特許第6871782号(P6871782)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社パスコの特許一覧

特許6871782道路標示検出装置、道路標示検出方法、プログラム、及び道路面検出装置
<>
  • 特許6871782-道路標示検出装置、道路標示検出方法、プログラム、及び道路面検出装置 図000003
  • 特許6871782-道路標示検出装置、道路標示検出方法、プログラム、及び道路面検出装置 図000004
  • 特許6871782-道路標示検出装置、道路標示検出方法、プログラム、及び道路面検出装置 図000005
  • 特許6871782-道路標示検出装置、道路標示検出方法、プログラム、及び道路面検出装置 図000006
  • 特許6871782-道路標示検出装置、道路標示検出方法、プログラム、及び道路面検出装置 図000007
  • 特許6871782-道路標示検出装置、道路標示検出方法、プログラム、及び道路面検出装置 図000008
  • 特許6871782-道路標示検出装置、道路標示検出方法、プログラム、及び道路面検出装置 図000009
  • 特許6871782-道路標示検出装置、道路標示検出方法、プログラム、及び道路面検出装置 図000010
  • 特許6871782-道路標示検出装置、道路標示検出方法、プログラム、及び道路面検出装置 図000011
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6871782
(24)【登録日】2021年4月20日
(45)【発行日】2021年5月12日
(54)【発明の名称】道路標示検出装置、道路標示検出方法、プログラム、及び道路面検出装置
(51)【国際特許分類】
   G08G 1/09 20060101AFI20210426BHJP
   G06T 7/00 20170101ALI20210426BHJP
   G06T 7/11 20170101ALI20210426BHJP
【FI】
   G08G1/09 D
   G06T7/00 650A
   G06T7/11
【請求項の数】8
【全頁数】19
(21)【出願番号】特願2017-70583(P2017-70583)
(22)【出願日】2017年3月31日
(65)【公開番号】特開2018-173749(P2018-173749A)
(43)【公開日】2018年11月8日
【審査請求日】2020年2月6日
(73)【特許権者】
【識別番号】000135771
【氏名又は名称】株式会社パスコ
(74)【代理人】
【識別番号】110000154
【氏名又は名称】特許業務法人はるか国際特許事務所
(72)【発明者】
【氏名】チャタクリ スバス
(72)【発明者】
【氏名】四俣 徹
(72)【発明者】
【氏名】馬河 紘子
(72)【発明者】
【氏名】佐々木 光
(72)【発明者】
【氏名】坂元 光輝
(72)【発明者】
【氏名】佐藤 俊明
【審査官】 吉村 俊厚
(56)【参考文献】
【文献】 特表2015−514034(JP,A)
【文献】 特開2008−134869(JP,A)
【文献】 特表2012−511697(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G08G 1/09
G06T 7/00
G06T 7/11
(57)【特許請求の範囲】
【請求項1】
レーザースキャナにより道路面から取得された反射点群の計測データに基づいて道路標示を検出する道路標示検出装置であって、
前記反射点群を構成する各反射点に対応付けて、前記道路面にて当該反射点の所定近傍領域に存在する前記反射点群のレーザー反射強度のばらつき具合を表す指標値を算出し、当該指標値に基づいて前記道路面のうち前記レーザー反射強度が一様となる領域を定め、前記反射点群のうち当該領域のものを除去した反射強度起伏点群を求めるフィルタリング手段と、
前記道路標示の検出に関する予め設定された所要分解能に応じて、前記反射強度起伏点群に対し前記道路面上での分布に関するクラスタリングを行い、前記道路標示ごとに分離された点群クラスターを生成するクラスタリング手段と、
を有することを特徴とする道路標示検出装置。
【請求項2】
請求項1に記載の道路標示検出装置において、さらに、
前記レーザー反射強度に関し、所定の基準で前記点群クラスターごとに定められる閾値により当該点群クラスターに属する前記反射点群を分類し、前記閾値以上の前記レーザー反射強度を有する前記反射点群を1つの前記道路標示に対応する道路標示候補点群として抽出する道路標示候補点群抽出手段を有すること、
を特徴とする道路標示検出装置。
【請求項3】
請求項1又は請求項2に記載の道路標示検出装置において、
前記所定近傍領域は、直径が検出対象とする前記道路標示の施工部分の最小寸法より大きく、且つ前記所要分解能以下である円であること、を特徴とする道路標示検出装置。
【請求項4】
請求項2に記載の道路標示検出装置において、
前記道路面における前記道路標示候補点群の分布領域に基づいて道路標示候補図形の画像を生成する画像生成手段と、
前記道路標示候補図形の重心から各輪郭画素までの距離を離散フーリエ変換して周波数スペクトラムを算出し、当該道路標示候補図形の画像特徴として、当該周波数スペクトラムにおける低周波数側の端部の所定周波数幅での成分と高周波数側の端部の所定周波数幅での成分とを抽出する画像特徴抽出手段と、
検出対象とする前記道路標示の前記画像特徴を予め学習した識別器を用い、前記道路標示候補図形が前記道路標示であるかを判別する道路標示判別手段と、
を有することを特徴とする道路標示検出装置。
【請求項5】
請求項4に記載の道路標示検出装置において、
前記画像特徴抽出手段は、前記画像特徴としてさらに前記道路標示候補図形のモーメントを算出すること、を特徴とする道路標示検出装置。
【請求項6】
レーザースキャナにより地表面から取得された反射点群の計測データに基づいて道路面を検出する道路面検出装置であって、
前記反射点群を水平面に投影した点群に基づいてドロネー三角形分割を行って前記反射点群を頂点とするドロネー三角形を生成し、前記反射点群から当該ドロネー三角形のうち勾配が所定の上限を超えるものの前記頂点を除去して許容勾配点群を求める許容勾配点群抽出手段と、
前記許容勾配点群に対し前記地表面上での分布に関するクラスタリングを行い、得られたクラスターのうち要素数が所定の閾値以上のものを前記道路面の候補点群として抽出する道路面候補点群抽出手段と、
を有することを特徴とする道路標示検出装置。
【請求項7】
レーザースキャナにより道路面から取得された反射点群の計測データに基づいて道路標示を検出する道路標示検出方法であって、
前記反射点群を構成する各反射点に対応付けて、前記道路面にて当該反射点の所定近傍領域に存在する前記反射点群のレーザー反射強度のばらつき具合を表す指標値を算出し、当該指標値に基づいて前記道路面のうち前記レーザー反射強度が一様となる領域を定め、前記反射点群のうち当該領域のものを除去した反射強度起伏点群を求めるフィルタリングステップと、
前記道路標示の検出に関する予め設定された所要分解能に応じて、前記反射強度起伏点群に対し前記道路面上での分布に関するクラスタリングを行い、前記道路標示ごとに分離された点群クラスターを生成するクラスタリングステップと、
を有することを特徴とする道路標示検出方法。
【請求項8】
レーザースキャナにより道路面から取得された反射点群の計測データに基づいて道路標示を検出する処理をコンピュータに行わせるためのプログラムであって、当該コンピュータを、
前記反射点群を構成する各反射点に対応付けて、前記道路面にて当該反射点の所定近傍領域に存在する前記反射点群のレーザー反射強度のばらつき具合を表す指標値を算出し、当該指標値に基づいて前記道路面のうち前記レーザー反射強度が一様となる領域を定め、前記反射点群のうち当該領域のものを除去した反射強度起伏点群を求めるフィルタリング手段、及び、
前記道路標示の検出に関する予め設定された所要分解能に応じて、前記反射強度起伏点群に対し前記道路面上での分布に関するクラスタリングを行い、前記道路標示ごとに分離された点群クラスターを生成するクラスタリング手段、として機能させることを特徴とするプログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、レーザースキャナにより取得された反射点群の計測データに基づいて道路標示や道路面を検出する技術に関する。
【背景技術】
【0002】
地物の形状を計測する技術として、レーザースキャナを用いて、地物の形状を表す3次元点群データを取得するレーザー計測技術が存在する。例えば、モービルマッピングシステム(Mobile Mapping System:MMS)では、車両に搭載したレーザースキャナ及びカメラを用い、道路を走行しつつ3次元点群データ及び可視画像を取得することができ、地図作成やナビゲーションのための空間データ収集に利用されている。
【0003】
従来、道路面に描かれた道路標示に関しては、道路面を撮影した可視画像を用いて検出することが検討されている(特許文献1)。しかし、可視画像は天候や撮影時刻に応じて変化する照明状況の影響を受けやすい。
【0004】
一方、MMSによって取得されたレーザー反射点群の計測データを用いて、道路標示を検出することも研究されている。具体的には、道路面における道路標示とそれ以外の部分(アスファルトやコンクリートなど)との色・材料の違いに伴うレーザーの反射強度の相違を利用して道路標示の検出が図られている。レーザー反射点群の計測データは、可視画像と異なり照明状況の影響を受けにくい。
【0005】
また、MMSによるレーザー反射点群から、建物や道路などを含む都市空間の3次元モデルを自動的に生成する技術の研究・開発も行われている。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2013−186655号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
レーザースキャナによる反射点群の反射強度は、レーザーが物体に届くまでの距離、入射角、レーザーの強さ、物体の表面状態などによって変化する。すなわち、反射強度は同じ色・材料の物体からの反射であっても相違し得る。そのため、比較的広い空間から取得したレーザー計測データにおいて、反射強度を1つの閾値で一律に2値化して、道路標示とそれ以外の部分とを分離する手法では、閾値を適切に設定することが容易ではない、または困難となり得るという問題があった。
【0008】
例えば、レーザスキャナからの距離が近く入射角が小さい道路面と比較して、レーザスキャナからの距離が遠く入射角が大きくなる道路面の反射点群の反射強度は道路標示の部分か否かにかかわらず総じて低くなり得る。このような場合、例えば、白色の道路標示がそれより濃い色の道路の「地」の部分より基本的には大きな反射強度を与えることを利用して両者の弁別を図ろうとしても、遠くの道路標示では反射強度が低下して、近くの道路の地の部分の反射強度との差が小さくなったり逆転したりし得る。つまり、単純な2値化では、近くの道路面と遠くの道路面との両方にて、道路標示とそれ以外の部分とを好適に弁別することが難しくなり得る。
【0009】
さらに、比較的広い空間でのレーザー計測では、反射点群の点群密度もまた一定ではない。すなわち、点群密度はセンサーからの距離により変化し、このことが道路標示を自動的に抽出・認識することをより一層難しくしている。
【0010】
また、道路標示の誤検出を少なくする上では、検出対象とする空間的な範囲を道路面に限定することが好適である。しかし、道路の近傍における構造物、状況は様々であり、レーザー反射点群から道路面を高精度に検出することが容易ではない場合もあった。
【0011】
そのため、道路標示の検出・認識・地図化は基本的に人手により、または半自動にて行われており、時間・コストを要しているという問題があった。
【0012】
本発明は上記問題点を解決するためになされたものであり、レーザースキャナにより取得された反射点群の計測データに基づいて道路標示や道路面を好適な精度で検出する技術を提供することを目的とする。
【課題を解決するための手段】
【0013】
(1)本発明に係る道路標示検出装置は、レーザースキャナにより道路面から取得された反射点群の計測データに基づいて道路標示を検出する装置であって、前記反射点群を構成する各反射点に対応付けて、前記道路面にて当該反射点の所定近傍領域に存在する前記反射点群のレーザー反射強度のばらつき具合を表す指標値を算出し、当該指標値に基づいて前記道路面のうち前記レーザー反射強度が一様となる領域を定め、前記反射点群のうち当該領域のものを除去した反射強度起伏点群を求めるフィルタリング手段と、前記道路標示の検出に関する予め設定された所要分解能に応じて、前記反射強度起伏点群に対し前記道路面上での分布に関するクラスタリングを行い、前記道路標示ごとに分離された点群クラスターを生成するクラスタリング手段と、を有する。
【0014】
(2)上記(1)の道路標示検出装置において、さらに、前記レーザー反射強度に関し、所定の基準で前記点群クラスターごとに定められる閾値により当該点群クラスターに属する前記反射点群を分類し、前記閾値以上の前記レーザー反射強度を有する前記反射点群を1つの前記道路標示に対応する道路標示候補点群として抽出する道路標示候補点群抽出手段を有する構成とすることができる。
【0015】
(3)上記(1)及び(2)の道路標示検出装置において、前記所定近傍領域は、直径が検出対象とする前記道路標示の施工部分の最小寸法より大きく、且つ前記所要分解能以下である円である構成とすることができる。
【0016】
(4)上記(2)の道路標示検出装置において、前記道路面における前記道路標示候補点群の分布領域に基づいて道路標示候補図形の画像を生成する画像生成手段と、前記道路標示候補図形の重心から各輪郭画素までの距離を離散フーリエ変換して周波数スペクトラムを算出し、当該道路標示候補図形の画像特徴として、当該周波数スペクトラムにおける低周波数側の端部の所定周波数幅での成分と高周波数側の端部の所定周波数幅での成分とを抽出する画像特徴抽出手段と、検出対象とする前記道路標示の前記画像特徴を予め学習した識別器を用い、前記道路標示候補図形が前記道路標示であるかを判別する道路標示判別手段と、を有する構成とすることができる。
【0017】
(5)上記(4)の道路標示検出装置において、前記画像特徴抽出手段は、前記画像特徴としてさらに前記道路標示候補図形のモーメントを算出する構成とすることができる。
【0018】
(6)本発明に係る道路面検出装置は、レーザースキャナにより地表面から取得された反射点群の計測データに基づいて道路面を検出する装置であって、前記反射点群を水平面に投影した点群に基づいてドロネー三角形分割を行って前記反射点群を頂点とするドロネー三角形を生成し、前記反射点群から当該ドロネー三角形のうち勾配が所定の上限を超えるものの前記頂点を除去して許容勾配点群を求める許容勾配点群抽出手段と、前記許容勾配点群に対し前記地表面上での分布に関するクラスタリングを行い、得られたクラスターのうち要素数が所定の閾値以上のものを前記道路面の候補点群として抽出する道路面候補点群抽出手段と、を有する。
【0019】
(7)本発明に係る道路標示検出方法は、レーザースキャナにより道路面から取得された反射点群の計測データに基づいて道路標示を検出する方法であって、前記反射点群を構成する各反射点に対応付けて、前記道路面にて当該反射点の所定近傍領域に存在する前記反射点群のレーザー反射強度のばらつき具合を表す指標値を算出し、当該指標値に基づいて前記道路面のうち前記レーザー反射強度が一様となる領域を定め、前記反射点群のうち当該領域のものを除去した反射強度起伏点群を求めるフィルタリングステップと、前記道路標示の検出に関する予め設定された所要分解能に応じて、前記反射強度起伏点群に対し前記道路面上での分布に関するクラスタリングを行い、前記道路標示ごとに分離された点群クラスターを生成するクラスタリングステップと、を有する。
【0020】
(8)本発明に係るプログラムは、レーザースキャナにより道路面から取得された反射点群の計測データに基づいて道路標示を検出する処理をコンピュータに行わせるためのプログラムであって、当該コンピュータを、前記反射点群を構成する各反射点に対応付けて、前記道路面にて当該反射点の所定近傍領域に存在する前記反射点群のレーザー反射強度のばらつき具合を表す指標値を算出し、当該指標値に基づいて前記道路面のうち前記レーザー反射強度が一様となる領域を定め、前記反射点群のうち当該領域のものを除去した反射強度起伏点群を求めるフィルタリング手段、及び、前記道路標示の検出に関する予め設定された所要分解能に応じて、前記反射強度起伏点群に対し前記道路面上での分布に関するクラスタリングを行い、前記道路標示ごとに分離された点群クラスターを生成するクラスタリング手段、として機能させる。
【発明の効果】
【0021】
本発明によれば、レーザースキャナにより取得された反射点群の計測データに基づいて道路標示や道路面を好適な精度で自動検出することが容易となる。
【図面の簡単な説明】
【0022】
図1】本発明の実施形態に係る道路標示検出システムの概略の構成を示すブロック図である。
図2】本発明の実施形態に係る道路標示検出システムがレーザー計測データから道路標示を検出・認識する処理の概略のフロー図である。
図3】本発明の実施形態に係る道路標示検出システムにおける主に許容勾配点群抽出手段の処理の概略のフロー図である。
図4】許容勾配点群抽出手段の処理を説明する模式図である。
図5】本発明の実施形態に係る道路標示検出システムにおける主に道路面候補点群抽出手段の処理の概略のフロー図である。
図6】本発明の実施形態に係る道路標示検出システムにおける、道路面から道路標示オブジェクトを抽出する処理の概略のフロー図である。
図7】点群フィルタリング手段による、各反射点の近傍領域での反射点群のレーザー反射強度のばらつきの指標値を算出する処理を説明する模式図である。
図8】本発明の実施形態に係る道路標示検出システムにおける、道路面から道路標示オブジェクトを抽出する処理を説明する模式図である。
図9】本発明の実施形態に係る道路標示検出システムにおける、道路標示オブジェクトの判別処理の概略のフロー図である。
【発明を実施するための形態】
【0023】
以下、本発明の実施の形態(以下実施形態という)である道路標示検出システム2について、図面に基づいて説明する。本システムは、道路標示を検出しようとする対象空間からレーザースキャナにより取得した反射点群の計測データに基づいて道路標示を検出するシステムであり、地表面から道路面を検出する本発明に係る道路面検出装置と、道路面から道路標示を検出する本発明に係る道路標示検出装置とを含んで構成される。
【0024】
反射点群の計測データは例えば、MMSにより取得される。MMSでは、自動車に搭載されたレーザースキャナは車体の上部から斜め下方向や斜め上方向にレーザーを照射し、物体からのレーザー反射光を検出する。レーザーの光軸は横方向に走査され、走査角度範囲内にて微小角度ごとにレーザーパルスが発射される。レーザーの発射から反射光の受信までの時間に基づいて距離が計測され、またその際、レーザーの発射方向、時刻、及び車体の位置・姿勢などが計測される。これらの計測データから、レーザーパルスを反射した点の対象空間における3次元座標を表す点群データが求められる。またレーザースキャナは反射光の強度(反射強度)を計測する。
【0025】
道路標示は路面に描かれる標示であり、法律上は道路の交通に関する規制又は指示を表示する標示であるが、道路標示検出システム2が検出対象とする道路標示は法定のものに限られない。また、道路標示は基本的に、コンクリート、アスファルトなどで舗装された地表面に設けられるので、本実施形態における道路面は基本的にそのような材料からなる舗装面である。一方、道路標示検出システム2は舗装面にペイント等で描かれた標示を道路標示として検出対象とすることができ、当該舗装面が道路であるか否かを問わず用いることができる。よって、本実施形態における道路面は、車道及び歩道を含む道路の他、例えば、駐車場などの舗装面を含み得る。
【0026】
図1は、道路標示検出システム2の概略の構成を示すブロック図である。本システムは、演算処理装置4、記憶装置6、入力装置8及び出力装置10を含んで構成される。演算処理装置4として、本システムの各種演算処理を行う専用のハードウェアを作ることも可能であるが、本実施形態では演算処理装置4は、コンピュータ及び、当該コンピュータ上で実行されるプログラムを用いて構築される。
【0027】
当該コンピュータのCPU(Central Processing Unit)が演算処理装置4を構成し、後述する許容勾配点群抽出手段20、道路面候補点群抽出手段22、点群フィルタリング手段24、点群クラスタリング手段26、道路標示候補点群抽出手段28、画像生成手段30、画像特徴抽出手段32及び道路標示判別手段34として機能する。
【0028】
記憶装置6はコンピュータに内蔵されるハードディスクなどで構成される。記憶装置6は演算処理装置4を許容勾配点群抽出手段20、道路面候補点群抽出手段22、点群フィルタリング手段24、点群クラスタリング手段26、道路標示候補点群抽出手段28、画像生成手段30、画像特徴抽出手段32及び道路標示判別手段34として機能させるためのプログラム及びその他のプログラムや、本システムの処理に必要な各種データを記憶する。例えば、記憶装置6は、処理対象データとしてレーザー計測データ40を格納する。また、記憶装置6は、予め道路標示の画像特徴を検出対象とする道路標示ごとに学習して生成された識別器42を格納する。
【0029】
入力装置8は、キーボード、マウスなどであり、ユーザが本システムへの操作を行うために用いる。また、入力装置8には、他のシステムからデータを入力するインターフェース装置が含まれ得る。
【0030】
出力装置10は、ディスプレイ、プリンタなどであり、本システムにより求められた道路面や道路標示を画面表示、印刷等によりユーザに示す等に用いられる。
【0031】
許容勾配点群抽出手段20は、地表面から取得された反射点群を水平面に投影した点群に基づいてドロネー三角形分割を行って反射点群を頂点とするドロネー三角形を生成する。つまり、分割は水平面にて行われるが、ドロネー三角形は3次元空間で定義される。そして、許容勾配点群抽出手段20は反射点群から、当該ドロネー三角形のうち勾配が所定の上限を超えるものの頂点をなす反射点を除去し、残った反射点群を許容勾配点群として出力する。
【0032】
道路面候補点群抽出手段22は、許容勾配点群からノイズ点群を除去し道路面の候補点群を抽出する。例えば、道路面候補点群抽出手段22は、許容勾配点群に対し地表面上での分布に関するクラスタリングを行い、得られたクラスターのうち要素数が所定の閾値未満のものをノイズとして除去し、当該閾値以上のものを道路面の候補点群として抽出する。具体的には、道路面候補点群抽出手段22は当該クラスタリング処理として、許容勾配点群におけるユークリッド距離に基づくクラスタリングを行う。
【0033】
点群フィルタリング手段24は、反射点群を構成する各反射点に対応付けて、道路面にて当該反射点の所定近傍領域に存在する反射点群のレーザー反射強度のばらつき具合を表す指標値を算出する。そして、当該指標値に基づいて道路面のうちレーザー反射強度が一様となる領域を定め、反射点群のうち当該領域のものを除去した反射強度起伏点群を求める。
【0034】
点群クラスタリング手段26は、道路標示の検出に関する予め設定された所要分解能に応じて、反射強度起伏点群に対し前記道路面上での分布に関するクラスタリングを行い、道路標示ごとに分離された点群クラスターを生成する。具体的には、点群クラスタリング手段26は当該クラスタリング処理として、反射強度起伏点群におけるユークリッド距離に基づくクラスタリングを行う。
【0035】
道路標示候補点群抽出手段28は、レーザー反射強度に関し、所定の基準で点群クラスターごとに定められる閾値により当該点群クラスターに属する反射点群を分類し、閾値以上のレーザー反射強度を有する反射点群を1つの道路標示に対応する道路標示候補点群として抽出する。
【0036】
画像生成手段30は、道路面における道路標示候補点群の分布領域に基づいて道路標示候補図形の画像を生成する。
【0037】
画像特徴抽出手段32は、道路標示候補図形の重心から各輪郭画素までの距離を離散フーリエ変換して周波数スペクトラムを算出し、当該道路標示候補図形の画像特徴として、当該周波数スペクトラムにおける低周波数側の端部の所定周波数幅での成分と高周波数側の端部の所定周波数幅での成分とを抽出する。本実施形態では画像特徴抽出手段32は画像特徴としてさらに道路標示候補図形のモーメントを算出する。
【0038】
道路標示判別手段34は、検出対象とする道路標示の画像特徴を、記憶装置6に記憶されている識別器42を用い、道路標示候補図形が道路標示であるかを判別する。
【0039】
レーザー計測データ40は、道路を走行するMMSにより取得された反射点群の計測データであり、各反射点の3次元座標及び反射強度の情報を含む。なお、対象空間での3次元座標系として直交座標系XYZを定義し、XY平面を水平面とし、Z軸を正の向きが上向きである鉛直軸と定義する。
【0040】
識別器42は道路標示についての学習用データを用いた機械学習により生成される。学習は例えば、サポートベクターマシーンなどの方法により行われる。識別器42は道路標示候補図形の画像特徴を入力とし、道路標示である尤度を算出する関数である。識別器42は例えば、検出対象とする道路標示ごとに用意される。
【0041】
図2は道路標示検出システム2がレーザー計測データ40から道路標示を検出・認識する処理の概略のフロー図である。道路標示検出システム2はレーザー計測データ40から、道路面を抽出し(ステップS1)、道路面から道路標示オブジェクトを抽出し(ステップS2)、そして、識別器42を用いて道路標示オブジェクトが道路標示であるか否かの判定、及びどの道路標示であるかの判別を行う(ステップS3)。
【0042】
具体的には、ステップS1は、許容勾配点群抽出手段20及び道路面候補点群抽出手段22により行われ、レーザー計測データ40から道路面候補点群が抽出される。ステップS2は、点群フィルタリング手段24、点群クラスタリング手段26及び道路標示候補点群抽出手段28により行われ、道路面候補点群から道路標示候補点群が抽出される。ここで、対象空間の道路面には複数の道路標示が存在し得る。道路標示候補点群はそれら複数の道路標示ごとに定義される。つまり、各道路標示候補点群は1つの道路標示の候補となるオブジェクト(道路標示オブジェクト)として抽出される。ステップS3は画像生成手段30、画像特徴抽出手段32及び道路標示判別手段34により行われ、道路標示オブジェクトの表現形式を道路標示候補点群から画像に変換し、画像特徴に基づいて道路標示の認識処理が行われる。
【0043】
図3図2のステップS1の一部の処理を説明する概略のフロー図であり、ステップS1のうち主に許容勾配点群抽出手段20の処理に関する部分が示されている。
【0044】
許容勾配点群抽出手段20は記憶装置6から対象空間のレーザー計測データ40を読み出す。既に述べたようにMMSのレーザースキャナは車上から斜め下方向及び斜め上方向にレーザーを照射するので、レーザー計測データ40には地表面の反射点群だけでなく、道路沿いの建物、街路樹などの反射点群も含まれる。そこで、許容勾配点群抽出手段20は、レーザー計測データ40に含まれる反射点群のうち、レーザースキャナより高いZ座標を有する反射点(又はレーザースキャナから上向きに発射されたレーザーパルスに対応する反射点)を、道路面を構成しない反射点群として、当該反射点のレーザー計測データ40を道路外計測データE1へ分離し除去する(ステップS10にて「Yes」の場合)。
【0045】
許容勾配点群抽出手段20は、レーザー計測データ40から道路外計測データE1を除いた残りのデータを構成する反射点群を水平面に投影した点群についてドロネー三角形分割を行う(ステップS12)。許容勾配点群抽出手段20は、水平面上で定義されたドロネー三角形の頂点に対応する反射点を頂点として、3次元空間でのドロネー三角形を定義する。これによりステップS12にて、地表面のポリゴンモデルとして、当該ドロネー三角形からなるTIN(Triangulated Irregular Network)モデルが生成される。
【0046】
許容勾配点群抽出手段20はTINを構成する各三角形の勾配を算出し(ステップS14)、道路面に想定されない程に急な勾配が存在する箇所の反射点を、道路面を構成しない反射点群として、当該反射点のレーザー計測データ40を道路外計測データE2へ分離し除去する(ステップS16にて「Yes」の場合)。具体的には、ステップS16にて、三角形の勾配が所定の上限Th1を超える場合に、当該三角形の頂点をなす反射点を道路外計測データE2へ分類する。例えば、勾配の上限Th1は30%とすることができる。ちなみに、法令で定められる道路の最大縦断勾配は12%であるので、上限勾配を30%程度とした場合、道路面の反射点が誤って除去される可能性は低く、一方、例えば、車道と歩道との境界の段差・スロープなどの道路面以外では生じ得る急傾斜部分の反射点は好適に除去され得る。
【0047】
図4は許容勾配点群抽出手段20の処理を説明する模式図である。図4は例えば、車道と歩道との境界における反射点群の一例を示している。図4において、車道面50に対し歩道面52は高くなっており、境界には段差面54が存在する。反射点のZ座標の違いを理解し易くするために図4では、車道面50の反射点を“●”印、歩道面52の反射点を“○”印、段差面の反射点を“×”印で表している。図4(a)はレーザー計測データ40から道路外計測データE1を除いた後の反射点群の例を示す斜視図であり、図4(b)は図4(a)の反射点群を投影した水平面を示す平面図である。図4(a)及び(b)には、図4(b)の水平面に投影した点群に対するドロネー三角形分割により生成された三角形の例を点線で示している。それら三角形のうち車道面50内にある三角形(全ての頂点が“●”であるもの)や歩道面52内にある三角形(全ての頂点が“○”であるもの)の勾配の値は、たとえ道路が傾斜地に設けられていても、基本的には上限勾配を超えない。一方、車道と歩道との境界の段差部には車道面50、歩道面52、段差面54のうちの複数の面に頂点を有する三角形が形成される。このような三角形は車道面50に対して比較的急峻な角度で立ち、勾配が上限を超える結果、当該三角形の頂点をなす反射点はステップS16にて道路外計測データE2として除去される。
【0048】
図4(c)は,図4(a)の反射点群から道路外計測データE2を除いた後の反射点群の例を示す斜視図である。この例では、ステップS12〜S16により、車道面50及び歩道面52に属さない反射点である段差面54の反射点が除去される。また、車道面50及び歩道面52の反射点のうち境界近傍の点も除去され得、その結果、車道面50上の反射点群と歩道面52上の反射点群との距離が広がり得る。
【0049】
なお、水平面に投影した点群についてのドロネー三角形分割では、反射点間のZ座標の違いを無視し水平座標のみに着目して反射点の隣接を判断するので、例えば、車道面50とのZ座標の差が大きな反射点であっても車道面50上の反射点とドロネー三角形を形成し易い。つまり、図4に示した車道と歩道との間の高低差が小さい段差面54上の反射点に限らず、道路面からZ軸方向に大きく隔たった反射点であってもステップS12〜S16の処理で除去され得る。
【0050】
道路外計測データE2を除去した残りのレーザー計測データ40を許容勾配点群データC1とする。許容勾配点群抽出手段20は許容勾配点群データC1を生成し、続いて道路面候補点群抽出手段22が許容勾配点群データC1からさらにノイズ点群を除去する処理を行い、道路面候補点群を求める。
【0051】
図5図2のステップS1の処理のうち図3に続く部分を説明する概略のフロー図であり、ステップS1のうち主に道路面候補点群抽出手段22の処理に関する部分が示されている。
【0052】
道路面候補点群抽出手段22は許容勾配点群抽出手段20により生成された許容勾配点群計測データC1に対して外れ値解析を行う(ステップS20)。具体的には、道路面候補点群抽出手段22は、許容勾配点群計測データC1に含まれる各反射点についてその近傍の所定個数の反射点からなる局所点群を抽出する。そして、当該局所点群内にて各反射点とその最近隣の他の反射点とのユークリッド距離を求め、当該距離の分布において平均距離との差が所定の大きさTh2以上である反射点を外れ値とし、ノイズ点群E3に分離し除去する(ステップS22にて「Yes」の場合)。例えば、局所点群を構成する反射点の個数は30点とすることができる。また、距離の分布の標準偏差をσで表すと、例えば、閾値Th2は1σとすることができる。
【0053】
道路面候補点群抽出手段22は、ステップS22でのノイズ点群E3の除去にて残った反射点群に対し、空間分布についての主成分分析を行う(ステップS24)。当該主成分分析により点群の分布が大きい方向から順に第1主成分、第2主成分、第3主成分が求まり、これら各主成分に対応して第1〜第3固有値λ〜λが算出される。固有値はそれに対応する主成分の方向における点群の分散値であり、λ>λ>λである。ここで、λ/λが大きくなるほど点群は第1主成分の方向に沿って細長く分布する。また、λとλとが同程度の場合、λがλ,λに比べて十分に小さければ点群は平面状に分布し、λが大きくなるにつれて分布形状は湾曲した面となる。
【0054】
そこで、道路面候補点群抽出手段22は、ステップS20と同様に局所点群を抽出して主成分分析を行い(ステップS24)、その分布形状の湾曲度合いが所定の閾値Th3以上である場合(ステップS26にて「Yes」の場合)、当該局所点群を道路以外の点群データE4に分離し除去する。例えば、ステップS24での局所点群を構成する反射点の個数は30点とすることができる。また、閾値Th3は正規化した固有値におけるλの値として1%に設定することができる。
【0055】
道路面候補点群抽出手段22は、ステップS26での点群データE4の除去にて残った反射点群に対し、ユークリッド距離についてのクラスタリングを行う(ステップS28)。道路面は比較的広く連続するので、道路面候補点群抽出手段22は、生成されたクラスターのうち反射点の数が所定個数Th4より多いものを道路面候補点群C2として抽出し(ステップS30にて「Yes」の場合)、それ以外のクラスターはノイズ点群E5に分類する(ステップS30にて「No」の場合)。閾値Th4は例えば、1000点とすることができる。
【0056】
ちなみに、図4の車道と歩道の例において上述したように、ステップS12〜S16の処理により段差近傍の反射点群は除去される結果、車道面50上の反射点群と歩道面52上の反射点群との距離が広がり得る。よって、車道面50の反射点群と歩道面52の反射点群とは別々のクラスターを形成することが期待できる。このことからステップS28でのクラスタリングでは基本的に、或る1つの平坦面のクラスターは当該平坦面の反射点群からなり、当該平坦面の外側に存在する段差、他の平坦面、建物などの反射点群を含まない構成になっていることが理解できる。
【0057】
以上、図2のうちステップS1である、レーザースキャナにより取得された反射点群の計測データに基づいて道路面を検出する処理を説明した。次に図2のステップS2である、レーザースキャナにより道路面から取得された反射点群の計測データ(道路面点群計測データC3)から道路標示オブジェクトを抽出する処理を説明する。
【0058】
図6図2のステップS2の処理を説明する概略のフロー図である。本実施形態では道路標示検出システム2は、道路面点群計測データC3として、ステップS1で抽出された道路面候補点群C2に関するレーザー計測データ40を用いる。なお、道路面点群計測データC3として、本道路標示検出システム2を用いずに別途取得されたものを用いることもできる。
【0059】
点群フィルタリング手段24は道路面点群計測データC3に含まれる各反射点について当該反射点の所定近傍領域に存在する反射点群のレーザー反射強度のばらつき具合を表す指標値を算出する(ステップS40)。ここでは当該近傍領域を窓領域と呼ぶことにする。
【0060】
例えば、窓領域は円形とすることができる。また、当該円形の直径は検出対象とする道路標示の施工部分(以下、ペイント部と称する。)の最小寸法より大きくすることが好適である。但し、当該円の直径は、近傍領域を定めるという趣旨を逸脱しない限度内で設定され、例えば、分離して認識すべき2つの道路標示同士の想定される最小距離よりは小さく設定される。本実施形態では、道路標示を構成する線幅(太さ)が多くの場合、10〜50センチメートル〔cm〕程度であることから、窓領域は直径60cmの円とする。
【0061】
また、本実施形態では窓領域内の反射点群のレーザー反射強度のばらつき具合を表す指標値として、当該反射点群におけるレーザー反射強度の標準偏差σを用いる。
【0062】
図7はステップS40の処理を説明する模式図である。図7(a)は道路面の平面図であり、当該道路面には道路標示の例として2本の白線60,62が存在する。白線60と白線62とは別々の道路標示を構成しており、それらの間には例えば、数メートル〔m〕の距離が存在する。また、図7(a)にはいくつかの位置に窓領域64を例示している。
【0063】
図7(b)は道路面のレーザー反射強度の図7(a)に示す直線66に沿った変化の一例を示すグラフである。図7(b)の横軸は、直線66に沿った道路面上での位置であり、縦軸はレーザー反射強度であり、上向きを反射強度が増加する方向とする。図7(b)に示す例では巨視的には左側から右側に向けてレーザー反射強度は減少している。そのため、本発明が解決しようとする課題として上述したように、例えば、直線70で示す閾値で2値化すると白線60における反射点は閾値を超えるが、白線62における反射点は閾値を超えないという問題があった。
【0064】
図7(c)は直線66に沿って窓領域を移動させた場合の標準偏差σの変化72を示すグラフである。図7(c)の横軸は、図7(b)の横軸と同様、直線66に沿った道路面上での位置であり、縦軸は標準偏差σであり、上向きをσが増加する方向とする。なお、或る反射点を中心として設定した窓領域にて算出した標準偏差σは、当該窓領域の中心の反射点に対応付ける。
【0065】
標準偏差σは、窓領域内にてレーザー反射強度に起伏が存在する場合に大きくなり、窓領域内にてレーザー反射強度の一様性が高いと小さくなる。具体的には、窓領域64a,64b,64f〜64hのように窓領域が道路標示の部分と道路の「地」の部分とに跨がる位置、つまり道路標示の輪郭(エッジ)を含む位置にある場合に標準偏差σは大きくなり、逆に、窓領域64c〜64eのように窓領域が道路の「地」の部分だけを含む場合、つまり道路標示のエッジを含まない場合に標準偏差σは小さくなる。ここで、窓領域が道路標示の部分だけを含む場合も、窓領域が道路標示のエッジを含まない場合となり、標準偏差σが小さくなり得る。しかし、本実施形態では上述のように、窓領域の直径を、検出対象とする道路標示のペイント部の最小寸法より大きく設定するので、窓領域が道路標示の部分だけを含む場合は基本的に考慮しないこととする。よって、標準偏差σに基づいて道路面のうちレーザー反射強度が一様と判断される領域は、本実施形態では道路の「地」の部分からなる。
【0066】
さて、標準偏差σは窓領域内のレーザー反射強度のばらつきに応じて変化する値であり、レーザー反射強度自体は直接には標準偏差σに影響しない。そのため、例えば、窓領域64c〜64eの相互間にはレーザー反射強度の相違が存在するが、標準偏差σには違いが現れない。また、図7(b)に巨視的な変化として示したような緩やかなレーザー反射強度の変化は、道路標示のエッジにおけるレーザー反射強度の変化ほどには標準偏差σを増加させない。そのため、例えば、窓領域64c〜64eでの標準偏差σは窓領域64a,64b,64f〜64hでの標準偏差σに比べて小さい。
【0067】
これらの標準偏差σの性質から、道路面の各反射点について求めた標準偏差σの分布において、道路標示のエッジを含まない窓領域での標準偏差σは、道路標示のエッジを含む窓領域での標準偏差σに比べて概して小さく、またエッジを含む窓領域での標準偏差σとは好適に分離される。
【0068】
そこで、点群フィルタリング手段24は、Jenksの自然階級分類法を用いて、各反射点に対し算出された標準偏差σに基づき、道路面上の複数の反射点を複数のクラスに分類する(ステップS42)。標準偏差σが低いクラスの反射点ほど、その近傍でのレーザー反射強度の起伏が小さい。つまり、そのような反射点ほど、道路標示のエッジを含まない窓領域の中心に位置し、よって道路標示のエッジから窓領域の半径以上離れた道路面の「地」の反射点である可能性が高い。そこで、標準偏差σが一番小さい最下位クラスの反射点群は、レーザー反射強度が一様となる道路面の「地」の反射点群であると推定し、道路標示以外の点群E6として分離、除去し(ステップS44にて「Yes」の場合)、残りを反射強度起伏点群C4として抽出する(ステップS44にて「No」の場合)。
【0069】
ここで分類するクラス数が少ないほど、最下位クラスに道路標示の反射点が混入し易くなり、逆にクラス数が多いほど、最下位クラスより上のクラスにも道路標示以外の反射点が含まれ易くなって、道路標示以外の反射点の除去漏れが起こり易くなる。よって、クラス数はこの点を考慮して設定する。本実施形態ではクラス数は4とし、点群フィルタリング手段24はそのうち最下位クラスを除去し、上位3クラスを反射強度起伏点群C4として点群クラスタリング手段26に渡す。
【0070】
点群クラスタリング手段26は反射強度起伏点群C4に対し、道路標示の検出に関する予め設定された所要分解能に応じて、ユークリッド距離に基づくクラスタリングを行い、道路標示ごとに分離された点群クラスターを生成する(ステップS46)。
【0071】
道路標示の検出に関する所要分解能は、道路標示の2つのペイント部を互いに別の道路標示と認識するペイント部間の距離である。本発明においては、1つの道路標示を構成する複数のペイント部が一体の道路標示として認識される程度に分解能は低く設定されることが求められ、所要分解能は基本的には、窓領域の円の直径の上限として上述した、分離して認識すべき2つの道路標示同士の想定される最小距離に設定される。
【0072】
例えば、横断歩道の道路標示として、互いに分離した複数本の白線を45〜50cmの間隔を設けて平行に配列したゼブラパターンがある。この横断歩道の標示を個々の白線としてではなく、1つのまとまりとして抽出するという例では、所要分解能として白線の間隔以上の寸法を設定することが必要となる。
【0073】
道路標示候補点群抽出手段28は、点群クラスタリング手段26により生成された点群クラスターごとに、レーザー反射強度に関する2クラスのクラスタリングを行い(ステップS48)、閾値以上のレーザー反射強度を有する反射点群を1つの道路標示に対応する道路標示候補点群C5として抽出し(ステップS50にて「Yes」の場合)、一方、閾値未満の反射点群を道路標示以外の点群E7として分離、除去する(ステップS50にて「No」の場合)。具体的には、反射強度起伏点群C4には、道路標示のペイント部の反射点群の他に、ペイント部の輪郭から窓領域の円の半径程度の距離までの道路の「地」の部分の反射点群が含まれており、道路標示候補点群抽出手段28はこれらのうちペイント部の点群の抽出を図る。
【0074】
ステップS48におけるクラスタリングは例えば、Jenksの自然階級分類法を用いて行われる。ここで、当該クラスタリングは、道路標示ごとに分けられた点群クラスターごとに行われ、Jenksの自然階級分類法を用いることで、2クラスに分類する閾値は当該点群クラスターごとに設定されることに留意する。つまり、図7(b)の説明で述べた、別々の道路標示を構成する白線60,62を共通の閾値(直線70)で2値化する手法とは相違し、道路標示の対象空間内での位置の違いなどによるレーザー反射強度の変動の影響を受けにくく、道路標示の検出精度の向上が図られる。なお、ステップS48におけるクラスタリングは自然階級分類法を用いずに、道路標示ごとの点群クラスターごとに閾値を設定する他の手法としてもよい。
【0075】
図8図2のステップS2の道路標示オブジェクト抽出に関する上述の処理を説明する模式図である。図8は道路面の一例の平面図であり、図8(a)〜(c)は共通の道路面74を表している。当該道路面には道路標示の例として2箇所に横断歩道76,78が存在する。横断歩道76のペイント部として複数本の白線76pを有し、同様に横断歩道78は複数本の白線78pを有する。図8(a)〜(c)において斜線部は反射点群が存在する領域を表している。
【0076】
具体的には、図8(a)は道路面点群計測データC3における反射点群の存在範囲を示しており、道路面全体に反射点群が存在する。
【0077】
図8(b)は点群フィルタリング手段24及び点群クラスタリング手段26による処理結果を示している。点群フィルタリング手段24により、窓領域内にレーザー反射強度が一様となる反射点が除去され、ペイント部76p,78pとその周囲の道路の「地」の部分に存在する反射点群80-1〜80-8が反射強度起伏点群C4として抽出される。さらに点群クラスタリング手段26により、互いに距離が近い反射点群80-1〜80-4が1つの道路標示の点群クラスター82とされ、互いに距離が近い反射点群80-5〜80-8は反射点群80-1〜80-4とは距離が離れているので、点群クラスター82とは別の道路標示の点群クラスター84とされる。
【0078】
図8(c)は道路標示候補点群抽出手段28による処理結果を示している。道路標示候補点群抽出手段28は点群クラスター82についてレーザー反射強度に関する2クラスのクラスタリングを行い、反射強度が小さいクラスを除去し、反射強度が大きいクラスを道路標示候補点群C5として抽出する。これにより、ペイント部76を囲む道路の「地」の部分の反射点群が除去され、複数のペイント部76pに存在する反射点群が1つの道路標示オブジェクトとして抽出される。同様に、点群クラスター84から複数のペイント部78pに存在する反射点群が別の1つの道路標示オブジェクトとして抽出される。
【0079】
以上、図2のうちステップS2である、道路標示オブジェクトを抽出する処理を説明した。次に図2のステップS3である、道路標示オブジェクトの識別処理を説明する。
【0080】
図9図2のステップS3の処理を説明する概略のフロー図である。上述したステップS2の処理で、道路標示オブジェクトとして道路標示候補点群C5が求められ、ステップS3にはこの道路標示オブジェクトが処理対象データとして渡される。具体的には、道路標示候補点群C5には道路標示オブジェクトに対応する点群クラスターが定義されている。
【0081】
画像生成手段30は当該点群クラスターの道路面での分布領域に基づいて道路標示候補図形の画像を生成する。例えば、当該画像としてラスタ画像を生成する。当該ラスタ画像は2値画像とすることができ、例えば、道路標示候補図形を構成する画素が画素値“1”又は白、当該図形外の領域の画素が画素値“0”又は黒で表される。
【0082】
具体的には、画像生成手段30は、まず、道路標示オブジェクトごとに、点群クラスターを構成する各反射点を水平面(又は道路面)へ投影し、反射点が投影された位置の画素値を“1”、それ以外の画素の画素値を“0”と定義した初期画像を生成する(ステップS60)。そして、モルフォロジー処理により、初期画像における点群間の隙間を埋め、道路標示のペイント部に対応する領域の画素値が“1”となった画像を生成する(ステップS62)。
【0083】
画像特徴抽出手段32は、ステップS62にてペイント部に対応する領域として生成された道路標示候補図形から画像特徴を抽出する。まず、画像特徴抽出手段32は道路標示候補図形の重心を算出し(ステップS64)、また道路標示候補図形の輪郭を抽出する(ステップS66)。そして、画像特徴抽出手段32は、輪郭を構成する各画素(輪郭画素)について重心からの距離(重心距離)を計算する(ステップS68)。輪郭画素の数をN、画像内の各輪郭画素に付与したインデックスをn(nは0〜N−1の整数)として、N個の重心距離u(n)が得られる。インデックスは画像生成手段30により生成される画像に対して共通の規則で付与され、例えば、画像のラスタスキャンで現れる輪郭画素に順番に昇順で付与する。
【0084】
画像特徴抽出手段32はこの重心距離u(n)を離散フーリエ変換して、次式で与えられる周波数スペクトラムを算出する(ステップS70)。
【0085】
【数1】
【0086】
道路標示候補図形の画像特徴として、この周波数スペクトラムを利用する。ここで、周波数スペクトラムの全成分を、道路標示判別手段34における機械学習を利用した道路標示の判別に用いることとすると、オーバーフィッティング(過剰適合)の問題が起こり易い。そこで、周波数スペクトラムのうち低周波数側の端部の所定周波数幅δでの成分と高周波数側の端部の所定周波数幅δでの成分とを画像特徴として抽出する。すなわち、低周波数側からU(0),U(1),…,U(δ−1)を抽出し、高周波数側からU(N−1),U(N−2),…,U(N−δ)を抽出する。例えば、δ,δはN個の成分に対し一定割合の成分数と定めることができる。また、δ,δは全成分数Nにかかわらず、予め定めた一定値とすることもできる。
【0087】
また、画像特徴抽出手段32は画像特徴としてさらに道路標示候補図形のモーメントを算出する。例えば、次式で定義される0次モーメントm0,0、1次モーメントm1,0,m0,1を画像特徴として算出する。なお、次式にてb(x,y)は道路標示候補図形を表す画像の画素(x,y)での画素値であり、上述したようにペイント部では1、それ以外では0である。また、総和記号Σは当該画像の全画素についての和をとることを意味している。
0,0=Σb(x,y)
1,0=Σxb(x,y)
0,1=Σyb(x,y)
【0088】
これらモーメントを用いることで、例えば、周波数スペクトラムでは失われている道路標示候補図形のサイズや向き(画像面内での回転角度)の情報が補われる。
【0089】
道路標示判別手段34は、画像特徴抽出手段32が抽出した画像特徴を、機械学習により生成された識別器42への入力とし、識別器が出力する尤度に基づいて道路標示候補図形が道路標示であるか、及びその種類を判別する(ステップS72)。例えば、検出対象とする複数種類の道路標示ごとに用意された識別器42それぞれに、判別対象の道路標示オブジェクト(道路標示候補図形)の画像特徴を入力し、所定値以上の出力値が得られた識別器42のうち最大の出力値が得られた識別器に対応する道路標示を、当該道路標示オブジェクトの判別結果とする。
【0090】
ちなみに、識別器42は既に述べたように、道路標示の種類ごとに、学習用データを用いた機械学習により生成される。すなわち、或る種類の道路標示の学習は、当該種類の道路標示オブジェクトであることが分かっている反射点群に関する複数のデータと、当該種類の道路標示オブジェクトでないことが分かっている反射点群に関する複数のデータとを学習用データとして行われる。学習に際しての画像特徴の抽出は、図2のステップS3に関し上述した処理と同様にして行われる。
【0091】
上述の実施形態では窓領域の直径を、検出対象とする道路標示のペイント部の最小寸法より大きく設定するとしたが、窓領域の大きさはペイント部の最小寸法より小さく設定することもできる。この場合、点群フィルタリング手段24によりペイント部内にレーザー反射強度が一様と判断される領域が生じる。つまり、図2のステップS2にて道路標示候補点群抽出手段28により抽出される道路標示オブジェクトが、ペイント部の縁領域の反射点群のみとなり、ペイント部の内部に反射点群が除去された領域が生じ得る。この場合、ステップS3にて例えば、画像生成手段30は、反射点群の密度が高いペイント部の縁部にて点群間の隙間を埋めてペイント部の輪郭に沿った中空の道路標示候補図形を生成し、画像特徴抽出手段32はこの中空の道路標示候補図形から重心、輪郭を求め、さらに画像特徴を抽出する構成とすることができる。また、画像生成手段30は中空部分を埋めた道路標示候補図形を生成する構成とすることもできる。
【産業上の利用可能性】
【0092】
道路標示検出システム2により、レーザー計測データ40から検出された道路標示は、高度道路交通システム(Intelligent Transport Systems:ITS)や自動運転のためのデータアーカイブや道路地図作成に用いることができる。
【符号の説明】
【0093】
2 道路標示検出システム、4 演算処理装置、6 記憶装置、8 入力装置、10 出力装置、20 許容勾配点群抽出手段、22 道路面候補点群抽出手段、24 点群フィルタリング手段、26 点群クラスタリング手段、28 道路標示候補点群抽出手段、30 画像生成手段、32 画像特徴抽出手段、34 道路標示判別手段、40 レーザー計測データ、42 識別器。
図1
図2
図3
図4
図5
図6
図7
図8
図9