【文献】
NTT DOCOMO,Remaining issues on TDD-FDD CA[online],3GPP TSG-RAN WG1♯76,3GPP,2014年 2月14日,R1-140619,検索日[2017.12.21],インターネット<URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_76/Docs/R1-140619.zip>
(58)【調査した分野】(Int.Cl.,DB名)
一つのセルグループに対してFDD方式でHARQ−ACKを送信し、他のセルグループに対してTDD方式でHARQ−ACKを送信することを特徴とする請求項1から請求項3のいずれかに記載の端末。
【発明を実施するための形態】
【0012】
図1は、Rel.10−12における上り制御情報(UCI)の送信方法の一例を示す図である。
図1Aは、上りデータの送信指示(PUSCH送信)がない場合のUCI多重方法を示し、
図1Bは、上りデータの送信指示がある場合のUCI多重方法を示している。また、
図1では、一例として5CC(1個のPCellと4個のSCell)が設定され、PUCCHとPUSCHの同時送信が設定されない場合を示している。
【0013】
図1Aは、あるサブフレームにおいて、CC#1−CC#5でPUSCH送信が行われない場合を示している。この場合、ユーザ端末は、各CCの上り制御情報を所定のCC(ここでは、CC#1)のPUCCHに多重して送信する。
【0014】
図1Bは、あるサブフレームにおいて、CC#3(SCell)で無線基地局に送信する上りデータ(PUSCH送信)がある場合を示している。この場合、ユーザ端末は、CC#3のPUSCHに上り制御情報(CC#1のPUCCHで送信すべき上り制御情報)を多重(Piggyback)して送信する。
【0015】
このように、PUCCHとPUSCHの同時送信が設定されない場合、ユーザ端末はPUSCH送信がある際にはPUCCH送信を行わないため、シングルキャリア送信を維持することが可能となる。なお、複数CCでPUSCH送信がある場合には、所定CC(プライマリセル、又はセルインデックスが最小のセカンダリセル等)にPUCCHを割当てる構成とすることができる。
【0016】
また、Rel.10−12のCAでは、PUCCHとPUSCHの同時送信(Simultaneous PUCCH-PUSCH transmission)もサポートされている。
図2にPUCCH−PUSCH同時送信が設定される場合の上り制御情報の送信方法の一例を示す。
【0017】
PUCCH−PUSCH同時送信が設定される場合、上り制御情報は、PUCCHのみ、又は一部のPUCCHと一部のPUSCHを用いて送信される。PUCCH−PUSCH同時送信は、CC内のPUCCH−PUSCH同時送信(Simultaneous PUCCH-PUSCH transmission within a CC)と、CC間のPUCCH−PUSCH同時送信(Simultaneous PUCCH-PUSCH transmission across CCs)の2種類がある。
【0018】
図2Aは、CC内のPUCCH−PUSCH同時送信が設定される場合に、ユーザ端末が1つのCC(ここでは、プライマリセル)にPUCCHとPUSCHを同時に割当てる(多重する)場合を示している。
図2Bは、CC間のPUCCH−PUSCH同時送信が設定される場合に、ユーザ端末が異なるCCにPUCCHとPUSCHを同時に割当てる場合を示している。ここでは、PUCCHをプライマリセル(CC#1)に割当て、PUSCHをセカンダリセル(CC#3)に割当てる場合を示している。
【0019】
このように、PUCCH−PUSCH同時送信が設定される場合、同一CC又は異なるCC間で、PUCCHとPUSCHが同時に送信される。
【0020】
ところで、Rel.13以降では、PCellだけでなく、SCellのPUCCHを用いた上り制御情報の送信(PUCCH on SCell)が検討されている。特に、Rel.13以降では、Rel.12まで5CC以下に制限されていたCC数を拡張して(例えば、32CC設定可能)CAを適用することも検討されている。CC数を拡張したCAを行う場合、PUCCH on SCellを適用することにより、PCellに上り制御情報が集中することを抑制することができる。
【0021】
SCellのPUCCHを用いた上り制御情報の送信では、少なくとも1CCから構成されるセルグループを複数設定し、当該セルグループ毎にHARQの送信タイミング及び/又はPUCCHリソースを決定することが考えられる。このようなセルグループを、PUCCHセルグループ、PUCCH CG、又はPUCCH cell−groupと呼ぶことができる。また、セルグループでPUCCHが設定されるSCellを、PUCCHセル、PUCCH CC、又はPUCCH−SCellと呼ぶことができる。
【0022】
図3は、5CCが設定されるCAにおいて、2つのセルグループを設定する場合を示している。
図3では、第1セルグループがCC#1−CC#3で構成され、第2セルグループがCC#4、#5で構成され、CC#1がPCellであり、CC#2−#5がSCellである場合を示している。
【0023】
ユーザ端末は、セルグループ毎にいずれか1CCに設定されるPUCCHを用いて上り制御情報を送信することができる。
図3では、第1セルグループではプライマリセルとなるCC#1でPUCCHを送信し、第2セルグループではPUCCH−SCellとなるCC#4でPUCCHを送信する場合を想定している。
【0024】
このように、所定のセルグループ単位でPUCCHの割当てを設定して上り制御情報の送信を制御することにより、CC数が拡張される場合であっても上り制御情報を適切に送信することが可能となる。一方で、セルグループ単位でPUCCH送信を制御する場合、PUSCHの割当て(PUSCH送信)時に上り制御情報の送信をどのように行うかが問題となる。
【0025】
そこで、本発明者等は、セルグループを設定してSCellを用いたPUCCH送信(PUCCH on SCell)を行う場合、セルグループ毎又はセルグループ間においてPUSCHを用いた上り制御情報の送信(UCI on PUSCH)を制御することを着想した。
【0026】
また、Rel.13以降では、各セルグループが異なるDuplex mode(FDD又はTDD)のHARQタイミングを適用する構成も考えられる。本発明者等は、このような場合に、ユーザ端末が送信するHARQのビット数を所定条件に基づいて決定して、HARQ−ACKの送信を制御することを着想した。
【0027】
以下に、本実施の形態について添付図面を参照して詳細に説明する。なお、以下の説明では、CC数が5個の場合を例に挙げて説明するが、本実施の形態はこれに限られない。CC数が4個以下であってもよいし、6個以上の場合にも適用することができる。また、本実施の形態は、特に各セルグループにおいてPUCCH−PUSCH同時送信(Simultaneous PUCCH-PUSCH transmission)が設定されない場合に好適に適用することができるが、これに限られない。また、以下の説明では、複数のセルグループとして、第1セルグループと第2セルグループの2個のセルグループを例に挙げて説明するが、セルグループの数はこれに限られない。
【0028】
(第1の態様)
第1の態様では、少なくとも1個のコンポーネントキャリア(CC:Component Carrier)をそれぞれ含む複数のセルグループ毎に、上り共有チャネルを用いた上り制御情報の送信(UCI on PUSCH)を制御する場合について説明する。
【0029】
図4は、セルグループ毎にPUSCHを用いた上り制御情報の送信を制御する場合の一例を示している。
図4では、3個のCCを有する第1セルグループと、2個のCCを有する第2セルグループがユーザ端末に設定される場合を示している。ユーザ端末に設定するCC及び/又はセルグループに関する情報は、上位レイヤシグナリング(例えば、RRCシグナリング等)でユーザ端末に通知することができる。
【0030】
また、
図4では、第1セルグループにおいてPCellとなるCC#1を用いてPUCCHを送信し、第2セルグループにおいてPUCCH−SCellとなるCC#4を用いてPUCCHを送信する場合を示している。
【0031】
例えば、あるサブフレームで、第1セルグループのCC#3(SCell)でPUSCHが送信され、第2セルグループでPUSCHが送信されない場合を想定する。この場合、第1セルグループでは、PUSCH送信がない場合にCC#1のPUCCHで送信する上り制御情報(例えば、HARQ−ACK)を、CC#3のPUSCHに多重する。一方で、第2セルグループでは、CC#4のPUCCHを用いて上り制御情報を送信する。
【0032】
モビリティ管理や通信品質のメジャメントを通じて接続性を確保するPCellを含むセルグループと含まないセルグループとでは、所要通信品質が異なる。PCellを含まないセルグループはスループット増加のため追加的に用いられる可能性が高く、UCIの品質確保を保証できるとは限らない。しかし第1の態様であれば、このように、セルグループ毎にPUCCHを用いた上り制御情報の送信と、PUSCHを用いた上り制御情報の送信とを制御することにより、PCellのUCIは接続品質を確保可能なPCellで送信させ、データレート向上のため追加されるSCellのUCIはSCellで送信させることができる。その結果、品質確保とUCIのオフロードを両立させることが可能となる。
【0033】
また、ユーザ端末は、セルグループ毎に周期的チャネル状態情報(P−CSI:Periodic Channel State Information)を送信してもよい。既存のCAでは、1サブフレームにつき1個のCCのP−CSIしか報告ができず、他のCCのCSIは同時に報告ができない(ドロップする)。一方で、第1の態様では、異なるセルグループのP−CSI報告を同一周期・同一タイミングで設定することが可能となる。これにより、無線基地局は、各セルグループのP−CSIに基づいて精度の高いスケジューリングが可能となる。
【0034】
また、ユーザ端末は、各セルグループに対して異なるHARQタイミングを適用することができる。例えば、ユーザ端末は、第1セルグループ(第1CG)に対してFDD方式のHARQタイミングを適用してHARQの送信を制御し、第2セルグループ(第2CG)に対してTDD方式のHARQタイミングを適用してHARQの送信を制御することができる(
図5参照)。
【0035】
FDD方式のHARQタイミング及び/又はTDD方式のHARQタイミングは、Rel.12以前に定義されているタイミングとすることができる。例えば、FDD方式のHARQタイミングは、DL信号を受信したサブフレームから所定期間(例えば、4サブフレーム)後のタイミングとすることができる。また、TDD方式のHARQタイミングは、UL/DL構成に基づいてあらかじめ定義されているタイミングとすることができる。
【0036】
各セルグループが適用するHARQタイミングは、PUCCH送信を行うCC(PCell、PUCCH−SCell)が適用するDuplex modeに基づいて決定することができる。
【0037】
FDD方式のHARQタイミングを利用する第1セルグループにおいて、ユーザ端末は、各DLサブフレームに対応する上り制御情報(例えば、HARQ)を4サブフレーム後のULサブフレームでフィードバックする。ULサブフレームでPUSCHが送信される場合には、PUSCHに上り制御情報を割当てて送信する(
図5参照)。
【0038】
TDD方式のHARQタイミングを利用する第2セルグループにおいて、ユーザ端末は、所定のUL/DL構成(ここでは、UL/DL構成2)に対応するHARQタイミングに基づいて所定のULサブフレームで上り制御情報をフィードバックする。所定のULサブフレームでPUSCHが送信される場合には、PUSCHに上り制御情報を割当てて送信する(
図5参照)。
【0039】
このように、セルグループ毎にPUCCH及び/又はPUSCHを用いた上り制御情報のフィードバックを制御する場合、あるULサブフレームで送信するHARQに対応するDLサブフレーム数がセルグループ毎に異なる場合が生じる。例えば、TDD方式のHARQタイミングを適用する第2セルグループでは、時間的に複数のDLサブフレームに対応するHARQ−ACKをPUSCHで送信する。一方で、FDD方式のHARQタイミングを適用する第1セルグループでは、基本的に1つのDLサブフレームに対応するHARQ−ACKをPUSCHで送信する。
【0040】
そのため、第1の態様では、ユーザ端末がセルグループ毎に送信するHARQに対応するDLサブフレーム数が異なる場合を想定して、セルグループ毎に異なる送受信動作(例えば、HARQ動作)を適用する。具体的には、ユーザ端末は、TDD方式のHARQタイミングを適用するセルグループにおいて、DAI(Downlink Assignment Index)を利用したDL信号の受信/検出を行うと共にHARQ送信を制御する。
【0041】
DAIは、例えば、A/Nバンドリングが適用されるTDDにおいてDLサブフレームのカウンタに利用され、PDSCHをスケジューリングする下り制御情報(DCI)、及びPUSCHをスケジューリングするDCIに含めてユーザ端末に通知することができる。
【0042】
例えば、ユーザ端末に対して連続する4つのサブフレーム(SF#0〜#3)においてDL信号が送信される場合、無線基地局はSF#0〜#3でPDSCHをスケジューリングするDCIにそれぞれDAI=1〜4を含めて送信する。ユーザ端末がSF#1のDL割当て(PDCCH)を検出ミスすると、DAI=2がユーザ端末で取得できない状態となるため、ユーザ端末はSF#1のDL割当ては検出ミスであると判断できる(
図6A参照)。その結果、ユーザ端末は、2つ目のSF#1のA/Nが誤りであると認識することができる。
【0043】
また、ユーザ端末に対して3つのサブフレーム(SF#0、#2、#3)においてDL信号が送信される場合、SF#0、#2、#3でPDSCHをスケジューリングするDCIにはそれぞれDAI=1〜3が含まれる。ユーザ端末がSF#0のDL割当て(PDCCH)を検出ミスすると、DAI=1がユーザ端末で取得できない状態となるため、ユーザ端末はSF#0又は#1のDL割当ては検出ミスであると判断できる(
図6B参照)。その結果、ユーザ端末は、1つめのA/N(SF#0又はSF#1分)が誤りであると認識することができる。
【0044】
一方、ユーザ端末に対して上りリンクサブフレーム(SF#2)のPUSCHをスケジューリングするDCI(UL grant)においても、DAIを含めることができる。PDSCHをスケジューリングするDCIとは異なり、1つの上りリンクサブフレームにつきUL grantは1つしか発生しない。このため、PUSCHをスケジューリングするDCIに含まれるDAIは、スケジューリングするPDSCHをカウンタとして通知するのではなく、当該UL grantが指示するPUSCHに対応するPDSCHの総数を通知する。したがって、ユーザ端末は、UL grantを検出し、かつそのUL grantに含まれるDAIが示す値に応じて、PUSCHに多重(Piggyback)させるA/N応答信号のビット数を決定する。
【0045】
このように、ユーザ端末は、無線基地局から送信されるDAIに基づいて、DL信号が割当てられるDLサブフレームに関する情報(DLサブフレーム数)を把握することが可能となる。
【0046】
第2セルグループをスケジューリングするDCI(ULグラント)にUL DAIを含めてユーザ端末に送信することにより、ユーザ端末はTDD方式のHARQタイミングを利用する第2セルグループにおいてHARQを適切に送信することが可能となる(
図7参照)。
【0047】
一方で、FDD方式のHARQ−ACKタイミングを利用する第1セルグループでは、DAIを利用した制御を不要とすることができる。そのため、第1セルグループをスケジューリングするDCI(ULグラント)に対しては、UL DAIを含めずにユーザ端末に送信することができる。この場合、無線基地局から送信するDCIのオーバーヘッドの増加を抑制することができる。
【0048】
ユーザ端末は、セルグループ毎にDCI(ULグラント)にUL DAIが含まれるか否かを判断して、送受信動作(例えば、HARQフィードバック等)を制御する。例えば、ユーザ端末は、FDD方式のHARQタイミングを利用するセルグループのDCIにはDAIが含まれないと仮定し、TDD方式のHARQタイミングを利用するセルグループのDCIにはDAIが含まると仮定してDCIのペイロードサイズを算出する。そして、当該ペイロードサイズを仮定してそれぞれのセルグループに含まれるCCのPDCCHまたはEPDCCHにおいてDCIのブラインド復号等の受信動作を行うことができる。
【0049】
図5、
図7では、各セルグループ内にそれぞれ一つのCCが設定される場合を示したが、各セルグループ内に複数のCCが設定される場合にもHARQタイミングに利用するDuplex modeに基づいてHARQフィードバック(DAI有無)を制御することができる。
【0050】
各セルグループのHARQタイミングは、各セルグループにおける所定CCが適用するDuplex mode(FDD又はTDD)に応じて決定することができる。各セルグループにおける所定CCは、PUCCHを送信するセル(PUCCHセル)とすることができる。
【0051】
ユーザ端末は、各セルグループのPUCCHセル(例えば、
図4におけるCC#4)がTDDを適用するTDDセルである場合、当該セルグループ内のPUSCHを割当てるULグラントにUL DAIが含まれると想定して送受信処理を行う。送受信処理としては、復号処理、HARQ−ACKの送信処理(例えば、ビット数の決定等)が含まれる。
【0052】
また、ユーザ端末は、各セルグループのPUCCHセル(例えば、
図4におけるCC#1)がFDDを適用するFDDセルである場合、当該セルグループ内のPUSCHを割当てるULグラントにはUL DAIが含まれないと想定して送受信処理を行う。
【0053】
このように、各セルグループが適用するHARQタイミングに応じてDAIを利用することにより、PUCCHやPUSCHに多重するHARQ−ACKのビット数を適切に決定することができる。なお、第1の態様では、Rel.12におけるデュアルコネクティビティ(DC)におけるUL送信制御を利用することも可能である。
【0054】
(第2の態様)
第2の態様では、少なくとも1個のコンポーネントキャリア(CC)をそれぞれ含む複数のセルグループが設定される場合に、上り共有チャネルを用いた上り制御情報の送信(UCI on PUSCH)を複数のセルグループ間で制御する場合について説明する。
【0055】
図8は、セルグループに関わらずPUSCHを用いた上り制御情報の送信(UCI on PUSCH)を制御する場合の一例を示している。
図8では、3個のCCを有する第1セルグループと、2個のCCを有する第2セルグループがユーザ端末に設定される場合を示している。
【0056】
また、
図8では、第1セルグループにおいてPCellとなるCC#1を用いてPUCCHを送信し、第2セルグループにおいてPUCCH−SCellとなるCC#4を用いてPUCCHを送信する場合を示している。
【0057】
例えば、あるサブフレームで、第1セルグループのCC#3(SCell)でPUSCHが送信され、第2セルグループでPUSCHが送信されない場合を想定する。この場合、第1セルグループでは、PUSCH送信がない場合にCC#1のPUCCHで送信する上り制御情報(例えば、HARQ−ACK)を、CC#3のPUSCHに多重する。また、第2セルグループでも、PUSCH送信がない場合にCC#4のPUCCHで送信する制御情報を、第1セルグループのCC#3のPUSCHに多重する。
【0058】
このように、第2の態様では、PUCCHセルグループ毎にPUCCH送信(PUCCH on SCell)を制御する構成において、PUSCH送信がある場合には各セルグループの上り制御情報をPUSCHが送信される所定セルに割当てる。つまり、いずれかのCCでPUSCH送信がある場合には、どのPUCCHセルグループに属するかに関わらず、上り制御情報をPUSCHに多重する。
【0059】
これにより、上り制御情報をPUSCHで送信する場合にシングルキャリア送信とすることができる。その結果、マルチキャリア送信が必要な場合(例えば、上記
図4)と比較すると、PUSCHの送信電力が最大送信電力を超えて制限される事態(パワーリミテッド)を抑制することができる。
【0060】
また、ユーザ端末は、セルグループ毎に周期的チャネル状態情報(P−CSI:Periodic Channel State Information)を送信してもよい。例えば、異なるセルグループにおいて周期的CSI(P−CSI)が同一サブフレームで生じる場合、ユーザ端末は、各セルグループの周期的CSIを同じCCのPUSCHに多重して送信することができる。あるいは、所定条件に基づいて、1つのCCの周期的CSIを選択して(他のCCの周期的CSIはドロップして)、PUSCHに多重して送信してもよい。
【0061】
また、ユーザ端末は、各セルグループに対して異なるHARQタイミングを適用することができる。例えば、ユーザ端末は、第1セルグループ(第1CG)に対してFDD方式のHARQタイミングを適用してHARQの送信を制御し、第2セルグループ(第2CG)に対してTDD方式のHARQタイミングを適用してHARQの送信を制御することができる(
図9参照)。
【0062】
この場合、TDD方式のHARQタイミングを適用する第2セルグループでHARQを送信するタイミング(所定ULサブフレーム)では、ユーザ端末は、2つのセルグループの上り制御情報を所定CCのPUSCHに多重することとなる。
図9に示す場合、ユーザ端末は、第1セルグループの1つのDLサブフレームに対応するHARQと、第2セルグループの4つのDLサブフレームに対応するHARQと、を所定CC(ここでは、第1セルグループのCC)のPUSCHでフィードバックする。
【0063】
かかる場合、ユーザ端末がフィードバックするHARQのビット数をどのように決定するかが問題となる。例えば、既存システム(Rel.12以前)のCAでは、FDDのHARQタイミングを適用する場合、ユーザ端末は、PUSCH(UCI on PUSCH)で送信するHARQ−ACKのビット数を上位レイヤシグナリングに基づいて決定していた。
【0064】
具体的には、ユーザ端末に設定(Configure)されたCC数と、各CCの送信モード(TM)で求められる最大値をHARQ−ACKのビット数としていた。例えば、CC数が5、コードワード(CW)数が2の場合には、HARQ−ACKのビット数が10(最大)となる。また、DL信号がスケジューリングされなかったCCについては、NACKとしてフィードバックしていた。このように、既存のFDDのHARQタイミングを適用してPUSCHに多重する場合、HARQ−ACKは最大10ビットまでしか規定されていない。
【0065】
しかし、
図9では、FDD方式のHARQを利用するセルのPUSCHに対して、TDD方式のHARQを利用する第2セルグループの上り制御情報が多重される。この場合、FDD方式のHARQタイミングを適用するセルで送信するPUSCHに含まれるHARQ−ACKのビット数は、CC数×CW数だけでなく、時間方向のDLサブフレーム数によっても影響される。
【0066】
例えば、第1セルグループがFDDを利用する1CCで構成され、第2セルグループがTDDを利用する1CCで構成される場合(例えば、
図9参照)、第1セルグループのセルのPUSCHに割当てるHARQ−ACKビットは、最大で10(=2×1+2×4)ビットとなる。また、第2セルグループにTDDセルが4個(4CC)含まれる場合には、第1セルグループのセルのPUSCHに割当てるHARQ−ACKビットは、最大で38(=2×1+2×4×4)ビットとなる。
【0067】
そのため、FDD方式のHARQタイミングを適用するセルグループと、TDD方式のHARQタイミングを適用するセルグループ間でUCI on PUSCHを適用する場合、どのようにHARQ−ACKの送信を制御するかが問題となる。
【0068】
このような問題を解決するため、本実施の形態では、所定条件に基づいてHARQの送信を制御する。以下に、第2の態様におけるHARQの送信方法について説明する。なお、以下の説明では、TDD方式のHARQタイミングを適用する第2セルグループのCCのHARQ−ACKを、FDD方式のHARQタイミングを適用する第1セルグループのCCの上り共有チャネルを用いて送信する場合について説明するが、本実施の形態はこれに限られない。
【0069】
<第1の方法>
第1の方法では、第1セルグループのCCのPUSCHに各セルグループの上り制御情報を割当てる場合、当該PUSCHで多重し得る最大ビット数でHARQ−ACKの送信を制御する。ユーザ端末は、PUSCHで多重し得る最大ビット数を、上位レイヤシグナリングで通知される情報に基づいて決定することができる。上位レイヤシグナリングで通知される情報としては、設定されるCC数、各CCで設定されるCW数、1つのULでフィードバックし得る最大のDLサブフレーム数(例えば、UL/DL構成等)に関する情報の一つを少なくとも含んでいる。
【0070】
例えば、第1セルグループにFDDを利用する1CCが含まれ、第2セルグループにTDDを利用する4CCが含まれる場合を想定する。この場合、ユーザ端末は、HARQ−ACKは38ビットと想定してHARQ−ACKの送信を制御する。例えば、ユーザ端末は、HARQ−ACKを38ビットと想定して、HARQ−ACKビットの生成、符号化を行ってPUSCHに多重する。
【0071】
ユーザ端末は、上位レイヤシグナリングで通知される情報に基づいて決定したHARQ−ACKビット数に基づいて符号化処理を制御することができる。例えば、ユーザ端末は、HARQ−ACKビットが所定値以上となる場合、HARQ−ACKの符号化として空間バンドリングを適用することができる。この場合、各CC全てのDLサブフレームのHARQ−ACKビットを空間バンドリングし、空間バンドリング後のHARQ−ACKビットに対して所定の符号化を適用することができる。符号化処理についても、HARQ−ACKビット数に応じて異なる符号化を適用することができる。
【0072】
例えば、HARQ−ACKビットが38ビットである場合、ユーザ端末は、各CCの全てのDLサブフレームのHARQ−ACKビットを空間バンドリングし(19ビット)、空間バンドリング後の19ビットに対して所定の符号化を適用することができる。所定の符号化としては、11ビットを超える場合にHARQ−ACKに適用する既存システムのチャネル符号化を利用することができる。
【0073】
また、第1の方法では、第2セルグループのCCにPUSCHを割当てるDCI(ULグラント)に対してUL DAIを含めてユーザ端末に送信する。一方で、第1セルグループのCCにPUSCHを割当てるULグラントに対してUL DAIを含めない構成とすることができる(
図10参照)。
【0074】
ユーザ端末は、セルグループ毎に適用するDuplex mode(FDD/TDD)に基づいてDAIの有無を判断し、PDCCHの受信処理(例えば、ブラインド復号)を行うことができる。また、ユーザ端末は、HARQ−ACKをPUSCHで送信する際にとり得る最大ビット数を想定してHARQフィードバックを制御することができる。この場合、ユーザ端末は、DL信号を受信しないCC及び/又はCWについては、NACKを送信するように制御することができる。
【0075】
このように、ユーザ端末が、第2セルグループにおけるDLサブフレーム数を考慮してHARQ−ACKビットを決定することにより、第1セルグループのCCのPUSCHに当該HARQ−ACKを多重する場合であっても、HARQ−ACK送信を適切に行うことができる。
【0076】
<第2の方法>
第2の方法では、第1セルグループのCCのPUSCHに各セルグループの上り制御情報を割当てる場合、所定の情報に基づいてHARQ−ACKのビット数を決定する構成とする。所定の情報としては、上位レイヤシグナリングで通知される情報、物理シグナリングで通知される情報に基づいて決定することができる。
【0077】
上位レイヤシグナリングで通知される情報とは、設定されるCC数、各CCで設定されるCW数に関する情報の一つを少なくとも含んでいる。物理シグナリングで通知される情報とは、スケジューリングされるDLサブフレーム数に関する情報を含んでおり、例えば、DAIを用いて取得することができる。DAIを用いる場合、ユーザ端末は、UL DAIで指定された値(実際に割当てがあったDLサブフレームの個数)に基づいてスケジューリングされるDLサブフレーム数を判断することができる。
【0078】
例えば、第1セルグループにFDDを利用する1CCが含まれ、第2セルグループにTDDを利用する4CCが含まれる場合を想定する。この場合、無線基地局は、各セルで実際に割当てられるDLサブフレームに基づいて、下り制御情報にDAIを含めてユーザ端末に送信する。
【0079】
ユーザ端末は、下り制御情報に含まれるDAIに基づいて、スケジューリングされたDLサブフレーム数を把握することができる。また、上位レイヤシグナリングで通知されるCC数やCW数に基づいて、フィードバックするHARQ−ACKのビット数を決定して送信処理(例えば、符号化処理等)を行う。したがって、第1セルグループにFDDを利用する1CCが含まれ、第2セルグループにTDDを利用する4CCが含まれる場合、無線基地局及びユーザ端末は、10ビット〜38ビットの範囲でHARQ−ACKビット数の通知/決定を行う。
【0080】
また、ユーザ端末は、HARQ−ACKのビット数に応じて符号化を制御することができる。例えば、HARQビット数が1、2、3〜11、12〜20の場合、それぞれ異なる符号化処理を適用することができる。また、HARQビット数が21ビットを超える場合、空間バンドリングを適用してもよい。
【0081】
また、第2の方法では、第2セルグループのCCにPUSCHを割当てるDCI(ULグラント)と、第1セルグループのCCにPUSCHを割当てるULグラントに対してUL DAIを含める構成とすることができる(
図11参照)。なお、ユーザ端末は、複数CCでULグラントがある場合、少なくとも各セルグループのUL DAIは同じ値であると想定して動作することができる。
【0082】
ユーザ端末は、各セルグループから送信されるDCIにDAIが含まれていると想定して、PDCCHの受信処理(例えば、ブラインド復号)を行うことができる。また、ユーザ端末は、HARQ−ACKをPUSCHで送信する際のビット数を、CC数、CW数に加えて、DAI(スケジューリングされたDLサブフレーム数)に基づいて決定することができる。
【0083】
このように、ユーザ端末が、スケジューリングされるDLサブフレーム数を考慮してHARQ−ACKビットを決定することにより、第1セルグループのCCのPUSCHに当該HARQ−ACKを多重する場合であっても、HARQ−ACK送信を適切に行うことができる。特に、第1の方法では上位レイヤシグナリングで算出される最大のビット数をペイロードとしていたのに対し、第2の方法ではUL DAIによりペイロードを動的に指定できるため、割り当て数が少ない場合にはペイロードを減らして符号化率を下げ、UCIをより高品質にすることができる。
【0084】
なお、第1セルグループのCCのPUSCHを用いて上り制御情報を送信する場合、第1セルグループのCCをスケジューリングするULグラントに含めるDAIは、全てのDLサブフレームで送信されるULグラントに含めることができる。この場合、DAIの値は同じ値(例えば、DAI=1)とすることができる。全てのDLサブフレームのULグラントにDAIを含めることにより、ユーザ端末はサブフレーム番号に関わらず同じペイロードサイズのPDCCH復号を行うことができるため、受信処理の負担を低減することができる。
【0085】
あるいは、特定のDLサブフレームのULグラントのみにDAIを含める構成としてもよい。例えば、特定のDLサブフレームとしては、第2セルグループのHARQを送信し得るサブフレームとすることができる。この場合、特定のサブフレーム以外のサブフレームでは、DAIのペイロードを削減することができるため、下り制御情報のオーバーヘッドの増加を抑制することができる。
【0086】
<第3の方法>
第3の方法では、TDD方式のHARQタイミングを適用するセル(例えば、第2セルグループ)がある場合、ユーザ端末は、FDD方式のHARQタイミングを適用するセル(第1セルグループ)では、PUSCHを用いた上り制御情報の送信を行わない構成とする(
図12参照)。
【0087】
第1セルグループにおいて上りデータ(UL−SCH)送信が割当てられた場合、ユーザ端末は当該上りデータをドロップし、上り制御情報を第2セルグループにおけるCCのPUCCH及び/又はPUSCHを用いて送信する。
【0088】
例えば、第2セルグループのCCにおいてPUSCHを割当てるULグラントがある場合、第1セルグループのCCの上り制御情報を当該PUSCHに多重して送信する。一方で、第2セルグループのCCにおいてPUSCHを割当てるULグラントがない場合、第1セルグループのCCの上り制御情報を第2セルグループのCC(PUCCH−SCell)のPUCCHに多重して送信する。
【0089】
<ユーザ能力情報>
第2セルグループのHARQ−ACKを第1セルグループのCCのPUSCHに多重して送信できるか否かの能力情報は、ユーザ端末から基地局にあらかじめ通知する構成としてもよい。例えば、ユーザ端末は、当該能力情報をUE capabilityシグナリングとして無線基地局へ通知する。
【0090】
第2セルグループのHARQ−ACKを第1セルグループのCCのPUSCHに多重して送信できるユーザ端末(UE capabilityが「TRUE」のユーザ端末)は、上記第1の方法又は第2の方法を適用する。一方で、第2セルグループのHARQ−ACKを第1セルグループのCCのPUSCHに多重して送信できるユーザ端末(UE capabilityが「False」のユーザ端末)は、上記第3の方法を適用する。
【0091】
(無線通信システムの構成)
以下、本発明の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本発明の実施形態に係る無線通信方法が適用される。なお、上記の各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用してもよい。
【0092】
図13は、本発明の一実施形態に係る無線通信システムの概略構成の一例を示す図である。なお、
図13に示す無線通信システムは、例えば、LTEシステム、SUPER 3G、LTE−Aシステムなどが包含されるシステムである。この無線通信システムでは、複数のコンポーネントキャリアを一体としたキャリアアグリゲーション(CA)及び/又はデュアルコネクティビティ(DC)を適用することができる。なお、この無線通信システムは、IMT−Advancedと呼ばれても良いし、4G、5G、FRA(Future Radio Access)などと呼ばれても良い。
【0093】
図13に示す無線通信システム1は、マクロセルC1を形成する無線基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する無線基地局12a−12cとを備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。
【0094】
ユーザ端末20は、無線基地局11及び無線基地局12の双方に接続することができる。ユーザ端末20は、異なる周波数を用いるマクロセルC1とスモールセルC2を、CA又はDCにより同時に使用することが想定される。また、ユーザ端末20は、少なくとも2CC(セル)を用いてCA適用することができ、6個以上のCCを利用することも可能である。
【0095】
ユーザ端末20と無線基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)で帯域幅が狭いキャリア(既存キャリア、Legacy carrierなどと呼ばれる)を用いて通信を行うことができる。一方、ユーザ端末20と無線基地局12との間は、相対的に高い周波数帯域(例えば、3.5GHz、5GHzなど)で帯域幅が広いキャリアが用いられてもよいし、無線基地局11との間と同じキャリアが用いられてもよい。無線基地局11と無線基地局12との間(又は、2つの無線基地局12間)は、有線接続(光ファイバ、X2インターフェースなど)又は無線接続する構成とすることができる。
【0096】
無線基地局11及び各無線基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されるものではない。また、各無線基地局12は、無線基地局11を介して上位局装置30に接続されてもよい。
【0097】
なお、無線基地局11は、相対的に広いカバレッジを有する無線基地局であり、マクロ基地局、集約ノード、eNB(eNodeB)、送受信ポイントなどと呼ばれてもよい。また、無線基地局12は、局所的なカバレッジを有する無線基地局であり、スモール基地局、マイクロ基地局、ピコ基地局、フェムト基地局、HeNB(Home eNodeB)、RRH(Remote Radio Head)、送受信ポイントなどと呼ばれてもよい。以下、無線基地局11及び12を区別しない場合は、無線基地局10と総称する。各ユーザ端末20は、LTE、LTE−Aなどの各種通信方式に対応した端末であり、移動通信端末だけでなく固定通信端末を含んでよい。
【0098】
無線通信システムにおいては、無線アクセス方式として、下りリンクについてはOFDMA(直交周波数分割多元接続)が適用され、上りリンクについてはSC−FDMA(シングルキャリア−周波数分割多元接続)が適用される。OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC−FDMAは、システム帯域幅を端末毎に1つ又は連続したリソースブロックからなる帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。なお、上り及び下りの無線アクセス方式は、これらの組み合わせに限られない。
【0099】
無線通信システム1では、下りリンクのチャネルとして、各ユーザ端末20で共有される下り共有チャネル(PDSCH:Physical Downlink Shared Channel)、報知チャネル(PBCH:Physical Broadcast Channel)、下りL1/L2制御チャネルなどが用いられる。PDSCHにより、ユーザデータや上位レイヤ制御情報、所定のSIB(System Information Block)が伝送される。また、PBCHにより、MIB(Master Information Block)などが伝送される。
【0100】
下りL1/L2制御チャネルは、PDCCH(Physical Downlink Control Channel)、EPDCCH(Enhanced Physical Downlink Control Channel)、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid-ARQ Indicator Channel)などを含む。PDCCHにより、PDSCH及びPUSCHのスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)などが伝送される。PCFICHにより、PDCCHに用いるOFDMシンボル数が伝送される。PHICHにより、PUSCHに対するHARQの送達確認信号(ACK/NACK)が伝送される。EPDCCHは、PDSCH(下り共有データチャネル)と周波数分割多重され、PDCCHと同様にDCIなどを伝送するために用いられてもよい。
【0101】
また、下りリンクの参照信号として、セル固有参照信号(CRS:Cell-specific Reference Signal)、チャネル状態測定用参照信号(CSI−RS:Channel State Information-Reference Signal)、復調用に利用されるユーザ固有参照信号(DM−RS:Demodulation Reference Signal)などを含む。
【0102】
無線通信システム1では、上りリンクのチャネルとして、各ユーザ端末20で共有される上り共有チャネル(PUSCH:Physical Uplink Shared Channel)、上り制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)などが用いられる。PUSCHにより、ユーザデータや上位レイヤ制御情報が伝送される。また、PUCCHにより、下りリンクの無線品質情報(CQI:Channel Quality Indicator)、送達確認信号(HARQ-ACK)などが伝送される。PRACHにより、セルとの接続確立のためのランダムアクセスプリアンブル(RAプリアンブル)が伝送される。
【0103】
<無線基地局>
図14は、本発明の一実施形態に係る無線基地局の全体構成の一例を示す図である。無線基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106とを備えている。なお、送受信部103は、送信部及び受信部で構成される。
【0104】
下りリンクにより無線基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。
【0105】
ベースバンド信号処理部104では、ユーザデータに関して、PDCP(Packet Data Convergence Protocol)レイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御等のRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(例えば、HARQ(Hybrid Automatic Repeat reQuest)の送信処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理等の送信処理が行われて各送受信部103に転送される。また、下り制御信号に関しても、チャネル符号化や逆高速フーリエ変換などの送信処理が行われて、各送受信部103に転送される。
【0106】
各送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部103で周波数変換された無線周波数信号は、アンプ部102により増幅され、送受信アンテナ101から送信される。
【0107】
例えば、送受信部103は、CAを行うCCに関する情報(例えば、設定されるCC数等)、各CC数のCW数に関する情報、TDDセルが適用するUL/DL構成に関する情報等を送信する。また、送受信部103は、TDDセルをスケジューリングするDCI及び/又はFDDをスケジューリングするDCIにDAIを含めてユーザ端末に通知することができる。なお、送受信部103は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置とすることができる。
【0108】
一方、上り信号については、各送受信アンテナ101で受信された無線周波数信号がそれぞれアンプ部102で増幅される。各送受信部103はアンプ部102で増幅された上り信号を受信する。送受信部103は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部104に出力する。
【0109】
ベースバンド信号処理部104では、入力された上り信号に含まれるユーザデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ、PDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの設定や解放等の呼処理や、無線基地局10の状態管理や、無線リソースの管理を行う。
【0110】
伝送路インターフェース106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。また、伝送路インターフェース106は、基地局間インターフェース(例えば、光ファイバ、X2インターフェース)を介して隣接無線基地局10と信号を送受信(バックホールシグナリング)してもよい。
【0111】
図15は、本実施形態に係る無線基地局の機能構成の一例を示す図である。なお、
図15では、本実施形態における特徴部分の機能ブロックを主に示しており、無線基地局10は、無線通信に必要な他の機能ブロックも有しているものとする。
図15に示すように、ベースバンド信号処理部104は、制御部(スケジューラ)301と、送信信号生成部(生成部)302と、マッピング部303と、受信信号処理部304と、を備えている。
【0112】
制御部(スケジューラ)301は、PDSCHで送信される下りデータ、PDCCH及び/又はEPDCCHで伝送される下り制御情報のスケジューリング(例えば、リソース割り当て)を制御する。また、システム情報、同期信号、ページング情報、CRS、CSI−RS等のスケジューリングの制御も行う。
【0113】
制御部301は、ユーザ端末に設定するCC、セルグループ等を制御することができる。また、制御部301は、上り参照信号、PUSCHで送信される上りデータ信号、PUCCH及び/又はPUSCHで送信される上り制御信号、PRACHで送信されるランダムアクセスプリアンブル等のスケジューリングを制御する。なお、制御部301は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置とすることができる。
【0114】
送信信号生成部302は、制御部301からの指示に基づいて、DL信号を生成して、マッピング部303に出力する。例えば、送信信号生成部302は、制御部301からの指示に基づいて、下り信号の割り当て情報を通知するDLアサインメント及び上り信号の割り当て情報を通知するULグラントを生成する。また、送信信号生成部302は、各セルグループのCCをスケジューリングするDCIに、DAIを含めるように(又は含めないように)下り制御情報を生成することができる。なお、送信信号生成部302は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置とすることができる。
【0115】
マッピング部303は、制御部301からの指示に基づいて、送信信号生成部302で生成された下り信号を、所定の無線リソースにマッピングして、送受信部103に出力する。なお、マッピング部303は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置とすることができる。
【0116】
受信信号処理部304は、ユーザ端末から送信されるUL信号(例えば、送達確認信号(HARQ−ACK)、PUSCHで送信されたデータ信号等)に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。処理結果は、制御部301に出力される。
【0117】
また、受信信号処理部304は、受信した信号を用いて受信電力(例えば、RSRP(Reference Signal Received Power))、受信品質(RSRQ(Reference Signal Received Quality))やチャネル状態などについて測定してもよい。なお、受信信号処理部304における測定結果は、制御部301に出力されてもよい。なお、測定動作を行う測定部を受信信号処理部304と別に設けてもよい。
【0118】
受信信号処理部304は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置、並びに、測定器、測定回路又は測定装置から構成することができる。
【0119】
<ユーザ端末>
図16は、本実施形態に係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、MIMO伝送のための複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。なお、送受信部203は、送信部及び受信部から構成されてもよい。
【0120】
複数の送受信アンテナ201で受信された無線周波数信号は、それぞれアンプ部202で増幅される。各送受信部203はアンプ部202で増幅された下り信号を受信する。送受信部203は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部204に出力する。
【0121】
送受信部203は、無線基地局から送信されたDL信号に基づいて生成した上り制御情報(例えば、HARQ−ACK)を送信する。また、ユーザ端末の能力情報(capability)を無線基地局へ通知することができる。また、送受信部203は、設定されるCC数に関する情報、各CCのCWに関する情報、UL/DL構成等を受信することができる。なお、送受信部203は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置とすることができる。
【0122】
ベースバンド信号処理部204は、入力されたベースバンド信号に対して、FFT処理や、誤り訂正復号、再送制御の受信処理などを行う。下りリンクのユーザデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤやMACレイヤより上位のレイヤに関する処理などを行う。また、下りリンクのデータのうち、報知情報もアプリケーション部205に転送される。
【0123】
一方、上りリンクのユーザデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御の送信処理(例えば、HARQの送信処理)や、チャネル符号化、プリコーディング、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理などが行われて各送受信部203に転送される。送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部203で周波数変換された無線周波数信号は、アンプ部202により増幅され、送受信アンテナ201から送信される。
【0124】
図17は、本実施形態に係るユーザ端末の機能構成の一例を示す図である。なお、
図17においては、本実施形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有しているものとする。
図17に示すように、ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、送信信号生成部402と、マッピング部403と、受信信号処理部404と、判定部405と、を備えている。
【0125】
制御部401は、送信信号生成部402、マッピング部403及び受信信号処理部404の制御を行うことができる。例えば、制御部401は、無線基地局10から送信された下り制御信号(PDCCH/EPDCCHで送信された信号)及び下りデータ信号(PDSCHで送信された信号)を、受信信号処理部404から取得する。制御部401は、下り制御情報(ULグラント)や、下りデータに対する再送制御の要否を判定した結果等に基づいて、上り制御信号(例えば、HARQ−ACK等)や上りデータの生成/送信を制御する。
【0126】
また、制御部401は、少なくとも1個のCCをそれぞれ含む複数のセルグループ毎に、SCellの上り制御チャネルを用いた上り制御情報の送信(PUCCH on SCell)と、上り共有チャネルを用いた上り制御情報(UCI on PUSCH)の送信とを制御することができる(
図4参照)。また、制御部401は、第1セルグループに対してFDD方式のHARQタイミングを適用してHARQの送信を制御し、第2セルグループに対してTDD方式のHARQタイミングを適用してHARQの送信を制御することができる。
【0127】
また、制御部401は、少なくとも1個のCCをそれぞれ含む複数のセルグループ毎に上り制御チャネルを用いた上り制御情報の送信(PUCCH on SCell)を制御し、上り共有チャネルを用いた上り制御情報の送信(UCI on PUSCH)を複数のセルグループ間で制御することができる(
図8参照)。
【0128】
また、制御部401は、第2セルグループのHARQを第1セルグループのCCの上り共有チャネルを用いて送信するように制御することができる。この場合、制御部401は、上り共有チャネルに対応するDLサブフレーム数に基づいてHARQのビット数を制御することができる。あるいは、制御部401は、スケジューリングされるDLサブフレーム数(例えば、下り制御情報に含まれるDAI値)に基づいてHARQのビット数を制御してもよい。あるいは、制御部401は、第1セルグループのCCにおいて上り共有チャネルを用いた上り制御情報の送信を行わないように制御してもよい。
【0129】
制御部401は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置とすることができる。
【0130】
送信信号生成部402は、制御部401からの指示に基づいて、UL信号を生成して、マッピング部403に出力する。例えば、送信信号生成部402は、制御部401からの指示に基づいて、送達確認信号(HARQ−ACK)やチャネル状態情報(CSI)等の上り制御信号を生成する。
【0131】
また、送信信号生成部402は、制御部401からの指示に基づいて上りデータ信号を生成する。例えば、送信信号生成部402は、無線基地局10から通知される下り制御信号にULグラントが含まれている場合に、制御部401から上りデータ信号の生成を指示される。また、送信信号生成部402は、制御部401からの指示に基づいて、判定部405で判定した結果(ACK/NACK)をUL信号として生成する。送信信号生成部402は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置とすることができる。
【0132】
マッピング部403は、制御部401からの指示に基づいて、送信信号生成部402で生成された上り信号(上り制御信号及び/又は上りデータ)を無線リソースにマッピングして、送受信部203へ出力する。マッピング部403は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置とすることができる。
【0133】
受信信号処理部404は、DL信号(例えば、無線基地局からPDCCH/EPDCCHで送信される下り制御信号、PDSCHで送信される下りデータ信号等)に対して、受信処理(例えば、デマッピング、復調、復号等)を行う。受信信号処理部404は、無線基地局10から受信した情報を、制御部401、判定部405に出力する。なお、受信信号処理部404は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。また、受信信号処理部404は、本発明に係る受信部を構成することができる。
【0134】
判定部405は、受信信号処理部404の復号結果に基づいて、再送制御判定(ACK/NACK)を行うと共に結果を制御部401に出力する。なお、判定部405は、本発明に係る技術分野での共通認識に基づいて説明される判定器、判定回路又は判定装置から構成することができる。
【0135】
なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的に結合した1つの装置により実現されてもよいし、物理的に分離した2つ以上の装置を有線又は無線で接続し、これら複数の装置により実現されてもよい。
【0136】
例えば、無線基地局10やユーザ端末20の各機能の一部又は全ては、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)等のハードウェアを用いて実現されても良い。また、無線基地局10やユーザ端末20は、プロセッサ(CPU)と、ネットワーク接続用の通信インターフェースと、メモリと、プログラムを保持したコンピュータ読み取り可能な記憶媒体と、を含むコンピュータ装置によって実現されてもよい。
【0137】
ここで、プロセッサやメモリなどは情報を通信するためのバスで接続される。また、コンピュータ読み取り可能な記録媒体は、例えば、フレキシブルディスク、光磁気ディスク、ROM、EPROM、CD−ROM、RAM、ハードディスクなどの記憶媒体である。また、プログラムは、電気通信回線を介してネットワークから送信されても良い。また、無線基地局10やユーザ端末20は、入力キーなどの入力装置や、ディスプレイなどの出力装置を含んでいてもよい。
【0138】
無線基地局10及びユーザ端末20の機能構成は、上述のハードウェアによって実現されてもよいし、プロセッサによって実行されるソフトウェアモジュールによって実現されてもよいし、両者の組み合わせによって実現されてもよい。プロセッサは、オペレーティングシステムを動作させてユーザ端末の全体を制御する。また、プロセッサは、記憶媒体からプログラム、ソフトウェアモジュールやデータをメモリに読み出し、これらに従って各種の処理を実行する。ここで、当該プログラムは、上記の各実施形態で説明した各動作を、コンピュータに実行させるプログラムであれば良い。例えば、ユーザ端末20の制御部401は、メモリに格納され、プロセッサで動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
【0139】
以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。例えば、上述の各実施形態は単独で用いてもよいし、組み合わせて用いてもよい。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。