(58)【調査した分野】(Int.Cl.,DB名)
前記半径方向反力は、前記ハブに結合された前記隔離バネの螺旋端部から約90度である半径方向位置に向けられ、前記減衰部材は、該隔離バネの該端部から半径方向にオフセットされて該半径方向反力を受け入れるように構成された円周パッドを備えている、
請求項2に記載のデカプラ。
オルタネータのシャフトとエンジン制御ユニットを有する内燃エンジンのクランクシャフトによって駆動されるエンドレス動力伝達部材との間でトルクを伝達するためのデカプラであって、
前記シャフトに結合して回転軸の回りを該シャフトと共に回転するように構成されたハブと、
前記ハブに回転可能に結合され、かつ前記エンドレス動力伝達部材に係合するように構成された動力伝達面を含むプーリと、
前記プーリ及び前記ハブのうちの一方から該プーリ及び該ハブのうちの他方まで回転荷重を伝達するように構成された隔離バネであって、該隔離バネが、第1の螺旋端部と第2の螺旋端部とを有する螺旋捩りバネであり、該隔離バネによって伝達される該回転荷重が、該第2の螺旋端部を通じて該ハブまで伝達される前記隔離バネと、
第1の回転方向の前記プーリ及び前記ハブのうちの一方の該プーリ及び該ハブの他方に対するオーバーランを可能にするように構成された一方クラッチと、
前記隔離バネによって伝達された前記回転荷重に比例して変化する減衰部材に対して作用する該隔離バネからの力により、前記ハブ及び前記プーリのうちの一方の上の摩擦面との摩擦係合に駆動されるように位置決めされた減衰部材と、備え、
前記減衰部材は、前記第2の螺旋端部と前記ハブの間でトルクを伝達するように周方向に該第2の螺旋端部と該ハブの間にあり、かつ半径方向に移動可能であり、該減衰部材は、該第2の螺旋端部と係合するように構成された第1の端部と、角度幅だけ該第1の端部から半径方向にオフセットされ、該ハブの係合面と係合するように構成された第2の端部とを有し、
前記隔離バネからの前記力は、前記減衰部材を通じて該隔離バネと前記ハブの間で伝達される前記回転荷重の大きさに基づくベクトル部分であり、かつ前記角度幅に基づいており、
減衰が、減衰値の範囲にわたって前記減衰部材によって与えられ、前記減衰値の範囲は、前記範囲内でデカプラの共振を防き、かつ、該範囲内の少なくとも1つのポイントで、前記オルタネータのオルタネータ調整器のうちの少なくとも1つが新しい電圧パラメータを選択し、かつ前記エンジン制御ユニットが新しい点弧周波数を選択できるように決定される、
ことを特徴とするデカプラ。
前記減衰値の範囲は、前記範囲内の前記少なくとも1つのポイントで少なくとも約1.5Nmの減衰トルクを発生するように選択されている、 請求項22に記載のデカプラ。
第1の回転方向の前記プーリ及び前記ハブのうちの一方の該プーリ及び該ハブのうちの他方に対するオーバーランを可能にするように構成された一方クラッチを更に備えている、
請求項28に記載の動力伝達デバイス。
【発明を実施するための形態】
【0012】
一部の場合に、デカプラ又は振動絶縁器に少なくとも何らかの捩り減衰を含むことが望ましい場合があることが見出されている。例えば、捩り減衰は、隔離バネのようなデカプラ又は振動絶縁器の構成要素、又はオルタネータのような従動構成要素それ自体が過度の応力を受けないことを保証するのを助けることができ、これは、それらの構成要素の寿命を延長するのを助けることができる。
【0013】
図1は、従来技術のデカプラ5の断面を示している。デカプラ5は、エンジンクランクシャフト(図示せず)に接続されたポリVベルトのようなエンドレス動力伝達部材(図示せず)と係合する動力伝達面7を含むプーリ6と、オルタネータ(図示せず)のような従動補機のドライブシャフト(図示せず)に結合するためのハブ8とを含む。プーリ6は、ハブ8の1つの軸線方向端部でボールベアリング9及びハブ8の別の軸線方向端部でブッシング10によってハブ8上で回転可能に支持される。捩りバネ12は、キャリア11に結合される第1の螺旋端部とハブ8に結合される第2の螺旋端部とを有する。デカプラ5はまた、ハブ8がプーリ6に対して第1の回転方向に移動する(オーバーランする)時に、プーリ6をハブ8と係合し、かつそこから係合解除するための一方クラッチ13を含む。一方クラッチ13も、キャリア11に結合される。回転荷重は、キャリア11及び捩りバネ12を通じてプーリとハブの間で伝達される。
【0014】
他の典型的なデカプラにおけるように、互いに対する構成要素の移動の何らかの固有減衰がデカプラ5に生じる場合がある。
図1に示すように、エンドレス動力伝達部材は、プーリ6上にブッシング10に対して垂直であるハブ荷重Hを印加する。ブッシング10は、法線抵抗力Rbでハブ荷重Hに抵抗する。ブッシング10は、ハブ8及びプーリ6が互いに独立に回転するとプーリ6の内面14に対して摺動して摩擦減衰をもたらす。この摩擦減衰は、ハブ荷重Hに依存しているが、ハブ8との捩りバネ12の係合によって伝達されるオルタネータシャフト(図示せず)上の駆動荷重とは無関係である。換言すると、デカプラ5によって与えられる減衰は、捩りバネ12によって伝達されている回転荷重に関係なく同じである。更に、この減衰は、一方クラッチ13が係合又は係合解除されるか否かに関係なくそれが存在しているという点で双方向である。その結果、この減衰は、それが望ましくない少なくとも一部の場合に存在している。例えば、ハブ8をプーリ6から係合解除してハブ8がプーリに対してオーバーランすることを可能にすることが望ましい時に、この減衰は、ブッシング10がプーリ6の内面14と摩擦係合したままであると考えられるのでこの係合解除に反して作用するであろう。
【0015】
ボールベアリング9も、抵抗力Raでハブ荷重Hに抵抗することは理解される。しかし、ボールベアリング9の転動要素は、比較的低い引きずり摩擦を生成し、従って、抵抗力Raの結果としてデカプラ5に対していずれの有意な減衰も与えない。ブッシング10によって与えられる減衰は、構成要素間の一般的干渉、面処理又はコーティング、デカプラ5の構成要素の材料特性によって通常与えられる減衰に追加されるものであることも理解される。
【0016】
対照的に、本明細書に説明する革新的デカプラ及び振動絶縁器は、ハブとプーリの間の隔離バネによって伝達される回転荷重に基づいて変化する少なくとも何らかの減衰を与えるように構成される。換言すると、減衰の少なくとも一部は、非対称であり、プーリがハブから係合解除される時は印加されない。例えば、以下により完全に説明するように、減衰は、隔離バネによってハブに回転荷重として伝達されるプーリに印加される駆動荷重に比例して変化することができる。
【0017】
図2は、車両のためのエンジン100を示している。一部の実施形態において、エンジン100は、内燃エンジンである。エンジン100は、エンドレス動力伝達部材104を駆動するクランクシャフト102を含む。エンドレス動力伝達部材は、例えば、ベルトである場合がある。本発明の開示を通して、エンドレス動力伝達部材104は、便宜上、ベルト104と呼ぶことができるが、あらゆる他の適切なエンドレス動力伝達部材をこれに代えて使用することができることは理解されるであろう。ベルト104を通じて、エンジン100は、オルタネータ108のような複数の補機106を駆動する。各補機106は、ベルト104によって駆動されるプーリ103をそこに有するオルタネータドライブシャフトのような入力ドライブシャフト105を含む。本発明の実施形態による動力伝達デバイス119は、プーリの代わりに、ベルト104と、ベルト駆動式補機106のいずれか1つ又は2以上の特にオルタネータ108の入力シャフト105との間に設けることができる。動力伝達デバイス119は、シャフト105とエンドレス動力伝達部材(例えば、ベルト104)の間でトルクを伝達するように構成される。動力伝達デバイス119は、例えば、
図2に示すようなデカプラ120、
図37に示すような振動絶縁器820、又はあらゆる他の適切なデバイスとすることができる。動力伝達デバイス119は、補機(例えば、オルタネータ108)の入力シャフト105に接続されるとして示しているが、動力伝達デバイス119は、エンジン100の出力シャフト(すなわち、クランクシャフト102)に接続することもできることは理解されるであろう。
【0018】
図3は、例示のデカプラ120の断面図である。デカプラ120は、ハブ122、プーリ124、第1の軸受部材126、隔離バネ128、キャリア130、例示のデカプラ120では一方向巻き付けバネクラッチ132である一方クラッチ131、及び減衰部材133を含む。あらゆる適切なクラッチ機構を一方クラッチ131として利用することができることは理解される。例えば、一部の実施形態において、一方クラッチ131は、ローラークラッチであり、一部の他の実施形態において、一方クラッチ131は、輪止めクラッチ機構である。減衰部材は、本明細書ではデカプラに関して説明されるが、上述の減衰器によって与えられる減衰部材及び可変減衰は、一方クラッチを含まない振動絶縁器機構に利用することができることは理解される。
【0019】
ハブ122は、あらゆる適切な方法で補機シャフト105(
図2)のようなシャフトに結合するように構成される。例えば、ハブ122は、それを通るシャフト装着開口136を含むことができ、それは、補機シャフト105の端部にハブ122を装着して回転軸Aの回りにシャフト105と共に回転させるのに使用される。
【0020】
プーリ124は、あらゆる適切な方法でハブ122に回転可能に結合される。プーリ124は、例示のデカプラ120ではベルト104であるエンドレス動力伝達部材104と係合するように構成された動力伝達面138を含む。ベルト104は、ポリVベルトとすることができ、動力伝達面138は、ポリVベルト上の対応する突起と係合する溝140を含むことができる。しかし、動力伝達面138は、あらゆる他の適切な構成とすることができ、ベルト104はポリVベルトでない場合があることは理解される。例えば、プーリ124は単一溝を有することができ、ベルト104は単一Vベルトとすることができ、又はプーリ124は、平ベルト104と係合するためのほぼ平坦な部分を有することができる。プーリ124は、プーリ124とハブ122を互いに結合するために巻き付けバネクラッチ132が係合することができる半径方向内面143を更に含む。プーリ124は、鋼又はアルミニウム、又は一部の場合にある一定のタイプのナイロンのようなポリマー材料、フェノール性又は他の材料のようなあらゆる適切な材料から作ることができる。
【0021】
第1の軸受部材126は、プーリ124の第1の端部144でハブ122上にプーリ124を回転可能に支持する。第1の軸受部材126は、ナイロン−4−6から作られるブッシングのようなあらゆる適切なタイプの軸受部材とすることができ、又は一部の用途に対しては、それは、米国ミシガン州バーミンガム所在のDSMによって作られたPX9A、又は何らかの他の適切なポリマー材料とすることができ、成形プーリを提供する実施形態において、二段階成形工程内で直接にプーリ124上に成形することができる。ブッシングの代わりに第1の軸受部材126として軸受(例えば、ボールベアリング)を使用することが可能である場合がある。そのような場合に、軸受は、型穴の中に挿入することができ、プーリ124は、軸受126の上に成形することができる。軸受の代わりに、金属(例えば、青銅)ブッシングを提供することができ、これは、上述の軸受と同様の様式でプーリ成形工程のために型穴の中に挿入することができる。
【0022】
隔離バネ128は、回転荷重をプーリ124及びハブ122の一方からプーリ124及びハブ122の他方に伝達するように構成される。隔離バネ128は、環状スロットに保持され、キャリア130上の半径方向に延びるドライバ壁152と当接する第1の螺旋端部150(
図5も参照)を有する螺旋捩りバネとすることができる。隔離バネ128は、ハブ122上の同様のドライバ壁154(
図7)と係合する第2の螺旋端部153を有する。
【0023】
図示の例示のデカプラ120では、隔離バネ128は、第1及び第2の螺旋端部150及び153(
図4及び5)の間に複数のコイル161を有する。コイル161は、好ましくは、選択された量だけ離間し、隔離バネ128は、好ましくは、選択された量の軸方向圧縮下にあり、バネ128の第1及び第2の螺旋端部150及び153が、それぞれキャリア130及びハブ122上のそれぞれのドライバ壁152(
図3)及び154(
図7)と当接することを保証する。隔離バネ128、ハブ122、及びキャリア130間の適切な係合の例は、その内容が引用によって本明細書に組み込まれている米国特許第7,712,592号明細書に図示かつ説明されている。推力板173を備えてバネ128の軸方向圧縮から生じるキャリア130の軸線方向推力を受け入れることができる。
【0024】
隔離バネ128は、適切なバネ鋼のようなあらゆる適切な材料から作ることができる。隔離バネ128は、あらゆる適切な断面形状を有することができる。図では、隔離バネ128は、ほぼ矩形の断面形状を有するとして示されており、これは、与えられた占有容積に対して比較的高い捩り抵抗(すなわち、バネ定数)をそれに与える。しかし、適切なバネ定数は、円形断面形状又は正方形断面形状のような他の断面形状で得ることができる。
【0025】
これに代えて、隔離バネ128は、圧縮バネとすることができる。更に別の代替として、隔離バネ128は、2又は3以上の隔離バネのうちの1つとすることができ、その各々は圧縮バネである。そのような構成は、米国特許第7,708,661号明細書及び米国特許出願公開第2008/0312014号明細書、PCT公開第2007/074016号明細書、PCT公開第2008/022897号明細書、PCT公開第2008/067915号明細書、及びPCT公開第2008/071306号明細書に示されており、それらの特許の全ては、それらの全体が引用によって本明細書組み込まれている。
【0026】
例示のデカプラ120では、スリーブ157(
図3)が、隔離バネ128と巻き付けバネクラッチ132の間に設けられる。スリーブ157は、図示のように、螺旋部材自体とすることができる。しかし、中空円筒チューブのようなあらゆる適切な構成を考えている。スリーブ157は、隔離バネ128の半径方向膨張に利用可能な空間を制限することによってトルク制限器として作用する(隔離バネ128が捩りバネである実施形態において)。従って、選択された限界を超えるトルクがプーリ124によって与えられる時に、隔離バネ128は、それがスリーブ157によって制約されるまで膨張する。適切なスリーブ157の例は、米国特許第7,766,774号明細書に図示かつ説明されており、この特許の内容は引用によって本明細書に組み込まれている。
【0027】
巻き付けバネクラッチ132は、キャリア130の半径方向壁155と係合可能であり、キャリア130に固定的に接続することができる第1の端部151を有する。巻き付けバネクラッチ132は、自由浮遊することができる第2の端部159を有する。
【0028】
キャリア130は、例えば、適切なナイロンなどのあらゆる適切な材料から作ることができる。
【0029】
図3は、デカプラ120を通るトルク経路(199に示す)を示している。トルクがベルト104からプーリ124に印加されてプーリ124をシャフト105の速度よりも速い速度で駆動する時に、プーリ124の内側プーリ面143と巻き付けバネクラッチ132のコイル161の間の摩擦は、巻き付けバネクラッチ132のコイル161のうちの少なくとも1つを巻き付けバネクラッチ132の第1の端部151に対して軸Aの回りに第1の回転方向に少なくとも何らかの角度まで駆動する。第1の端部151に対してプーリ124によって駆動される1又は2以上のコイル161の間の相対移動は、巻き付けバネクラッチを半径方向に膨張させ、これは、巻き付けバネクラッチ132のコイル161とプーリ124の内面143の間のグリップを更に強化する。プーリ124から巻き付けバネクラッチ132の中に伝達されたトルクは、巻き付けバネクラッチ132の第1の端部151(
図5)からキャリア130まで伝達される。キャリア130は、トルクを隔離バネ128に伝達する。トルクは、隔離バネ128からハブ122に伝達される。その結果、ハブ122は、プーリ124の速度に達する。従って、プーリ124がハブ122よりも速く第1の回転方向(
図3ではSと指定された)に回転する時に、巻き付けバネクラッチ132は、プーリ124をキャリア130に及び従ってハブ122と作動的に接続する。
【0030】
対照的に、シャフト105が第1の回転方向Sにプーリ124よりも大きい速度で回転する時に(例えば、クランクシャフトが減速し、結果としてプーリ124が減速するが、慣性によってシャフト105がプーリ124よりも速い速度で回転する時)、一方クラッチ131は、シャフト105及び結果としてハブ122がプーリ124をオーバーランすることを可能にするように構成される。この場合に、キャリア130に接続された巻き付けバネクラッチ132の第1の端部151は、巻き付けバネクラッチ132のコイル161の少なくとも一部を収縮又は「ラップダウン」し、巻き付けバネクラッチ132のコイル161の少なくとも一部をプーリ124の内側プーリ面143との摩擦係合から引き離すために第1の回転方向Sにハブ122に対して回転する。巻き付けバネクラッチ132は、ハブ122が第1の回転方向Sにプーリ124よりも速く回転することができるようにプーリ124から十分に係合解除され、キャリア130及び隔離バネ128を通じてプーリ124とハブ122の間で伝達される有意な回転荷重はない。
【0031】
シールキャップ171を与えて遠位端を覆い、デカプラ120の内部空間への汚れ及びデブリの侵入を防止する。
【0032】
減衰部材133は、プーリ124とハブ122の間の隔離バネ128によって伝達される回転荷重に基づいて変化する減衰部材133に作用する隔離バネ128からの力により、プーリ124及びハブ122のうちの一方の上の摩擦面との摩擦係合に駆動されるように位置決めされる。
【0033】
図7は、平面B−B(
図6に示す)に沿ったデカプラ120の断面図である。隔離バネ128が開いて隔離バネ128を通じて伝達される回転荷重に抵抗すると(ハブ122が第2の回転方向Pに回転する時に)、隔離バネ128は、隔離バネ128の第2の螺旋端部153から約90度の半径方向位置で半径方向反力Rsを発生する。この半径方向反力Rsは、プーリ124とハブ122の間の隔離バネ128によって伝達される回転荷重の大きさに基づいて変化する。デカプラ5のような典型的なデカプラでは、半径方向反力Rsは、ハブ8自体が直接に抵抗し(例えば、
図1に示す内側ハブ面15において)、従って、半径方向に減衰部材の中に伝達されない。
【0034】
上述のように、デカプラ120は、減衰部材133を含む。減衰部材133は、減衰部材133に作用し、かつ半径方向反力Rsのようなプーリ124とハブ122の間の隔離バネ128によって伝達される回転荷重に基づいて変化する隔離バネ128からの力により、プーリ124の内面143のようなプーリ124及びハブ122のうちの一方の上の摩擦面との摩擦係合に駆動されるように位置決めされる。例えば、
図7に示すように、減衰部材133は、隔離バネ128と摩擦面143の間で半径方向に位置付けられ、かつ半径方向反力Rsと周方向に位置合わせする(すなわち、減衰部材133は、バネ128から半径方向反力Rsを受け入れるのに適切な角度位置に位置決めされる)。典型的なデカプラとは異なり、減衰部材133は、半径方向反力Rsを直接に耐える。隔離バネ128によって発生するこの半径方向反力Rsは、次に、減衰部材133を摩擦面143の上に押圧する。プーリからの法線反力Rpが、半径方向反力Rsに応答して発生する。減衰部材133は、係合開口部170に位置決めされるので、減衰部材133は、ハブ122と共に回転するように制約され(係合開口部170の縁部170a(
図8)との減衰部材133の第1の円周端部158の係合により)、従って、内側プーリ面143に対して摺動し、摩擦力Fd(及び、従って減衰トルクDt)が、プーリ124から減衰部材133に(次に、減衰部材133からハブ122の中に)伝達される。内側プーリ面143と減衰部材133の間の摩擦係合は、デカプラ120を通る199aに示す別のトルク経路を提供する。
【0035】
一部の実施形態において、減衰部材133は、円周パッド156(
図7〜9Bを参照)を含み、これは半径方向反力Rsが円周パッド156によって受け入れられるように隔離バネ128の第2の螺旋端部153から半径方向にオフセットされる。例えば、円周パッド156は、約45度だけ隔離バネ128の第2の螺旋端部153から半径方向にオフセットされた第1の円周端部158と、第1の円周端部158から約90度の第2の円周端部160とを含むことができる。しかし、減衰部材133の面を与え、半径方向反力Rsを受け入れ、減衰部材を摩擦面、すなわち、例示のデカプラ120の内面143の中に押圧するのに適切な第1の円周端部158と第2の円周端部160の間のあらゆる半径方向幅が考えられている。
【0036】
減衰部材133は、金属支持構造体162及びプラスチック摩耗要素164を含むことができる。減衰部材133では、プラスチック摩耗要素164の少なくとも一部分は、円周パッド156の一部である。減衰要素133は、クランクシャフト102及びベルト104のようなエンドレス動力伝達部材と作動的に結合されることになるエンジンクランクシャフトの選択された数の負荷サイクルに基づく摩耗厚みTを有することができる。一部の実施形態において、摩耗厚みTは、プラスチック摩耗要素164の厚みである。
【0037】
一部の実施形態において、デカプラ120は、ハブ122上にプーリ124を支持するように構成され、減衰部材133に隣接する第2の軸受部材166を含む(例えば、減衰部材133及び第2の軸受部材166は、互いに一体化することができる)。例示のデカプラ120では、第2の軸受部材166は、複合減衰部材133及び第2の軸受部材166を形成するように円周パッド156に結合されたブッシング部分168a、168bを含むブッシングである。しかし、一部の実施形態において、第2の軸受部材166は、減衰部材133から個別かつ異なる構成要素として提供される。
【0038】
一部の実施形態において、減衰部材133は、少なくとも部分的にハブ122内で係合開口部170(
図5)内に着座している。例示のデカプラ120では、係合開口部170は、ハブ122内の切り欠きである。しかし、少なくとも部分的に減衰部材133を保持するのに適切なハブ122内のあらゆる開口部が考えられている。一部の実施形態において、摩耗厚みTは、エンジンの作動寿命にわたって次第に摩耗して薄くなる。最終的に、摩耗厚みTは、係合開口部170の縁部176a及び176bのうちの1又は2以上で隔離バネ128がハブ122と接触するほど十分に薄くなり、減衰部材133を迂回して直接に回転荷重をハブ122に伝達する。
【0039】
半径方向反力Rsを受け入れるように位置決めされた減衰部材133のような移動可能な減衰部材を含むことにより、半径方向反力Rsをプーリ124に伝達して減衰デカプラをもたらすことが可能である。減衰部材133によって与えられる減衰は、構成要素間の一般的な干渉、面処理又はコーティング、及び構成要素の材料特性によって一般的に提供される減衰に追加される。しかし、減衰部材133によって与えられる減衰は、プーリ124とハブ122の間の隔離バネ128によって伝達される回転荷重に基づいて、図に示す例ではそれに比例している。その結果、隔離バネ128によって伝達される回転荷重が大きくなるほど、減衰部材133によって与えられる減衰は大きくなる(かつ減衰トルクDtは大きくなる)。本出願人によって行われた一部の試験では、上述のデカプラによって得られる減衰レベルは、隔離バネ128によって伝達される回転荷重の10〜40パーセントであった。更に、減衰部材133は、一方クラッチ131がプーリ124をハブ122から係合解除するので、ハブ122がプーリ124をオーバーランする時にいずれの追加の減衰も与えることなく、一方クラッチ131とプーリ124の間にごく一部の摩擦係合を残す。その結果、ごく一部の回転荷重が隔離バネ128によって伝達される。換言すると、印加される減衰は、ハブ122がプーリ124をオーバーランする時などの低減衰が望ましい状況においては低い。
【0040】
更に、一部の実施形態において、第1の円周端部158及び縁部176a間と第2の円周端部160及び縁部176b間とに少なくとも何らかのクリアランスが存在することになる。それらのクリアランスは、必ずしも減衰部材133及びプーリ124の相対移動を引き起こさずに、従って、減衰部材133を通じて減衰を引き起こさずに、ハブ122とプーリ124の間の一部の相対移動を可能にする。相対移動の量を選択して、定常状態条件下でエンジン100の点弧パルス中に生じる捩り振動の量のような選択された量の捩り振動を受け入れることができる。
【0041】
図10Aは、デカプラ120と同様に構成された試験デカプラのトルク/変位のヒステリシスループ172を示している。曲線172の上側部分(172aに示す)は、ハブとプーリの間の角度変位の増加中に隔離バネによって伝達されるトルクを表すことは理解されるであろう。曲線172の下側部分(172bに示す)は、ハブとプーリの間の角度変位の減少中に隔離バネによって伝達されるトルクを表している。
図10Aを参照すると、減衰トルクは、あらゆる与えられた角度変位におけるヒステリシスループ172の172aに示す上側部分とループ172の下側部分172bの間の値の差である。この差はWで示されている。図示のように、差W、従って、減衰トルクDtは、一般的に、ハブとプーリの間で角度変位に基づいて増加する。理解されるように、隔離バネによって伝達される回転荷重は、ハブとプーリの間の角度変位と共に増加する。従って、減衰トルクは、隔離バネによって伝達される回転荷重に比例して増加する。
【0042】
図10Bは、オーバーラントルク対度による変位のグラフを示している。図示のように、オーバーラントルクは、オーバーラン中に低いままである。低いオーバーラントルクは、巻き付けバネクラッチ132とプーリ124の間の小さい摩擦負荷に起因してオーバーラン中にプーリとハブの間にごく少量の回転荷重を伝達する隔離バネに起因する。小さいオーバーラントルクは、小さい減衰トルクを生成する小さい半径方向反力Rsを生じる。その結果、減衰部材133のような減衰部材を含むことで、一部の実施形態において、オーバーラン条件にある時間中にハブからプーリを係合解除するデカプラの機能に不要に干渉しない。
【0043】
図11A及び11Bは、減衰部材によって与えられる追加の可変減衰トルクのないデカプラに対するヒステリシスループ174とオーバーラントルク対変位のグラフとを示している。
図11Aに示すように、減衰トルク(及び幅W)は、隔離バネによって伝達される回転荷重が増加する時に一定のままである。換言すると、
図11A及び11Bの減衰トルクは一定であり、オーバーラン中のような望ましくない時でも存在する。
【0044】
図12は、別の例示のデカプラ220の断面を示している。デカプラ220は、例示のデカプラ120と同様の少なくとも一部の構成要素を含み、それらは同様の番号により示されている。
図13及び14は、デカプラ220の分解組立図である。
図15は、巻き付けバネクラッチ132の第1の端部151とキャリア130の半径方向壁115との間の係合をより良く示すためにプーリ124及びシールキャップ171のないデカプラ220を示している。
【0045】
デカプラ220はまた、隔離バネ128によって伝達される回転荷重に基づいて変化する減衰部材221に作用する隔離バネ128からの力により、プーリ124及びハブ122の一方の上の摩擦面との摩擦係合に駆動されるように位置決めされた減衰部材221を含む。以下で更に説明するように、デカプラ221では、隔離バネ128からの力は、減衰要素221を通じて隔離バネ128とハブ122の間で伝達される回転荷重の大きさのベクトル部分である。
【0046】
例示のデカプラ120におけるように、断面C−C(
図16)でデカプラ220の断面を示す
図17を参照すると、デカプラ220の隔離バネ128は、第1の螺旋端部150(
図13)及び第2の螺旋端部153(
図17)を有する螺旋捩りバネであり、それを通じて回転荷重はハブ122に伝達される(減衰部材221を通じて)。デカプラ120とは異なり、減衰部材221は、周方向に第2の螺旋端部153とハブ122上の係合面280との間にある。隔離バネ128が回転荷重をプーリ124から伝達すると、第2の螺旋端部153は、第2の螺旋端部153と係合するように構成された減衰部材221の第1の端部281と当接するように駆動される。角度幅Xだけ減衰部材221の第1の端部281から半径方向にオフセットされた減衰部材221の第2の端部283は、ハブ122上の係合面280と係合し、回転荷重の少なくとも一部分は、ハブ122に伝達される。
【0047】
図18は、減衰要素221の自由物体図である。上述のように、隔離バネ128が、回転方向Pに回転しているプーリ124から回転荷重を伝達する時に、隔離バネ128は、回転荷重に基づく力Fsを第1の端部281で減衰部材221に印加する。減衰部材221は、係合面280でハブ122と当接し、従って、ハブ122は、第2の端部283に対して対応する反力Fhを印加する。減衰部材221は、力Fsのベクトル部分、力Fhの半径方向ベクトル部分Fsr、及び半径方向ベクトル部分Fhrにより、例示のデカプラ220ではプーリ124の内側プーリ面143である摩擦面に向けて半径方向に押圧される。平衡状態では、力Fhの大きさは、Fhが力Fsに応答して発生するので力Fsの大きさと同じであることは理解される。
【0048】
減衰部材221は、第1の端部281と第2の端部283の間に角度幅Xを有する。角度幅は、度数で表すことができる。半径方向形状に基づいて、半径方向ベクトル部分Fsrは、ほぼFs
*sin(X/2)であり、半径方向ベクトル部分Fhrは、ほぼFh
*sin(X/2)である。半径方向ベクトル部分Fsr及びFhrは、減衰部材221を押圧して総ベクトル和の力Fdrで内側プーリ面143に向けて移動してこれと摩擦係合状態にする。力Fdrの存在は、法線反力Fnを減衰部材221に印加するプーリ124をもたらす。減衰部材221は、内側プーリ面143に対して摺動し、従って、方向Pのプーリ124の回転に抵抗するように摩擦減衰力Fdを発生する(減衰トルクDtと共に)。
【0049】
角度幅Xが増加する時に力Fsの(従って隔離バネ128によって伝達される回転荷重の)ベクトル部分が増加し、その逆も可能である。力Fs、Fstの残りのベクトル部分は、減衰部材221を通じてハブ122に伝達されて補機のシャフト105を駆動する。角度幅Xが増加する時に力Fstが減少し、その逆も可能であることは理解されるであろう。すなわち、力Fs(及び力Fh)は、角度幅Xに基づいて可変である。摩擦減衰力Fdは、隔離バネ128、すなわち、Fsによって伝達される回転荷重に基づいて可変であるので、摩擦減衰力Fdも減衰部材221の角度幅Xに基づいて可変であることは理解されるであろう。一部の実施形態により、減衰部材221を押圧して内側プーリ面143と摩擦係合状態にする隔離バネ128からの減衰部材221に対する力、すなわち、力Fdrは、プーリ124から隔離バネ128によって伝達される回転荷重に比例して変化する。
【0050】
試験は、デカプラ220に同様に構成され、かつ減衰部材221に同様に構成された減衰部材を含むデカプラに対して行われた。
図19は、試験減衰部材の減衰トルクDt対角度幅Xのグラフを示している。
図19に示すように、試験減衰部材の角度幅が増加した時に、減衰トルクDtも増加した。
【0051】
角度幅Xは、調節することができるが、摩擦が一般的に第1の端部281と第2の螺旋端部153の間及びハブ122の第2の端部283と係合面280の間に存在する場合に、一部の実施形態において、デカプラ220の作動中よりも低い角度幅で望ましくない「割り込み」が存在する場合がある。例えば、90度よりも小さいような低角度幅Xでは、それらの面の間の摩擦は、最初に力Fdrに抵抗することができ、第2の螺旋端部283と係合面280の間に減衰部材221を割り込ませ、その結果、減衰部材221を通じて減衰が生じないようになる。従って、一部の実施形態において、角度幅Xは、約90度よりも大きい。
【0052】
しかし、第1の端部281及び第2の端部283での抵抗摩擦力の大きさを低減することにより、例えば、第1の端部281、第2の螺旋端部153、第2の端部283、及び係合面280のうちの1又は2以上において熱処理又はコーティングを適用することにより、90度よりも小さい角度幅Xを使用して、隔離バネ128によって伝達される回転荷重に比例する減衰力Fdrを得ることができる。
【0053】
一部の実施形態において、約180度を超えるようなより大きい角度幅Xでは、減衰部材221を通じてハブ122に伝達される力Fstの大きさは、ハブ122、従って、シャフト105の回転を駆動する大きさよりも小さい。従って、一部の実施形態において、角度幅Xは、約180度未満である。更に、一部の実施形態において、角度幅Xは、約90度〜約180度である。
【0054】
例示のデカプラ120と同様に、本出願人が行った一部の試験において、デカプラ220と同様に構成されたデカプラによって得られる減衰の量は、隔離バネ128によって伝達される回転荷重の10〜40パーセントであった。
図3〜9Bに示す実施形態におけるように、減衰部材221は、ハブ122がプーリ124をオーバーランする時に少量の減衰を与えるに過ぎない。
【0055】
図20Aは、デカプラ220と同様に構成された試験デカプラのヒステリシスループ285を示している。
図10Aに示すヒステリシスループ172と同様に、ヒステリシスループ285の幅Wによって表される減衰トルクは、一般的に、隔離バネによって伝達される回転荷重が増加する時に増加する。試験された特定の試験デカプラでは、減衰トルクは、隔離バネによって伝達される回転荷重に比例して増加する。
【0056】
図20Bは、オーバーラントルク対度による変位のグラフを示している。図示のように、オーバーラントルクは、オーバーラン中に依然として低い。低いオーバーラントルクは、オーバーラン中にプーリとハブの間の比較的小さい回転荷重のみを伝達する隔離バネに起因する。隔離バネからの力Fsなしでは、減衰要素は、押圧されて摩擦面と接触状態になり、減衰トルクを発生しない。その結果、減衰部材221のような減衰部材を含めることは、ハブからプーリを係合解除するデカプラの機能に不要に干渉しないと考えられる。
【0057】
図21及び22は、個々に減衰部材221の斜視図である。減衰部材221は、金属負荷伝達要素287と磨耗面291を有するプラスチック摩耗要素289とを含むことができる。金属負荷伝達要素287は、隔離バネ128からハブ122に回転荷重の少なくとも一部分を伝達するように構成される。例えば、金属負荷伝達要素287は、隔離バネ128が回転荷重をプーリ124から伝達する時に第2の螺旋端部153が当接する減衰部材221の第1の端部281の面とすることができる。しかし、力Fsの半径方向ベクトル部分Fsrのような隔離バネ128から回転荷重の少なくとも一部分を伝達する金属負荷伝達要素287のあらゆる構成が考えられている。一部の実施形態において、金属負荷要素287は、鋼から製造される。プラスチック摩耗要素289は、磨耗面291の少なくとも一部分に沿って内側プーリ面143のような摩擦面と摩擦係合するように構成され、かつあらゆる適切なプラスチック材料から製造される。プラスチック摩耗要素289は摩耗厚みTを有する。一部の実施形態において、摩耗厚みTは、磨耗面291を通して均一ではない。例えば、
図22A及び22Bに示すように、摩耗厚みTの量は、磨耗面291の領域EにおけるVの値(例えば、ミリメートルで表される)及び領域E外のZの値(例えば、ミリメートルで表される)とすることができる。一部の実施形態において、摩耗厚みTは、クランクシャフト102及びベルト104のようなエンドレス動力伝達部材と作動的に結合するようになったエンジンクランクシャフトの負荷サイクルの選択された数に基づいている。
【0058】
一部の実施形態において、ハブ122の係合面280は、ハブ122内の円周スロット293(
図13、14)の面である。円周スロット293は、減衰部材221の第2の端部283がハブ122上の係合面280と当接することができるように、その中に減衰部材221の少なくとも一部分を受け入れるように構成される。
【0059】
図12に示すように、デカプラ220は、プーリ124の第2の端部297でハブ上にプーリ124を支持するように構成された第2の軸受部材295を含むことができる。一部の実施形態において、第2の軸受部材295は、ブッシング(図示せず)である。しかし、第2の軸受部材295は、第2の端部297でハブ122上にプーリ124を支持するのに適切なあらゆる他の軸受部材とすることができるように考えられている。
【0060】
一部の実施形態において、減衰部材221の構成は、減衰部材133に勝る一部の利点をもたらすことができる。例えば、上述のように、減衰部材133に対しては、組立目的のために、第1の円周端部158と縁部176a間及び第2の円周端部160と縁部176b間に少なくとも何らかのクリアランスが存在することになる。それらのクリアランスは、エンジンの全ての点弧パルスに関して、内側プーリ面143のような摩擦面に対する減衰部材133の追加の移動を提供する。対照的に、減衰部材221は、隔離バネ128がプーリ124から回転荷重を伝達している時に、周方向に隔離バネ128の第2の螺旋端部153と係合面280の間にあるので、第2の螺旋端部153は、それと減衰部材221の第1の端部281の間のあらゆるクリアランス空間を充填して第1の端部281と当接するように移動する。隔離バネ128から回転荷重の少なくとも一部分を伝達するのに、減衰部材221の第2の端部283は、ハブ122の係合面280と当接し、第2の端部283と係合面280の間のあらゆるクリアランスを排除する。その結果、隔離バネ128が、プーリ124からハブ122に回転荷重を伝達している時(減衰部材221を通じて)、それらが当接する面又は面にある隔離バネ128、減衰部材221、及びハブ122の間のあらゆるクリアランス又は許容空間は排除される。隔離バネ128、減衰部材221、及びハブ122の間のクリアランスを排除することにより、減衰部材221の不要な移動が低減され、減衰部材221に対する不要な摩耗(例えば、磨耗面291における)も低減される。その結果、少なくとも一部の実施形態において、減衰部材221は、減衰部材133よりも長い摩耗寿命を有することができる。
【0061】
しかし、ハブ122がプーリ124をオーバーランする時のオーバーラン事象中のような隔離バネ128が回転荷重をプーリ124から伝達する時に、隔離バネ128の第2の螺旋端部153と減衰部材221の第1の端部281との間のクリアランスは、残る可能性が高いことは理解される。
【0062】
更に、一部のエンジン上の一部のデカプラに対する空間制約が与えられると、デカプラ120におけるような半径方向に直列ではなくその代わりに、デカプラ220におけるように隔離バネの螺旋端部及びハブと周方向に直列に減衰部材を置くことにより、デカプラ120が適合しないであろう一部の用途においてデカプラ220が適合することが可能である場合がある。同様に、デカプラ22が適合しないであろう一部の用途にデカプラ120が適合することが可能である場合がある。これに加えて、一部の実施形態において、隔離バネ128とプーリ124の間の半径方向クリアランスの少なくとも一部を利用してプラスチック摩耗要素289の摩耗厚みTを増加させ、減衰部材221の作動寿命を延ばすことができる。
【0063】
図23は、減衰部材133及び221によって与えられる追加の可変減衰のない典型的なデカプラ319を含むエンジン317のブロック図である。エンジン317は、内燃エンジンとすることができる。図示のようなデカプラ319は、プーリ301、隔離バネ303及びハブ305を含む。デカプラ319は、一方クラッチ及びキャリアのような他の構成要素を含むが、簡単にするために、それら及び他の構成要素は
図23には示されていない。ハブ305は、オルタネータ調整器309に作動的に接続されたオルタネータ(図示せず)のドライブシャフト307に作動的に接続される。プーリ301は、エンドレス動力伝達部材311を通じて内燃エンジン317のクランクシャフト313に作動的に接続される。エンジン制御ユニット315(ECU315とも呼ばれる)は、エンジン317及び従ってクランクシャフト313の作動を制御する。従って、ECU315は、クランクシャフト313に作動的に接続されると言うことができる。ローアイドル又はサブアイドルのような一部のエンジン条件中に、オルタネータ調整器309は、隔離バネ303の固有周波数又はその付近のスイッチング周波数を有することができる。オルタネータ調整器309のこのスイッチングは、ドライブシャフト307(オルタネータドライブシャフト307とも呼ばれる)を通じて隔離バネ303に与えられる。これに応答して、隔離バネ303は、その固有周波数で大きい振幅で共振することができる。隔離バネ303は、プーリ301に作動的に接続されるので、隔離バネ303の共振は、プーリ301での高動的トルクパルスを発生することができる。それらのトルクパルスは、プーリ301とクランクシャフト313に関連付けられたプーリ(図示せず)との間のプーリ比に起因して増大し、エンドレス動力伝達部材311を通じてクランクシャフト313に伝達されることになる。トルクパルスが十分に大きい場合に、それらは、クランクシャフト313の速度に影響を与えて1次のクランクシャフト313の振動を誘起することができる。ECU315は、トルクパルスを検出してエンジンシリンダ内のピストンの点弧の均衡を取り、トルクインパルスに対処することを試みることができる。これは、1次のクランクシャフト313のより大きい振動をもたらす可能性があり、これは、エンドレス動力伝達部材311を通じてプーリ301に、かつ隔離バネ303、ハブ305、ドライブシャフト307、及びオルタネータ調整器309に給送して戻される。1次振動は、エンジン317を含む車両の運転者によって特に気付かれる場合がある。
【0064】
一部の場合では、オルタネータ調整器309の代わりに、エンジンシリンダ内のピストンの点弧周波数が、クランクシャフト313、隔離バネ303、及びプーリ301の共振を誘起する場合がある。例えば、アイドルエンジン条件中にECU315によるシリンダ内のピストンの点弧の均衡化は、クランクシャフト313における1次振動を誘起するトルクパルスをもたらす場合がある。クランクシャフト313のこれらの1次振動は、エンドレス動力伝達部材311を通じてプーリ301に、次に、隔離バネ303に伝達される可能性がある。トルクパルスは、ハブ305に伝達される可能性がある隔離バネ303における共振をドライブシャフト307に対して、次に、オルタネータ調整器309に対して引き起こす可能性があり、それらは、それに応答してそのスイッチング周波数を変える場合がある。
【0065】
本明細書に説明する減衰部材は、エンジンクランクシャフトとデカプラ又は振動絶縁器のプーリ及び隔離バネとの間のこの共振条件を防止又は少なくとも抑制することができる。特に、一部の実施形態において、減衰トルクは、オルタネータのオルタネータ調整器のうちの少なくとも1つが新しい電圧パラメータを選択し、かつエンジン制御ユニットが新しい点弧周波数を選択するのに十分にデカプラの共振条件を変化させる範囲内の少なくとも1つのポイントで十分である。より具体的には、範囲の上限では、減衰は、少なくともプーリ、ハブ、減衰部材、及び隔離バネを互いにロックしてオルタネータ調整器のうちの少なくとも1つが新しい電圧パラメータを選択し、かつエンジン制御ユニットが新しい点弧周波数を選択するのに十分にデカプラ又は振動絶縁器の共振条件を変化させるのに十分であることが可能である。
【0066】
一例として、
図24は、デカプラ220を含むエンジン418の概略図である。ECU415は、クランクシャフト413に作動的に接続され、それは、エンドレス動力伝達部材411を通じてデカプラ220に作動的に接続される。デカプラ220は、オルタネータ調整器409に作動的に接続されたオルタネータのドライブシャフト407に作動的に接続される。
【0067】
典型的な振動絶縁器又はデカプラにおける共振は、オルタネータ調整器409がデカプラ220の固有周波数で切り換え始めるか又はECU415がクランクシャフト418において1次振動を誘起し、隔離バネ128がその固有周波数で又はその付近で共振又は振動し始める事象の結果として生じる可能性があると理論付けられる。隔離バネ128の振動は、次に、プーリ124に、同じくハブ122に(かつドライブシャフト407に)給送される。
【0068】
上述のように、減衰部材221及び133は、隔離バネ128によって伝達される回転荷重に基づいて可変である減衰トルクDtを提供する。一部の実施形態において、減衰トルクDtは、隔離バネ128によって伝達される回転荷重に比例する。回転荷重の変化の結果、減衰部材221及び減衰部材133は、一連の値(減衰値とも呼ばれる)にわたって減衰トルクを提供することができる。一部の実施形態において、減衰トルクは、オルタネータのオルタネータ調整器のうちの少なくとも1つが新しい電圧パラメータを選択し、かつエンジン制御ユニットが新しい点弧周波数を選択するのに十分にデカプラの共振条件を変化させる範囲内の少なくとも1つのポイントで十分である。一部の更に別の実施形態において、減衰値の範囲の上限では、提供される減衰トルクは、少なくとも一時的に少なくともプーリ124、ハブ122、減衰部材221、及び隔離バネ128を互いにロックするのに十分である。プーリ124、ハブ122、減衰部材221、及び隔離バネ128を互いにロックすることで、位置Lにおいてオルタネータ調整器409と隔離バネ128の間、又は位置KにおいてECU415と隔離バネ128の間の少なくとも何らかの機械的フィードバックを防止する(
図24)。その結果、プーリ124、ハブ122、減衰部材221、及び隔離バネ128の互いの一時的ロックは、又はより広範には、減衰トルクが一般的に十分である時には、オルタネータ調整器409が、デカプラ220の固有周波数以外の値にスイッチング周波数を変化させるであろう新しい電圧パラメータを得る機会を提供する。共振条件がECU415によって誘起される場合に、プーリ124、ハブ122、減衰部材221、及び隔離バネ128の互いの一時的ロックは、1次振動を誘起するであろう値とは異なるエンジンシリンダのピストンに対する新しい点弧周波数を選択する機会をECU415に与えることができる。
【0069】
上述の減衰部材133及び221は、減衰部材133及び221を押圧してプーリの内側プーリ面143のような摩擦面と摩擦係合状態にするように半径方向外向きに開放された隔離バネ128を含むデカプラに含まれる。しかし、プーリとハブの間の回転荷重の伝達に応答して半径方向内向きに収縮又は巻き付く隔離バネを利用するデカプラ又は振動絶縁器も考えられている。
【0070】
図25は、例示のデカプラ520の断面を示している。例示のデカプラ520は、同様の番号に示す例示のデカプラ120の構成要素に類似の少なくとも一部の構成要素を含む。デカプラ520は、プーリ523が切り欠き527(
図26)を有する内側円筒部分525を含むという点でプーリ124とは異なるプーリ523を含む。減衰部材533は、隔離バネ528とハブ122の間かつ切り欠き527の少なくとも一部分内に位置決めされる。隔離バネ528は、バネ切り欠き531(
図26)を含み、隔離バネ528とハブ122の間に減衰部材533を受け入れることができる。デカプラ520は、プーリ523の第1の端部535でハブ122上にプーリ523を回転可能に支持するように構成された軸受部材524を含む。一部の実施形態において、軸受部材524はブッシングである。デカプラ520は、プラグ571、推力座金573、及び第2の端部537でハブ122上にプーリ523を回転可能に支持するように構成された内側ブッシング575を更に含む。
【0071】
隔離バネ128と同様に、隔離バネ528は、プーリ523とハブ122の間で回転荷重を伝達し、それに応答して半径方向反力Rsを発生するように構成される。しかし、隔離バネ128とは異なり、隔離バネ528は、プーリ523とハブ122の間の回転荷重の伝達に応答してハブ122に向けて内向きに収縮又は巻き付くように構成される。隔離バネ528は、回転荷重の伝達に応答して膨張するのではなく収縮し、従って、半径方向反力Rsは、その代わりにハブ122に向けて半径方向内向きに向けられる。減衰部材533が半径方向反力Rsを受け入れる位置で隔離バネ528とハブ122の間に位置決めされると、減衰部材533は、半径方向反力Rsによって押圧されて外面529(
図25)のようなハブ122上の摩擦面と摩擦係合状態になる。半径方向反力Rsは、隔離バネ528によって伝達される回転荷重に伴って変化する。ハブ122からの法線反力は、外面529において半径方向反力Rsに応答して発生する。減衰部材533は、外面529に対して自由に摺動し、従って、ハブ122の回転に対向する摩擦力(及び対応する減衰トルク)は、法線反力の一部分として発生する。デカプラ120におけるように、隔離バネ128が、オーバーラン条件中のようなプーリ523とハブ122の間で回転荷重を伝達していない時に、減衰部材533は、ハブ122の外面529との摩擦係合に押圧されず、追加の減衰トルクは発生しない。
【0072】
図28は、例示のデカプラ620の断面を示している。例示のデカプラ620は、同様の番号に示す例示のデカプラ120及び例示のデカプラ520の構成要素に類似の少なくとも一部の構成要素を含む。デカプラ620は、プーリ623が切り欠き627(
図30、33)を有する内側円筒部分625を含むという点でプーリ124とは異なるプーリ623を含む。減衰部材633は、隔離バネ628とハブ622の間かつ切り欠き627の少なくとも一部分内に位置決めされる。デカプラ620は、プーリ623の第1の端部635でハブ622上にプーリ623を回転可能に支持するように構成された第1の軸受部材624を含む。一部の実施形態において、第1の軸受部材624はボールベアリングである。デカプラ620は、カバー671、推力座金673、及び第2の端部637でハブ622上にプーリ623を回転可能に支持するように構成された第2の軸受部材675を更に含む。例示のデカプラ620に示すように、第2の軸受部材675は、ニードル又はローラー軸受とすることができる。
【0073】
例示のデカプラ120及び520とは異なり、例示のデカプラ620は、一方ローラークラッチ631を含む。一方ローラークラッチ631は、方向S(
図30)のような第1の回転方向にプーリ623及びハブ622のうちの一方のプーリ623及びハブ622のうちの他方に対するオーバーランを可能にするように構成される。一方ローラークラッチ631は、隔離バネ628の半径方向内側に位置決めされる。
【0074】
隔離バネ128及び隔離バネ528と同様に、隔離バネ628は、プーリ623とハブ622の間に回転荷重を伝達し、それに応答して、半径方向反力Rsを発生するように構成される。特に、隔離バネ528と同様に、隔離バネ628は、プーリ623とハブ622の間に回転荷重を伝達する時に、ハブ622に向けて内向きに収縮又は巻き付くように構成される。
図32A及び32Bに示すように、隔離バネ628は、第1の螺旋端部650及び第2の螺旋端部653を有する。第1の螺旋端部650はプーリ係合面649(
図31)を含み、プーリ623(
図33)上のドライバスロット698に嵌合するような形状にされる。第2の螺旋端部653は、キャリア係合面692(
図32A)を含み、キャリア630上のドライバスロット694(
図32B)に嵌合するような形状にされる。プーリ623とハブ622の間に回転荷重を伝達するのに応答して、プーリ係合面649は、ドライブスロット698の対向面697に対して当接し、キャリア係合面692は、ドライバスロット694の対向面696に対して当接する。第1及び第2の螺旋端部650、653は、プーリ係合面649及びキャリア係合面692に対して当接する際に隔離バネ628がハブ622に向けて内向きに収縮又は巻き付かざるを得ないような形状にされる。
【0075】
ハブ622に向けて内向きに巻き付く際に、隔離バネ628は、半径方向反力Rsを発生し、これは、減衰部材633を押圧して外面629(
図28)のようなハブ622上の摩擦面と摩擦係合状態にする。半径方向反力Rsは、隔離バネ628によって伝達される回転荷重と共に変化する。ハブ622からの法線反力は、外面629で半径方向反力Rsに応答して発生する。減衰部材633は、ハブ622と共に回転するように少なくとも幾分制約され、従って、ハブ622の外面629に対して摺動し、従って、摩擦力(すなわち、追加の減衰トルク)は、プーリ623から減衰部材633に(次に減衰部材633からハブ622の中に)伝達される。デカプラ120におけるように、隔離バネ128が、オーバーラン条件中のようなプーリ623とハブ622の間に回転荷重を伝達していない時に、減衰部材633は、ハブ622の外面629との摩擦係合に押圧されず、追加の減衰トルクは発生しない。
【0076】
図29は、負荷Vがプーリ係合面138を通じてプーリ623に印加される時に、デカプラ620を通るトルク経路699を示している。負荷Vは、プーリ623を通じて隔離バネ628の第1の螺旋端部650に、かつプーリ623を通じて第2の螺旋端部653に伝達される。次に、負荷Vは、ハブ622の回り及び一方ローラークラッチ631の外側に装着されたキャリア630の中に第2の螺旋端部653を通じて伝達される。負荷Vは、一方ローラークラッチ631を通じてハブ622に、かつ補機シャフト(図示せず)のような駆動要素のシャフトに向けて伝達される。
【0077】
図28〜33に示すデカプラ620に類似している場合があるが、
図28〜33においてトルク伝達中に収縮する(すなわち、閉じる)バネ628の代わりにトルク伝達中に開く隔離バネ728を組み込んでいるデカプラ720の別の実施形態を示す
図34〜36を参照する。
【0078】
トルク経路は、デカプラ720の通常作動中のトルク流れを示す
図34に799で示されている。トルクは、本明細書に説明するエンドレス動力伝達部材のいずれかに類似することができるエンドレス動力伝達部材(図示せず)から723に示すプーリ(これは、プーリ623に類似することができる)に印加される。トルクは、プーリ723から隔離バネ728の一端に、かつ隔離バネ728の他端から730に示すキャリアの中に伝達される。トルクは、キャリア730から731に示す一方ローラークラッチの中に、かつローラークラッチ731から722に示すハブの中に更に伝達される。
【0079】
キャリア730は、その中に切り欠き727(
図35)を有し、これは733に示す減衰部材を保持する。減衰部材733は、こうして隔離バネ728の外側及びプーリ723の743に示す内面の内側に半径方向に位置付けられる。プーリ723からハブ722へのトルク伝達中に、隔離バネ728は、
図7に示すようなプーリ124の内面143への減衰部材133の駆動と同様の方式で、減衰部材733と係合し、減衰部材733を駆動してプーリ723の743に示す内面と係合状態にする。その結果、一部のトルクも、摩擦力によりプーリ723から減衰部材733に、かつ減衰部材733の円周端部733aと切り欠き727の端部(
図35に727aに示す)との間の係合によって減衰部材733からキャリア730の中にトルク経路799aに沿って伝達されることになる。
【0080】
図36を参照すると、デカプラ720は、プーリ723の第1の端部でハブ722上にプーリ723を回転可能に支持するように構成された第1の軸受部材724(これは、例えば、ボールベアリングとすることができる)を更に含む。デカプラ720は、カバー771、スペーサ772、推力座金773、及び例えばニードル軸受又はローラー軸受とすることができるハブ722上にプーリ623を回転可能に支持するように構成された第2の軸受部材775を更に含む。
【0081】
デカプラ720に類似する動力伝達デバイス820を示すが、一方クラッチ又はキャリアを含まない
図37を参照する。すなわち、動力伝達デバイス820は、振動絶縁器820と呼ばれる場合がある。振動絶縁器820は、バネ728に類似する隔離バネ828を含む。隔離バネ828の第1の端部は、823に示すプーリ上で901に示すドライバ壁と係合する。隔離バネ828の第2の端部は、822に示すハブ上でドライブ面と係合する。ハブ822上のドライブ面は、
図37には具体的に示されていないが、本発明の開示の他のハブ上に示すドライブ面901及びドライブ面に類似していることは十分に理解されるであろう。833に示す減衰部材は、
図5の切り欠き170内の減衰部材133の位置決めと同様の方式で、ハブ822内の870に示す係合開口部又は切り欠きに位置決めされる。
【0082】
見ることができるように、隔離バネ828は、バネ828のいずれかとプーリ823又はハブ822との間に一方クラッチなしでプーリ823及びハブ823と直接に係合する。振動絶縁器820を通るトルク経路は、
図37に899で示されている。見ることができるように、トルクは、プーリ823から隔離バネ828を通じて隔離バネ828の第1の端部の中に、かつ隔離バネ828の第2の端部からハブ822の中に伝達される。これに加えて、そのようなトルク伝達中に、別のトルク経路が減衰部材833の存在に起因して存在し、899aで示されている。
図3〜9Bに示す実施形態における減衰部材133上の隔離バネ128の押圧と同様の方式で隔離バネ828が減衰部材833を圧迫すると、減衰部材833とプーリ823の間の摩擦減衰力は、減衰部材833を通じてハブ822の中にプーリ823から直接にトルクを伝達させる(減衰部材833が位置決めされたハブ822内の切り欠き870の一端と当接することになる減衰部材833の円周端部のうちの1つを通じて)。本明細書に説明する他の軸受部材と類似である軸受部材は、824及び837に示されている。スペーサは、872に示されている。カバーは、871に示されている。
【0083】
当業者は、可能な更に多くの代替実施及び修正が存在すること、及び上記の例が1又は2以上の実施の単に例示であることを認めるであろう。本発明の範囲は、従って、本明細書に添付の特許請求の範囲によってのみ限定される。
【0084】
要素の表
[実施形態1]
シャフトとエンドレス動力伝達部材の間でトルクを伝達するためのデカプラであって、
前記シャフトに結合して回転軸の回りを該シャフトと共に回転するように構成されたハブと、
前記ハブに回転可能に結合され、かつ前記エンドレス動力伝達部材に係合するように構成された動力伝達面を含むプーリと、
前記プーリ及び前記ハブのうちの一方から該プーリ及び該ハブのうちの他方まで回転荷重を伝達するように構成された隔離バネと、
第1の回転方向の前記プーリ及び前記ハブのうちの一方の該プーリ及び該ハブの他方に対するオーバーランを可能にするように構成された一方クラッチと、
前記隔離バネによって伝達された前記回転荷重に基づいて変化する減衰部材に対して作用する力により、前記プーリ及び前記ハブのうちの一方の上の摩擦面との摩擦係合に駆動されるように位置決めされた減衰部材と、備えている、
ことを特徴とするデカプラ。
[実施形態2]
前記減衰部材は、半径方向に前記隔離バネと前記摩擦面の間にあり、
前記力は、前記減衰部材を前記摩擦面の中に押圧する伝達されている前記回転荷重に応答して前記隔離バネによって発生された半径方向反力である、
実施形態1に記載のデカプラ。
[実施形態3]
前記減衰部材は、前記半径方向反力と周方向に整列され、該減衰部材を前記摩擦面との摩擦係合に駆動する、
実施形態2に記載のデカプラ。
[実施形態4]
前記半径方向反力は、前記ハブに結合された前記隔離バネの螺旋端部から約90度である半径方向位置に向けられ、前記減衰部材は、該隔離バネの該端部から半径方向にオフセットされて該半径方向反力を受け入れるように構成された円周パッドを備えている、
実施形態2に記載のデカプラ。
[実施形態5]
前記円周パッドは、約45度だけ前記隔離バネの前記螺旋端部から半径方向にオフセットされた第1の円周端部を有する、
実施形態4に記載のデカプラ。
[実施形態6]
前記ハブ上に前記プーリを支持するように構成されて前記減衰部材を含む軸受部材、を更に備え、
前記摩擦面は、前記プーリの半径方向内面である、
実施形態2に記載のデカプラ。
[実施形態7]
前記軸受部材は、ブッシングである、
実施形態6に記載のデカプラ。
[実施形態8]
前記減衰部材は、前記ハブ内の係合開口部内に着座する、
実施形態2に記載のデカプラ。
[実施形態9]
前記円周パッドは、前記第1の円周端部から約90度である第2の円周端部を有している、
実施形態5に記載のデカプラ。
[実施形態10]
前記減衰部材は、前記エンドレス動力伝達部材と作動的に結合されたエンジンクランクシャフトの負荷サイクルの選択された数に基づく摩耗厚みを有する、
実施形態1に記載のデカプラ。
[実施形態11]
前記隔離バネは、第1の螺旋端部と第2の螺旋端部とを有する螺旋捩りバネである、
実施形態1に記載のデカプラ。
[実施形態12]
前記隔離バネによって伝達される前記回転荷重は、前記第2の螺旋端部を通じて前記ハブまで伝達され、
前記減衰部材は、前記第2の螺旋端部と前記ハブの間で前記回転荷重を伝達するように周方向に該第2の螺旋端部と該ハブの間にあり、かつ半径方向に移動可能であり、
前記減衰部材は、前記第2の螺旋端部と係合するように構成された第1の端部と、角度幅だけ該第1の端部から周方向にオフセットされ、前記ハブの係合面と係合するように構成された第2の端部とを有し、
前記隔離バネからの前記力は、前記減衰要素を通じて該隔離バネと前記ハブの間で伝達される前記回転荷重の大きさのベクトル部分であり、かつ前記角度幅に基づいている、
実施形態11に記載のデカプラ。
[実施形態13]
前記角度幅は、約90度と約180度の間である、
実施形態12に記載のデカプラ。
[実施形態14]
前記減衰部材は、金属負荷伝達要素及びプラスチック摩耗要素を有している、
実施形態12に記載のデカプラ。
[実施形態15]
前記プラスチック摩耗要素は、前記エンドレス動力伝達部材と作動的に結合されたエンジンクランクシャフトの負荷サイクルの選択された数に基づく摩耗厚みを有する、
実施形態14に記載のデカプラ。
[実施形態16]
前記係合面は、前記ハブ内の円周スロットの面である、
実施形態12に記載のデカプラ。
[実施形態17]
前記ハブ上に前記プーリを支持するように構成された軸受部材を更に有している、
実施形態12に記載のデカプラ。
[実施形態18]
前記軸受部材は、ブッシングである、
実施形態17に記載のデカプラ。
[実施形態19]
前記減衰部材に対して作用する前記隔離バネからの前記力は、該隔離バネによって伝達される前記回転荷重に比例して変化する、
実施形態1に記載のデカプラ。
[実施形態20]
前記減衰部材は、金属支持構造体及びプラスチック摩耗要素を有している、
実施形態1に記載のデカプラ。
[実施形態21]
前記減衰部材に対して作用する前記力は、前記隔離バネからのものである、
実施形態1に記載のデカプラ。
[実施形態22]
オルタネータのシャフトとエンジン制御ユニットを有する内燃エンジンのクランクシャフトによって駆動されるエンドレス動力伝達部材との間でトルクを伝達するためのデカプラであって、
前記シャフトに結合して回転軸の回りを該シャフトと共に回転するように構成されたハブと、
前記ハブに回転可能に結合され、かつ前記エンドレス動力伝達部材に係合するように構成された動力伝達面を含むプーリと、
前記プーリ及び前記ハブのうちの一方から該プーリ及び該ハブのうちの他方まで回転荷重を伝達するように構成された隔離バネであって、該隔離バネが、第1の螺旋端部と第2の螺旋端部とを有する螺旋捩りバネであり、該隔離バネによって伝達される該回転荷重が、該第2の螺旋端部を通じて該ハブまで伝達される前記隔離バネと、
第1の回転方向の前記プーリ及び前記ハブのうちの一方の該プーリ及び該ハブの他方に対するオーバーランを可能にするように構成された一方クラッチと、
前記隔離バネによって伝達された前記回転荷重に比例して変化する前記減衰部材に対して作用する該隔離バネからの力により、前記ハブ及び前記プーリのうちの一方の上の摩擦面との摩擦係合に駆動されるように位置決めされた減衰部材と、備え、
前記減衰部材は、前記第2の螺旋端部と前記ハブの間でトルクを伝達するように周方向に該第2の螺旋端部と該ハブの間にあり、かつ半径方向に移動可能であり、該減衰部材は、該第2の螺旋端部と係合するように構成された第1の端部と、角度幅だけ該第1の端部から半径方向にオフセットされ、該ハブの係合面と係合するように構成された第2の端部とを有し、
前記隔離バネからの前記力は、前記減衰要素を通じて該隔離バネと前記ハブの間で伝達される前記回転荷重の大きさに基づくベクトル部分であり、かつ前記角度幅に基づいており、
減衰が、減衰値の範囲にわたって前記減衰部材によって与えられ、該減衰は、前記オルタネータのオルタネータ調整器のうちの少なくとも1つが新しい電圧パラメータを選択し、かつ前記エンジン制御ユニットが新しい点弧周波数を選択するのに十分にデカプラの共振条件を変化させるのに該範囲内の少なくとも1つのポイントで十分である、
ことを特徴とするデカプラ。
[実施形態23]
前記減衰は、前記プーリと前記ハブとを互いにロックするのに前記範囲内の前記少なくとも1つのポイントで十分である、
実施形態22に記載のデカプラ。
[実施形態24]
前記減衰は、少なくとも約1.5Nmの減衰トルクを発生するのに前記範囲内の前記少なくとも1つのポイントで十分である、
実施形態22に記載のデカプラ。
[実施形態25]
補機ドライブ装置であって、
クランクシャフトと、クランクシャフトプーリと、該クランクシャフトプーリによって駆動されるエンドレス動力伝達部材とを含むエンジンと、
オルタネータシャフトと該オルタネータシャフト及び前記エンドレス動力伝達部材間でトルクを伝達するためのデカプラとを含むオルタネータと、備え、
前記デカプラは、
前記オルタネータシャフトに結合して回転軸の回りを該オルタネータシャフトと共に回転するように構成されたハブと、
前記ハブに回転可能に結合され、かつ前記エンドレス動力伝達部材に係合するように構成された動力伝達面を含むプーリと、
前記プーリ及び前記ハブのうちの一方から該プーリ及び該ハブのうちの他方まで回転荷重を伝達するように構成された隔離バネであって、該隔離バネが、第1の螺旋端部と第2の螺旋端部とを有する螺旋捩りバネであり、該隔離バネによって伝達される該回転荷重が、該第2の螺旋端部を通じて該ハブまで伝達される前記隔離バネと、
第1の回転方向の前記プーリ及び前記ハブのうちの一方の該プーリ及び該ハブの他方に対するオーバーランを可能にするように構成された一方クラッチと、
前記隔離バネによって伝達された前記回転荷重に比例して変化する前記減衰部材に対して作用する該隔離バネからの力により、前記ハブ及び前記プーリのうちの一方の上の摩擦面との摩擦係合に駆動されるように位置決めされた減衰部材と、備え、
前記減衰部材は、前記第2の螺旋端部と前記ハブの間でトルクを伝達するように周方向に該第2の螺旋端部と該ハブの間にあり、かつ半径方向に移動可能であり、該減衰部材は、該第2の螺旋端部と係合するように構成された第1の端部と、角度幅だけ該第1の端部から半径方向にオフセットされ、該ハブの係合面と係合するように構成された第2の端部とを有し、
前記隔離バネからの前記力は、前記減衰要素を通じて該隔離バネと前記ハブの間で伝達される前記回転荷重の大きさに基づくベクトル部分であり、かつ前記角度幅に基づいており、
減衰が、減衰値の範囲にわたって前記減衰部材によって与えられ、該減衰は、前記オルタネータのオルタネータ調整器のうちの少なくとも1つが新しい電圧パラメータを選択し、かつエンジン制御ユニットが新しい点弧周波数を選択するのに十分に前記デカプラの共振条件を変化させるのに該範囲内の少なくとも1つのポイントで十分である、
ことを特徴とする補機ドライブ装置。
[実施形態26]
前記減衰は、前記プーリと前記ハブとを互いにロックするのに前記範囲内の前記少なくとも1つのポイントで十分である、
実施形態25に記載の補機ドライブ装置。
[実施形態27]
前記減衰は、少なくとも約1.5Nmの減衰トルクを発生するのに前記範囲内の前記少なくとも1つのポイントで十分である、
実施形態22に記載のデカプラ。
[実施形態28]
シャフトとエンドレス動力伝達部材の間でトルクを伝達するための動力伝達デバイスであって、
前記シャフトに結合して回転軸の回りを該シャフトと共に回転するように構成されたハブと、
前記ハブに回転可能に結合され、かつ前記エンドレス動力伝達部材に係合するように構成された動力伝達面を含むプーリと、
前記プーリ及び前記ハブのうちの一方から該プーリ及び該ハブのうちの他方まで回転荷重を伝達するように構成された隔離バネと、
前記隔離バネによって伝達された前記回転荷重に基づいて変化する減衰部材に対して作用する力により、前記プーリ及び前記ハブのうちの一方の上の摩擦面との摩擦係合に駆動されるように位置決めされた減衰部材と、備えている、
ことを特徴とする動力伝達デバイス。
[実施形態29]
第1の回転方向の前記プーリ及び前記ハブのうちの一方の該プーリ及び該ハブのうちの他方に対するオーバーランを可能にするように構成された一方クラッチを更に備えている、
実施形態28に記載の動力伝達デバイス。
[実施形態30]
前記隔離バネは、一方クラッチなしでは前記プーリ及び前記ハブと直接に係合する、
実施形態28に記載の動力伝達デバイス。
[実施形態31]
シャフトとエンドレス動力伝達部材の間でトルクを伝達するためのデカプラであって、
前記シャフトに結合して回転軸の回りを該シャフトと共に回転するように構成されたハブと、
前記ハブに回転可能に結合され、かつ前記エンドレス動力伝達部材に係合するように構成された動力伝達面を含むプーリと、
前記プーリ及び前記ハブのうちの一方から該プーリ及び該ハブのうちの他方まで回転荷重を伝達するように構成された隔離バネと、
第1の回転方向の前記プーリ及び前記ハブのうちの一方の該プーリ及び該ハブの他方に対するオーバーランを可能にするように構成され、前記隔離バネの半径方向内側にある一方ローラークラッチと、
前記隔離バネによって伝達された前記回転荷重に基づいて変化する減衰部材に対して作用する力により、前記プーリ及び前記ハブのうちの一方の上の摩擦面との摩擦係合に駆動されるように位置決めされた減衰部材と、備えている、
ことを特徴とするデカプラ。