【文献】
中野大樹、沼田英俊、山根敏志、武田征士、Jean Benoit Heroux、金澤直樹、田中剛平、中根了昌、廣瀬 明,ハードウェアで実現するリザバーコンピューティング,平成30年電気学会全国大会講演論文集[DVD−ROM],日本,一般社団法人電気学会,2018年 3月 5日,pp.13−16[S16−4]
【文献】
野村 光、中谷亮一、Ferdinand Peper、田村英一、三輪真嗣、後藤 穣、鈴木義茂,磁性ドットアレイを用いたリザーバコンピューティング,2018年第65回応用物理学会春季学術講演会 講演予稿集,日本,公益社団法人応用物理学会,2018年 3月 5日,p.136(18p-D104-4),ISBN 978-4-86348-661-4
【文献】
常木澄人、Jacob Torrejon、Mathieu Riou、Flavio Abreu Araujo、Vincent Cros、Julie Grollier、薬師寺 啓、福島章雄、湯浅新治、久保田 均,スピントルク発振素子を用いたリザーバーコンピューティング,2018年第65回応用物理学会春季学術講演会 講演予稿集,日本,公益社団法人応用物理学会,2018年 3月 5日,p.140(18p-D104-7),ISBN 978-4-86348-661-4
(58)【調査した分野】(Int.Cl.,DB名)
【発明の概要】
【発明が解決しようとする課題】
【0008】
しかしながら、STO素子をチップに用いたニューロモルフィック素子は、それぞれのSTO素子の共鳴周波数を揃える必要がある。STO素子の共鳴周波数は、製造誤差等によりばらつく場合があり、STO素子同士が十分相互作用しない場合がある。またSTO素子は、高周波電流を積層方向に印加することで発振する。絶縁層を有するSTO素子の積層方向に高周波電流を長時間印加することは、STO素子の故障の原因となる。
【0009】
本発明は上記事情に鑑みてなされたものであり、安定して動作するリザボア素子及びニューロモルフィック素子を提供する。
【課題を解決するための手段】
【0010】
本発明は、上記課題を解決するため、以下の手段を提供する。
【0011】
(1)第1の態様にかかるリザボア素子は、非磁性の導電体を含むスピン伝導層と、前記スピン伝導層に対して第1方向に位置し、前記第1方向からの平面視で互いに離間して配置された複数の強磁性層と、前記スピン伝導層の前記強磁性層と反対側の面と電気的に接続された複数のビア配線と、を備える。
【0012】
(2)上記態様にかかるリザボア素子は、前記複数の強磁性層のそれぞれは、前記第1方向からの平面視で、前記複数のビア配線のそれぞれと重なる位置にあってもよい。
【0013】
(3)上記態様にかかるリザボア素子において、前記スピン伝導層と電気的に接続された基準電位端子を備えてもよい。
【0014】
(4)上記態様にかかるリザボア素子において、前記ビア配線が強磁性体を含み、前記ビア配線を構成する強磁性体の磁化の配向方向は、前記強磁性層の磁化の配向方向と反対であってもよい。
【0015】
(5)上記態様にかかるリザボア素子は、前記スピン伝導層と前記複数の強磁性層との間に、第1トンネルバリア層をさらに有してもよい。
【0016】
(6)上記態様にかかるリザボア素子は、前記スピン伝導層と前記ビア配線との間に、第2トンネルバリア層をさらに有してもよい。
【0017】
(7)上記態様にかかるリザボア素子において、前記複数の強磁性層のうち隣接する2つの強磁性層の距離は、前記スピン伝導層を構成する材料のスピン輸送長以下であってもよい。
【0018】
(8)上記態様にかかるリザボア素子において、前記複数の強磁性層のうち隣接する2つの強磁性層の距離は、前記スピン伝導層を構成する材料のスピン拡散長以下であってもよい。
【0019】
(9)上記態様にかかるリザボア素子において、前記スピン伝導層は、Cu、Ag、Alからなる群から選択されるいずれかの元素の金属又は合金を含んでもよい。
【0020】
(10)上記態様にかかるリザボア素子において、前記スピン伝導層は、Si、Ge、Cからなる群から選択されるいずれかの元素の単体又は化合物を含んでもよい。
【0021】
(11)上記態様にかかるリザボア素子において、前記複数の強磁性層は、前記第1方向からの平面視で六方格子状に配列していてもよい。
【0022】
(12)上記態様にかかるリザボア素子において、前記複数の強磁性層は、前記第1方向からの平面視で強磁性層が密集した集合体を複数形成し、前記集合体において、前記強磁性層は六方格子状に配列していてもよい。
【0023】
(13)第2の態様にかかるニューロモルフィック素子は、上記態様にかかるリザボア素子と、前記リザボア素子に接続された入力部と、前記リザボア素子に接続され、前記リザボア素子からの信号を学習する出力部と、を備える。
【発明の効果】
【0024】
本実施形態にかかるリザボア素子及びニューロモルフィック素子は、安定した動作が可能である。
【発明を実施するための形態】
【0026】
以下、本実施形態について、図を適宜参照しながら詳細に説明する。以下の説明で用いる図面は、特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際とは異なっていることがある。以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、本発明の効果を奏する範囲で適宜変更して実施することが可能である。
【0027】
「第1実施形態」
図1は、第1実施形態にかかるニューロモルフィック素子の概念図である。ニューロモルフィック素子100は、入力部20とリザボア素子10と出力部30とを有する。入力部20及び出力部30は、リザボア素子10に接続されている。
【0028】
ニューロモルフィック素子100は、入力部20から入力された信号を、リザボア素子10で圧縮し、出力部30で圧縮された信号に重み付け(学習)を行い、外部に信号を出力する。
【0029】
入力部20は、外部から入力された信号をリザボア素子10に伝える。入力部20は、例えば、複数のセンサーを含む。複数のセンサーは、ニューロモルフィック素子100の外部の情報を感知し、リザボア素子10に情報を信号として入力する。信号は、外部の情報の変化を経時的に連続してリザボア素子10に入力してもよいし、所定のタイムドメインで分割してリザボア素子10に入力してもよい。
【0030】
リザボア素子10は、複数のチップCpを有する。複数のチップCpは、相互作用する。リザボア素子10に入力される信号は、多数の情報をもつ。信号がもつ多数の情報は、複数のチップCpが相互作用することで、必要な情報に圧縮される。圧縮された信号は、出力部30に伝わる。リザボア素子10は、学習をしない。すなわち、複数のチップCpはそれぞれ相互作用するだけであり、複数のチップCpの間を伝達する信号に重み付けは行わない。
【0031】
出力部30は、リザボア素子10のチップCpから信号を受け取る。出力部30は、学習する。出力部30は、各チップCpからの信号ごとに、学習により重み付けをする。出力部30は、例えば、不揮発性メモリを含む。不揮発性メモリは、例えば、磁気抵抗効果素子である。出力部30は、ニューロモルフィック素子100の外部に信号を出力する。
【0032】
ニューロモルフィック素子100は、リザボア素子10でデータを圧縮し、出力部30でデータに重み付けをすることで、問題の正答率を高める。
【0033】
またニューロモルフィック素子100は、消費電力に優れる。ニューロモルフィック素子100において学習は、出力部30のみで行われる。学習は、各チップCpから伝わる信号の重みを調整することである。信号の重みは、信号の重要度に応じて決定される。信号の重みを随時調整すると、チップCp間の回路がアクティブになる。アクティブな回路が多いほど、ニューロモルフィック素子100の消費電力は大きくなる。ニューロモルフィック素子100は、最終段階の出力部30のみ学習すればよく、消費電力に優れる。
【0034】
図2は、第1実施形態にかかるリザボア素子10の斜視図である。
図3は、第1実施形態にかかるリザボア素子10の側面図である。
図4は、第1実施形態にかかるリザボア素子10の平面図である。
【0035】
リザボア素子10は、複数の強磁性層1とスピン伝導層2と複数のビア配線3とを備える。複数の強磁性層1は、
図1におけるチップCpに対応する。
【0036】
ここで方向について規定する。スピン伝導層2の広がる面内のうち任意の方向をx方向、スピン伝導層2の広がる面内のうちx方向と交差(例えば、略直交)をy方向、スピン伝導層2の広がる面と交差する(例えば、略直交)方向をz方向とする。z方向は、第1方向の一例である。
【0037】
スピン伝導層2は、xy面内に連続して広がる。スピン伝導層2は、非磁性の導電体からなる。スピン伝導層2は、強磁性層1から染みだしたスピン流を伝播する。
【0038】
スピン伝導層2は、スピン拡散長及びスピン輸送長の長い材料により構成される。スピン拡散長は、スピン伝導層2に注入されたスピンが拡散し、注入されたスピンの情報が半減するまでの距離である。スピン輸送長は、非磁性体内を流れるスピン偏極電流のスピン流が半減するまでの距離である。スピン伝導層2への印加電圧が小さいとスピン拡散長とスピン輸送長とは、ほぼ一致する。一方で、スピン伝導層2への印加電圧が大きくなると、ドリフト効果によりスピン輸送長はスピン拡散長より長くなる。
【0039】
スピン伝導層2は、例えば、金属又は半導体である。スピン伝導層2に用いられる金属は、例えば、Cu、Ag、Al、Mg、Znからなる群から選択されるいずれかの元素を含む金属又は合金である。スピン伝導層2に用いられる半導体は、例えば、Si、Ge、Cからなる群から選択されるいずれかの元素の単体又は合金である。例えば、Si、Ge、Si−Ge化合物、グラフェン等が挙げられる。
【0040】
強磁性層1は、スピン伝導層2の一面に形成される。強磁性層1は、z方向に突出し、xy面内に互いに離間して複数存在する。強磁性層1は、一つのスピン伝導層2に対して複数存在する。隣接する強磁性層1は、例えば、層間絶縁膜で絶縁されている。
【0041】
複数の強磁性層1は、例えば、z方向からの平面視で六方格子状に配列している(
図4参照)。強磁性層1に入力された信号は、スピン流としてスピン伝導層2内を伝播する。強磁性層1が六方格子状に配列する場合、強磁性層1から入力された信号は、他の強磁性層1から入力された信号と相互干渉しやすくなる。
【0042】
複数の強磁性層1の配列は、
図4の場合に限られない。
図5〜
図7は、第1実施形態にかかるリザボア素子の別の例の平面図である。
【0043】
図5に示すリザボア素子10Aは、複数の強磁性層1が正方格子状に配列している。隣接する強磁性層1の間の距離が等しく、入力信号が均質化される。
【0044】
図6に示すリザボア素子10Bは、複数の強磁性層1が六方格子状に密集している。強磁性層1の密集度が高まることで、異なる強磁性層1に入力された信号が相互干渉しやすくなる。なお、この場合でも強磁性層1同士は、絶縁されている。
【0045】
図7に示すリザボア素子10Cは、強磁性層1が密集した集合体Aを複数形成している。集合体Aにおいて、強磁性層1は六方格子状に配列している。隣接する強磁性層1同士は、絶縁されている。リザボア素子10Cは、一つの集合体Aを構成する強磁性層1に入力された信号同士の相互干渉と、異なる集合体Aを構成する強磁性層1に入力された信号同士の相互干渉とで、相互干渉の条件が異なる。リザボア素子10Cにおいて相互干渉の条件を調整することで、リザボア素子10Cは特定の信号を強調して出力部30に伝える。
【0046】
それぞれの強磁性層1の形状は、例えば、円柱状である(
図1参照)。強磁性層1の形状は、円柱状に限られない。強磁性層1の形状は、例えば、楕円柱状、四角柱、円錐、楕円錐、円錐台、四角錐台等でもよい。
【0047】
強磁性層1は、強磁性体を含む。強磁性層1は、例えば、Cr、Mn、Co、Fe及びNiからなる群から選択される金属、これらの金属を1種以上含む合金、これらの金属とB、C、及びNの少なくとも1種以上の元素とが含まれる合金を含む。強磁性層1は、例えば、Co−Fe、Co−Fe−B、Ni−Fe、Co−Ho合金(CoHo
2)、Sm−Fe合金(SmFe
12)である。強磁性層1がCo−Ho合金(CoHo
2)、Sm−Fe合金(SmFe
12)を含むと、強磁性層1は面内磁化膜になりやすい。
【0048】
隣接する2つの強磁性層1の距離は、スピン伝導層2を構成する材料のスピン輸送長以下であることが好ましく、スピン拡散長以下であることが好ましい。
【0049】
ビア配線3は、スピン伝導層2の強磁性層1と反対側の面と電気的に接続されている。ビア配線3は、スピン伝導層2と直接接続されていてもよいし、他の層を介して接続されていてもよい。
図1及び
図3に示すビア配線3は、スピン伝導層2から−z方向に突出し、xy面内に互いに離間して複数存在する。
【0050】
ビア配線3は、導電体を含む。ビア配線3は、例えば、Cu、Al、Auである。隣接するビア配線3は、絶縁されている。
【0051】
図1及び
図3に示すビア配線3のそれぞれは、複数の強磁性層1のそれぞれと対応する位置に配設されている。すなわち、強磁性層1のそれぞれとビア配線3のそれぞれとは、z方向からの平面視で重なっている。
【0052】
次いで、ニューロモルフィック素子100におけるリザボア素子10の製造方法の一例について説明する。
図8Aから
図8Dは、第1実施形態にかかるリザボア素子10の製造方法を示す断面図である。
【0053】
まず基板Sbにホールを形成し、ホール内を導電体で充填する(
図8A)。基板Sbは、例えば、半導体基板である。基板Sbは、例えば、Si、AlTiCが好ましい。Si、AlTiCは、平坦性に優れた表面を得やすい。ホールは、例えば、反応性イオンエッチング(RIE)を用いて形成する。ホール内に充電された導電体が、ビア配線3となる。
【0054】
次いで、基板Sb及びビア配線3の表面を化学機械研磨(CMP)により平坦化する。平坦化した基板Sb、ビア配線3の上に、スピン伝導層2、強磁性層1’を順に積層する(
図8B)。スピン伝導層2及び強磁性層1’は、例えば、化学気相成長法(CVD)を用いて積層する。
【0055】
次いで、強磁性層1’の表面の所定の位置にハードマスクHMを形成する(
図8C)。強磁性層1’のハードマスクHMで被覆されていない部分は、RIE又はイオンミリングで除去する。強磁性層1’は、不要部が除去されることで複数の強磁性層1となる。最後に、強磁性層1の間を層間絶縁膜Iで保護する(
図8D)。上記手順により第1実施形態にかかるニューロモルフィック素子100が得られる。
【0056】
次いで、ニューロモルフィック素子100の機能について説明する。入力部20を構成するセンサーは、リザボア素子10のいずれかの強磁性層1と接続されている。センサーが外部の信号を受けると、対応する強磁性層1からビア配線3に向って電流が流れ、信号がリザボア素子10に入力される。ビア配線3のそれぞれが複数の強磁性層1のそれぞれと対応する位置に配設されている場合、電流の多くはz方向に流れる。
【0057】
電流は、強磁性層1によってスピン偏極し、スピン伝導層2に至る。電荷は、ビア配線3に流れ、スピン伝導層2内をほとんど流れない。スピン伝導層2内は、スピン流が流れる。すなわち、強磁性層1から強磁性層1の近傍のスピン伝導層2にスピンが注入され、スピン伝導層2にスピンが蓄積される。蓄積されたスピンは、スピン流としてスピン伝導層2内を伝播する。
【0058】
電流の印加時間、印加量によって強磁性層1の近傍に蓄積されるスピン量は変化し、スピン輸送長も変化する。電流の印加量が多いと、スピン輸送長は長くなり、強磁性層1の近傍から広い範囲にスピン流が伝搬する。
【0059】
複数の強磁性層1からビア配線3に向って電流が流れると、スピン流は、電流が印加された強磁性層1の近傍のそれぞれ位置から、スピン伝導層2内を広がるように伝搬する。異なる位置から伝搬したスピン流は、それぞれ相互に干渉する。スピン寿命は、Ta、Pt等の金属の場合、数百psecであり、Si等の半導体の場合、数nsecである。スピン伝導層2に注入されたスピンの情報は、数百psec〜数nsec程度で読み取れなくなる。
【0060】
最後にリザボア素子10から出力部30に信号を出力する。信号は、ビア配線3と強磁性層1との間の電位差として読み出される。スピン伝導層2内に電流は流れないが、スピン流が流れる。スピン流が生じると、強磁性層1のスピンに対するスピン伝導層2のポテンシャルが変化し、電位差が発生する。電位差は、いずれかのビア配線3を基準電位とし、基準電位とそれぞれの強磁性層1との間の電位差として読み出される。
【0061】
それぞれの強磁性層1の近傍におけるスピン伝導層2の電位は、異なる位置から広がるスピン流の影響を受ける。一つの強磁性層1から電位差として読みだされる信号は、他の強磁性層1に書き込まれた情報を含み、情報が圧縮されている。
【0062】
最後に圧縮された信号は、出力部30に伝わる。出力部30は、学習により強磁性層1のそれぞれから読み出される信号に重み付けをする。
【0063】
上述のように、第1実施形態にかかるリザボア素子10は、スピン伝導層2内において、それぞれの強磁性層1から伝搬するスピン流が互いに干渉する。入力部20から入力された信号は、スピン伝導層2内で互いに干渉し、スピン伝導層2内に特定の状態を生み出す。つまり入力部20から入力された信号は、スピン伝導層2内で一つの状態に圧縮される。したがって、第1実施形態にかかるニューロモルフィック素子100は、リザボア素子10で適切に信号を圧縮する。信号を圧縮することで、出力部30のみが学習すればよくなり、ニューロモルフィック素子100の消費電力が低減する。
【0064】
また第1実施形態にかかるリザボア素子10は、種々の変更が可能である。
【0065】
図9は、第1実施形態にかかるリザボア素子の別の例の斜視図である。
図9に示すリザボア素子10Dは、基準電位端子3Gを有し、強磁性層1が入力端子1Aと出力端子1Bに分けられている。
【0066】
基準電位端子3Gは、スピン伝導層2と電気的に接続されている。基準電位端子3Gは、それぞれの出力端子1Bから十分離れた位置にあることが好ましい。基準電位端子3Gは、ビア配線3と同様の材料により構成される。
【0067】
強磁性層1は、信号を入力するための入力端子1Aと信号を出力するための出力端子1Bとで分けられている。それぞれの入力端子1Aからビア配線3に電流が流れると、スピン伝導層2内をスピン流が流れ、互いに干渉する。出力端子1Bは、ある瞬間における出力端子1B近傍のスピン伝導層2におけるスピンと出力端子1Bの磁化とのポテンシャルの違いを電位差として出力する。基準電位端子3Gを基準として、それぞれの出力端子1Bの電位V1、V2、V3が測定される。電位V1、V2、V3が出力信号となる。基準電位端子3Gにより基準電位が固定されることで、電位V1、V2、V3の相対評価が可能になる。
【0068】
入力端子1Aと出力端子1Bとの最短距離は、スピン伝導層2を構成する材料のスピン輸送長以下であることが好ましく、スピン拡散長以下であることが好ましい。スピン流が出力端子1Bに十分伝搬することで、出力信号のSN(Signal/Noise)比が向上する。
【0069】
また入力端子1Aと出力端子1Bを分ける場合、出力端子1Bと対向する位置にはビア配線3は無くてもよい。また
図10に示すように、入力端子1A又は出力端子1Bと対向するビア配線3同士は、共通電極層3Cで互いに接続されていてもよい。
【0070】
「第2実施形態」
図11は、第2実施形態にかかるリザボア素子の断面図である。第2実施形態にかかるリザボア素子11は、ビア配線3mが磁性体を含んでいる点が、第1実施形態にかかるリザボア素子10と異なる。その他の構成は、第1実施形態にかかるリザボア素子10と同一であり、説明を省く。また
図11において、
図1と同一の構成には同一の符号を付す。
【0071】
ビア配線3mは、磁性体を含む。ビア配線3mは、スピン伝導層2と近い位置に磁性体を含めばよい。ビア配線3mは、例えば、スピン伝導層2に近い位置から強磁性層と導電層とが順に積層された構造でもよい。磁性体は、強磁性層1と同様の材料を用いることができる。
【0072】
ビア配線3mの磁化の配向方向は、強磁性層1の磁化の配向方向と反対である。磁化の配向方向の異なる強磁性層1とビア配線3mとの間に電流を流すと、スピン伝導層2に同じ向きのスピンを効率的に注入できる。
【0073】
強磁性層1の磁化が+x方向に配向し、ビア配線3mの磁化が−x方向に配向している場合を例に説明する。電流は、例えば、強磁性層1、スピン伝導層2、ビア配線3mの順に流れる。強磁性層1からスピン伝導層2に電流が流れる際は、強磁性層1から−x方向のスピンがスピン伝導層2に注入される。一方で、スピン伝導層2からビア配線3mに電流が流れる際は、ビア配線3mの磁化が−x方向に配向しているため、ビア配線3mからスピン伝導層2には−x方向のスピンが流れる。従って、ビア配線3mが強磁性体を含むと、スピン伝導層2に同じ向きのスピンを効率的に注入できる。
【0074】
第2実施形態にかかるリザボア素子11は、ニューロモルフィック素子100に適用できる。また第2実施形態にかかるリザボア素子11は、第1実施形態にかかるリザボア素子10と同様の効果が得られる。また第2実施形態にかかるリザボア素子11は、スピン伝導層2に効率的にスピンを供給する。したがって、スピン伝導層2内のスピン流の干渉が促進され、リザボア素子11は、より複雑な現象を表現できる。
【0075】
「第3実施形態」
図12は、第3実施形態にかかるリザボア素子の断面図である。第3実施形態にかかるリザボア素子12は、第1トンネルバリア層4を有する点が、第1実施形態にかかるリザボア素子10と異なる。その他の構成は、第1実施形態にかかるリザボア素子10と同一であり、説明を省く。また
図10において、
図1と同一の構成には同一の符号を付す。
【0076】
第1トンネルバリア層4は、強磁性層1とスピン伝導層2との間に位置する。第1トンネルバリア層4は、例えば、xy面内に連続して広がる。第1トンネルバリア層4は、強磁性層1とスピン伝導層2との間の位置にのみ、xy面内に点在していてもよい。
【0077】
第1トンネルバリア層4は、非磁性体の絶縁体からなる。第1トンネルバリア層4は、例えば、Al
2O
3、SiO
2、MgO、MgAl
2O
4等である。また第1トンネルバリア層4は、上記の材料におけるAl、Si、Mgの一部が、Zn、Be等に置換された材料等でもよい。MgO、MgAl
2O
4は、強磁性層1とスピン伝導層2との間でコヒーレントトンネル現象を実現でき、強磁性層1からスピン伝導層2へスピンを効率よく注入できる。
【0078】
第1トンネルバリア層4の厚みは、3nm未満が好ましい。第1トンネルバリア層4の厚みの抵抗が高いとスピン伝導層2からのスピン流の逆流を抑制することができる。しかしながら、第1トンネルバリア層4の厚みが3nm以上では、第1トンネルバリア層4のスピンフィルタとしてのスピン散乱効果が大きくならずに抵抗のみが高くなり、ノイズが増加してしまう。
【0079】
第1トンネルバリア層4は、スピン伝導層2と比較してスピン抵抗が大きい。スピン抵抗は、スピン流の流れやすさ(スピン緩和のし難さ)を定量的に示す量である。
【0080】
スピン抵抗Rsは次の式で定義される(非特許文献1参照)。
【0082】
ここで、λは材料のスピン拡散長、ρは材料の電気抵抗率、Aは材料の断面積である。
非磁性体では、断面積Aが等しい場合、式(1)のうち、スピン抵抗率であるρλの値によってスピン抵抗の大きさが決まる。
【0083】
スピンは、スピン抵抗の低い部分に流れようとする。第1トンネルバリア層4は、絶縁体を含むため電気抵抗率が大きく、スピン抵抗が大きい。第1トンネルバリア層4は、スピン伝導層2に至ったスピンが強磁性層1に戻ることを抑制する。
【0084】
第3実施形態にかかるリザボア素子12は、ニューロモルフィック素子100に適用できる。また第3実施形態にかかるリザボア素子12は、第1実施形態にかかるリザボア素子10と同様の効果が得られる。また第3実施形態にかかるリザボア素子12は、スピン伝導層2に注入されたスピンによりスピン流を効率的に発生できる。したがって、スピン伝導層2内のスピン流の干渉が促進され、リザボア素子12は、より複雑な現象を表現できる。
【0085】
「第4実施形態」
図13は、第4実施形態にかかるリザボア素子の断面図である。第4実施形態にかかるリザボア素子13は、第2トンネルバリア層5を有する点が、第3実施形態にかかるリザボア素子12と異なる。その他の構成は、第3実施形態にかかるリザボア素子12と同一であり、説明を省く。また
図13において、
図12と同一の構成には同一の符号を付す。
【0086】
第2トンネルバリア層5は、スピン伝導層2とビア配線3との間に位置する。第2トンネルバリア層5は、例えば、xy面内に連続して広がる。第2トンネルバリア層5は、強磁性層1とスピン伝導層2との間の位置にのみ、xy面内に点在していてもよい。
【0087】
第2トンネルバリア層5は、非磁性体の絶縁体からなる。第2トンネルバリア層5は、第1トンネルバリア層4と同様の材料により構成される。第2トンネルバリア層5の厚みは、第1トンネルバリア層4の厚みと同等である。
【0088】
第2トンネルバリア層5は、スピン伝導層2と比較してスピン抵抗が大きい。第2トンネルバリア層5は、スピン伝導層2に至ったスピンがビア配線3に流れることを抑制する。
【0089】
第4実施形態にかかるリザボア素子13は、ニューロモルフィック素子100に適用できる。また第4実施形態にかかるリザボア素子13は、第1実施形態にかかるリザボア素子10と同様の効果が得られる。また第4実施形態にかかるリザボア素子13は、スピン伝導層2に注入されたスピンによりスピン流を効率的に発生できる。したがって、スピン伝導層2内のスピン流の干渉が促進され、リザボア素子13は、より複雑な現象を表現できる。
【0090】
以上、本発明の好ましい実施の形態の一例について詳述したが、本発明はこの実施の形態に限定されるものではなく、特許請求の範囲内に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
【0091】
例えば、第1実施形態にかかるリザボア素子10から第4実施形態にかかるリザボア素子13が有する特徴的な構成を組み合わせてもよい。