(58)【調査した分野】(Int.Cl.,DB名)
重量%で、C:0.1〜0.4%、Si:0.5〜2.0%、Mn:0.01〜4.0%、Al:0.001〜0.4%、P:0.001〜0.05%、S:0.0001〜0.02%、Cr:0.5%以上3.0%未満、N:0.001〜0.02%、残りFe及びその他の不可避不純物からなり、下記式(1)を満たし、
表面に連続的または不連続的に1nm〜100nmの厚さのSi非晶質酸化層が形成されており、前記Si非晶質酸化層上に(Fe、Mn、Cr)酸化物層が2.5μm以下の厚さに形成されており、非めっき鋼板である、耐食性及びスポット溶接性に優れた熱間成形用冷延鋼板。
式(1):1.4≦0.4*Cr+Si≦3.2
(前記式(1)において各元素記号は、各元素の含量を重量%で測定した値である。)
重量%で、C:0.1〜0.4%、Si:0.5〜2.0%、Mn:0.01〜4.0%、Al:0.001〜0.4%、P:0.001〜0.05%、S:0.0001〜0.02%、Cr:0.5%以上3.0%未満、N:0.001〜0.02%、残りFe及びその他の不可避不純物からなり、下記式(1)を満たすスラブを1000〜1300℃の温度で加熱する段階と、
前記加熱されたスラブをAr3〜1000℃の仕上げ圧延温度で熱間圧延して熱延鋼板を得る段階と、
前記熱延鋼板をMs超750℃以下の温度範囲で巻き取る段階と、
前記巻き取られた熱延鋼板を冷間圧延して冷延鋼板を得る段階と、
前記冷延鋼板を、下記式(2)及び式(3)を満たすように連続焼鈍する段階と、を含み、
得られる冷延鋼板は、表面に連続的または不連続的に1nm〜100nmの厚さのSi非晶質酸化層が形成されており、前記Si非晶質酸化層上に(Fe、Mn、Cr)酸化物層が2.5μm以下の厚さに形成されており、非めっき鋼板である、耐食性及びスポット溶接性に優れた熱間成形用冷延鋼板の製造方法。
式(1):1.4≦0.4*Cr+Si≦3.2
式(2):1≦exp[0.07*DP(I)+(0.6*Cr+3*Si)]≦100
式(3):50*exp[0.05*DP(I)−(1.2*Cr+6*Si)]≦2.5
(前記式(1)から式(3)において各元素記号は、各元素の含量を重量%で測定した値であり、式(2)及び式(3)においてDP(I)は、前記連続焼鈍段階の露点温度(℃)である。)
前記スラブは、重量%で、下記a)及びb)の中から選択された1以上をさらに含む、請求項5に記載の耐食性及びスポット溶接性に優れた熱間成形用冷延鋼板の製造方法。
a)Ti、Nb、Zr及びVから選択された1種以上:0.001〜0.4%
b)B:0.0001〜0.01%
前記スラブは、重量%で、下記c)からe)の中から選択された1以上をさらに含む、請求項5又は6に記載の耐食性及びスポット溶接性に優れた熱間成形用冷延鋼板の製造方法。
c)Mo及びWから選択された1種以上:0.001〜1.0%
d)CuとNi含量の合計:0.005〜2.0%
e)Sb及びSnから選択された1種以上:0.001〜1.0%
重量%で、C:0.1〜0.4%、Si:0.5〜2.0%、Mn:0.01〜4.0%、Al:0.001〜0.4%、P:0.001〜0.05%、S:0.0001〜0.02%、Cr:0.5%以上3.0%未満、N:0.001〜0.02%、残りFe及びその他の不可避不純物からなり、下記式(1)を満たし、
表面に連続的または不連続的に2nm〜2000nmの厚さのSi非晶質酸化層が形成されており、前記Si非晶質酸化層上に(Fe、Mn、Cr)酸化物層が3μm以下の厚さに形成されている、耐食性及びスポット溶接性に優れた非めっき熱間成形部材。
式(1):1.4≦0.4*Cr+Si≦3.2
(前記式(1)において各元素記号は、各元素の含量を重量%で測定した値である。)
【発明を実施するための形態】
【0017】
以下、本発明の好ましい実施形態を説明する。しかし、本発明の実施形態は、様々な他の形態に変形されることができ、本発明の範囲が以下で説明する実施形態に限定されるものではない。また、本発明の実施形態は、当該技術分野における平均的な知識を有する者に本発明をさらに完全に説明するために提供されるものである。
【0018】
熱間成形用非めっき冷延鋼板の場合、熱処理時に生成される酸化層によりスポット溶接性を確保することができない。そのため、酸化層を除去するためのショットブラスト工程が必要となるだけではなく、耐食性を確保し難いという問題がある。そこで、本発明者らは上記問題を認知し、それを解決するために鋭意研究した。
【0019】
その結果、合金組成及び製造条件、特にCr含量、Si含量、露点温度の相関関係を精密に制御して目標とする厚さでSi非晶質酸化層(Si系非晶質酸化層)を形成させることにより、めっき工程及びショットブラスト工程がなくても、優れた耐食性及びスポット溶接性を確保できることを確認し、本発明を完成するに至った。
【0020】
以下、本発明の一側面による耐食性及びスポット溶接性に優れた熱間成形用冷延鋼板について詳細に説明する。
【0021】
本発明の一側面による耐食性及びスポット溶接性に優れた熱間成形用冷延鋼板は、重量%で、C:0.1〜0.4%、Si:0.5〜2.0%、Mn:0.01〜4.0%、Al:0.001〜0.4%、P:0.001〜0.05%、S:0.0001〜0.02%、Cr:0.5%以上3.0%未満、N:0.001〜0.02%、残りFe及びその他の不可避不純物を含み、下記式(1)を満たし、表面に連続的または不連続的に1nm〜100nmの厚さのSi非晶質酸化層が形成されている。
式(1):1.4≦0.4*Cr+Si≦3.2
(上記式(1)において各元素記号は、各元素の含量を重量%で測定した値である。)
【0022】
まず、本発明の一側面による耐食性及びスポット溶接性に優れた熱間成形用冷延鋼板の合金組成について詳細に説明する。以下、各元素の含量の単位は重量%である。
【0023】
C:0.1〜0.4%
Cは、熱処理部材の強度を上昇させるための必須元素であって、適正に添加される必要がある。
【0024】
C含量が0.1%未満の場合には、十分な強度を確保し難いため、0.1%以上添加されることが好ましい。一方、その含量が0.4%を超える場合には、熱延材を冷間圧延する際に熱延材の強度が高すぎて冷間圧延性に非常に劣るようになり、且つ、スポット溶接性が大きく低下する。したがって、C含量は0.4%以下であることが好ましい。より好ましい上限は0.35%であり、さらに好ましい上限は0.3%である。
【0025】
Si:0.5〜2.0%
Siは、冷延鋼板を連続焼鈍ラインで焼鈍する際に冷延鋼板の表面に濃化してSi非晶質酸化層を形成する重要な役割を果たすだけではなく、熱間成形工程で(Fe、Mn、Cr)酸化物層の形成を抑制して部材のスポット溶接性を確保する役割を果たす。
【0026】
Si含量が0.5%未満の場合には、上述の効果が不十分となるため、その下限は0.5%であることが好ましい。より好ましい下限は0.8%である。一方、その含量が2.0%を超える場合には、厚すぎるSi非晶質酸化層を形成してスポット溶接性がむしろ低下するという問題がある。
【0027】
Cr:0.5%以上3.0%未満
Crは、鋼板の硬化能を向上させるだけではなく、Siと適切に反応することで表層のSi系非晶質酸化物層の安定的な形成を助ける役割を果たすことができる。
【0028】
Cr含量が0.5%未満の場合には、上述の効果が不十分となる。一方、Cr含量が3.0%以上である場合には、その効果が飽和し、製造コストが上昇するという問題がある。
【0029】
上記CrとSiは、各元素の含量を満たすだけではなく、式(1):1.4≦0.4*Cr+Si≦3.2を満たす必要がある。
図1から確認できるように、式(1)の値が1.4未満の場合には熱間成形後、表面に均一な表面等級を確保し難く、式(1)の値が3.2を超える場合には、その効果が飽和するだけでなく、むしろ製造コストが上昇し、且つスポット溶接性に劣るようになるという問題がある。より好ましい式(1)の値の上限は3.0であり、さらに好ましい上限は2.5である。
【0030】
Mn:0.01〜4.0%
Mnは、固溶強化効果を確保することができるだけではなく、熱間成形部材においてマルテンサイトを確保するための臨界冷却速度を下げるために添加される必要がある。
【0031】
Mn含量が0.01%未満の場合には、上述の効果が不十分となる。一方、Mn含量が4.0%を超える場合には、熱間成形工程前に鋼板の強度が上昇しすぎるため、ブランキング作業が困難になるだけではなく、合金鉄の過剰な添加により原価が上昇し、且つスポット溶接性を劣化させるという欠点がある。より好ましい上限は3.0%であり、さらに好ましい上限は2.0%である。
【0032】
Al:0.001〜0.4%
Alは、Siと共に製鋼において脱酸作用を行って鋼の清浄度を向上させることができる。
【0033】
Al含量が0.001%未満の場合には、上述の効果が不十分となり、その含量が0.4%を超える場合には、Ac3温度が上昇しすぎて加熱温度を高めなければならないという問題がある。より好ましい上限は0.2%であり、さらに好ましい上限は0.1%である。
【0034】
P:0.001〜0.05%
Pは不純物であり、その含量を0.001%未満に制御するためには、多くの製造コストがかかり、その含量が0.05%を超える場合には、熱間成形部材の溶接性が大きく低下することがある。より好ましい上限は0.03%である。
【0035】
S:0.0001〜0.02%
Sは不純物であり、その含量を0.0001%未満に制御するためには、多くの製造コストがかかり、その含量が0.02%を超える場合には、部材の延性、衝撃特性、及び溶接性を阻害する。より好ましい上限は0.01%である。
【0036】
N:0.001〜0.02%
Nは不純物であり、その含量を0.001%未満に制御するためには、多くの製造コストがかかり、その含量が0.02%を超える場合には、スラブの連鋳時にクラックの発生に敏感になるだけではなく、衝撃特性が悪くなることがある。より好ましい上限は0.01%である。
【0037】
本発明の残り成分は鉄(Fe)である。但し、通常の製造過程では、原料または周囲の環境から意図しない不純物が不可避に混入することがあるため、それを排除することはできない。これら不純物は、通常の製造過程における技術者であれば、誰でも分かるものであるため、そのすべての内容を具体的に本明細書に記載しない。
【0038】
このとき、下記a)及びb)の中から選択された1以上をさらに含むことができる。
【0039】
a)Ti、Nb、Zr及びVから選択された1種以上:0.001〜0.4%
Ti、Nb、Zr及びVは、微細析出物の形成による熱処理部材の強度の向上と、結晶粒の微細化による残留オーステナイトの安定化及び衝撃靭性の向上において効果がある。その含量(2種以上が追加された場合には、それらの合計を意味する)が0.001%以下では、上述の効果が不十分となり、その含量が0.4%を超えると、その効果が飽和するだけでなく、合金鉄の過剰な添加によるコストの上昇を招くことがある。
【0040】
b)B:0.0001〜0.01%
Bは、少量の添加でも硬化能を向上させることができるだけではなく、旧オーステナイト結晶粒界に偏析し、P及び/またはSの粒界偏析による熱間成形部材の脆性を抑制することができる元素である。
【0041】
B含量が0.0001%未満の場合には、上述の効果が不十分となり、0.01%を超える場合には、その効果が飽和するだけではなく、熱間圧延時に熱間脆性を引き起こすことがある。より好ましい上限は0.005%である。
【0042】
また、下記c)からe)の中から選択された1以上をさらに含むことができる。
【0043】
c)Mo及びWから選択された1種以上:0.001〜1.0%
Mo及びWは、硬化能の向上と、析出強化の効果による強度の向上、及び結晶粒の微細化のために添加することができる。その含量(Mo及びWが両方とも添加された場合には、その合計を意味する)が0.001%未満の場合には、上述の効果が不十分となり、1.0%を超える場合には、その効果が飽和するだけでなく、コストが上昇するという問題がある。
【0044】
d)CuとNi含量の合計:0.005〜2.0%
Cuは、微細析出物を形成させて強度を向上させる元素として添加されることができる。また、Niは、Cuが単独で添加される場合に熱間脆性を引き起こすことがあるため、必要に応じて添加される。しかし、これら成分の合計が0.005%未満では、上述の効果が不十分となり、2.0%を超えると、コストの過剰な上昇を招くことがある。
【0045】
e)Sb及びSnから選択された1種以上:0.001〜1.0%
上記Sb及びSnは、Siが添加された鋼材の熱延材表層の結晶粒界に生成され得る酸化物の生成を抑制する効果を有し、冷延材の焼鈍時に表層の結晶粒界の脱落によるデント(dent)欠陥を抑制することができる。かかる効果を得るためには、0.001%以上添加することが好ましい。
【0046】
一方、その含量(Sb及びSnが両方とも添加された場合には、その合計を意味する)が1.0%を超えると、コストが上昇しすぎるだけでなく、スラブの粒界に固溶されて熱間圧延時にコイルエッジのクラックを引き起こすことがある。
【0047】
本発明の一側面による耐食性及びスポット溶接性に優れた熱間成形用冷延鋼板は、上述の合金組成を満たすだけではなく、表面に連続的または不連続的に1〜100nmの厚さのSi非晶質酸化層が形成されている必要である。
【0048】
Si非晶質酸化層は、Siが酸素と結合して生成される酸化物であって、鋼材に添加されたSiが焼鈍中に表層に濃化し、炉内に存在する酸素と結合して生成される非晶質構造を有する酸化物からなる層を意味する。Si非晶質酸化層は腐食に強い化合物であって、耐食性の向上効果及び(Fe、Mn、Cr)酸化物層の形成を抑制するという効果がある。
【0049】
その厚さが1nm未満の場合には、熱間成形後に十分なSi非晶質酸化層が形成され難く、耐食性の向上効果が不十分となり、むしろ(Fe、Mn、Cr)酸化物層の形成を助長して十分な耐食性及び良好なスポット溶接性を確保し難い。
【0050】
一方、その厚さが100nmを超える場合には、熱間成形後に十分な耐食性は確保できるが、スポット溶接性を確保し難い。したがって、その厚さの上限は100nmであることが好ましく、より好ましい上限は70nmであり、さらに好ましい上限は50nmである。
【0051】
このとき、上記Si非晶質酸化層上に(Fe、Mn、Cr)酸化物層が2.5μm以下の厚さで形成されることができる。
【0052】
(Fe、Mn、Cr)酸化物層の厚さが2.5μmを超える場合には、スポット溶接性の確保のために上記酸化物層を除去するためのショットブラスト工程が必要となり、耐食性を確保し難いという問題がある。
【0053】
また、上記本発明による冷延鋼板の微細組織は、フェライト及びセメンタイトを含むことができる。特に、その面積分率を限定する必要はないが、例えば、50面積%以上であることができる。
【0054】
これは、熱間成形部材を製造するためにブランクを作る際に、上記冷延鋼板の強度が高すぎると、金型の摩耗が発生しやすくなるためである。しかし、このような現象を考慮しない場合には、ベイナイト、マルテンサイトなどを含むことができ、これを排除しない。
【0055】
以下、本発明の他の一側面である熱間成形用冷延鋼板の製造方法について詳細に説明する。
【0056】
本発明の他の一側面である熱間成形用冷延鋼板の製造方法は、上述の合金組成を満たすスラブを1000〜1300℃の温度で加熱する段階と、上記加熱されたスラブをAr3〜1000℃の仕上げ圧延温度で熱間圧延して熱延鋼板を得る段階と、上記熱延鋼板をMs超750℃以下の温度範囲で巻き取る段階と、上記巻き取られた熱延鋼板を冷間圧延して冷延鋼板を得る段階と、上記冷延鋼板を、下記式(2)及び式(3)を満たすように連続焼鈍する段階と、を含む。
式(1):1.4≦0.4*Cr+Si≦3.2
式(2):1≦exp[0.07*DP(I)+(0.6*Cr+3*Si)]≦100
式(3):50*exp[0.05*DP(I)−(1.2*Cr+6*Si)]≦2.5
(上記式(1)から式(3)において各元素記号は、各元素の含量を重量%で測定した値であり、式(2)及び式(3)においてDP(I)は、上記連続焼鈍段階の露点温度(℃)である。)
【0057】
(スラブ加熱段階)
上述の合金組成を満たすスラブを1000〜1300℃の温度で加熱する。
【0058】
上記加熱温度が1000℃未満の場合には、スラブの組織を均質化し難く、1300℃を超えると、酸化物が過剰に形成され、製造コストが上昇することがある。
【0059】
(熱間圧延段階)
上記加熱されたスラブをAr3〜1000℃の仕上げ圧延温度で熱間圧延して熱延鋼板を得る。
【0060】
仕上げ圧延温度がAr3温度未満の場合には、二相域圧延になりやすくて表層に混粒組織が発生し、熱延鋼板の形状制御が困難になる。仕上げ圧延温度が1000℃を超えると、熱延鋼板の結晶粒が粗大化しやすくなる。
【0061】
(巻取段階)
上記熱延鋼板をMs超750℃以下の温度範囲で巻き取る。
【0062】
巻取温度がMs(マルテンサイト変態開始温度)以下の場合には、熱延鋼板の強度が高くなりすぎて冷間圧延性を低下させる。巻取温度が750℃を超える場合には、酸化層の厚さが増加し、且つ表層の粒界酸化を引き起こして酸洗性に劣るようになるだけではなく、連続焼鈍炉での焼鈍時に表層の粒界の脱落を引き起こすという問題が発生することがある。
【0063】
(冷間圧延段階)
上記巻き取られた熱延鋼板を冷間圧延して冷延鋼板を得る。これは、鋼板の厚さをより精密に制御するためであり、冷間圧延前に酸洗を行うことができる。
【0064】
このとき、上記冷間圧延の圧下率は、特に限定する必要はないが、所定の目標厚さを確保するために、30〜80%の圧下率で行うことができる。
【0065】
(連続焼鈍段階)
上記冷延鋼板を、下記式(2)及び式(3)を満たすように連続焼鈍する。下記式(2)及び式(3)において各元素記号は、各元素の含量を重量%で測定した値であり、DP(I)は、上記連続焼鈍段階の露点温度(℃)である。
【0066】
式(2):1≦exp[0.07*DP(I)+(0.6*Cr+3*Si)]≦100
式(2)は、Si含量、Cr含量、及び連続焼鈍段階の露点温度(DP(I))の相関関係を考慮して、冷延鋼板のSi非晶質酸化層の厚さを制御するためのものである。式(2)の値による冷延鋼板のSi非晶質酸化層の厚さの変化を示したグラフである
図2の(a)から確認できるように、式(2)の値によりSi非晶質酸化層の厚さを制御することができる。
【0067】
上記式(2)の値が1未満の場合には、表面に十分な厚さのSi非晶質酸化層を確保することができず、(Fe、Mn、Cr)酸化物層の形成を抑制し難く、別のめっき工程やショットブラスト工程がないと、優れたスポット溶接性及び耐食性を確保することができないという問題がある。
【0068】
上記式(2)の値が100を超える場合には、Si非晶質酸化層が厚くなりすぎてスポット溶接性を良好に確保し難いという問題がある。
【0069】
式(3):50*exp[0.05*DP(I)−(1.2*Cr+6*Si)]≦2.5
式(3)は、Si含量、Cr含量、及び連続焼鈍段階の露点温度(DP(I))の相関関係を考慮して、冷延鋼板の(Fe、Mn、Cr)酸化物層の厚さを制御するためのものである。式(3)の値による冷延鋼板のSi非晶質酸化層の厚さの変化を示したグラフである
図2の(b)から確認できるように、式(3)の値により(Fe、Mn、Cr)酸化物層の厚さを制御することができる。
【0070】
式(3)の値が2.5を超える場合には、(Fe、Mn、Cr)酸化物層が厚くなって鋼板表面の外観が悪くなるだけではなく、熱間成形後にもスポット溶接性を劣化させるという問題がある。
【0071】
このとき、上記連続焼鈍は700〜900℃の温度範囲で行うことができる。焼鈍温度が700℃未満では、冷間圧延によって生成された圧延組織の回復及び再結晶が起こり難く、900℃を超える場合には、焼鈍設備を劣化させるだけでなく、鋼板の表層に酸化物が過剰に形成されて、熱間成形後のスポット溶接性を大きく阻害する。
【0072】
また、焼鈍時間は1〜1000秒であることができる。本発明では、連続焼鈍を行うため、焼鈍時間を大幅に制御することは困難である。したがって、露点温度を制御しており、焼鈍時間が1秒未満の場合には、焼鈍効果を得難く、焼鈍時間が1000秒を超える場合には、生産性が低下することがある。
【0073】
以下、本発明のさらに他の一側面である耐食性及びスポット溶接性に優れた熱間成形部材の製造方法について詳細に説明する。
【0074】
本発明のさらに他の一側面である耐食性及びスポット溶接性に優れた熱間成形部材の製造方法は、上述の本発明による冷延鋼板の製造方法によって製造された冷延鋼板を、下記式(4)及び式(5)を満たす条件で1〜1000℃/秒の昇温速度でAc3〜Ac3+150℃の温度範囲まで加熱した後、1〜1000秒間保持する熱処理段階と、上記加熱された冷延鋼板を熱間成形した後、10〜1000℃/秒の冷却速度で冷却する段階と、を含む。
【0075】
(熱処理段階)
上述の本発明による冷延鋼板の製造方法により製造された冷延鋼板を、下記式(4)及び式(5)を満たす条件で1〜1000℃/秒の昇温速度でAc3〜Ac3+150℃の温度範囲まで加熱した後、1〜1000秒間維持して熱処理する。
【0076】
昇温速度が1℃/秒未満の場合には、生産性を十分に確保し難いだけではなく、部材の表面の酸化が過剰に促進され、十分なスポット溶接性を確保し難い。一方、昇温速度が1000℃/秒を超える場合には、多くのコストがかかる設備が必要となる。
【0077】
加熱温度がAc3未満であるか、または保持時間が1秒未満の場合には、オーステナイトに完全に変態しないフェライトが残存するだけではなく、ブランクが加熱炉から金型に移送される途中でフェライトが追加的に生成され得るため、所定の強度を確保し難いという問題がある。一方、加熱温度がAc3+150℃を超えるか、または保持時間が1000秒を超える場合には、部材の表面に酸化物が過剰に生成されることにより、スポット溶接性を確保し難いという問題がある。
【0078】
下記式(4)及び式(5)において各元素記号は、各元素の含量を重量%で測定した値であり、DP(II)は、上記熱処理段階の露点温度(℃)である。
【0079】
式(4):2≦
[exp[0.07*DP(I)+(0.6*Cr+3*Si)]]*exp[0.07*DP(II)+(0.6*Cr+1.5*Si)]≦2000
式(4)は、Si含量、Cr含量、連続焼鈍段階の露点温度(DP(I))、及び熱処理段階の露点温度(DP(II))の相関関係を考慮して、熱間成形部材のSi非晶質酸化層の厚さを制御するためのものである。式(4)の値による熱間成形部材のSi非晶質酸化層の厚さの変化を示したグラフである
図3の(a)から確認できるように、式(4)の値により熱間成形部材のSi非晶質酸化層の厚さを制御することができる。
【0080】
上記式(4)の値が2未満の場合には、表面に十分な厚さのSi非晶質酸化層を確保することができず、良好な耐食性を確保することができないという問題がある。したがって、式(4)の値の好ましい下限は2であり、より好ましくは3、さらに好ましくは4である。
【0081】
一方、上記式(4)の値が2000を超える場合には、Si非晶質酸化層が厚くなりすぎてスポット溶接性を良好に確保し難いという問題がある。
【0082】
式(5):
[50*exp[0.05*DP(I)−(1.2*Cr+6*Si)]]+50*exp[0.05*DP(II)−(0.4*Cr+2*Si)]≦3
式(5)は、Si含量、Cr含量、連続焼鈍段階の露点温度(DP(I))、及び熱処理段階の露点温度(DP(II))の相関関係を考慮して、熱間成形部材の(Fe、Mn、Cr)酸化物層の厚さを制御するためのものである。式(5)の値による熱間成形部材の(Fe、Mn、Cr)酸化物層の厚さの変化を示したグラフである
図3の(b)から確認できるように、式(5)の値により熱間成形部材の(Fe、Mn、Cr)酸化物層の厚さを制御することができる。
【0083】
式(5)の値が3を超える場合は、(Fe、Mn、Cr)酸化物の厚さが厚くて鋼板表面の外観が悪くなるだけではなく、スポット溶接性に劣るようになるという問題がある。
【0084】
(熱間成形及び冷却段階)
上記加熱された冷延鋼板を熱間成形した後、10〜1000℃/秒の冷却速度で冷却する。
【0085】
上記冷却速度が10℃/s未満の場合には、不要なフェライトが形成されて、1000MPa以上の引張強度を確保し難い。一方、冷却速度を1000℃/s超に制御するためには、高価で特別な冷却設備が必要となる。
【0086】
このとき、上記冷却する段階の冷却停止温度は、Mf(マルテンサイト変態終了温度)以下であることができる。これは、Mfを超える温度で冷却を停止した後、常温まで再び冷却する場合、熱間成形部材の形状凍結性を確保し難いためである。
【0087】
但し、熱間成形部材においてより優れた伸びと衝撃特性を確保するために、Mf(マルテンサイト変態終了温度)とMs(マルテンサイト変態開始温度)の間で冷却を停止した後、Ac1以下の温度で再加熱してマルテンサイトを焼戻させ、残留オーステナイトを安定化させることもできる。
【0088】
以下、本発明のさらに他の一側面である耐食性及びスポット溶接性に優れた熱間成形部材について詳細に説明する。
【0089】
本発明のさらに他の一側面である耐食性及びスポット溶接性に優れた熱間成形部材は、上述の合金組成を満たし、表面に連続的または不連続的に2nm〜2000nmの厚さのSi非晶質酸化層が形成されている。
【0090】
Si非晶質酸化層の厚さが2nm未満の場合には、十分な耐食性を確保し難い。したがって、その厚さの下限は2nmであることが好ましく、より好ましくは3nm、さらに好ましくは3.5nmである。
【0091】
一方、その厚さが2000nmを超える場合には、十分な耐食性は確保できるが、良好なスポット溶接性を確保することは困難である。したがって、その厚さの上限は2000nmであることが好ましく、より好ましくは1000nmであり、さらに好ましくは500nmである。
【0092】
このとき、上記Si非晶質酸化層上に(Fe、Mn、Cr)酸化物層が3μm以下の厚さに形成されていることができる。
【0093】
(Fe、Mn、Cr)酸化物層の厚さが3μmを超える場合には、鋼板表面の外観が悪くなるだけではなく、スポット溶接性の確保のために上記酸化物層を除去するためのショットブラスト工程が必要となり、耐食性を確保し難いという問題点がある。
【0094】
また、上記熱間成形部材は、高強度を確保するために、マルテンサイトまたはベイナイトを主相にすることができる。ここで主相とは、微細組織をなす複数の相の中で最も大きい面積分率を有する相を意味する。その面積分率を特に限定する必要はないが、例えば、50面積%以上であることができる。
【0095】
一方、上記熱間成形部材は、1000MPa以上の引張強度を有することができる。1000MPa以上の高強度を確保することにより、耐衝突性が求められる自動車構造部材または補強材などに好適に適用されることができる。
【0096】
また、上記熱間成形部材は、スポット溶接電流範囲が1.0kA以上であることができる。通常、顧客社では1.0kA以上のスポット溶接電流範囲を必要としているため、スポット溶接電流範囲が1.0kAの場合、スポット溶接性に劣る。
【実施例】
【0097】
以下、実施例を挙げて本発明をより具体的に説明する。但し、下記の実施例は、本発明を例示してより詳細に説明するためのものであり、本発明の権利範囲を限定するためのものではないという点に留意する必要がある。本発明の権利範囲は、特許請求の範囲に記載された事項とそれから合理的に類推される事項によって決定されるものである。
【0098】
(実施例1)
下記表1に示した成分組成を有する厚さ40mmのスラブを真空溶解し、1200℃の加熱炉で1時間加熱した後、900℃の仕上げ圧延温度で熱間圧延して最終厚さ3mmの熱延鋼板を製造した。その後、上記熱延鋼板を600℃の温度で巻き取ってから、上記熱延鋼板を酸洗した後、50%の冷間圧下率で冷間圧延を行った。
【0099】
上述のように製造された冷延鋼板を用いて、表2に示すように780℃の焼鈍温度で露点温度の条件(DP(I))を変更して連続焼鈍を行った。連続焼鈍後、冷延鋼板の表面のSi非晶質酸化層の厚さ及び(Fe、Mn、Cr)酸化物層の厚さを測定して下記表2に記載した。また、下記式(1)から式(3)の値を計算して下記表3に記載した。
式(1):1.4≦0.4*Cr+Si≦3.2
式(2):1≦exp[0.07*DP(I)+(0.6*Cr+3*Si)]≦100
式(3):50*exp[0.05*DP(I)−(1.2*Cr+6*Si)]≦2.5
(上記式(1)から式(3)において各元素記号は、各元素の含量を重量%で測定した値であり、式(2)及び式(3)においてDP(I)は、上記連続焼鈍段階の露点温度(℃)である。)
【0100】
Si非晶質酸化層の厚さ及び(Fe、Mn、Cr)酸化物層の厚さは、透過電子顕微鏡(TEM)及びEPMA機器を用いて3箇所を測定した後、平均した結果値を示した。
図4と
図5は、発明例A2の代表的な表層構造及び成分分布を示す。発明例A1〜A4は、式(2)と式(3)を満たすのに対し、比較例A5〜A6及びB1〜B5は、式(2)または式(3)を満たしていない。
【0101】
上述のように製造された冷延鋼板を用いて熱間成形を行った。このときの熱処理条件としては、下記表3に記載された露点温度(DP(II))に制御し、900℃の温度に予め加熱された加熱炉に上記冷延鋼板を装入した後、6分間保持した。次に、12秒間空冷した後、金型で熱間成形してから10℃/秒以上の冷却速度で室温まで急冷して熱間成形部材を得た。上記熱間成形部材の引張強度、表面等級、Si非晶質酸化層の厚さ、(Fe、Mn、Cr)酸化物層の厚さ、耐食性、及びスポット溶接性を測定または評価して下記表3に記載した。また、下記式(4)及び式(5)の値を計算して下記表3に記載した。
式(4):2≦
[exp[0.07*DP(I)+(0.6*Cr+3*Si)]]*exp[0.07*DP(II)+(0.6*Cr+1.5*Si)]≦2000
式(5):
[50*exp[0.05*DP(I)−(1.2*Cr+6*Si)]]+50*exp[0.05*DP(II)−(0.4*Cr+2*Si)]≦3
(上記式(4)及び式(5)において各元素記号は、各元素の含量を重量%で測定した値であり、
DP(I)は、上記連続焼鈍段階の露点温度(℃)であり、DP(II)は、上記熱処理段階の露点温度(℃)である。)
【0102】
引張強度は、上記熱間成形部材からASTM E8引張試験片を採取して測定し、Si非晶質酸化層の厚さ及び(Fe、Mn、Cr)酸化物層の厚さは、透過電子顕微鏡(TEM)及びEPMA機器を用いて3箇所を測定した後、平均した結果値を示した。熱間成形後、代表的な発明例A2−1の表層構造及び成分分布は
図6及び7に示した。
【0103】
表面等級は、ショットブラストが行われていない表面を目視で評価した。つまり、部材の表面が厚い酸化層で構成されていて表面の色が濃い灰色に見える場合の面積率と、部材の表面が薄い酸化層で構成されていて表面の色が黄色または金色に見える場合の面積率を計算して下記のように評価した。
5等級:灰色表面の面積率が90%超
4等級:灰色表面の面積率が70%超90%以下
3等級:灰色表面の面積率が30%超70%以下
2等級:灰色表面の面積率が10%超30%以下
1等級:灰色表面の面積率が10%以下
【0104】
耐食性は、塩水噴霧(salt spray)を用いて、熱間成形部材に対するCCT(Cyclic corrosion test)を63回行った後、腐食の深さを2mmの間隔で3個所測定して平均した。上記腐食の深さが1mmを超えた場合を不良(×)、1mm以下の場合を良好(O)と判断した。
【0105】
スポット溶接性は、ISO規格(18278−2)を用いてスポット溶接電流範囲を求め、電流範囲が1.0kA以上の場合を良好、1.0kA未満の場合を不良とした。
【0106】
【表1】
【0107】
【表2】
【0108】
【表3】
【0109】
本発明の式(1)の値を満たす発明鋼Aの場合、すべての熱間成形熱処理条件下で4等級未満の等級を示した。
【0110】
一方、Si、Cr及び式(1)の値を満たしていない比較鋼Bの場合、すべての熱間成形熱処理条件下で表面等級が5等級を示し、表面特性に劣った。各元素の含量の範囲は本発明の範囲を満たすが、式(1)の値を満たしてない比較鋼Cも、表面等級が4等級を示し、表面特性に劣った。
【0111】
また、発明例A1〜A4の場合は、耐食性及びスポット溶接性を両方とも確保できる熱間成形部材を製造することができた。
【0112】
一方、本発明の合金組成は満たすが、本発明による冷延鋼板の条件を満たしていない比較例A5〜A6は、耐食性は確保することができたが、スポット溶接性は確保することができなかった。
【0113】
また、A1−2の場合、本発明による冷延鋼板の条件は満たしたが、式(4)の値が2未満を示し、熱間成形部材の耐食性に劣った。A1−3の場合、本発明による冷延鋼板の条件は満たしたが、式(5)の値が3を超えたため、熱間成形部材のスポット溶接性に劣った。
【0114】
(実施例2)
本発明の範囲内で1000MPa以上の引張強度、優れた耐食性、及びスポット溶接性を確保できることをより明確に確認するために追加実験を行った。
【0115】
下記表4のような組成を有する厚さ40mmのスラブに対して、下記表5の連続焼鈍段階の露点温度、下記表6の熱処理段階の露点温度、及び残りの製造条件は上記実施例1と同一の条件とし、冷延鋼板と熱間成形部材を製造した。
【0116】
上記冷延鋼板の表面のSi非晶質酸化層の厚さ及び(Fe、Mn、Cr)酸化物層の厚さを測定して下記表5に記載した。
【0117】
上記熱間成形部材の引張強度、表面等級、Si非晶質酸化層の厚さ、(Fe、Mn、Cr)酸化物層の厚さ、耐食性、及びスポット溶接性を測定または評価して下記表6に記載した。
【0118】
測定及び評価方法は実施例1と同一にした。
【0119】
【表4】
【0120】
【表5】
【0121】
【表6】
【0122】
上記表6から確認できるように、発明例D1−1からK1−1はいずれも、本発明の合金組成及び製造条件を満たし、優れた耐食性及びスポット溶接性を確保することができた。
【0123】
以上の実施例を参照して説明したが、当該技術分野における熟練した当業者は、添付の特許請求の範囲に記載された本発明の思想及び領域から逸脱しない範囲内で、本発明を多様に修正及び変更させることができることを理解することができる。