【文献】
LISHENG XU et al.,Multi-Gaussian Fitting for Digital Volume Pulse Using Weighted Least Squares Method,2011 IEEE International Conference on Information and Automation,2011年 6月 6日,544 - 549
(58)【調査した分野】(Int.Cl.,DB名)
前記パラメータを決定するステップは、前記微分信号のピーク点に対応する時間値及び前記時間値における前記入力信号の振幅値に基づいて前記パラメータを決定することを特徴とする請求項1に記載の信号特徴抽出方法。
前記パラメータを推定するステップは、前記第1エレメント信号のピーク点が以前の時間区間に基づいて前記パラメータを推定することを特徴とする請求項1又は2に記載の信号特徴抽出方法。
前記第2エレメント信号を推定するステップは、前記エレメント信号をモデリングするための信号モデル及び前記第1中間信号の波形に基づいて前記第2エレメント信号に対するパラメータを推定するステップと、
前記推定されたパラメータを前記信号モデルに適用して前記第2エレメント信号を決定するステップと、を含むことを特徴とする請求項1乃至3のいずれか一項に記載の信号特徴抽出方法。
前記第2エレメント信号を推定するステップは、前記第1中間信号を前記第2エレメント信号に決定するステップを含むことを特徴とする請求項1乃至5のいずれか一項に記載の信号特徴抽出方法。
前記信号モデルは、前記エレメント信号の波形が互いに重なって前記入力信号の波形を形成するものとしてモデリングすることを特徴とする請求項1又は4に記載の信号特徴抽出方法。
前記微分信号は、前記入力信号の波形に対する1次微分関数及び前記入力信号に対する高次微分関数のうち少なくとも1つを含むことを特徴とする請求項1又は5に記載の信号特徴抽出方法。
前記エレメント信号を推定するステップは、前記第1中間信号から前記第2エレメント信号が除去された第2中間信号の波形に基づいて第3エレメント信号を推定するステップをさらに含むことを特徴とする請求項1乃至10のいずれか一項に記載の信号特徴抽出方法。
前記エレメント信号を推定するステップは、所定の個数のエレメント信号が推定されるまで前記エレメント信号をモデリングするための信号モデルに基づいて前記エレメント信号を順次推定することを特徴とする請求項1乃至11のいずれか一項に記載の信号特徴抽出方法。
前記信号特徴を抽出するステップは、前記エレメント信号の極大点、極小点、ピーク点、変曲点、傾き極大点、傾き極小点、及び信号波形の面積のうち少なくとも1つを抽出することを特徴とする請求項1乃至12のいずれか一項に記載の信号特徴抽出方法。
請求項1乃至13のいずれか一項に記載の信号特徴抽出方法をハードウェアと結合して実行させるためのプログラムが記録されたことを特徴とするコンピュータ読取可能記録媒体。
前記エレメント信号を推定する処理は、前記第1中間信号から前記第2エレメント信号が除去された第2中間信号の波形に基づいて、前記入力信号の第3エレメント信号を推定する処理をさらに含むことを特徴とする請求項15に記載の信号特徴抽出装置。
【発明を実施するための形態】
【0016】
次に、本発明に係る信号特徴抽出方法及びその装置並びにコンピュータ読取可能記録媒体を実施するための形態の具体例を図面を参照しながら説明する。
【0017】
以下の特定な構造的乃至機能的な説明は、単に実施形態を説明するための目的で例示するものであり、特許出願の範囲が本明細書に説明された内容に限定されるものと解釈されることはない。
説明した分野に属する通常の知識を有する者であれば、このような記載から様々な修正及び変形可能である。本明細書で「一実施形態」又は「実施形態」に対する言及はその実施形態と関連して説明する特定の特徴、構造又は特性が少なくとも1つの実施形態に含まれることを意味し、「一実施形態」又は「実施形態」に対する言及が全て同一の実施形態を指すものと理解されることはない。
【0018】
第1又は第2などの用語が複数のコンポーネントを区分するために用いることができるが、構成要素が第1又は第2の用語によって限定されると解釈されてはならない。また、実施形態で用いた用語は、単に特定の実施形態を説明するために用いられるものであって、実施形態を限定しようとする意図はない。単数の表現は文脈上明白に異なるように意味しない限り、複数の表現を含む。
本明細書において、「含む」又は「有する」などの用語は明細書上に記載された特徴、数字、ステップ、処理、構成要素、部品又はその組み合わせの存在を指定するためのものであって、1つ又はそれ以上の他の特徴や数字、ステップ、処理、構成要素、部品又はそれを組み合わせたものの存在又は付加可能性を予め排除しないものとして理解されなければならない。
添付図面を参照して説明するにおいて、図面符号に関係なく同一の構成要素は同一の参照符号を付与し、これに対する重複する説明は省略する。
【0019】
本発明の以下の実施形態は、ユーザの健康状態をモニタリングするために用いられる。
実施形態は、例えば、パーソナルコンピュータ、ラップトップコンピュータ、タブレットコンピュータ、モバイルデバイス、スマートフォン、テレビ、スマート家電機器、スマート車両、ウェアラブルデバイス、ホーム家電機器、通信システム、映像処理装置などのような様々な形態にユーザの健康状態をモニタリングするために用いられる。
【0020】
本発明の以下の実施形態は、入力信号から該当の入力信号を構成する複数のエレメント信号を決定し、決定されたエレメント信号から信号特徴を抽出するために適用され得る。
本明細書では説明の便宜のために入力信号がPPG(Photoplethysmogram:光電式容積脈波)信号であると仮定し、PPG信号から信号特徴を抽出する実施形態を中心に説明するが、実施形態の範囲がこれに限定されることはない。
例えば、本発明の実施形態は、心電図(Electrocardiography:ECG)、酸素飽和度、心弾図(ballistocardiac:BCG)などの生体信号だけでなく、異なるタイプの信号から信号特徴を抽出するためにも適用され得る。
【0021】
図1A及び
図1Bは、PPG波形の一例を示すグラフである。
PPG信号は、心拍による血流量の変化情報を含む生体信号のうちの1つである。
PPG信号は、心臓から出発して身体の先端へ向かう進行波(propagation wave)と、身体の先端から心臓に戻ってくる反射波が重なった形態を有する。
PPG信号で進行波又は反射波の形態に関する様々な特徴を抽出し、抽出された特徴に基づいて血圧のような心血管系情報の推定が可能である。
【0022】
例えば、進行波の振幅極大点に該当する収縮期ピーク点(systolic peak point)、反射波の振幅極大点に該当する拡張期ピーク点(diastolic peak point)の間の時間差を算出し、算出された時間差でユーザの身長を割った結果に基づいてユーザの血圧を推定することができる。
【0023】
いずれかの血管の特定地点で進行波が先に達した後に反射波が達する時間間隔が短いほど血管硬化度(vessel stiffness index)が高まり、血管硬化度が高いほど血圧は増加する傾向がある。
したがって、PPG信号で収縮期ピーク点と拡張期ピーク点との間の時間差に基づいて血管硬化度を推定でき、推定した血管硬化度に基づいてユーザの血圧を推定し得る。
【0024】
図1Aは、理想的なPPG信号波形の一部分を示す。
図1Aにおいて、横軸は時間軸を示し、縦軸はPPG信号の振幅を示す。
PPG信号110で時間的に前の方に示される上方にふっくらした部分が進行波の波形成分を示し、時間的に後の方に示される上方にふっくらした部分が反射波の波形成分を示す。
ここで、反射波が一個であると仮定したが、複数の反射波が存在してもよい。
特徴点(122、124、126、128)は、PPG信号110の波形から様々な情報を導き出すために必要な重要特徴点である。
特徴点(122、124、126、128)の振幅値や時間値を用いてユーザの健康状態と相関関係のある特徴が決定され得る。
【0025】
特徴点126は、収縮期ピーク点に対応する特徴点124が示された後に血管の圧力が減少して再び増加し始める地点であって、重複隆起(dicrotic notch)に対応する特徴点である。
PPG信号110で重複隆起が明確に区別されれば、PPG信号110で進行波と反射波が容易に区分される。
例えば、PPG信号110を一回微分した値が“0”になる地点のうち、時間上で2番目に示される地点を重複隆起であると決定し、決定された重複隆起に基づいてPPG信号110で進行波と反射波が容易に区分され得る。
しかし、実際に測定されたPPG信号波形では、様々な要因により重複隆起に対応する特徴点が不明になることがあり、これによってPPG信号で進行波と反射波の区分が困難で不正確な信号特徴が抽出されることがある。
不正確な信号特徴の抽出は結果的に不正確な推定結果を招く。
PPG信号波形で特徴点が不明確に示される例について
図1Bに示す。
【0026】
図1Bを参照すると、(a)及び(b)は、PPG信号波形で重複隆起の特徴点が不明に示されて進行波と反射波を区分し難しい場合である。
(c)及び(d)は、PPG信号波形の極大値が進行波成分ではない反射波成分に示されて、収縮期ピーク点と拡張期ピーク点が誤って決定される場合である。
このように、PPG信号波形で特徴点を正確に区別し難い状況が存在する。
また、PPG信号波形で進行波は一個の波形成分から構成され得るが、反射波は複数の波形が重なった形態に示されることがある。
この場合、PPG信号波形で重なった数個の反射波を区分して分析可能であれば、より様々な信号特徴を抽出することが可能になり、これにより生体情報を正確に推定することができる。
【0027】
以下で説明する本発明の信号特徴抽出方法及び信号特徴抽出装置は、PPG信号のような入力信号の波形から該当の入力信号を構成するエレメント信号を推定し、推定したエレメント信号から信号特徴を抽出することができる。
ここで、信号特徴は、例えば、信号波形の極大点、極小点、ピーク点、変曲点、傾き極大点、傾き極小点、及び信号波形の面積などを含むが、信号特徴の種類はこれに限定されることはない。
【0028】
図2は、本発明の一実施形態による信号特徴抽出方法の処理を説明するためのフローチャートである。
信号特徴抽出方法は、1つ以上のプロセッサを含む信号特徴抽出装置によって実行され得る。
図2を参照すると、ステップS210において、信号特徴抽出装置は、入力信号のエレメント信号を推定する。
信号特徴抽出装置は、複数のエレメント信号の波形が互いに重なって入力信号の波形を形成することでモデリングする信号モデルに基づいてエレメント信号を推定する。
信号特徴抽出装置は、入力信号の波形情報(時間による振幅の変化)に基づいて信号モデルを構成するパラメータを決定し、決定されたパラメータに基づいて入力信号を形成するエレメント信号を推定する。
【0029】
一実施形態によれば、信号モデルは、エレメント信号がガウス(Gaussian)波形の形態を有し、入力信号が複数のガウス波形が重なって形成されることでモデリングする。
ただし、エレメント信号の波形形態がガウス波形に限定されることなく、エレメント信号は様々な形態の波形にモデリングされ得る。
信号特徴抽出装置は、入力信号の波形からエレメント信号を順次推定する。
信号特徴抽出装置は、入力信号の波形からエレメント信号を推定し、推定したエレメント信号を入力信号から除去して中間信号を生成した後、中間信号の波形から次のエレメント信号を推定する。
信号特徴抽出装置が入力信号からエレメント信号を推定する工程については、
図3及び
図4を参照してより詳しく説明することにする。
【0030】
ステップS220において、信号特徴抽出装置は、ステップS210で推定したエレメント信号から信号特徴を抽出する。
例えば、信号特徴抽出装置は、各エレメント信号から極大値/極小値に該当する地点に関する情報(例、振幅及び時間)及びエレメント信号波形の面積情報を抽出するが、抽出される信号特徴の種類がこれに限定されることはない。
このように抽出された信号特徴に基づいて付加情報を推定することができる。
例えば、生体信号から抽出された信号特徴は、ユーザの健康状態情報を推定するために用いてもよい。
【0031】
図3は、本発明の一実施形態によるエレメント信号を順次推定する工程をより詳細に説明するためのフローチャートである。
図3を参照すると、ステップS310において、信号特徴抽出装置は、入力信号の第1エレメント信号を推定する。
【0032】
信号特徴抽出装置は、エレメント信号をモデリングするための信号モデル及び入力信号の波形に基づいて第1エレメント信号に対するパラメータを推定する。
信号特徴抽出装置は、入力信号の波形を微分して互いに異なる差数の微分信号を決定し、微分信号の特徴点に関する情報を信号モデルに適用して第1エレメント信号に対するパラメータを決定する。
信号特徴抽出装置は、微分信号のピーク点などに対応する時間値及び時間値における入力信号の振幅値に基づいてパラメータを推定する。
ここで、信号特徴抽出装置は、第1エレメント信号のピーク点が示される時間以前の時間区間に基づいてパラメータを推定する。
一実施形態によれば、信号特徴抽出装置は、信号モデルと入力信号の波形に基づいて時間軸で最も最初に示されるエレメント信号のパラメータを決定する。
【0033】
ステップS320において、信号特徴抽出装置は、入力信号から第1エレメント信号が除去された第1中間信号の波形に基づいて第2エレメント信号を推定する。
第2エレメント信号は、時間軸上で第1エレメント信号の次に示されるエレメント信号である。
信号特徴抽出装置は、ステップS310と同様に、第1中間信号の波形を微分して互いに異なる差数の微分信号を決定し、微分信号の特徴点に関する情報を信号モデルに適用して第2エレメント信号に対するパラメータを決定する。
ここで、信号特徴抽出装置は、第2エレメント信号のピーク点が示される時間以前の時間区間に基づいてパラメータを推定し得る。
一実施形態によれば、信号特徴抽出装置は、信号モデルと第1中間信号の波形に基づいて第1中間信号を構成するエレメント信号のうち時間軸で最も最初に示されるエレメント信号のパラメータを決定する。
【0034】
ステップS330において、信号特徴抽出装置は、第1中間信号から第2エレメント信号が除去された第2中間信号の波形に基づいて第3エレメント信号を推定する。
ここで、第2中間信号は、入力信号から第1エレメント信号及び第2エレメント信号が全て除去された信号である。
一実施形態によれば、ステップS320と同様に、信号特徴抽出装置は、信号モデルと第2中間信号の波形に基づいて信号モデルに適用されるパラメータを決定し、決定されたパラメータを信号モデルに適用して第3エレメント信号を決定する。
このように決定された第3エレメント信号は、信号モデルに基づいて推定された第1及び第2エレメント信号と同一の波形を有する。
他の実施形態によれば、第3エレメント信号が推定しようとする最後のエレメント信号である場合、信号モデルを用いて第3エレメント信号を推定する工程なしに、第2中間信号が第3エレメント信号に決定されてもよい。
【0035】
他の実施形態によれば、信号特徴抽出装置は、ステップS310乃至ステップS330で時間軸上で最も後方に示されるエレメント信号から推定してもよい。
信号特徴抽出装置は、推定しようとするエレメント信号の波形が全体の波形成分と類似の程度がよりも大きいエレメント信号から先に推定するものとして決定してもよい。
中間信号からエレメント信号を推定する工程は、推定されたエレメント信号の個数が入力信号の波形から推定しようとするエレメント信号の個数に達するまで繰り返し実行される。
【0036】
例えば、入力信号から推定しようとするエレメント信号の個数がL個である場合、信号特徴抽出装置は、L個のエレメント信号が推定されるまで信号モデルに基づいてエレメント信号を順次推定する。
図3に示す実施形態は、Lが3である場合であり、最終的に入力信号から第1、第2及び第3エレメント信号が推定され得る。
Lが2である場合、ステップS330を実行せず、ステップS320まで実行される。
この場合、ステップS330で説明したように、最後のエレメント信号である第2エレメント信号は、第1エレメント信号のように信号モデルに基づいて決定されたり、又は第1中間信号が第2エレメント信号に決定され得る。
【0037】
図4は、本発明の一実施形態による信号特徴抽出装置の構成の概略を示すブロック図である。
図4を参照すると、信号特徴抽出装置400は、微分器410、パラメータ決定器420、エレメント信号推定器430、中間信号決定器440、及び特徴抽出器450を含む。
【0038】
微分器410は、入力信号の波形を微分して微分信号を決定する。
微分器410は、1次微分信号及び2次以上の高次(higher order)微分信号を決定する。
一実施形態によれば、入力信号は、微分器410に入力される前にフィルタリング処理などによってノイズが除去され得る。
パラメータ決定器420は、微分器410によって算出された微分信号と信号モデルに基づいて追跡しようとするエレメント信号に対するパラメータを決定する。
エレメント信号推定器430は、パラメータ決定器420によって決定されたパラメータを信号モデルに適用して現在のエレメント信号を推定する。
エレメント信号の波形形態は、信号モデルに適用される様々なパラメータによって決定される。
【0039】
中間信号決定器440は、入力信号からエレメント信号推定器430によって推定された現在のエレメント信号を除去して中間信号を決定する。
中間信号は微分器410に入力され、微分器410は中間信号を微分して微分信号を決定する。
その後、予め決定された数のエレメント信号が推定されるまで上記の過程が繰り返し実行する。
例えば、パラメータ決定器420は、微分信号と信号モデルに基づいて次のエレメント信号に対するパラメータを決定し、エレメント信号推定器430は決定されたパラメータを信号モデルに適用して次のエレメント信号を推定する。
中間信号決定器440は、推定されたエレメント信号を再び以前に決定された中間信号から除去して他の中間信号を生成し、生成された他の中間信号が再び微分器410に入力され得る。
このような反復工程が終了すれば、入力信号の波形を形成する複数のエレメント信号が決定され、特徴抽出器450は決定されたエレメント信号から特徴点を抽出することができる。
【0040】
以下では、信号特徴抽出装置400が信号モデルを用いて入力信号から複数のエレメント信号を推定する本発明の一実施形態についてより詳しく説明する。
入力信号から推定しようとするエレメント信号の個数がL個であり、エレメント信号がガウス波形の形態を有すると仮定すれば、L個の時間移動したガウス波形が重複して構成された一周期の入力信号g(t)は以下に示す数式(1)のように定義された信号モデルに示すことができる。
【数1】
【0041】
ここで、g(t)はL個のエレメント信号g1(t)、g2(t)、...、g
L(t)の和からなる信号を示し、g
l(t)はl番目のエレメント信号を示す。
tは時間を示す変数である。
m
lはg
l(t)の平均であり、σ
lはg
l(t)の標準偏差である。
A
lはg
l(t)の振幅係数であり、B
lはオフセットである。
信号特徴抽出装置400は、入力信号の波形に基づいて数式(1)でg
l(t)を定義するパラメータm
l、A
l、B
l、及びσ
lを決定することによって入力信号を構成するエレメント信号の波形を決定し得る。
【0042】
信号特徴抽出装置400は、微分関数を用いてエレメント信号に対するパラメータを容易に決定することができる。
数式(1)において、g
l(t)を微分することによって数式(1)がオフセットB
lに無関係になり、微分関数のピーク値に対応する時間を用いることによって数式(1)が振幅係数A
lに無関係になる。
信号特徴抽出装置400は、微分関数を用いて平均m
lと標準偏差σ
lを推定した後、平均m
lと標準偏差σ
lと無関係に、振幅係数A
l及びオフセットB
lを推定することでエレメント信号を定義する信号モデルの4個のパラメータを決定することができる。
ここで、信号特徴抽出装置400は、パラメータの推定誤差を減らすために各エレメント信号のピーク点よりも時間的に前の区間に基づいてパラメータを推定することができる。
これについては、
図5A〜
図5Cを参照して説明する。
【0043】
図5Aは、入力信号500の波形が3個のエレメント信号(510、520、530)の波形が重複して構成されたと仮定した一例を示す。
入力信号500の波形は、エレメント信号(510、520、530)の波形の単なる和として示すことができる。
図5Aに示した波形は、入力信号500の波形の前方(開始時間方向)に行くほど最初のエレメント信号510の波形と類似する程度が大きくなることが分かる。
時間軸上で前方に行くほど最初のエレメント信号510の波形の大きさに比べて他のエレメント信号(520、530)の波形の大きさが相対的に小さくなり、入力信号500の波形と最初のエレメント信号510の波形の形態が互いに類似することが分かる。
【0044】
図5Bを参照すると、時間領域(符号540)で入力信号500の波形が異なるエレメント信号(520、530)よりも最初のエレメント信号510の波形に類似することが分かる。
図5Cは、入力信号500から最初のエレメント信号510が除去された中間信号550の波形を示す。
時間領域(符号560)で、中間信号550の波形は3番目のエレメント信号530よりも2番目のエレメント信号520の波形に類似することが分かる。
【0045】
入力信号から各エレメント信号の波形を区分するために、時間的に先に発生するエレメント信号を推定する場合、信号特徴抽出装置400は、推定誤差を減らすために時間的に各エレメント信号の波形のピーク点が示される時間以前の時間区間に基づいてエレメント信号を推定する。
【0046】
数式(1)の信号モデルによると、時間的に各エレメント信号の波形のピーク点が示される時間よりも前の時間区間は“t<m
l”に該当する。
数式(1)の信号モデルに基づいたオリジナル関数g
l(t)及び1次、2次、3次微分関数であるg
’l(t)、g
’’l(t)、g
’’’l(t)各ピーク点における時間t値(tがm
lよりも小さい時間区間基準)は以下に示す表1の通りである。
【表1】
【0047】
図6は、それぞれ表1のg
l(t)、g
’l(t)、g
’’l(t)、及びg
’’’l(t)に対応する信号波形及びピーク点におけるt値を示す。
各微分信号波形でピーク点は波形の傾きが“0”になる地点として、tがm
lよりも小さい時間区間内で決定される。
【0048】
再び
図4を参照すると、微分器410は、全体信号の波形を微分して微分差数が互いに異なる2つの微分信号を決定する。
ここで、全体信号は初めには入力信号に該当し、最初のエレメント信号が推定された後からは入力信号からその間に推定されたエレメント信号を除去した中間信号に該当する。
全体信号の波形関数g(t)で時間t値が1ずつ増加するデジタルサンプルインデックスであると仮定する場合、微分器410は、
g
’(t)=g(t)−g(t−1)
の関係を用いて1次微分関数g
’(t)を決定する。
このような方式をn差微分関数g
(n)(t)まで拡張する場合、微分器410は、
g
(n)(t)=g
(n−1)(t)−g
(n−1)(t−1)
の関係を用いてn差微分関数を決定し得る。
【0049】
パラメータ決定器420は、決定された2つの微分信号のピーク点における時間値に基づいて、信号モデルのm
lとσ
lのパラメータを推定する。
そして、パラメータ決定器420は、上記の時間値で入力信号が有する振幅値に基づいて残りのパラメータA
lとB
lを推定し得る。
【0050】
パラメータを推定するために全体信号の1次微分関数及び2次微分関数を用いる場合、パラメータ決定器420は、上記の表1に示した各微分関数のピーク点の時間値t
1、t
2を用いる。
ここで、1次微分関数と2次微分関数を用いる実施形態について説明するが、実施形態の範囲がこれに限定されることはない。
例えば、2次微分関数の代わりに3次微分関数又は4次微分関数を用いてもよく、3次微分関数と4次微分関数に基づいてパラメータが決定されてもよい。
【0051】
1次微分関数及び2次微分関数を用いる場合、表1によると、時間値t
1、t
2及びパラメータm
l、σ
lの関係式は以下に示す数式(2)のように示す。
【数2】
【0052】
パラメータ決定器420は、数式(2)の2つの線形方程式からパラメータm
lとσ
lを決定し、パラメータm
lとσ
lは以下に示す数式(3)のように示す。
【数3】
【0053】
パラメータ決定器420は、数式(3)のように互いに異なる差数の微分関数におけるピーク点に対応する時間値に基づいてパラメータm
lとσ
lを決定する。
パラメータ決定器420は、各t
1、t
2における全体信号の振幅値g(t
1)、g(t
2)を用いて他のパラメータA
l及びB
lを決定する。
【0054】
振幅値g(t
1)、g(t
2)とパラメータA
l、B
lとの間の関係式は以下に示す数式(4)のように示す。
【数4】
ここで、g(t)はl番目のエレメント信号を推定するためのステップにおける全体信号を示し、より詳しくは、最初の入力信号で推定されたエレメント信号g
1(t)、g
2(t)、...、g
(l−1)(t)を除去した信号を示す。
【0055】
数式(4)において、
と
の関係はt<m
lの時間区間でl番目のエレメント信号の推定ステップで全体信号g(t)の波形とg(t)に対する最初のエレメント信号g
l(t)の波形が互いに類似することを示す。
【0056】
パラメータ決定器420は、数式(4)に基づいて、以下に示す数式(5)のようにパラメータA
lとB
lを決定する。
【数5】
【0057】
エレメント信号推定器430は、上記のように決定されたパラメータm
l、σ
l、A
l及びB
lを数式(1)のg
l(t)に適用してl番目のエレメント信号を決定する。
l番目のエレメント信号が決定されれば、中間信号決定器440は、全体信号で該当のl番目のエレメント信号を除去して新しい中間信号を生成し、新しい中間信号は(l+1)番目のエレメント信号を推定するために再び微分器410に入力されて、上記で説明した工程が再び実行され得る。
上記工程は、入力信号から予め決定した数のエレメント信号が推定されるまで繰り返し実行される。
【0058】
図7は、本発明の一実施形態による信号特徴抽出方法の処理を具体的に説明するためのフローチャートである。
図7を参照すると、ステップS710において、信号特徴抽出装置は入力信号を受信し、求めたいエレメント信号のインデックスを示すlを“1”に設定する。
lが“1”である場合、全体信号g(t)が入力信号となる。
ステップS720において、信号特徴抽出装置は、全体信号g(t)を微分して互いに異なる差数の微分関数を算出する。
【0059】
ステップS730において、信号特徴抽出装置は、各微分関数のピーク点に該当する時間値t
1、t
2及び振幅値g(t
1)、g(t
2)を決定する。
ステップS740において、信号特徴抽出装置は、数式(3)に時間値t
1、t
2を適用してl番目のエレメント信号に対する信号モデルの平均及び標準偏差を推定し、数式(5)に振幅値g(t
1)、g(t
2)を適用して信号モデルの振幅係数及びオフセットを推定する。
ステップS750において、信号特徴抽出装置は、推定した平均、標準偏差、振幅係数、及びオフセットに基づいてl番目のエレメント信号g
l(t)を決定する。
信号特徴抽出装置は、推定した平均、標準偏差、振幅係数、及びオフセットを数式(1)の信号モデルに適用してエレメント信号g
l(t)を決定する。
【0060】
ステップS760において、信号特徴抽出装置は、全体信号g(t)からl番目のエレメント信号g
l(t)を除去した信号を新しい全体信号g(t)に設定し、lを“1”だけ増加させる。
ステップS770において、信号特徴抽出装置は、lが所定のLよりも大きいか否かを判断する。
lがLよりも大きくない場合、信号特徴抽出装置は、ステップS760で新しく設定された全体信号g(t)に基づいてステップS720にもどり再び開始する。
その後、信号特徴抽出装置は、ステップS720〜ステップS770の工程を繰り返し行って合わせてL個のエレメント信号を順次推定する。
lがLよりも大きい場合、ステップS780において、信号特徴抽出装置は、ステップS710〜ステップS770によって決定されたL個のエレメント信号から信号特徴を抽出する。
【0061】
図8A〜
図8Dは、本発明の一実施形態による入力信号の波形からエレメント信号を推定する過程を説明するための図である。
図8Aを参照すると、(a)は入力信号g(t)の波形を示し、(b)はg(t)の1次微分関数g
’(t)の波形を示し、(c)はg(t)の2次微分関数g
’’(t)の波形を示す。
信号特徴抽出装置は、入力信号g(t)を微分して1次微分関数g
’(t)及び2次微分関数g
’’(t)などの微分関数を決定する。
信号特徴抽出装置は、1次微分関数g
’(t)及び2次微分関数g
’’(t)でそれぞれ最初の極大点を形成する時間値t
1及びt
2を決定し、時間値t
1及びt
2それぞれにおける入力信号g(t)の振幅値であるg(t
1)及びg(t
2)を決定する。
【0062】
信号特徴抽出装置は、時間値t
1及びt
2に基づいて数式(3)から第1エレメント信号の平均及び標準偏差のパラメータを決定する。
また、信号特徴抽出装置は、振幅値g(t
1)及びg(t
2)に基づいて数式(5)から第1エレメント信号の振幅係数及びオフセットのパラメータを決定する。
上記のような工程によって平均、標準偏差、振幅係数、及びオフセットが決定されれば、数式(1)の信号モデルg
l(t)に基づいた第1エレメント信号が決定される。
図8Bは、このような工程によって決定された第1エレメント信号g
1(t)の波形の一例を示す。
【0063】
その後、信号特徴抽出装置は、
図8Cに示すように、(a)に示す入力信号g(t)の波形から(b)に示す第1エレメント信号g
1(t)の波形を除去して、(c)に示す中間信号「g(t)−g
1(t)」を生成する。
信号特徴抽出装置は、(c)の中間信号を微分して互いに異なる差数の微分関数を決定し、上記で説明した工程に基づいて第2エレメント信号を推定する。
信号特徴抽出装置は、所定の数のエレメント信号が推定されるまで上記の工程を繰り返して行う。
【0064】
図8Dは、信号特徴抽出装置によって入力信号の波形から3つのエレメント信号が決定された一例を示す。
(a)は入力信号g(t)の波形を示す。(b)、(c)、及び(d)は第1エレメント信号g
1(t)、第2エレメント信号g
2(t)及び、第3エレメント信号g
3(t)の波形を示し、エレメント信号(g
1(t)、g
2(t)、及びg
3(t))は重複して入力信号g(t)を形成し得る。
信号特徴抽出装置は、エレメント信号(g
1(t)、g
2(t)、及びg
3(t))から極大点、極小点、波形面積などの特徴を抽出することができる。
【0065】
図9A〜
図9Cは、本発明の一実施形態による入力信号から推定されたエレメント信号の一例を示すグラフである。
図9A〜
図9Cは、入力信号の波形が2つのエレメント信号の波形から構成されたと仮定して、信号特徴抽出装置が様々な形態の入力信号からエレメント信号を推定した結果を示す。
入力信号の波形は、例えば、2、3、4又はそれ以上の数のように他の個数のエレメント信号を含んでもよい。
【0066】
図9A〜
図9Cにおいて、符号(910、940、970)はそれぞれ互いに異なる形態の入力信号を示し、各図の符号(920、950、980)は各入力信号(910、940、970)の波形から推定された第1エレメント信号を示す。
各図の符号(930、960、990)は、各入力信号(910、940、970)から推定された第2エレメント信号を示す。
ここで、第2エレメント信号は、入力信号から第1エレメント信号が除去された残りの波形成分を含む。
【0067】
図9A〜
図9Cに示すように、入力信号が特徴点を抽出し難しい波形の形態を有しても、信号特徴抽出装置は、入力信号の波形から特徴点抽出が容易な形態を有する複数のエレメント信号を決定し、決定されたエレメント信号から特徴点をより容易に抽出することができる。
例えば、
図9Bに示す入力信号940がPPG信号であれば、PPG信号で重複隆起の特徴点が不明であるため、進行波と反射波の区分が容易でないことが分かる。
しかし、信号特徴抽出装置は、本明細書で説明された方法によって入力信号940を進行波と反射波とに容易に区分できる。
また、
図9Cに示す入力信号970がPPG信号であれば、PPG信号で進行波の振幅よりも反射波の振幅が大きく示されて入力信号970の波形から特徴点を抽出することが難しいが、信号特徴抽出装置は、本明細書で説明した方法に基づいて入力信号970を進行波と反射波とに容易に区分することができる。
【0068】
図10は、本発明の他の実施形態による信号特徴抽出装置の概略的な構成を示すブロック図である。
図10を参照すると、信号特徴抽出装置1000は、1つ以上のプロセッサ1010、メモリ1020、及びディスプレイ1030を含む。
【0069】
プロセッサ1010は、
図1〜
図9Cを参照して前述した1つ以上の処理を行う。
例えば、プロセッサ1010は、入力信号から複数のエレメント信号を推定し、推定したエレメント信号から信号特徴を抽出する工程を行う。
このようなプロセッサ1010は、複数の論理ゲートのアレイで実現されるが、別の形態のハードウェアで実現され得ることは、本実施形態が属する技術分野で通常の知識を有する者であれば理解されるものである。
【0070】
メモリ1020は、
図1〜
図9Cを参照して前述した1つ以上の処理を行うための命令を格納したり、又は信号特徴抽出装置1000が運用されながら取得したデータと結果を格納する。
一部の実施形態において、メモリ1020は、非一時的なコンピュータで読み出し可能な記録媒体、例えば、高速ランダムアクセスメモリ及び/又は不揮発性コンピュータ読み出し可能記録媒体(例えば、1つ以上のディスク格納デバイス、フラッシュメモリデバイス、又は、その他の不揮発性固体メモリデバイス)を含んでもよい。
【0071】
一実施形態によれば、プロセッサ1010は、例えば、ユーザの血圧及び血管硬化度を決定し、決定された血圧及び血管硬化度をディスプレイ1030に出力する。
ディスプレイ1030は、ユーザ入力を受信し、ユーザインタフェースを提供することのできる1つ以上のハードウェアコンポーネントを含む物理的な構造である。
ディスプレイ1030は、ディスプレイ領域、ジェスチャキャプチャー領域、タッチ検出ディスプレイのいずれかの組み合わせを含んでもよい。
ディスプレイ1030は、信号特徴抽出装置1000に内蔵されたり、信号特徴抽出装置1000に付着したり、信号特徴抽出装置1000から離れた外部周辺装置に配置され得る。
ディスプレイ1030は、単一スクリーンディスプレイ又はマルチスクリーンディスプレイであり得る。
ディスプレイ130は、また、メガネタイプのディスプレイ(eye glass display:EGD)として実現され得る。
【0072】
図には示していないが、実施形態による信号特徴抽出装置1000は、キーボード、タッチスクリーン、マイクロホンなどのような入出力インタフェース、又は外部と通信するためのネットワーク通信インタフェースをさらに含んでもよい。
例えば、入出力インタフェースは、ユーザによって入力されたユーザ入力を受信したり、又は信号特徴に基づいて決定された付加情報を出力し得る。
ネットワーク通信インタフェースは、エレメント信号に関する情報及び抽出された信号特徴に関する情報を信号特徴抽出装置1000の外部に送信し得る。
【0073】
以上、上述した実施形態は、構成要素の組み合わせで具現され得る。
例えば、本実施形態で説明した装置及び構成要素は、例えば、プロセッサ、コントローラ、ALU(arithmetic logic unit)、デジタル信号プロセッサ(digital signal processor)、マイクロコンピュータ、FPA(field programmable array)、PLU(programmable logic unit)、マイクロプロセッサ、又は命令(instruction)を実行して応答する異なる装置のように、1つ以上の汎用コンピュータ又は特殊目的コンピュータを用いて具現され得る。
【0074】
処理装置は、オペレーティングシステム(OS)及びオペレーティングシステム上で行われる1つ以上のソフトウェアアプリケーションを実行する。
また、処理装置は、ソフトウェアの実行に応答してデータをアクセス、格納、操作、処理、及び生成する。
理解の便宜のために、処理装置は1つが使用されるものとして説明する場合もあるが、当該技術分野で通常の知識を有する者は、処理装置が複数の処理要素(processing element)及び/又は複数類型の処理要素を含むことが分かる。
例えば、処理装置は、複数のプロセッサ又は1つのプロセッサ及び1つのコントローラを含む。また、並列プロセッサ(parallel processor)のような、他の処理構成も可能である。
【0075】
ソフトウェアは、コンピュータプログラム、コード、命令、又はこれらのうちの1つ以上の組み合わせを含み、所望通りに処理するように処理装置を構成し、独立的又は結合的に処理装置に命令する。
ソフトウェア及び/又はデータは、処理装置によって解釈され、処理装置に命令又はデータを提供するためのあらゆる類型の機械、構成要素、物理的装置、仮想装置、コンピュータ格納媒体又は装置、或いは送信される信号波を介して永久的又は一時的に具現化され得る。
ソフトウェアは、ネットワークに接続されたコンピュータシステム上に分散され、分散された方法で格納されるか又は実行され得る。
ソフトウェア及びデータは1つ以上のコンピュータ読み取り可能な記録媒体に格納される。
【0076】
本実施形態による方法は、多様なコンピュータ手段を介して実施されるプログラム命令の形態で具現され、コンピュータ読み取り可能な記録媒体に記録される。
記録媒体は、プログラム命令、データファイル、データ構造などを単独又は組み合わせて含む。
記録媒体及びプログラム命令は、本発明の目的のために特別に設計して構成されたものでもよく、コンピュータソフトウェア分野の技術を有する当業者にとって公知のものであり使用可能なものであってもよい。
【0077】
コンピュータ読み取り可能な記録媒体の例としては、ハードディスク、フロッピー(登録商標)ディスク、及び磁気テープのような磁気媒体、CD−ROM、DVDのような光記録媒体、フロプティカルディスクのような磁気−光媒体、及びROM、RAM、フラッシュメモリなどのようなプログラム命令を保存して実行するように特別に構成されたハードウェア装置を含む。
【0078】
プログラム命令の例としては、コンパイラによって生成されるような機械語コードだけでなく、インタプリタなどを用いてコンピュータによって実行される高級言語コードを含む。
ハードウェア装置は、本発明の処理を実行するために1つ以上のソフトウェアモジュールとして作動するように構成してもよく、その逆も同様である。
【0079】
尚、本発明は、上述の実施形態に限られるものではない。本発明の技術的範囲から逸脱しない範囲内で多様に変更実施することが可能である。