(58)【調査した分野】(Int.Cl.,DB名)
内燃機関の排ガス経路に設けられた脱硝触媒と、その脱硝触媒の上流側に設けられ、その脱硝触媒に対して還元剤を供給する還元剤供給手段と、その還元剤供給手段の上流側の前記排ガス経路に対して燃焼ガスを含む加熱ガスを送給するためのバーナ装置を含む加熱ユニットと、が備えられた脱硝装置において、
前記加熱ユニットには、排ガス経路内において前記バーナ装置の燃焼室から排出された燃焼ガスと混合するための外気を導入するための外気導入手段が備えられ、前記外気導入手段は、その外気の導入量を調節する開度調節バルブを有する内燃機関の脱硝装置用の加熱ガス発生装置。
前記加熱ユニットは、前記バーナ装置と、前記外気導入手段と、前記バーナ装置の下流側にあって、前記バーナ装置から供給される燃焼ガスと前記内燃機関の排ガス経路から排出される内燃機関の排ガスと前記外気導入手段から供給される外気と、を混合するミキサと、を備えることを特徴とする請求項1に記載の内燃機関の脱硝装置用の加熱ガス発生装置。
内燃機関の排ガス経路に設けられた脱硝触媒と、その脱硝触媒の上流側に設けられ、その脱硝触媒に対して還元剤を供給する還元剤供給手段と、その還元剤供給手段の上流側の前記排ガス経路に対して加熱ガスを送給するためのバーナ装置を含む加熱ユニットと、が備えられた脱硝装置において、
前記バーナ装置の燃焼室の一端部には、バーナが配置されるとともに、
前記燃焼室の他端部には前記内燃機関の排ガス経路が、前記燃焼室の軸線と略直交する方向で排ガスが前記燃焼室内の高温領域を横切るように接続され、前記燃焼室内に前記排ガス経路から供給される内燃機関の排ガスが供給されること、を特徴とする内燃機関の脱硝装置用の加熱ガス発生装置。
前記ミキサの下流であって、還元剤供給手段の上流において、前記ミキサから排出される気体を通過させるフィルタを備えたことを特徴とする請求項5に記載の内燃機関の脱硝装置用の加熱ガス発生装置。
前記脱硝触媒の下流の排ガス経路から、前記加熱ユニットに排ガスを還流させる排ガス還流管路を備えたことを特徴とする請求項8に記載の内燃機関の脱硝装置用の加熱ガス発生装置。
前記内燃機関の停止時において、前記温度センサからの温度検出に基づいて、前記第1のバルブの上流側及び前記第2のバルブを閉鎖し、前記外気導入手段から外気を導入して前記バーナ装置を作動させて、前記脱硝触媒を予熱または再生させることを特徴とする請求項1、2または4〜6のいずれか一項を引用する請求項8に記載の内燃機関の脱硝装置用の加熱ガス発生装置の運転方法。
前記内燃機関の始動時において、前記温度センサからの温度検出に基づいて、前記第2のバルブを開放するとともに、前記第1のバルブの上流側を中間開度とし、下流側を開放し、前記外気導入手段から外気を導入して前記バーナ装置を作動させて、前記脱硝触媒を予熱または再生させることを特徴とする請求項1、2または4〜6のいずれか一項を引用する請求項8に記載の内燃機関の脱硝装置用の加熱ガス発生装置の運転方法。
前記内燃機関の継続運転において、前記温度センサからの温度検出に基づいて脱硝触媒が分解有効温度に達した場合に、前記第2のバルブを閉鎖し、前記第1のバルブを開放し、前記バーナ装置を休止することを特徴とする請求項8に記載の内燃機関の脱硝装置用の加熱ガス発生装置の運転方法。
前記内燃機関の停止時において、前記温度センサからの温度検出に基づいて脱硝触媒が排ガスの浄化時の分解有効温度よりも高い温度となるように、前記第1のバルブの上流側及び前記第2のバルブを閉鎖し、前記外気導入手段から外気を導入して前記バーナ装置を作動させて、前記脱硝触媒を予熱または再生させることを特徴とする請求項1、2または4〜6のいずれか一項を引用する請求項8に記載の内燃機関の脱硝装置用の加熱ガス発生装置の運転方法。
【発明を実施するための形態】
【0017】
以下、本発明を具体化した内燃機関の脱硝装置用の加熱ガス発生装置及びその運転方法における各実施形態及び実施形態の変更例を図面に基づいて説明する。これらの実施形態及び変更例は、内燃機関としての舶用のディーゼルエンジンにおいて実施されるものである。具体的には、2ストロークディーゼルエンジンや低速回転の4ストロークディーゼルエンジン等の主機用エンジン、あるいは、中高速回転の4ストロークディーゼルエンジン等の補機用エンジンの脱硝装置用の加熱ガス発生装置において具体化される。以下においては、これらのディーゼルエンジンを単にエンジンという。
【0018】
(第1実施形態)
第1実施形態を説明する。
図1に示すように、エンジン11の排ガスレシーバ(図示しない)及び過給器(図示じない)の下流側には、共通排ガス管路(以下、共通管路という)12が接続されている。その共通管路12には、第1排ガス管路(以下、第1管路という)13及び第2排ガス管路(以下、第2管路という)14が分岐状態で接続されている。第1管路13及び第2管路14の下流側は、合流排ガス管路(以下、合流管路という)15に接続されて合流されている。前記共通管路12,第1管路13,第2管路14及び合流管路15により排ガス経路100が構成されている。
【0019】
前記合流管路15には、排熱回収手段を構成する排ガスエコノマイザ16が接続されている。この排ガスエコノマイザ16は、その内部に排ガスの熱を回収するための伝熱管(図示しない)を有し、回収された熱により前記伝熱管内の流体を加熱して、その流体をボイラなどの外部機器(図示しない)に供給する。
【0020】
前記第1管路13の上流側部分及び下流側部分には、それぞれ同管路13を開閉可能にした上流側開閉バルブ(以下、上流側バルブという)17及び下流側開閉バルブ(以下、下流側バルブという)18が設けられている。前記第2管路14の上流側部分及び下流側部分には、それぞれ同管路14を開閉可能にした上流側開閉バルブ(以下、上流側バルブという)19及び下流側開閉バルブ(以下、下流側バルブという)20が設けられている。第2管路14の上流側バルブ19は、第2管路14を開閉する機能に加えて、第2管路14の開放度合い(以下、開度という)の大小を調節する機能をも有する。
【0021】
従って、第1管路13の上流側バルブ17及び下流側バルブ18の開放状態においてエンジン11の排ガスが第1管路13内を流れる。また、第2管路14の上流側バルブ19及び下流側バルブ20の開放状態においてエンジン11の排ガスが第2管路14内を流れる。そして、第1,第2管路13,14内の排ガスは、合流管路15内を流れ、排ガスエコノマイザ16において排熱が回収されて、外部に排出される。また、上流側バルブ19の開放度合いに応じて、第2管路14内を流れる排ガスの量が調節される。
【0022】
そして、後述するが、通常、排ガスの脱硝を実施する場合は、第2管路14に排ガスが流される。また、脱硝を実施しない場合は、第2管路14が閉塞され、第1管路13に排ガスが流される。
【0023】
前記第2管路14において、上流側バルブ19と下流側バルブ20との間の部分には排ガス中の窒素酸化物を還元反応によって分解させて脱硝させるための脱硝触媒(以下、触媒という)21が設けられている。この触媒21は、例えば、280〜300℃の温度下において有効な触媒機能を発揮する。この有効な触媒機能を発揮する温度を分解有効温度とする。この分解有効温度は、触媒21の材質や形状などによって異なるが、本実施形態においては、前記のように、分解有効温度が280〜300℃の触媒21を用いる。触媒21と前記上流側開閉バルブ19との間において、第2管路14内には、還元剤供給ノズル(以下、単に供給ノズルという)22が配置されている。そして、ポンプ23の作用により、供給ノズル22から触媒21に対して還元剤としてのアンモニア水または尿素水が噴霧される。
【0024】
前記第2管路14において、供給ノズル22と上流側バルブ19との間の部分には加熱ユニット30が介在されている。
加熱ユニット30は、バーナ装置31とミキサ37とを備えている。前記バーナ装置31は、内部に燃焼空間を形成した燃焼室32と、その燃焼室32の上流部に位置するバーナ33とを備えている。バーナ33は、燃料としてのA重油を燃焼室32内において燃焼させる。燃焼室32には燃焼空気供給管路34が接続され、外気がブロワ35によりこの燃焼空気供給管路34を介して燃焼室32に燃焼用空気として供給される。なお、燃焼室32内の燃焼温度は、その燃焼温度の高い領域において1000℃を超える温度となる。ミキサ37は、第2管路14中に介在されるとともに、燃焼室32の開口部に接続され、燃焼室32内の燃焼によって生じた燃焼ガスがこのミキサ37の一次側に供給される。
【0025】
なお、バーナ33の燃料はA重油に限らず、軽油,B重油,C重油のいずれかでもよく、あるいはガス燃料でもよい。
前記ミキサ37の一次側には混合空気導入管路36が接続され、前記ブロワ35によりこの混合空気導入管路36を介してミキサ37の一次側に外気(空気)が直接導入される。この混合空気導入管路36は、前記燃焼室32の外壁の外側を通るように配置されている。混合空気導入管路36とブロワ35とにより外気導入手段が構成されている。そして、前記燃焼室32からの燃焼ガスと、混合空気導入管路36からの外気とがミキサ37において混合されて、加熱ガスとしてミキサ37の二次側から第2管路14内に供給される。
【0026】
前記バーナ装置31及びミキサ37に加えて前記燃焼空気供給管路34及び混合空気導入管路36は、前記加熱ユニット30を構成している。
前記燃焼空気供給管路34及び混合空気導入管路36には、それぞれ同管路34,36を開閉するとともに、同管路34,36の開度を調節するための開度調節バルブ38,39が設けられている。
【0027】
前記第2管路14における供給ノズル22の上流側には、温度センサ41が設けられている。
図2に示す制御装置45は、前記温度センサ41によって検出された温度やあらかじめ設定されたプログラムなどに基づいて、前記各バルブ17〜20,38,39、ポンプ23の各アクチュエータ(図示しない)動作を制御する。なお、この
図2においては、後述の他の実施形態におけるセンサ42、バルブ48,53,55,59及びファン52などの電気部品もあわせて図示されている。
【0028】
次に、以上のように構成された第1実施形態の作用を説明する。
エンジン11の運転時において、第1管路13の上流側バルブ17および下流側バルブ18が開放されるとともに、第2管路14の上流側バルブ19および下流側バルブ20が閉鎖された状態においては、エンジン11の排ガスが第1管路13を通って排ガスエコノマイザ16に至る。そして、その排ガスエコノマイザ16において排ガスの排熱が回収されて、外部に排出される。
【0029】
また、第2管路14の上流側バルブ19および下流側バルブ20が開放された状態においては、排ガスが第2管路14内を流れる。これと同時に、供給ノズル22からその下流側の触媒21に対して還元剤が噴霧される。このため、触媒21において、還元反応が発現されて、排ガス中のNOxが窒素と水分に分解され、排ガスが浄化される。浄化された排ガスは、前記と同様に、排ガスエコノマイザ16に至り、排熱が回収されて、外部に排出される。
【0030】
このとき、加熱ユニット30のバーナ装置31を燃焼動作させることができる。このため、ブロワ35によって燃焼空気供給管路34を介して燃焼室32に送られた外気が燃焼によって加熱されて、燃焼ガスがミキサ37に送られる。これと同時に、ブロワ35によって混合空気導入管路36を介して外気がミキサ37に送られる。このため、ミキサ37において、燃焼ガスと外気とが混合されて、高温の加熱ガスが生成され、ミキサ37の二次側からこの加熱ガスが第2管路14内に供給される。
【0031】
つまり、排ガス温度が低い場合及び触媒21の機能が低下している場合などに、加熱ユニット30のバーナ装置31の燃焼動作が行われる。これに対し、例えば、排ガスエコノマイザ16において回収する排熱を一時的に高めるために、エンジン側の動作を制御して排ガス温度を上昇させることがあり、このような場合には、バーナ装置31の動作が不要になって、同装置31の動作が停止されることもあり得る。
【0032】
加熱ユニット30のバーナ装置31の燃焼動作が行われる場合、温度センサ41からの温度検出に基づいて、触媒21が分解有効温度となるように、前記混合ガスの温度が調整される。すなわち、温度センサ41による検出信号が制御装置45に入力され、その検出信号のレベルに応じて、制御装置45は、バーナ33を制御し、燃料流量を調整して燃焼室32における燃焼度合いや、開度調節バルブ38,39の開度を調節する。このため、触媒21を分解有効温度にするための温度レベルの加熱ガスがミキサ37において形成されて、第2管路14内に供給される。その結果、触媒21が分解有効温度に維持される。従って、エンジン11の運転にともなって生じる排ガスに対して還元反応が適切に発現されて、排ガスが浄化される。
【0033】
以下に、実施形態の作用をさらに詳細に説明する。
エンジン11の始動時であって、排ガスの温度が低く、触媒21が前記分解有効温度に達しない場合は、還元反応が充分に行なわれず、窒素酸化物が十分に分解されないおそれがある。このような場合は、触媒21に対する予熱付与動作が実行される。
【0034】
エンジン11の停止時における触媒21の予熱においては、温度センサ41からの温度検出に基づいて、第1管路13の上流側バルブ17及び下流側バルブ18が閉鎖される。また、第2管路14の上流側バルブ19が閉鎖されるとともに、下流側バルブ20が開放される。この状態において、燃焼空気供給管路34の開度調節バルブ38及び混合空気導入管路36の開度調節バルブ39が適度な開放状態になって、加熱ユニット30のバーナ装置31が燃焼動作される。このため、ブロワ35によって燃焼空気供給管路34を介して燃焼室32に送られた外気(空気)と燃料とが混合して火炎が形成され、高温の燃焼ガスがミキサ37に送られる。これと同時に、ブロワ35によって混合空気導入管路36を介して外気が直接ミキサ37に送られる。このため、ミキサ37において、燃焼ガスと外気とが混合されて、ミキサ37の二次側から所要温度の高温の混合ガスである加熱ガスが第2管路14内に供給される。このとき、供給ノズル22からの還元剤の噴霧は実行されない。
【0035】
そして、加熱ガスの供給においては、温度センサ41からの温度検出に基づいて、触媒21が分解有効温度となるように、前記加熱ガスの温度が調整される。そのために、温度センサ41による検出信号が制御装置45に入力され、その検出信号のレベルに応じて、制御装置45は、バーナ33を制御して燃焼室32における燃料流量や開度調節バルブ38,39の開度を調節する。このため、触媒21が分解有効温度となる温度レベルの加熱ガスがミキサ37において形成されて、第2管路14内に供給される。その結果、触媒21が分解有効温度に昇温され、排ガスの浄化が適切に行なわれる状態となる。
【0036】
エンジン11の始動時などのエンジン運転時における触媒21の予熱動作においては、第1管路13の上流側開閉バルブ17及び下流側開閉バルブ18を開放状態にする。また、第2管路14の上流側バルブ19の開度を全開と全閉との間の適度な中間開度,例えば20〜30パーセントの開度に、下流側バルブ20を開放状態にする。
【0037】
この状態において、エンジン11を運転すると、排ガスの大部分が第1管路13内を流れ、残りの部分が第2管路14内を流れる。そして、この状態において、前記のようにバーナ装置31を燃焼動作させるとともに、混合空気導入管路36から外気を導入して、混合ガスを第2管路14に供給する。この場合は、エンジン11からの排ガスが第2管路14内を流れるため、混合空気導入管路36から導入される外気の量を少なくできる。このため、燃焼室32内における燃焼量を少なくできて、予熱のための燃料消費量を低減することができる。
【0038】
そして、エンジン11の継続運転などによって、触媒21が分解有効温度に達した場合には、加熱ユニット30の動作が停止される。
エンジン11の長期間の運転により、供給ノズル22から触媒21に対して還元剤を長時間にわたって供給すると、析出された酸性硫安などの不純物が触媒21上に少しずつ付着していくことで、触媒21の表面が不純物によって覆われることがある。特に、バーナ装置31を燃焼動作させないで、脱硝操作を行った場合には、不純物の付着により触媒21の脱硝効率が徐々に低下する。従って、このような場合は、以下のように、加熱ユニット30の動作によって触媒21上の不純物を分解させて、触媒21の機能を再生させることができる。
【0039】
すなわち、第2管路14の上流側バルブ19を閉鎖するとともに、下流側バルブ20を開放状態にして、バーナ装置31を燃焼動作させるとともに、混合空気導入管路36から外気を導入して、第2管路14に加熱ガスを供給する。このとき、触媒21が排ガスの浄化時の分解有効温度よりも高い温度,例えば350〜380℃となるように、バーナ33における燃料流量や、燃焼空気供給管路34及び混合空気導入管路36の開度調節バルブ38,39の開度が調節される。このようにすれば、第2管路14内に高温の加熱ガスが送り込まれ、その加熱ガスによって触媒21上の酸性硫安やSOFなどの不純物を熱分解させて、触媒21をクリーニングして再生でき、触媒21による排ガス浄化機能を回復させることができる。
【0040】
また、触媒21上の不純物の分解は、エンジン11の運転時にも行うことができる。この場合は、第2管路14の上流側バルブ19の開度を中間開度、例えば20〜30パーセント程度の開度にするとともに、他のバルブ17,18,20を開放状態にする。この状態において、エンジン11を運転すると、排ガスの大部分が第1管路13内を流れ、残りの部分が第2管路14内を流れる。そして、このとき、バーナ装置31を燃焼動作させるとともに、混合空気導入管路36を介して外気を導入することにより、触媒21に対して不純物の分解に適した分解有効温度の加熱ガスを流すことができ、触媒21を再生させることができる。この場合には、触媒21は、不純物の分解に適した分解有効温度、例えば350〜380℃まで加熱ガスによって加熱されているため、排ガス中に含まれる燃料油由来および潤滑油由来のSOFは、十分蒸発して気体の状態になる。従って、SOFは、PMに固着することはなく、そのPMによる触媒21の表面への付着を防止することができる。
【0041】
なお、何らかの原因によって、第2管路14内の排ガスの温度が異常に上昇した場合は、バーナ装置31を動作させることなく、混合空気導入管路36から第2管路14内に低温の外気を導入することにより、第2管路14内の温度を下げることができて、触媒21などの機器がダメージを受けることを回避できる。
【0042】
従って、第1実施形態においては、以下の効果がある。
(1)エンジン11の停止時であっても、あるいはエンジン11からの排ガスの温度が低い状態であっても、バーナ装置31を燃焼動作させるとともに、混合空気導入管路36から外気を導入することにより、加熱ガスにより、触媒21の温度を触媒機能が発揮される分解有効温度に昇温できる。従って、排ガス中のNOxを少なくすることができて、排ガスを適切に浄化できる。
【0043】
(2)エンジン11の起動時における触媒21の予熱や再生のために、第2管路14から排ガスの一部を外気に混ぜて、加熱ガスとすることにより、燃料の消費を低減することができる。
【0044】
(3)エンジン11の停止中の場合や、エンジン11の運転中であっても排ガス温度が低い場合、あるいは、通常のエンジン運転の場合であっても、バーナ装置31を燃焼動作させることにより、触媒21に対して排ガスより高温の加熱ガスを供給できる。このため、触媒21に付着した不純物を熱分解させることができて、触媒21の機能の再生を実行できる。
【0045】
(4)バーナ装置31からの燃焼ガスと混合空気導入管路36からの外気をミキサ37によって混合することができる。従って、温度分布にムラのない加熱ガスを第2管路14内に供給できて、触媒21の機能を良好に維持できる。
【0046】
(5)燃焼室32の外側の混合空気導入管路36内を流れる外気によって、燃焼室32の外壁を冷却できるため、燃焼室32の過熱を回避できて、燃焼室32やその周辺機器の耐久性を向上できる。
【0047】
(6)排ガスの温度が異常上昇した場合には、混合空気導入管路36から導入した外気により、排ガスをただちに温度低下させて、排ガス温度の異常上昇を回避して機器のダメージなどを回避できる。
【0048】
(第2実施形態)
次に、本発明の第2実施形態を説明する。この第2実施形態以降の各実施形態及び変更例においては、第1実施形態と異なる部分を中心に説明する。
【0049】
第2実施形態においては、
図1に示す前記第1実施形態の構成に対して以下の構成を付加したものである。
図3に示すように、第2管路14において触媒21と下流側バルブ20との間の部分から還流管路51が分岐されている。そして、この還流管路51は、前記混合空気導入管路36における開度調節バルブ38の下流側に接続されている。還流管路51には、
図2に示すファン52と開閉バルブ53とが設けられている。
【0050】
そして、エンジン11の運転時において、還流管路51の開閉バルブ53が開放された状態であって、ファン52が作動されることにより、触媒21の下流側の前記加熱ガスを含む排ガスの一部を還流管路51からミキサ37の一次側に送ることができる。なお、ファン52の停止時において、そのファン52が還流管路51内のガスの流れをブロック可能であれば、開閉バルブ53は、必ずしも必要ではない。
【0051】
従って、第2実施形態においては、排ガスは触媒21を通過することにより、ある程度の温度低下が生じているものの、還流管路51から、外気より高温(通常は200〜250℃程度)の排ガスの一部を回収して、触媒21の上流側に供給できる。このため、燃焼室32内の燃焼量を少なくできて、燃費を低減できる。
【0052】
また、第2管路14の上流側バルブ19を閉鎖するとともに、下流側バルブ20を開放して、加熱ユニット30を燃焼動作させるとともに、混合空気導入管路36から外気を導入すれば、前記分解有効温度より高温に加熱された加熱ガスが触媒21の再生のために触媒21側に供給される。そして、触媒を21を通過した加熱ガスの一部を還流管路51を介して加熱ユニット30に還流させて、触媒21の再生に供することができる。
【0053】
従って、第2実施形態では、第1実施形態の効果に加えて、以下の効果がある。
(7)触媒21の下流側のガスの一部を触媒21の上流側の第2管路14内に還流させて、触媒21の昇温用に供することができる。このため、混合空気導入管路36から導入される外気の量を少なくできて、バーナ装置31における燃焼量を少なくできる。従って、触媒21の昇温及び温度維持に要する燃費を少なくできる。
【0054】
(8)触媒21の再生において、その再生に利用された高温のガスの一部を触媒21の上流側に還流させて、再度触媒21の再生に再利用できるため、触媒21の再生に要する燃費を少なくできる。
【0055】
(第3実施形態)
次に、本発明の第3実施形態を説明する。
第3実施形態は、
図3に示す前記第2実施形態の構成に対して以下の構成を付加したものである。
【0056】
図4に示すように、第3実施形態においては、合流管路15に
図2に示す温度センサ42が設けられている。また、ミキサ37からバイパス管路54が分岐されており、このバイパス管路54は合流管路15に接続されている。このバイパス管路54内には
図2に示す開閉バルブ55が設けられている。
【0057】
そして、温度センサ42によって検出された排ガスの温度が低い場合にバイパス管路54の開閉バルブ55が開放される。この開閉バルブ55の開放時には、ミキサ37からの高温の混合ガスである加熱ガスがバイパス管路54を経て合流管路15に供給される。この場合、バイパス管路54に供給される加熱ガスの温度は、ミキサ37から第2管路14内に供給される加熱ガスの温度と同等またはそれ以上の温度に設定される。そして、そのバイパス流は合流管路15において排ガスと混合されて、排ガスより高温のガスとして排ガスエコノマイザ16に供給される。
【0058】
従って、尿素またはアンモニアスリップによるNH
3及び排ガス中に含まれる硫酸ガスSO
2,SO
3と水分との反応によって析出した酸性硫安を排ガスエコノマイザ16上において熱分解することができる。また、合流管路15においてPMに対する燃料由来または潤滑油由来のSOFの固着を防止できるので、排ガスエコノマイザ16におけるPMなどの付着を防止できる。
【0059】
なお、エンジン11の停止時や、排ガスが第1管路13内を流れる場合においても、第2管路14の上流側バルブ19及び下流側バルブ20を閉鎖することにより、酸性硫安などの不純物を分解可能な温度の加熱ガスをバイパス管路54を介して排ガスエコノマイザ16に供給することができる。この場合は、加熱ガスは、排ガスエコノマイザ16上の不純物を分解するだけの量でよいため、バーナ装置31における燃焼量を少なくできる。
【0060】
従って、第3実施形態においては、第2実施形態の効果に加えて、以下の効果がある。
(9)加熱ユニット30を燃焼動作させれば、エンジン11の停止及び運転に関わらず、バイパス管路54を介してミキサ37からの高温の加熱ガスが合流管路15に供給される。このため、排ガスエコノマイザ16の伝熱管の外周面に酸性硫安などの不純物が付着したとしても、その不純物を熱分解できる。また、バイパス管路54からの高温の加熱ガスにより、排ガス中のPMに対するSOFの固着を防止することも可能になるので、PMなどによる不純物の排ガスエコノマイザ16上における析出を防ぐことができる。従って、排ガスエコノマイザ16の流路抵抗を低減させるとともに、熱回収機能の低下を有効に防止することも可能になる。
【0061】
(10)エンジン11からの排ガス温度が低く、排ガスエコノマイザ16における排熱回収機能が低下する場合には、加熱ユニット30を燃焼作動させて、いわば追い焚きすることによって、前記排熱回収機能を回復させることが可能となる。
【0062】
(第4実施形態)
次に、本発明の第4実施形態を説明する。
第4実施形態においては、
図1に示す前記第1実施形態の構成に対して以下の構成を加えたものである。
【0063】
図5に示すように、第2管路14における上流側開閉バルブ19の下流側の部分がバーナ装置31の燃焼室32の燃焼空間に接続されている。前記燃焼室32は円筒状に形成され、バーナ33はその一端部に配置されている。そして、第2管路14は、燃焼室32の他端部において燃焼室32の軸線と略直交する方向を指向するようにこの燃焼室32に接続されている。従って、第2管路14内の排ガスは燃焼室32の前記他端部を燃焼ガス流と交差する方向に流れる。
【0064】
混合空気導入管路36は、燃焼室32の外壁321の外側に配置され、外気によって燃焼室32が冷却されるようになっている。
エンジン11の運転時には、排ガスが燃焼室32内に送り込まれて、燃焼室32内においてその排ガスが燃焼作用を受ける。
【0065】
従って、第4実施形態においては、第1実施形態の効果に加えて、以下の効果がある。
(11)エンジン11からの排ガスが燃焼室32内に送り込まれ、排ガス中の未燃分を含むPM,SOFやCOが燃焼室32内の先端部,つまり高温領域を通過するため、前記PM,SOF,COなどを適切に熱分解または燃焼させることができる。従って、PMなどの不純物が触媒21や排ガスエコノマイザ16の伝熱管に付着したり、前記不純物やCOなどが大気中に放出されたりすることを有効に抑制できる。
【0066】
(12)第2管路14の上流側からの排ガスが燃焼室32内をその直径方向において短い距離で横切るようにして通過するため、排ガスの流通抵抗の増加を抑えることができて、エンジン11の運転効率に関与する排ガスの流通効率を高くすることができる。その結果、エンジン11の運転効率を向上させることができる。
【0067】
(第5実施形態)
次に、本発明の第5実施形態を説明する。
第5実施形態は、
図5に示す第4実施形態の構成に対して以下の構成を付加したものである。
【0068】
図6に示すように、第2管路14において、触媒21と下流側バルブ20との間の部分から
図4に示す第3実施形態と同様な還流管路51が分岐され、この還流管路51は第2管路14を介して燃焼室32に接続されている。還流管路51にはファン52と開閉バルブ53とが設けられている。そして、エンジン11の運転時に、第2管路14のバルブ19,20が開放される。この状態で還流管路51のファン52が動作されるとともに、バルブ53が開放されることにより、触媒21の部分を通過した酸性硫安などの不純物あるいはPM,SOFやCOを含む排ガスの一部が還流管路51を介して燃焼室32に送られて、燃焼室32において熱分解または燃焼される。
【0069】
従って、第5実施形態においては、第4実施形態の効果に加えて、以下の効果がある。
(13)触媒21の部分を通過した酸性硫安、PM、燃料未燃分やSOFなどの不純物の一部が燃焼室32において熱分解または燃焼されるため、排ガスエコノマイザ16に達する酸性硫安やPMなどの量を少なくできて、排ガスエコノマイザ16の効率低下を抑制できる。
【0070】
(14)第2管路14内の排ガスの一部を燃焼室32内に還流させることができるため、燃焼室32内における燃焼量を少なくできて、燃費を改善できる。
(第6実施形態)
次に、本発明の第6実施形態を説明する。
【0071】
第6実施形態は、
図6に示す前記第5実施形態の構成に対して以下の構成を付加したものである。
図7に示すように、第6実施形態においては、
図4に示す前記第3実施形態と同様に、ミキサ37からバイパス管路54が分岐され、そのバイパス管路54は合流管路15に接続されている。バイパス管路54には、開閉バルブ55が設けられている。合流管路15には温度センサ42が設けられている。
【0072】
従って、第6実施形態においては、以下の効果がある。
(15)温度センサ42による温度検出に基づいて、バイパス管路54の開閉バルブ55を開放することにより、排ガスエコノマイザ16の上流側に高温の加熱ガスを供給できて、第3実施形態と同様に、排ガスエコノマイザ16の伝熱管に対する不純物の付着を防止できる。
【0073】
(16)第3実施形態と同様に、エンジン11からの排ガス温度が低く、排ガスエコノマイザ16における排熱回収機能が低下する場合には、加熱ユニット30を燃焼作動させて、追い焚きすることによって、前記排熱回収機能を回復させることが可能となる。
【0074】
(第7実施形態)
次に、本発明の第7実施形態を説明する。
第7実施形態は、
図6に示す第5実施形態に構成に対して以下の構成を付加したものである。
【0075】
図8に示すように、加熱ユニット30にはミキサ37の二次側にフィルタ47が設けられている。このフィルタ47は、カーボン微粒子や燃料未燃分、硫黄分などからなるPMなどの不純物を捕捉するためのものである。混合空気導入管路36は、その一部がミキサ37の一次側に連通するとともに、他の部分がミキサ37及びフィルタ47の外側面を通って第2管路14に直接接続されている。
【0076】
また、第7実施形態においては、フィルタ47内の温度がPMなどの不純物が分解または燃焼される高温となるように,例えば600〜650℃となるように、燃料流量と混合空気導入管路36からの外気の供給量が設定される。そして、フィルタ47を通過した加熱ガスと混合空気導入管路36からの外気との混合により、第2管路14内の加熱ガスの温度が触媒21の分解有効温度となるように調節される。
【0077】
従って、第7実施形態においては、フィルタ47により、エンジン11からの排ガスに含まれ、燃焼室32において燃焼されなかったPMなどを捕捉して、燃焼室32と外気との混合による加熱ガスによって分解または燃焼させることができる。
【0078】
第7実施形態においては、以下の効果がある。
(17)フィルタ47によってPMなどの不純物を捕捉して、その不純物を分解または燃焼させることができるため、触媒21や排ガスエコノマイザ16に付着する不純物の量を少なくすることができて、触媒21や排ガスエコノマイザ16の効率低下を抑えることができる。
【0079】
(第8実施形態)
次に、本発明の第8実施形態について説明する。
第8実施形態は、エンジン11が複数設けられたシステムであるとともに、
図6に示す前記第5実施形態に対して以下の構成を付加したものである。
【0080】
図9に示すように、エンジン11,第1管路13,第2管路14及び排ガスエコノマイザ16よりなるエンジンユニット49が構成され、そのエンジンユニット49が複数並設されている。
【0081】
加熱ユニット30は、複数のエンジンユニット49によって共用された単一構成のものである。
そして、加熱ユニット30のミキサ37の二次側に共用室50の一次側が接続され、その共用室50の二次側が接続管路46を介して各エンジンユニット49の第2管路14の上流側バルブ19と触媒21との間の部分に接続されている。共用室50には、還元剤供給用のポンプ23に接続された供給ノズル22が設けられ、共用室50内に還元剤が噴霧される。なお、第2管路14内には供給ノズル22は設けられていない。接続管路46には、
図2及び
図9に示すように、バルブ48が設けられている。
【0082】
各エンジンユニット49の還流管路51は、ファン52と開閉バルブ53との間の部分において集合されている。
従って、第8実施形態においては、共用室50内において供給ノズル22から噴霧された還元剤が接続管路46を介して各エンジンユニット49の触媒21に供給される。また、各エンジンユニット49の触媒21の下流側の排ガスの一部が還流管路51を介して燃焼室32に供給される。
【0083】
このため、第8実施形態においては、以下の効果がある。
(18)複数のエンジンユニット49に対して単一の加熱ユニット30を共用したため、エンジンユニット49が複数であっても、全体の構成をコンパクト化できるとともに、全体構成の複雑化を避けることができる。
【0084】
(第9実施形態)
次に、本発明の第9実施形態を説明する。
第9実施形態は、
図1に示す第1実施形態に対して加熱ユニット30の位置を変更したものである。
【0085】
図10に示すように、第9実施形態においては、前記各実施形態とは異なり、第2管路14には加熱ユニット30は設けられておらず、合流管路15に第1実施形態と同様な加熱ユニット30が接続されている。このため、ミキサ37の一次側が触媒21の二次側に連通するとともに、同ミキサ37の二次側が触媒21を介することなく排ガスエコノマイザ16の一次側に直接連通している。また、加熱ユニット30の混合空気導入管路36が合流管路15を介してミキサ37の一次側に連通している。
【0086】
従って、第9実施形態においては、エンジン11の運転中はもちろんのこと、エンジン11が停止していても、加熱ユニット30からの加熱ガスにより、アンモニアスリップなどによって生じた排ガスエコノマイザ16上の酸性硫安などの不純物を熱分解させることができる。
【0087】
従って、第9実施形態においては、以下の効果がある。
(19)排ガスエコノマイザ16の酸性硫安などの不純物をエンジン11が停止中であっても加熱ユニット30からの加熱ガスによって熱分解でき、排ガスエコノマイザ16を高効率状態に維持できる。
【0088】
(20)第3実施形態などと同様に、加熱ユニット30を燃焼作動させて、追い焚きすることによって、排ガスエコノマイザ16の排熱回収機能を回復させることが可能となる。特に、この第9実施形態においては、加熱ユニット30が排ガスエコノマイザ16に触媒21を介することなく、近接配置されている。従って、排熱回収機能の回復がより確実になる。
【0089】
(第10実施形態)
次に、本発明の第10実施形態を説明する。
第10実施形態においては、
図10に示す第9実施形態の構成に対して以下の構成を付加したものである。
【0090】
図11に示すように、第2管路14において、上流側バルブ19と温度センサ41及び供給ノズル22との間の部分には、前記ミキサ37とは異なる別のミキサ57が接続されている。加熱ユニット30側のミキサ37から分岐管路58が分岐され、その分岐管路58は前記別のミキサ57の一次側に接続されている。
図2及び
図11に示すように、分岐管路58には開閉バルブ59及びファン60が設けられている。
【0091】
そして、開閉バルブ59の開放時において、ミキサ37から高温の加熱ガスが分岐管路58を介して別のミキサ57に供給されて、その加熱ガスが第2管路14においてエンジン11からの排ガスとミキシングされる。この加熱ガスであるミキシングガスの温度は、摂氏280〜300℃程度である。そして、そのミキシングガスが加熱ガスとして供給ノズル22及び触媒21側に流れ、触媒21が分解有効温度に維持される。
【0092】
また、触媒21上に付着した不純物の量が多くなった場合は、低温の外気の割合を少なくして、分岐管路58を介してさらに高温の加熱ガスを送ることにより、触媒21上の不純物を熱分解できる。
【0093】
従って、第10実施形態においては、前記第9実施形態の効果に加えて以下の効果がある。
(21)高温のミキシングガスを加熱ガスとして触媒21の上流側に供給して、排ガスとミキシングできるため、エンジン始動時などにおいて、排ガスが低温であっても、触媒21に供給されるガスを昇温でき、触媒21において適切な還元作用を得ることができる。また、さらに加熱ガスをミキサ37から別のミキサ57に送って触媒21を昇温させることにより、触媒21上の酸性硫安などの不純物を分解させることができる。
【0094】
(第11実施形態)
次に、本発明の第11実施形態を説明する。
図12に示すように、第11実施形態においては、
図10に示す第9実施形態の構成に対して、
図5に示す第4実施形態の加熱ユニット30を合流管路15に接続したものである。このため、加熱ユニット30のバーナ装置31を燃焼動作させれば、エンジン11の停止中であっても、排ガスエコノマイザ16上の不純物を分解できる。
【0095】
従って、第11実施形態においては、以下の効果がある。
(22)排ガスに含まれるカーボン微粒子などよりなるPMなどの不純物やCOを燃焼室32内において燃焼させることができるとともに、エンジン11の運転・停止に関わらず排ガスエコノマイザ16上の不純物を分解できる。
【0096】
(第12実施形態)
次に、本発明の第12実施形態について説明する。
図13に示すように、第12実施形態においては、
図12に示す前記第11実施形態の構成に対して、以下の構成を付加したものである。すなわち、第12実施形態においては、第11実施形態の構成に対して、
図11に示す第10実施形態と同様に、第2管路14上に別のミキサ57が設けられるとともに、ミキサ37,57間に開閉バルブ59及びファン60を有する分岐管路58が接続されている。
【0097】
従って、第12実施形態においては、以下の効果がある。
(23)排ガス中のPMなど不純物やCOを燃焼室32において燃焼でき、また、燃焼室32からの燃焼ガスにより、触媒21を再生できるとともに、排ガスエコノマイザ16上の不純物を分解できる。
【0098】
(変更例)
本発明は、前記各実施形態に限定されるものではなく、以下のような態様で具体化することも可能である。
【0099】
・
図14に示すように、第2管路14の上流側バルブ19を、第2管路14と混合空気導入管路36との合流部よりも下流側に設けること。言い換えれば、上流側バルブ19を混合空気導入管路36内に設けること。従って、混合空気導入管路36は、第2管路14の一部を構成していることになる。このように構成しても、前記各実施形態と同様な作用を得ることができる。
【0100】
・例えば、第1実施形態において、2点鎖線で示すように、第2管路14を、ミキサ37を経ることなく、触媒21の上流側に直結させること。このように構成した場合は、排ガスがミキサ37の一次側には供給されず、加熱ガスがミキサ37の二次側において排ガスに混合されて、第2管路14内に供給される。
【0101】
・バーナ装置31の燃焼室32からの燃焼ガスと混合空気導入管路36からの外気とを混合するためのミキサ37を省略すること。この場合は、燃焼室32の出口と混合空気導入管路36とを合流させて、その合流部から延びる管路を十分に長くして、その管路を第2管路14に接続する。このようにすれば、前記合流部から延びる管路内において燃焼ガスと外気とが適切に混合される。
【0102】
・
図8に示す第7実施形態において、フィルタ47の下流側にも別のミキサを設けて、そのミキサによってフィルタ47からのガスと外気とを混合して第2管路14に供給されるようにすること。
【0103】
・
図8に示す第7実施形態以外の実施形態においても、ミキサ37の下流側にカーボン微粒子などよりなるPMやSOFを捕捉するためのフィルタを設けること。
・前記各実施形態においては、上流側バルブ19が第2管路14を開閉する機能と、第2管路14の開度を調節する機能との双方の機能を有する。これに対し、上流側バルブとして、第2管路14を開閉するバルブと、第2管路14の開度を調節するバルブとのそれぞれ単機能のバルブを設けること。
【0104】
(他の技術的思想)
前記各実施形態及び変更例から把握され、請求項に記載されていない技術的思想は以下のとおりである。
【0105】
(A)前記加熱手段は、前記バーナ装置31における燃焼ガスと、前記外気導入手段36からの外気とを混合して、その混合によって発生された加熱ガスを前記排ガス経路100に送るためのミキサ37を有する請求項1または2に記載の内燃機関の脱硝装置用の加熱ガス発生装置。
【0106】
以上の構成においては、燃焼ガスと外気とをムラなく混合して排ガス経路に供給できる。
(B)前記加熱ユニット30の上流側において、前記排ガス経路100には、その排ガス経路100を開閉するための開閉バルブ19を備えた請求項1及び2、前記技術的思想(A)項のうちのいずれか一項に記載の内燃機関の脱硝装置用の加熱ガス発生装置。
【0107】
以上の構成においては、前記開閉19バルブの開放時には、混合空気を排ガス中に供給させることができるとともに、開閉バルブ19の閉鎖時には、混合空気のみを排気経路に供給できる。
【0108】
(C)前記開閉バルブ19は、前記排ガス経路100の開度を調節可能である前記技術的思想(B)項に記載の内燃機関の脱硝装置用の加熱ガス発生装置。
以上の構成においては、排ガス経路100に適量の排ガスを流すことができて、加熱ユニット30のバーナ装置31からの燃焼ガスを少なくして、バーナ装置31における燃料消費量を少なくできる。
【0109】
(D)前記排ガス経路100における脱硝触媒21と前記排熱回収手段16との間の部分と、前記外気導入手段36との間に還流管路51を設けるとともに、その還流管路51に排ガス経路100内の排ガスの一部を前記外気導入手段36側に送るためのファン52を設けた請求項1及び2、前記技術的思想(A)項、(B)項のうちのいずれか一項に記載の内燃機関の脱硝装置用の加熱ガス発生装置。
【0110】
以上の構成においては、排ガスの一部を脱硝触媒21に還流させることにより排ガスの温度を利用して脱硝触媒21を昇温させることができるため、加熱ユニット30のバーナ装置31における燃費を低減できる。
【0111】
(E)前記排ガス経路100に排熱回収手段16を設けるとともに、前記ミキサ37からバイパス管路54を分岐し、そのバイパス管路54を前記排熱回収手段16の一次側に接続した前記技術的思想(A)項に記載の内燃機関の脱硝装置用の加熱ガス発生装置。
【0112】
以上の構成においては、排熱回収手段16をミキサ37からの加熱ガスにより高温に出来るため、排熱回収手段16における不純物を有効に分解できる。
(F)前記排ガス経路100を前記バーナ装置31の燃焼室32に接続した請求項1及び2、前記技術的思想(A)〜(E)のうちのいずれか一項に記載の内燃機関の脱硝装置用の加熱ガス発生装置。
【0113】
以上の構成においては、排ガス中の不純物やCOを燃焼室32内において分解または燃焼させることができる。
(G)前記燃焼室32を円筒状に形成し、バーナ33を前記燃焼室32の一端部に配置するとともに、前記排ガス経路100の内燃機関11側及び触媒21側を前記燃焼室32の他端部においてその燃焼室32の軸線と交差する方向に向かって開口させた前記技術的思想(F)項に記載の内燃機関の脱硝装置用の加熱ガス発生装置。
【0114】
以上の構成においては、排ガスを燃焼室32内において適切に加熱させることができるとともに、排ガスに対する流路抵抗を小さくできる。
(H)前記排ガス経路100における脱硝触媒21と前記排熱回収手段16の部分と、前記外気導入手段36との間に還流管路51を設けるとともに、その還流管路51内に排ガス経路100内の排ガスを前記外気導入手段36側に送るためのファン52を設け、還流管路51を前記排ガス管路14の内燃機関側に接続した前記技術的思想(E)項に記載の内燃機関の脱硝装置用の加熱ガス発生装置。
【0115】
以上の構成においては、排ガスの熱を利用して触媒を昇温できる。
(I)前記ミキサ37と前記排ガス経路100との間に微粒子捕捉フィルタ47が介在された前記技術的思想(A)項に記載の内燃機関の脱硝装置用の加熱ガス発生装置。
【0116】
以上の構成においては、排ガス中の不純物を微粒子捕捉フィルタ47で捕捉して、そのフィルタ47上において分解させることができる。
(J)前記外気導入手段を構成する混合空気導入路36を前記ミキサ37の一次側に接続するとともに、その混合空気導入路36を前記ミキサ37及び微粒子捕捉フィルタ47の外側を通って前記排ガス経路100に接続した前記技術的思想(I)項に記載の内燃機関の脱硝装置用の加熱ガス発生装置。
【0117】
以上の構成においては、外気によってミキサ37及びフィルタ47を冷却できる。
(K)複数の排ガス経路100を並設するとともに、前記加熱ユニット30を複数の排ガス経路100で共有化した請求項1または2に記載の内燃機関の脱硝装置用の加熱ガス発生装置。
【0118】
以上の構成においては、加熱ユニットを共有化したため、装置全体を小型化できるとともに、構成を簡素化できる。
(L)前記加熱ユニット30が前記脱硝触媒21と前記排熱回収手段16との間の排ガス経路に設けられた前記技術的思想(E)項に記載の内燃機関の脱硝装置用の加熱ガス発生装置。
【0119】
以上の構成においては、排熱回収手段16の温度を上昇させることができて、排熱回収手段16上の不純物を分解できる。
(M)前記排ガス経路100における前記脱硝触媒21の上流側にミキサ57を接続し、前記加熱ユニット30のミキサ37から分岐された分岐路58が脱硝触媒21の上流側のミキサ57に接続された前記技術的思想(L)項に記載の内燃機関の脱硝装置用の加熱ガス発生装置。
【0120】
以上の構成においては、加熱ユニット30のミキサ37からの加熱ガスをミキサ57に供給して、その加熱ガスによって脱硝触媒21を昇温できる。
(N)前記排ガス経路100を前記バーナ装置31の燃焼室32に接続した前記技術的思想(M)項に記載の内燃機関の脱硝装置用の加熱ガス発生装置。
【0121】
以上の構成においては、燃焼室32において排ガス中の不純物やCOを燃焼または分解できる。
(O)前記燃焼室32を円筒状に形成し、バーナ33を前記燃焼室32の一端部に配置するとともに、前記排ガス経路100の内燃機関11側及び脱硝触媒21側を前記燃焼室32の他端部においてその燃焼室32の軸線と交差する方向に向かって開口させた前記技術的思想(N)項に記載の内燃機関の脱硝装置用の加熱ガス発生装置。
【0122】
以上の構成においては、排ガス中の不純物やCOを効率よく分解または燃焼させることができる。
(P)請求項1または2に記載の内燃機関11の脱硝装置用の加熱ガス発生装置において、前記内燃機関11の運転時において前記バーナ装置31を作動させて、前記脱硝触媒21を予熱または再生させる内燃機関の脱硝装置用の加熱ガス発生装置の運転方法。
【0123】
従って、例えば内燃機関11の起動時において、脱硝触媒21を予熱または再生させることができる。