキシ基、ヘネイコシルオキシ基、トリコシルオキシ基、テトラコシルオキシ基、ヘキサコシルオキシ基、ヘプタコシルオキシ基、ノナコシルオキシ基、n−トリアコンチルオキシ基、スクアリルオキシ基、ドトリアコンチルオキシ基及びヘキサトリアコンチルオキシ基等の炭素数1乃至36のアルコキシ基が挙げられ、炭素数1乃至24のアルコキシ基であることが好ましく、炭素数1乃至20のアルコキシ基であることがより好ましく、炭素数1乃至12のアルコキシ基であることが更に好ましく、炭素数1乃至6のアルコキシ基であることが特に好ましく、炭素数1乃至4のアルコキシ基であることが最も好ましい。
【0024】
式(1)のR
1及びR
2が表すアリール基が有する置換基としてのアリール基の具体例としては、フェニル基、ビフェニル基、ナフチル基、アンスリル基、フェナンスリル基、ピレニル基、ナフタセニル基、クリセニル基、フルオレニル基、フルオランテニル基及びトリフェニル基等が挙げられ、フェニル基、ビフェニル基、ナフチル基が好ましく、フェニル基がより好ましい。
【0025】
式(1)のR
1及びR
2が表すアリール基が有する置換基としてのアルキル置換アミノ基は、モノアルキル置換アミノ基及びジアルキル置換アミノ基の何れにも制限されず、これらアルキル置換アミノ基におけるアルキル基としては、式(1)のR
1及びR
2表すアリール基が有する置換基としてのアルキル基と同じものが挙げられる。
【0026】
式(1)のR
1及びR
2が表すアリール基が有する置換基としてのアリール置換アミノ基は、モノアリール置換アミノ基及びジアリール置換アミノ基の何れにも制限されず、これらアリール置換アミノ基におけるアリール基としては、式(1)のR
1及びR
2が表すアリール基の項に記載したアリール基と同じものが挙げられる。
【0027】
式(1)のR
1及びR
2が表すアリール基が有する置換基としては、アルキル基、アリール基であることが好ましく、無置換のアリール基であることがより好ましく、フェニル基であることが更に好ましい。
【0028】
式(1)のR
1及びR
2が表す炭素数6乃至20のヘテロアリール基とは、構成される炭素数が6乃至20のヘテロ原子を有する芳香族基を意味し、その具体例としては、キノリル基、イソキノリル基、カルバゾリル基、カルボリル基、ベンゾチエニル基、ベンゾフラニル基、ベンゾチアゾール基、ベンゾオキサゾール基、ジベンゾチエニル基及びジベンゾフラニル基等の複素環基が挙げられる。これらのうち、ベンゾチエニル基、ベンゾフラニル基がより好ましく、ベンゾチエニル基がさらに好ましい。また、R
1及びR
2の両者が同一であることが好ましい。
【0029】
式(1)のR
1及びR
2が表す炭素数6乃至20のヘテロアリール基は、置換基を有していてもよい。置換基を有しているヘテロアリール基とは、ヘテロアリール基上の水素原子が置換基で置換されたヘテロアリール基を意味する。ヘテロアリール基が置換基を有する場合は、少なくとも一種の置換基を有していればよく、置換位置と置換基数は特に制限されない。
式(1)のR
1及びR
2が表すヘテロアリール基が有する置換基としては、式(1)のR
1及びR
2が表すアリール基が有する置換基と同じものが挙げられる。
【0030】
式(1)におけるR
1及びR
2としては、両者が同一の無置換のナフチル基であることが特に好ましく、式(1)で表される化合物としては、下記式(2)で表される化合物が最も好ましい。
【0032】
式(1)で表される化合物の具体例を以下に示すが、本発明はこれらの具体例に限定されるものではない。
【0037】
式(1)で表される化合物は、特許文献1、特許文献6及び非特許文献1に開示された公知の方法などにより合成することができる。例えば以下のスキームに記された方法が挙げられる。原料としてニトロスチルベン誘導体(A)を用いて、ベンゾチエノベンゾチオフェン骨格(D)を形成し、これを還元することによりアミノ化物(E)が得られる。この化合物(E)をハロゲン化してやればハロゲン化物(F)(以下のスキームには一例としてヨウ素化物を記載した)が得られ、この化合物(F)を更にホウ酸誘導体とカップリングをしてやれば式(1)で表される化合物を得ることが可能である。なお、特許文献5の方法によれば、対応するベンズアルデヒド誘導体から式(1)で表される化合物を1ステップで製造できるため、より効率的である。
【0039】
式(1)で表される化合物の精製方法は、特に限定されず、再結晶、カラムクロマトグラフィー、及び真空昇華精製等の公知の方法が採用できる。また必要に応じてこれらの方法を組み合わせることができる。
【0040】
本発明の撮像素子用光電変換素子(以下、単に「光電変換素子」ということもある。)は、対向する(A)第一の電極膜と(B)第二の電極膜との二つの電極膜間に、(C)光電変換部を配置した素子であって、(A)第一の電極膜又は(B)第二の電極膜の上方から光が光電変換部に入射されるものである。(C)光電変換部は前記の入射光量に応じて電子と正孔を発生するものであり、半導体により前記電荷に応じた信号が読み出され、光電変換膜部の吸収波長に応じた入射光量を示す素子である。光が入射しない側の電極膜には読み出しのためのトランジスタが接続される場合もある。光電変換素子は、アレイ状に多数配置されている場合は、入射光量に加え入射位置情報をも示すため、撮像素子となる。また、より光源近くに配置された光電変換素子が、光源側から見てその背後に配置された光電変換素子の吸収波長を遮蔽しない(透過する)場合は、複数の光電変換素子を積層して用いても良い。可視光領域にそれぞれ異なる吸収波長を有する複数の光電変換素子を積層して用いることにより、多色の撮像素子(フルカラーフォトダイオードアレイ)とすることができる。
【0041】
本発明の撮像素子用光電変換素子用材料は、上記(C)光電変換部を構成する材料に用いられる。
(C)光電変換部は、(c−1)光電変換層と、電子輸送層、正孔輸送層、電子ブロック層、正孔ブロック層、結晶化防止層及び層間接触改良層等からなる群より選択される一種又は複数種の(c−2)光電変換層以外の有機薄膜層とからなることが多い。本発明の撮像素子用光電変換素子用材料は(c−1)光電変換層及び(c−2)光電変換層以外の有機薄膜層のいずれにも用いることができるが、(c−2)光電変換層以外の有機薄膜層に用いることが好ましい。
【0042】
本発明の撮像素子用光電変換素子が有する(A)第一の電極膜及び(B)第二の電極膜は、後述する(C)光電変換部に含まれる(c−1)光電変換層が正孔輸送性を有する場合や、(c−2)光電変換層以外の有機薄膜層(以下、光電変換層以外の有機薄膜層を、単に「(c−2))有機薄膜層」とも表記する)が正孔輸送性を有する正孔輸送層である場合は、該(c−1)光電変換層や該(c−2)有機薄膜層から正孔を取り出してこれを捕集する役割を果たし、また(C)光電変換部に含まれる(c−1)光電変換層が電子輸送性を有する場合や、(c−2)有機薄膜層が電子輸送性を有する電子輸送層である場合は、該(c−1)光電変換層や該(c−2)有機薄膜層から電子を取り出してこれを吐出する役割を果たすものである。よって、(A)第一の電極膜及び(B)第二の電極膜として用い得る材料は、ある程度の導電性を有するものであれば特に限定されないが、隣接する(c−1)光電変換層や(c−2)有機薄膜層との密着性や電子親和力、イオン化ポテンシャル、安定性等を考慮して選択することが好ましい。(A)第一の電極膜及び(B)第二の電極膜として用い得る材料としては、例えば、酸化錫(NESA)、酸化インジウム、酸化錫インジウム(ITO)及び酸化亜鉛インジウム(IZO)等の導電性金属酸化物;金、銀、白金、クロム、アルミニウム、鉄、コバルト、ニッケル及びタングステン等の金属;ヨウ化銅及び硫化銅等の無機導電性物質;ポリチオフェン、ポリピロール及びポリアニリン等の導電性ポリマー;炭素等が挙げられる。これらの材料は、必要により複数を混合して用いてもよいし、複数を2層以上に積層して用いてもよい。(A)第一の電極膜及び(B)第二の電極膜に用いる材料の導電性も光電変換素子の受光を必要以上に妨げなければ特に限定されないが、光電変換素子の信号強度や、消費電力の観点から出来るだけ高いことが好ましい。例えばシート抵抗値が300Ω/□以下の導電性を有するITO膜であれば(A)第一の電極膜及び(B)第二の電極膜として充分機能するが、数Ω/□程度の導電性を有するITO膜を備えた基板の市販品も入手可能となっていることから、この様な高い導電性を有する基板を使用することが望ましい。ITO膜(電極膜)の厚さは導電性を考慮して任意に選択することができるが、通常5乃至500nm、好ましくは10乃至300nm程度である。ITOなどの膜を形成する方法としては、従来公知の蒸着法、電子線ビーム法、スパッタリング法、化学反応法及び塗布法等が挙げられる。基板上に設けられたITO膜には必要に応じUV−オゾン処理やプラズマ処理等を施してもよい。
【0043】
(A)第一の電極膜及び(B)第二の電極膜のうち、少なくとも光が入射する側の何れか一方に用いられる透明電極膜の材料としては、ITO、IZO、SnO
2、ATO(アンチモンドープ酸化スズ)、ZnO、AZO(Alドープ酸化亜鉛)、GZO(ガリウムドープ酸化亜鉛)、TiO
2、FTO(フッ素ドープ酸化スズ)等が挙げられる。(c−1)光電変換層の吸収ピーク波長における透明電極膜を介して入射した光の透過率は、60%以上であることが好ましく、80%以上であることがより好ましく、95%以上であることが特に好ましい。
【0044】
また、検出する波長の異なる光電変換層を複数積層する場合、それぞれの光電変換層の間に用いられる電極膜(これは(A)第一の電極膜及び(B)第二の電極膜以外の電極膜である)は、それぞれの光電変換層が検出する光以外の波長の光を透過させる必要があり、該電極膜には入射光の90%以上を透過する材料を用いることが好ましく、95%以上の光を透過する材料を用いることがより好ましい。
【0045】
電極膜はプラズマフリーで作製することが好ましい。プラズマフリーでこれらの電極膜を作成することにより、電極膜が設けられる基板にプラズマ与える影響が低減され、光電変換素子の光電変換特性を良好にすることができる。ここで、プラズマフリーとは、電極膜の成膜時にプラズマが発生しないか、またはプラズマ発生源から基板までの距離が2cm以上、好ましくは10cm以上、更に好ましくは20cm以上であり、基板に到達するプラズマが減ぜられるような状態を意味する。
【0046】
電極膜の成膜時にプラズマが発生しない装置としては、例えば、電子線蒸着装置(EB蒸着装置)やパルスレーザー蒸着装置等が挙げられる。以下では、EB蒸着装置を用いて透明電極膜の成膜を行う方法をEB蒸着法と言い、パルスレーザー蒸着装置を用いて透明電極膜の成膜を行う方法をパルスレーザー蒸着法と言う。
【0047】
成膜中プラズマを減ずることが出来るような状態を実現できる装置(以下、プラズマフリーである成膜装置という)としては、例えば、対向ターゲット式スパッタ装置やアークプラズマ蒸着装置等が考えられる。
【0048】
透明導電膜を電極膜(例えば第一の導電膜)とした場合、DCショート、あるいはリーク電流の増大が生じる場合がある。この原因の一つは、光電変換層に発生する微細なクラックがTCO(TransparentConductiveOxide)などの緻密な膜によって被覆され、透明導電膜とは反対側の電極膜(第二の導電膜)との間の導通が増すためと考えられる。そのため、Alなど膜質が比較して劣る材料を電極に用いた場合、リーク電流の増大は生じにくい。電極膜の膜厚を、光電変換層の膜厚(クラックの深さ)に応じて制御することにより、リーク電流の増大を抑制することができる。
【0049】
通常、導電膜を所定の値より薄くすると、急激な抵抗値の増加が起こる。本実施形態の撮像素子用光電変換素子における導電膜のシート抵抗は、通常100乃至10000Ω/□であり、膜厚の自由度が大きい。また、透明導電膜が薄いほど吸収する光の量が少なくなり、一般に光透過率が高くなる。光透過率が高くなると、光電変換層で吸収される光が増加して光電変換能が向上するため非常に好ましい。
【0050】
本発明の撮像素子用光電変換素子が有する(C)光電変換部は、少なくとも(c−1)光電変換層及び(c−2)光電変換層以外の有機薄膜層を含む。
(C)光電変換部を構成する(c−1)光電変換層には一般的に有機半導体膜が用いられるが、その有機半導体膜は一層、もしくは複数の層であっても良く、一層の場合は、P型有機半導体膜、N型有機半導体膜、又はそれらの混合膜(バルクヘテロ構造)が用いられる。一方、複数の層である場合は、2乃至10層程度であり、P型有機半導体膜、N型有機半導体膜、又はそれらの混合膜(バルクヘテロ構造)のいずれかを積層した構造であり、層間にバッファ層が挿入されていても良い。
【0051】
(c−1)光電変換層の有機半導体膜には、吸収する波長帯に応じ、トリアリールアミン化合物、ベンジジン化合物、ピラゾリン化合物、スチリルアミン化合物、ヒドラゾン化合物、トリフェニルメタン化合物、カルバゾール化合物、ポリシラン化合物、チオフェン化合物、フタロシアニン化合物、シアニン化合物、メロシアニン化合物、オキソノール化合物、ポリアミン化合物、インドール化合物、ピロール化合物、ピラゾール化合物、ポリアリーレン化合物、カルバゾール誘導体、ナフタレン誘導体、アントラセン誘導体、クリセン誘導体、フェナントレン誘導体、ペンタセン誘導体、フェニルブタジエン誘導体、スチリル誘導体、キノリン誘導体、テトラセン誘導体、ピレン誘導体、ペリレン誘導体、フルオランテン誘導体、キナクリドン誘導体、クマリン誘導体、ポルフィリン誘導体、フラーレン誘導体や金属錯体(Ir錯体、Pt錯体、Eu錯体など)等を用いることができる。
【0052】
本発明の撮像素子用光電変換素子において、(C)光電変換部を構成する(c−2)光電変換層以外の有機薄膜層は、(c−1)光電変換層以外の層、例えば、電子輸送層、正孔輸送層、電子ブロック層、正孔ブロック層、結晶化防止層又は層間接触改良層等としても用いられる。特に電子輸送層、正孔輸送層、電子ブロック層及び正孔ブロック層からなる群より選択される一種以上の薄膜層として用いることにより、弱い光エネルギーでも効率よく電気信号に変換する素子が得られるため好ましい。
【0053】
電子輸送層は、(c−1)光電変換層で発生した電子を(A)第一の電極膜又は(B)第二の電極膜へ輸送する役割と、電子輸送先の電極膜から(c−1)光電変換層に正孔が移動するのをブロックする役割とを果たす。
正孔輸送層は、発生した正孔を(c−1)光電変換層から(A)第一の電極膜又は(B)第二の電極膜へ輸送する役割と、正孔輸送先の電極膜から(c−1)光電変換層に電子が移動するのをブロックする役割とを果たす。
電子ブロック層は、(A)第一の電極膜又は(B)第二の電極膜から(c−1)光電変換層への電子の移動を妨げ、(c−1)光電変換層内での再結合を防ぎ、暗電流を低減する役割を果たす。
正孔ブロック層は、(A)第一の電極膜又は(B)第二の電極膜から(c−1)光電変換層への正孔の移動を妨げ、(c−1)光電変換層内での再結合を防ぎ、暗電流を低減する機能を有する。
【0054】
正孔ブロック層は正孔阻止性物質を単独又は二種類以上を積層する、又は混合することにより形成される。正孔阻止性物質としては、正孔が電極から素子外部に流出するのを阻止することができる化合物であれば限定されない。正孔ブロック層に使用することができる化合物としては、上記一般式(1)で表される化合物の他に、バソフェナントロリン及びバソキュプロイン等のフェナントロリン誘導体、シロール誘導体、キノリノール誘導体金属錯体、オキサジアゾール誘導体、オキサゾール誘導体、キノリン誘導体などが挙げられ、これらのうち、一種又は二種以上を用いることができる。
【0055】
電子ブロック層は電子阻止性物質を単独又は二種類以上を積層する、又は混合することにより形成される。電子阻止性物質としては、電子が電極から素子外部に流出するのを阻止することができる化合物であれば限定されない。電子ブロック層に使用することができる化合物としては、上記一般式(1)で表される化合物の他に、アリールアミン誘導体、カルバゾール誘導体などが挙げられる。これらのうち、一種又は二種以上を用いることができる。
【0056】
上記一般式(1)で表される化合物を含む(c−2)光電変換層以外の有機薄膜層は、特に正孔ブロック層又は電子ブロック層として好適に用いることが出来る。リーク電流を防止するという観点からは正孔ブロック層又は電子ブロック層の膜厚は厚い方が良いが、光入射時の信号読み出しの際に充分な電流量を得るという観点からは膜厚はなるべく薄い方が良い。これら相反する特性を両立するために、一般的には(c−1)及び(c−2)を含む(C)光電変換部の膜厚が5乃至500nm程度であることが好ましい。なお、一般式(1)で表される化合物が用いられる層が、どのような働きをするかは、光電変換素子に他にどのような化合物を用いるかで変わってくる。
また、正孔ブロック層及び電子ブロック層は、(c−1)光電変換層の光吸収を妨げないために、光電変換層の吸収波長の透過率が高いことが好ましく、また薄膜で用いることが好ましい。
【0057】
薄膜トランジスタは、光電変換部により生じた電荷に基づき、信号読み取り部へ信号を出力する。薄膜トランジスタは、ゲート電極、ゲート絶縁膜、活性層、ソース電極、及びドレイン電極を有し、活性層は、シリコン半導体、酸化物半導体又は有機半導体により形成されている。
【0058】
薄膜トランジスタに用いられる活性層を酸化物半導体により形成すれば、アモルファスシリコンの活性層に比べて電荷の移動度がはるかに高く、低電圧で駆動させることができる。また、酸化物半導体を用いれば、通常、シリコンよりも光透過性が高く、可撓性を有する活性層を形成することができる。また、酸化物半導体、特にアモルファス酸化物半導体は、低温(例えば室温)で均一に成膜が可能であるため、プラスチックのような可撓性のある樹脂基板を用いるときに特に有利となる。また、複数の二次受光画素を積層させるため、上段の二次受光画素を形成する際に下段の二次受光画素が影響を受ける。特に光電変換層は熱の影響を受けやすいが、酸化物半導体、特にアモルファス酸化物半導体は低温成膜が可能であるため有利である
【0059】
活性層を形成するための酸化物半導体としては、In、Ga及びZnのうちの少なくとも1つを含む酸化物(例えばIn−O系)が好ましく、In、Ga及びZnのうちの少なくとも2つを含む酸化物(例えばIn−Zn−O系、In−Ga−O系、Ga−Zn−O系)がより好ましく、In、Ga及びZnを含む酸化物が更に好ましい。In−Ga−Zn−O系酸化物半導体としては、結晶状態における組成がInGaO
3(ZnO)m(mは6未満の自然数)で表される酸化物半導体が好ましく、特に、InGaZnO
4 がより好ましい。この組成のアモルファス酸化物半導体の特徴としては、電気伝導度が増加するにつれ、電子移動度が増加する傾向を示す。
【0060】
信号読み取り部は、光電変換部に生成及び蓄積される電荷または前記電荷に応じた電圧を読み取る。
【0061】
図1に本発明の撮像素子用光電変換素子の代表的な素子構造を詳細に説明するが、本発明はこれらの構造には限定されるものではない。
図1の態様例においては、1が絶縁部、2が一方の電極膜(第一の電極膜又は第二の電極膜)、3が電子ブロック層、4が光電変換層、5が正孔ブロック層、6が他方の電極膜(第二の電極膜又は第一の電極膜)、7が絶縁基材、もしくは積層された光電変換素子をそれぞれ表す。読み出しのトランジスタ(図中には未記載)は、2又は6いずれかの電極膜と接続されていればよく、例えば、光電変換層4が透明であれば、光が入射する側とは反対側の電極膜の外側(電極膜2の上側、又は電極膜6の下側)に成膜されていてもよい。光電変換素子を構成する光電変換層以外の薄膜層(電子ブロック層や正孔ブロック層等)が光電変換層の吸収波長を極度に遮蔽しないものであれば、光が入射する方向は上部(
図1における絶縁部1側)または下部(
図1における絶縁基板7側)のいずれでもよい。
【0062】
本発明の撮像素子用光電変換素子における(c−1)光電変換層及び(c−2)光電変換層以外の有機薄膜層の形成方法には、一般的に、真空プロセスである抵抗加熱蒸着、電子ビーム蒸着、スパッタリング、分子積層法、溶液プロセスであるキャスティング、スピンコーティング、ディップコーティング、ブレードコーティング、ワイヤバーコーティング、スプレーコーティング等のコーティング法や、インクジェット印刷、スクリーン印刷、オフセット印刷、凸版印刷等の印刷法、マイクロコンタクトプリンティング法等のソフトリソグラフィーの手法等、更にはこれらの手法を複数組み合わせた方法を採用しうる。各層の厚みは、それぞれの物質の抵抗値・電荷移動度にもよるので限定することはできないが、通常は1乃至5000nmの範囲であり、好ましくは3乃至1000nmの範囲、より好ましくは5乃至500nmの範囲である。
【実施例】
【0063】
以下、実施例を挙げて本発明を更に詳細に説明するが、本発明はこれらの例に限定されるものではない。
実施例中に記載のブロック層は正孔ブロック層及び電子ブロック層のいずれでも良い。光電変換素子の作製はグローブボックスと一体化した蒸着機で行い、作製した光電変換素子は窒素雰囲気のグローブボックス内で密閉式のボトル型計測チャンバー(エイエルエステクノロジー社製)に光電変換素子を設置し、電流電圧の印加測定を行った。電流電圧の印加測定は、特に指定のない限り、半導体パラメータアナライザ4200−SCS(ケースレーインスツルメンツ社)を用いて行った。入射光の照射は、特に指定のない限り、PVL−3300(朝日分光社製)を用い、照射光波長550nm、照射光半値幅20nmにて行った。実施例では、光照射下での光電変換特性と、暗所下での電流特性を評価するため、電流密度の明暗比で表した。明暗比は光照射を行った場合の電流密度の値を暗所での電流密度の値で割ったものを示す。
【0064】
合成例1(2,7−ビス(4’−(2−ナフチル)−(1,1’−ビフェニル)−4−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(具体例のNo.1で表される化合物)の合成)
(工程1)2−(4’−ブロモ−(1,1’−ビフェニル)−4−イル)ナフタレンの合成
DMF(100部)に4−(2−ナフチル)フェニルボロン酸(5.0部)、p−ヨード−ブロモベンゼン(5.7部)、リン酸三カリウム(8.6部)及びテトラキス(トリフェニルホスフィン)パラジウム(0.7部)を加え、窒素雰囲気下、還流温度で6時間撹拌した。得られた反応液を室温まで冷却し、水を加え、析出固体をろ取した。得られた固体をメタノールで洗浄し、乾燥することにより2−(4’−ブロモ−(1,1’−ビフェニル)−4−イル)ナフタレン(7.0部、収率97%)を得た。
【0065】
(工程2)2−(4’−(2−ナフチル)−(1,1’−ビフェニル)−4−イル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロランの合成
トルエン(150部)に、工程1で得られた2−(4’−ブロモ−(1,1’−ビフェニル)−4−イル)ナフタレン(7.0部)、ビス(ピナコラト)ジボロン(6.1部)、酢酸カリウム(3.9部)及び[1,1’−ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリドジクロロメタン付加物(0.5部)を混合し、窒素雰囲気下、還流温度で5時間撹拌した。得られた反応液を室温まで冷却し、固形分をろ別し、生成物を含むろ液を得た。次いで、シリカゲルカラムクロマトグラフィー(展開液;トルエン)にて精製し、溶媒を減圧除去することにより、2−(4’−(2−ナフチル)−(1,1’−ビフェニル)−4−イル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン(6.6部、収率80%)を得た。
【0066】
(工程3)2,7−ビス(4’−(2−ナフチル)−(1,1’−ビフェニル)−4−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェンの合成
DMF(200部)に、水(10.0部)、特許第4945757号に記載の方法で合成した2,7−ジヨード[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(3.2部)、工程2で得られた2−(4’−(2−ナフチル)−(1,1’−ビフェニル)−4−イル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン(6.6部)、リン酸三カリウム(5.5部)及びテトラキス(トリフェニルホスフィン)パラジウム(0.4部)を混合し、窒素雰囲気下、80℃で6時間撹拌した。得られた反応液を室温まで冷却した後、水(200部)を加え、固形分をろ過分取した。得られた固形分をDMF及びアセトンで洗浄し乾燥した後、昇華精製を行うことにより、上記具体例のNo.1で表される化合物(0.5部、収率10%)を得た。
【0067】
実施例1(光電変換素子の作製およびその評価)
ITO透明導電ガラス(ジオマテック(株)製、ITO膜厚150nm)に、2,7−ビス(4’−(2−ナフチル)−(1,1’−ビフェニル)−4−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例1で得られたNo.1で表される化合物)を、ブロック層として抵抗加熱真空蒸着により50nm成膜した。次に、前記のブロック層の上に、光電変換層としてキナクリドンを100nm真空成膜した。最後に、前記の光電変換層の上に、電極としてアルミニウムを100nm真空成膜し、本発明の撮像素子用光電変換素子を作製した。ITOとアルミニウムを電極として、5V、10Vの電圧をそれぞれ印加したときの明暗比は5.0×10
5、および1.1×10
5であった。
【0068】
比較例1(光電変換素子の作製およびその評価)
2,7−ビス(4’−(2−ナフチル)−(1,1’−ビフェニル)−4−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例1で得られたNo.1で表される化合物)の代わりに、2,7−ビス(4−ビフェニル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(下記式(11)で表される化合物)を使用したこと以外は、実施例1に準じて評価を行ったところ、5V、10Vの電圧をそれぞれ印加したときの明暗比は1.5×10
4、および1.0×10
3であった。
【0069】
【化10】
【0070】
比較例2(光電変換素子の作製およびその評価)
2,7−ビス(4’−(2−ナフチル)−(1,1’−ビフェニル)−4−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例1で得られたNo.1で表される化合物)の代わりに、2,7−ビス(1,1’:4’,1’’−ターフェニル−4−イル)−[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(下記式(12)で表される化合物)を使用したこと以外は、実施例1に準じて評価を行ったところ、5V、10Vの電圧をそれぞれ印加したときの明暗比は1.4×10
5、および2.0×10
3であった。
【0071】
【化11】
【0072】
比較例3(光電変換素子の作製およびその評価)
2,7−ビス(4’−(2−ナフチル)−(1,1’−ビフェニル)−4−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(合成例1で得られたNo.1で表される化合物)の代わりに、2,7−ビス(4’−(2−ピリジル)−(1,1’−ビフェニル)−4−イル)[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン(下記式(13)で表される化合物)を使用したこと以外は、実施例1に準じて評価を行ったところ、5V、10Vの電圧をそれぞれ印加したときの明暗比は1.2×10
5、および1.0×10
4であった。
【0073】
【化12】
【0074】
上記実施例及び比較例について、比較例1の明暗比を基準にした時の、各印加電圧で得られた明暗比の倍率を表1に示した。
【0075】
【表1】
【0076】
表1の結果から本発明の撮像素子用光電変換素子用材料を用いて得られた光電変換素子が、低暗電流化によって印加電圧が10Vの場合においても、比較用の光電変換素子よりも高い明暗比を示すことは明らかである。