【実施例】
【0095】
実施例1
候補の抗体の生成
CD22に対する抗体の試料は、次の選択基準:ダウディ細胞への結合、ダウディ細胞への取り込み、末梢血単核細胞(PBMC)への結合、PBMCへの取り込み、親和性(10
−9Mより高い)、マウスγ1および生成速度を用いて、ハイブリドーマから選ばれた。5/44が好ましい抗体として選ばれた。
【0096】
I.遺伝子クローニングおよびキメラ5/44抗体分子の発現
a)5/44ハイブリドーマ細胞の調製およびそれからのRNAの調製
ハイブリドーマ5/44は、ヒトCD22タンパクによるマウスの免疫化に続いて、従来のハイブリドーマ技術によって生成した。RNAは、5/44ハイブリドーマ細胞からRNEasyキット(Qiagen、Crawley、イギリス;カタログナンバー74106)を用いて調製した。得られたRNAは、以下に記述したようにしてcDNAに逆転写した。
【0097】
b)NHL腫瘍中でのCD22の分布
5/44抗CD22モノクローナル抗体を用いて染色の有無および分布を検査するために、免疫組織化学研究に着手した。対照群の抗CD20および抗CD79a抗体は、腫瘍のB細胞領域を確認するために、研究に加えた。
総数50の腫瘍が研究され、これらをワーキングフォーミュレーションおよびREAL分類体系を用いて次のように分類した。
・7個 Bリンパ芽球性白血病/リンパ腫(高悪性度/I)
・4個 B細胞/小リンパ球性リンパ腫(低悪性度/A)
・3個 リンパ形質細胞腫/免疫細胞腫(低悪性度/A)
・1個 マントル細胞(中悪性度/F)
・14個 濾胞中心リンパ腫(低〜中悪性度/D)
・13個 瀰漫性大細胞型リンパ腫(中〜高悪性度/G、H)
・6個 分類不能(K)
・2個 T細胞リンパ腫
40個のB細胞リンパ腫は、0.1μg/mlの5/44抗体を用いて、CD22抗原陽性であり、濃度を0.5μg/mlまで増加させると、さらに6個が陽性となった。残りの0.1μg/mlで陰性の2個のB細胞腫瘍については、より高濃度で検査するために十分な組織が残っていなかった。しかしながら、6/13と呼ばれ、5/44より強く染色する他の抗CD22抗体で検査した対照群は、48個のB細胞リンパ腫全てがCD22染色陽性となった。
従って、CD22抗原はB細胞リンパ腫に広範に発現し、それゆえにNHLにおける免疫療法についての適当な標的を提供すると結論できる。
【0098】
c)5/44V
HおよびV
LのPCRクローニング
5/44重鎖および軽鎖の可変領域を指定するcDNA配列は、完全RNA中に存在するmRNAの一本鎖cDNAコピーを生成するための逆転写酵素を用いて合成した。それからこれは、特異的オリゴヌクレオチドプライマーを用いて、ポリメラーゼ連鎖反応(PCR)によってネズミのV領域配列を増幅するための鋳型として用いられる。
【0099】
i)cDNA合成
cDNAは、次のような試薬:50mMTris−HClpH8.3、75mMKCl、10mMジチオトレイトール、3mMMgCl
2、0.5mMのdATP、dTTP、dCTPおよびdGTP、20単位のRNAsin、75ng無作為ヘキサヌクレオチドプライマー、2μg5/44RNAおよび200単位マロニーネズミ白血病ウイルス逆転写酵素を含んだ20μlの反応体積で合成した。42℃で60分間インキュベートした後、95℃で5分間加熱して反応を終結させた。
【0100】
ii)PCR
等分したcDNAを、重鎖および軽鎖に特異的なプライマーの組み合わせを用いて、PCRにかけた。保存された一本鎖ペプチドの配列とアニールする予定の変性したプライマープールは、先頭部のプライマーとして用いられた。これらの配列は全て、順番に、5’末端から始まる7ヌクレオチドである制限部位(V
LSful;V
HHindIII)、生じたmRNAを最善の形で翻訳させる配列GCCGCCACC(配列番号:50)、開始コドンおよび既知のマウス抗体(Kabatら、Sequences of Proteins of Immunological Interest 第5版、1991、アメリカ 保険・福祉省、公衆衛生局、国立衛生研究所)の先頭ペプチド配列を基にした20−30ヌクレオチドを含む。
3’プライマーは、抗体のフレームワーク部の4個のJ−C結合を連結する事を企図しており、V
LPCR断片のクローニングを促進する酵素BsiWlに対する制限部位を含む。重鎖3’プライマーは、抗体のJ−C結合を連結する事を企図した混合物である。3’プライマーは、クローニングを促進するApal制限部位を含む。プライマーの3’領域は、既知のマウス抗体(Kabatら、1991、上記)にみられる配列を基にした混合配列を含む。
【0101】
上記のプライマーを組み合わせることによって、V
HおよびV
LについてのPCR生成物を、キメラ(マウス−ヒト)重鎖および軽鎖を生成するための適切な発現ベクター(下文参照)に直接クローニングでき、これらの遺伝子を哺乳類の細胞で発現して望ましいアイソタイプのキメラ抗体を生成できる。
PCRの培養(100μl)は、次のように計画した。それぞれの反応系は、10mMのTris−HClpH8.3 、1.5mMのMgCl
2、50mMのKCl、0.01%(重量/体積)のゼラチン、0.25mMのdATP、dTTP、dCTPおよびdGTP、10ピコモルの5’プライマー混合物、10ピコモルの3’プライマー、1μlのcDNAおよび1単位のTaqポリメラーゼを含む。反応系を95℃で5分間インキュベートし、その後94℃で1分、55℃で1分および72℃で1分のインキュベートを繰り返した。30回繰り返した後、等分した各反応系をアガロースゲルでの電気泳動によって分析した。
【0102】
重鎖V領域について、増幅したDNA生成物は、フレームワークIの開始部の範囲にアニールしているプライマープールがシグナルペプチドプライマーと置き換わった時にのみ、得られた。断片は、DNA配列決定ベクターにクローニングした。DNA配列を決定し、翻訳してアミノ酸配列を推定した。推定したアミノ酸配列を、実験に基づいて決定したN末端のタンパク質配列と照合することによって検証した。
図1は、マウスモノクローナル抗体5/44のCDRのアミノ酸配列を示す。
図2および
図3は、それぞれマウスモノクローナル抗体5/44の、成熟した軽鎖および重鎖V領域のDNA/タンパク質配列を示す。
【0103】
iii)PCR断片の分子クローニング
ネズミのV領域配列を、その後発現ベクターpMRR10.1およびpMRR14(
図7および8)にクローニングした。これらは、ヒトκ軽鎖およびヒトγ−4重鎖の定常部をコードするDNAを含んだ軽鎖および重鎖を発現するためのベクターである。V
L領域を、SfulおよびBsiWl制限部位を用いて、配列決定ベクターから制限消化および連結によって発現ベクターにサブクローンして、プラスミドpMRR10(544cL)(
図8)を創作した。クローニング戦略−異なった集団内のハイブリドーマ(162と呼ばれる)由来のマウス重鎖抗体先頭部を用いた−では得られなかったので、重鎖DNAを5’プライマーを用いてPCRで増幅し、シグナルペプチドを導入した。5’プライマーは、次の配列:5’GCGCGCAAGCTTGCCGCCACCATGGACTTGGATTCTCTCTCGTGTTCCTGGCACTCATTCTCAAGGGAGTGCAGTGTGAGGTGCAGCTCGTCGAGTCTGG3’(配列番号:51)を持つ。
反対のプライマーは、元のV
H遺伝子クローニングに用いられるものと同一であった。生じたPCR生成物を酵素HindIIIおよびApalで消化し、サブクローニングし、そのDNA配列を確認し、プラスミドpMRR14(544cH)(
図7)を創作した。両発現ベクターをCHO細胞に瞬間的に共感染させることによって、キメラc5/44抗体を生成した。これは、製造業者のプロトコール(InVitrogen:Life Technology、Groningen、オランダ カタログナンバー11668−027)に従って、リポフェクタミン試薬を用いて達成される。
【0104】
II.グリコシル化部位および反応性リシン
潜在的なN−結合グリコシル化部位は、アミノ酸配列N−Y−T(
図3)を持つCDR−H2にみられる。5/44のゲルおよびその断片(Fabを含む)の、SDS−PAGE、ウエスタンブロッティングおよび炭水化物染色によって、この部位が実際にグリコシル化されていることが示された(図は示していない)。それに加えて、リシン残基は、抗体が結合する可能性がある試薬と結合するための追加の部位を提供することによって、抗体の結合親和性を低下させる可能性のある、CDR−H2の中の露出した部位にみられた。
PCR戦略は、
図4に示すように、グリコシル化部位および/または反応性リシンを除去することを試みて、CDR−H2にアミノ酸置換基を導入するために用いられた。変異体N55Q、T57AまたはT57Vをコードする先頭部のプライマーはグリコシル化部位(
図4)を除くために用いられ、置換基K60Rを含む先頭から4番目のプライマーは、反応性リシン残基の除去を起こした。フレームワーク4反対側プライマーは、これらそれぞれのPCR増幅に用いられた。PCR生成物を酵素XbalおよびApalで消化し、これらの変異体をコードする発現プラスミドを生成するためにpMRR(544cH)に挿入した(XbalおよびApalによる開裂も)。N55Q、T57AおよびT57V変異体は、グリコシル化部位を、アミノ酸を変化させて共通配列N−X−T/Sを解離させることによって除去し、一方K60R変異体は、潜在的な反応性リシンを同様の陽電荷を持つアルギニンに置き換える。生じたcH変異プラスミドは、cLプラスミドと共感染して発現したキメラ抗体変異体を生成した。
【0105】
III.キメラ遺伝子の活性の評価
キメラ遺伝子の活性は、CHO細胞への瞬間的感染およびバイアコア分析による親和性定数の決定に従って評価した。
グリコシル化部位または反応性リシンを除去した、キメラ5/44またはその変異体の親和性を、CD22−mFc構造との結合についてBIAを用いて調査した。結果を
図9に示す。全ての結合の測定を、商標バイアコア2000機器(Pharmacia Biosensor AB、Uppsala、スウェーデン)で実行した。このアッセイは、固定した抗マウスFcを介してCD22mFcを補足することにより実行した。抗体は可溶層に存在した。試料、標準細胞、対照群(50μl)に、固定した抗マウスFc、続いて可溶層に存在する抗体を、繰り返し注入した。各周期の後、30μl/分で50μlの40mMHClを加えて表面を再生した。運動性分析は、BIA評価3.1ソフトウェア(Pharmacia)を用いて行った。
【0106】
構造体T57A中のグリコシル化部位を除去することによって、キメラ5/44と比較して僅かに速い活性化速度および著しく遅い不活化速度となり、親和性が約5倍に向上した。N55Q変異は親和性に影響を与えなかった。この結果は、炭水化物自体の除去が(N55Qの変化と同じように)結合に影響を与えないであろうということを示唆し、予期しないものであった。親和性の向上は、T57Aの変化によってのみみられる。一つの可能性のある説明としては、炭水化物の存在に関わらず、57位のトレオニンはトレオニンからアラニンへの変化で除去される結合に負の影響を与えるということである。アラニンの大きさが小さいことが重要であり、トレオニンによる負の影響はその大きさに関係しているという仮説は、T57変異体を用いて得られた結果:57位をバリンで置換することは有益でない、によって支持される(結果は示していない)。
K60R変異体によってリシン残基を除去すると、親和性に中立的影響を与える、すなわちアルギニン残基を導入すると、親和性を損なうことなく潜在的反応部位が除去される。
グリコシル化部位の除去および潜在的反応性リシン残基の除去についての変異は、それゆえに共にヒト化計画に含まれる。
【0107】
実施例2
5/44のCDR移植
5/44抗体の重鎖および軽鎖の可変領域に関する遺伝子の分子クローニング、およびキメラ(マウス/ヒト)5/44抗体を生成するためのその使用は、上で記述してきた。マウス5/44V
LおよびV
H領域のヌクレオチドおよびアミノ酸配列を、それぞれ
図2および
図3に示す(配列番号:7および8)。この実施例では、Adairらの方法(PCT公開番号WO91/09967)に従った、ヒトにおける潜在的な免疫原性を低下させるための、ヒトのフレームワークへの5/44抗体のCDR移植を記載する。
【0108】
I.5/44軽鎖のCDR移植
ヒトのサブグループIκ軽鎖V領域の共通配列と提携しているタンパク質配列は、64%の配列の同一性を示した。結果として、CDR移植軽鎖の構成について、選ばれるアクセプターフレームワーク領域は、ヒトVKサブグループI生殖細胞系O12、DPK9配列のものに一致していた。フレームワーク4アクセプター配列は、ヒトJ領域生殖細胞系配列JK1に由来した。
ネズミ5/44のフレームワーク領域のアミノ酸配列およびアクセプター配列の比較を
図5に記載し、ドナーおよびアクセプター鎖の間に27の相違点が存在することを示す。それぞれの位置について、ネズミ残基の抗原結合に寄与する潜在的能力が、直接的または間接的に、パッキングまたはV
H/V
L相互作用領域に影響を与えるという分析がなされた。ネズミ残基が重要でヒトの残基と大きさ、極性または電荷の点で十分に異なっていると考えられたならば、そのネズミの残基は保持された。この分析に基づいて、配列番号:19および配列番号:20(
図5)で与えられる配列を持つCDR移植軽鎖の二つの型が、構築された。
【0109】
II.5/44重鎖のCDR移植
5/44重鎖のCDR移植は、軽鎖に対して記述したのと同じ戦略を用いることでなされた。5/44重鎖のV領域は、サブグループIに所属するヒトの重鎖と相同であることが判明し(70%の配列が同一)、それゆえに、ヒトサブグループI生殖細胞系フレームワークVH1−3、DP7がアクセプターフレームワークとして用いられた。フレームワーク4アクセプター配列は、ヒトJ領域生殖細胞系配列JH4に由来した。
5/44重鎖のフレームワークとの比較を
図6に示したが、そこから5/44重鎖はアクセプター配列と22位において異なるということが分かる。これらがなし得る抗原結合に対する寄与を分析することによって、配列番号:23、配列番号:24、配列番号:25、配列番号:26および配列番号:27で与えられる配列を持った、5つの型のCDR移植重鎖が構築された(
図6)。
【0110】
III.移植配列についての遺伝子の構築
遺伝子は移植した配列gH1およびgL1をコードするように設計され、一連の一部重複したオリゴヌクレオチドが設計、構築された(
図10)。PCR組み立て技術は、CDR移植V領域遺伝子を構築するのに用いられた。100μlの反応体積には、10mMのTris−pH8.3、1.5mMのMgCl
2、50mMのKCl、0.001%ゼラチン、0.25mMのdATP、dTTP、dCTPおよびdGTP、1ピコモルの各「内部」プライマー(T1、T2、T3、B1、B2、B3)、10ピコモルの各「外部」プライマー(F1、R1)および1単位のTaqポリメラーゼ(AmpliTaq、Applied BioSystem、カタログナンバーN808−0171)を含むようにした。PCR周期のパラメーターは、94℃で一分、55℃で一分および72℃で一分を30周期であった。その後反応生成物を1.5%アガロースゲル上に流し込み、QIAGENスピンカラム(QIA急速ゲル抽出キット、カタログナンバー28706)を用いて、抽出して回収した。DNAは体積にして30μlが抽出された。その後gH1およびgL1DNAを等分したもの(1μl)を、製造業者の指示に従って、InVitrogen TOPO TAクローニングベクターpCR2.1TOPO(カタログナンバーK4500−01)にクローニングした。この非発現ベクターは、大量のクローンの配列の決定を容易にするクローニング中間生成物として有用であった。ベクター特異的プライマーを用いたDNA配列決定は、gH1およびgL1を含めた、pCR2.1(544gH1)およびpCR2.1(544gL1)プラスミドを創作する正確なクローンを同定するのに利用された(
図11および12)。
【0111】
オリゴヌクレオチドカセット置換法は、ヒト化移植gH4、5、6および7、およびgL2を創作するのに用いられた。
図13はオリゴヌクレオチドカセットの設計図を示す。各変異体を構築するために、pCR2.1(544gH1)またはpCR2.1(544gL1)を、示した制限酵素によって切断した(重鎖のXmal/Sacll、軽鎖のXmal/Bstll)。大きいベクター断片は、アガロースでゲル精製し、オリゴヌクレオチドカセットとの連結に用いられた。これらのカセットは、二つの相補的なオリゴヌクレオチドから構成されていて(
図13に示す)、12.5mMのTris−HClpH7.5、2.5mMのMgCl
2、25mMのNaCl、0.25mMジチオエリトリトール体積200μlに0.5ピコモル/μlの濃度で混合される。アニーリングは、水浴(体積500μl)中で95℃まで3分間加熱し、その後反応系が室温までゆっくり冷却されるようにすることによってなされた。アニーリングしたオリゴヌクレオチドカセットを、その後適切に切断ベクターと連結する前に水に10倍に希釈した。DNA配列決定は、pCR2.1(544gH1)およびpCR2.1(544gL1)プラスミドを創作する、正確な配列を確認するために用いられた。実証された移植配列を、その後、発現ベクターpMRR14(重鎖)およびpMR10.1(軽鎖)にサブクローニングした。
【0112】
IV.CDR移植配列のCD22結合活性
移植した変異体をコードするベクターは、元々のキメラ抗体鎖と共に、様々な組み合わせでCHO細胞に共感染した。結合活性は、競合アッセイにおいて比較され、元々のマウス5/44抗体の結合をラモス細胞(ATTCから得られる、表面CD22を発現するバーキットリンパ腫のリンパ芽球ヒト細胞系)に対する結合について競合させた。このアッセイは、細胞表面のCD22を結合する能力について、移植片を比較する最善の方法と考えられた。結果は
図14および
図15に示す。見て分かるように、全ての移植片の間には非常にわずかな違いしかなく、それらは全てネズミの親に対する競合において、キメラよりも効果的に作用した。3つの追加のヒト残基をCDR−H2の末端に導入しても(gH6およびgH7)、結合に影響は与えないようであった。
【0113】
最小数のネズミの残基を組み合わせた移植片gL1gH7が選ばれた。軽鎖移植片gL1は、6個のドナー残基を持つ。残基V2、V4、L37およびQ45は、潜在的に重要なパッキング残基である。残基H38は、V
H/V
L相互作用領域にある。残基D60は、CDR−L2に近接した表面残基であり、直接抗原結合に寄与する可能性がある。これらの残基のうち、V2、L37、Q45およびD60は、他のサブグループのヒトκ遺伝子の生殖細胞系の配列に見られる。重鎖移植片gH7は4個のドナーフレームワーク残基を持つ(残基R28はCDR移植に用いられる構造定義の下でCDR−H1の一部と考えられる(Adairら、(1991)、PCT出願第WO91/09967号参照))。残基E1およびA71はCDRに近接した表面残基である。残基I48は潜在的なパッキング残基である。残基T93はV
H/V
L相互作用領域に存在する。これらの残基のうち、E1およびA71はヒトのサブグループIの他の生殖細胞系の遺伝子に見られる。残基I48は、ヒトの生殖細胞系サブグループ4に見られ、T73はヒトの生殖細胞系サブグループ3に見られる。
【0114】
ベクターによって提供される定常部遺伝子の中にあるイントロンのおおよその位置を含めた、軽鎖および重鎖の両方の完全なDNAおよびタンパク質配列は
図16に示され、軽鎖についてはそれぞれ配列番号:29および配列番号:28で与えられ、重鎖についてはそれぞれ配列番号:31および配列番号:30で与えられる。
これら軽鎖および重鎖の遺伝子をコードするDNAは、これらのベクターから削除された。重鎖DNAは5’HindIII部位で消化され、その後イー・コリ(大腸菌)DNAポリメラーゼIのKlenow断片で処理され、5’平滑末端を形成した。3’EcoRI部位での開裂によって、精製されてアガロースゲルから重鎖断片が生じた。同様にして、5’Sful部位で平滑で、3’EcoRI部位を持つ軽鎖が生成した。両フラグメントは、発現ベクターに基づいたDHFRにクローニングされ、CHO細胞中の安定した細胞系を生成するのに用いられた。
【0115】
実施例3
NAc−γカリチェアミシンDMHACBUTのヒト化抗CD22抗体(G5/44)への結合
典型的な結合反応において、ヒト化抗CD22抗体(G5/44)は、NAc−γカリチェアミシンDMHAcButOSu(カリチェアミシン誘導体)に結合し(
図17参照)、その目標タンパク質濃度は7.5mg/mlであり、目標カリチェアミシン誘導体負荷は重量でタンパク質の8.5%であった。目標反応pHは8.5±0.2であり、他の反応組成物の目標濃度は次の通りであった:50mMのN−(2−ヒドロキシエチル)ピペラジン−N’−(4−ブタンスルホン酸)(HEPBS)、37.5mMデカン酸ナトリウム、および体積比9%の完全なエタノール。反応は33±2℃で1時間行った。精製に先立ったこの典型的な反応の分析の結果は次の通りだった:タンパク質:7.34mg/ml;カリチェアミシン負荷:82.7μg/mg;凝集:93.25%;および非結合タンパク質(LCF):1.07%(UV Area%HPLCによる)
様々な界面活性剤添加剤の効果および生成物の収率および純度に対するそれらの濃度を検査して、コンジュゲート単量体の生成に対するそれらの影響を決定した(表2参照)。反応は、添加剤とその濃度を除いて全てが一定に保たれて行われた。これらの反応から生成されるコンジュゲートを、タンパク質濃度、カリチェアミシン負荷、凝集量およびLCFについて分析した。C
6(ヘキサン酸塩)からC
12(ドデカン酸塩)までの範囲の全てのn−カルボン酸は許容できる結果が得られたけれども、全てにおいて最高の結果(低LCF、低凝集および単量体コンジュゲートの高回収率)は、30mMから50mMまでの範囲の濃度のデカン酸によって得られた。
【0116】
【表2】
【0117】
実施例4
クロマトグラフィー精製工程
I.クロマトグラフィー分離工程
ブチルセファロース4ファーストフローは、最高のHICの媒質として認められたけれども、許容できる結果は、オクチルセファロース4ファーストフロー、PPG−600C(Tosoh Biosep)、Fractogel EMDプロピル(EM Processing)およびSource15ISO(Amersham Biosciences、Piscataway、NJ)のような他の樹脂を用いたクロマトグラフィー条件でも、わずかに修正を加えて、得ることができる。
精製の出発物質は、カリチェアミシン誘導体負荷が83μg/mgで、凝集量が10.1%(エリアパーセント HPLCによる)およびLCF含有量が5.6%(エリアパーセント HPLCによる)である7.2mg/mLのタンパク質を含む結合反応混合物であった。
結合反応が完結した後、反応混合物はリン酸カリウム溶液を加えて4倍に希釈され、最終的な燐酸濃度が0.7Mとなった(pH8.2)。混合した後、この溶液を0.45ミクロンフィルターによって濾過した。希釈した溶液をブチルセファロース4ファーストフローカラムに負荷した。カラムに負荷したタンパク質の総量はml床体積あたり29mgであった。0.7Mのリン酸カリウムで洗浄した後、カラムを、pH8.2、0.7Mから4mMまでのリン酸カリウムの段階勾配を用いて溶出された。段階勾配で溶出されたフラクションをさらなる工程のために蓄え、そのプールは、それぞれの凝集体およびLCFが1エリアパーセント未満である単量体コンジュゲートからなる。このプールをセファデックスG−25(Amersham Biosciences)に負荷し、処方に適した、pH8.0で20mMTris−Clおよび100mM塩化ナトリウムからなる緩衝液に交換するためにカラムを脱塩した。精製し、緩衝液を交換したCMC−544調製物は、次のような特性を有した:カリチェアミシン負荷:81μg/mg;凝集:0.4%(エリアパーセント HPLCによる)LCF:0.8%エリアパーセント HPLCによる)。
【0118】
実施例5
Nac−γカリチェアミシンDMHAcBut−G5/44免疫コンジュゲート(CMC−544)の結合分析
上の結合工程によって生成したヒト化抗CD22抗体(G5/44)のカリチェアミシンとの免疫コンジュゲート(CMC−544)を、改良された工程を用いて生成したコンジュゲートが抗原結合に何らかの不都合な影響を及ぼすかを決定するための結合研究において、分析した。表3は、結合工程が抗体の抗原結合親和性に何ら影響しないことを示す。古いまたは新しい結合工程のいずれかによって作られたCMC−544免疫コンジュゲートは、標的抗原に同様の親和性で結合し、非結合抗体G5/44と違いはなかった。
【0119】
【表3】
【0120】
バイオセンサー分析は、BIAcore2000(BIAcore AB、Uppsala、スウェーデン)を用いて行われた。CD22mFcは、およそ2000共鳴単位のタンパク質密度で、標準アミン結合化学を用いて、N−ヒドロキシコハク酸イミドで活性化されたカルボキシメチルデキストラン被覆バイオセンサーチップ(CM5)上に、共有結合で固定された。CMC−544またはG5/44の試料を、HBS緩衝剤(150mMのNaCl、3mMのEDTAおよび体積比0.005%のポリソルベートを含む10mMのHEPES、pH7.4)で希釈し、1から100nMの範囲の濃度で、30μl/分の流速で結合のために3分間、CD22mFc被覆バイオセンサーチップ表面に注ぎ込んだ。結合段階の後、15分以上HBS緩衝剤をチップで洗浄する事によって、結合した抗体が解離するのを、モニターした。抗原表面は、30秒間15μlの再生緩衝剤(10mMのNaOHおよび200mMのNaCl)でバイオセンサーチップを洗浄することによって再生し、続いて次の周期の前に2分間の安定時間をおく。運動定数を、1:1ラングミュア結合曲線適合モデルおよびBIA評価プログラム(バージョン3.0 Biacore)を用いた、非線形最小二乗回帰分析によって、算出した。CMC−544の抗原結合を、バイオセンサーチップ上に共有結合で固定されたCD22mFcを用いて、表面プラスモン共鳴分析によって評価した。CMC−544およびG5/44のCD22mFcに対する結合の運動分析の結果は、大量移転の代償として包括的に1:1ラングミュア結合モデルに適合させた後、CMC−544および非結合G544両方を同様の親和性でCD22に結合させたことを示す(CMC−544:CD22 K
D=200pM;G5/44:CD22 K
D=235pM)。カリチェアミシンに対する結合は、CD22mFcに効果的に結合するG5/44の能力に影響を与えなかった。
【0121】
Bリンパ腫細胞の表面に発現されるCD22に対するCMC−544およびG5/44の結合はまた、フローサイトメトリーによって検査された。抗CD33mAbであるゲムツズマブ(hp67.6)およびそのカリチェアミシンコンジュゲートであるCMC−676(ゲムツズマブオゾガマイシン)は、この評価法においてアイソタイプ適合対照群として用いられた。キメラヒトIgG1抗ヒトCD20mAbであるリツキシマブ(リツキサン(登録商標))は、陽性対照群として用いられた。精製したヒトポリクローナルIgG1およびIgG4もまた、陰性対照群として用いられた。RamosまたはRLBCL上のCD22に対するCMC−544およびG5/44の結合は類似しており、ヒトポリクローナルIgG4との結合と区別できた。RLBCLはRamosBCLよりも低いCD22の表面発現を呈した。対照的に、CMA−676またはgL1gH7のどちらかのBCLに対する結合は、CD33の発現がないことと一致して、ヒトポリクローナルIgG4との結合と類似していた(データは示していない)。同じ細胞が、抗CD20リツキシマブ(リツキサン(登録商標))には、強い結合を呈した。hP67.6およびCMA−676とは異なり、CMC−544もG5/44も、CD22
−CD33
+HL−60白血病細胞に対して全く結合を呈さなかった(データは示していない)。これらの結果は、G5/44のカリチェアミシンとの結合はその抗原特異性に影響を与えないことを示唆している。CMC−544は、ヒトB細胞上のCD22を特異的に認識するが、ネズミ、ラット、イヌ、ブタまたは霊長類(カニクイザルおよびアカゲザル)B細胞上のCD22は認識しない(データは示していない)。
【0122】
実施例6
CMC−544の試験管内および生体内効果の分析
I.試験管内細胞傷害性
CMA−676およびCMC−544工程を用いて作られたCMC−544の、CD22
+B細胞リンパ腫細胞系、RL、Daudi、RajiおよびRamosの試験管内腫瘍に対する効果を比較した。ヒトCD33を標的とするアイソタイプ適合カリチェアミシンコンジュゲート(CMA−676)は、コンジュゲートの抗原非特異的効果を反映するために用いられた。この評価法における非結合N−AcγカリチェアミシンDMH(酸加水分解でコンジュゲートから解離した薬剤)は、用いられたこれらの細胞系のそれぞれがカリチェアミシンの致死効果に感受性であることを示唆している。表4は、カリチェアミシン相当量を基にしたこれらの評価の結果を示し、表5は、結合した抗体タンパク質の濃度として表されるこれらの結果を示す。CD22
+細胞へのカリチェアミシンのCD22媒介輸送は、標的細胞を殺す上で、非結合薬剤そのままよりも少なくとも10倍有効であった。アイソタイプ適合対照群コンジュゲート(CMA−676)は、非結合カリチェアミシン誘導体より低いかまたは同じくらいの細胞傷害性を示した。CMC−544結合工程を用いて作られたコンジュゲートは、CMA−676結合工程によって作られたコンジュゲートよりも低い抗体濃度で同等の細胞傷害効果を生むということは、表4から明らかである。
【0123】
【表4】
*ND;測定せず
【0124】
【表5】
*ND;測定せず
【0125】
生体内細胞傷害性。CMC−544工程で作られたCMC−544を、B細胞リンパ腫異種移植片においてさらに評価した。この研究において、二つのB細胞リンパ腫腫瘍である、RAMOSおよびRLが用いられた。RLリンパ腫は、非バーキットリンパ腫の非ホジキンリンパ腫由来の細胞系であるが、RAMOSは元々バーキットリンパ腫に由来した。
図18に示す代表的な実験において、CMC−544およびそのネズミ抗体の場合のものは、RAMOSB細胞リンパ腫の成長を、用量依存的に抑制するのに有効であることを示した。
ヒト化抗体のコンジュゲートは、ネズミ抗体のコンジュゲートより強力であることが示された。この研究で、リンパ腫の成長の抑制を有意に起こすことのできる最小のカリチェアミシンコンジュゲートの用量は、結合したNAc−γカリチェアミシンDMH10μg/kgであった。対照的に、コンジュゲートと同様の日程で10mg/Kgを腹膜投与されていた非結合抗体であるG5/44は、腫瘍の成長に何も影響を与えなかった。
【0126】
類似した研究がRLリンパ腫モデルを用いて行われた。表6は、CMC−544の抗腫瘍作用を、ヌードマウスの大きさが300−400mgの段階であるRLNHL腫瘍において評価した、三つの独立した実験の分析を組み合わせたものを示す。CMC−544は、用量依存的に、3週間という時間枠以上の腫瘍の退縮を引き起こした。RLリンパ腫モデルにおけるCMC−544の最小有効量は、これらの研究の統計的分析から、カリチェアミシン含有量を基にして20μg/kgと確立された。これら三つの実験のいずれにおいても死ぬものはなかった。CMC−544を高用量(60−320μg/kg)投与すると、RLリンパ腫はほぼ完全に退縮した。要約すると、二つのB細胞リンパ腫モデルから得られた結果は、明瞭に、CMC−544が腫瘍の退縮を起こすことができるということを実証している。
【0127】
【表6】
【0128】
新しい工程によって作られたCMC−544が、RAMOSおよびRLリンパ腫モデルの両方を用いた、大きな確立されたB細胞リンパ腫異種移植片の成長を抑制することができることもまた調査された。CMC−544またはアイソタイプ適合陰性対照群コンジュゲート(CMA−676)を、結合したカリチェアミシンが160μg/Kgの投与量で腹腔内投与し、最初の投薬日程を1日、5日および9日維持した後、腫瘍が成長できるようにして1.5または2gの腫瘍塊の段階とした。同様の投薬日程で、小さい段階の腫瘍は長く持続する退縮がより簡単に起こった(表6参照)。
図19に示すように、CMC−544を大きいRAMOSリンパ腫を持つマウスに投薬すると、前から存在しているリンパ腫塊は緩やかに退縮し、20日目までに4匹の腫瘍を持つマウスのうち3匹が、腫瘍が消失した。これらの腫瘍が消失したマウスを50日目までモニターしたが、退縮したRAMOSリンパ腫は全く再発を示さなかった。対照的に、アイソタイプ適合対照群であるCMA−676は、腫瘍の成長に影響しなかった。5匹のCMA−676で治療された大きな腫瘍を持つマウスのうち4匹が、その腫瘍の負荷量が体重の15%近くに達したために、15日目より前に犠牲となった。
【0129】
CMC−544を用いた類似した実験をRLリンパ腫モデルにおいて行った。前に記述したのと同様の日程で160μg/kgの用量のCMC−544を腹膜内に投与すると、30日以内に90%より多くの存在していたRLリンパ腫塊の退縮が起こった。しかしながら45日目までに、リンパ腫が退縮したこのグループのうち二匹のマウスが、腫瘍の再増殖を示した。これらの結果は、CMC−544が、大きく確立されたリンパ腫と同様に、小さいリンパ腫の退縮も起こすことができることを示唆している。本明細書に示していない少数の研究においては、最初のCMC−544で退縮が引き起こされた後、散発的に増殖したRLリンパ腫を、CMC−544で再び治療した。これらの研究は、RL腫瘍が第2クールのCMC−544による治療にもなお反応し、再び退縮することを示した。従って、CMC−544による治療は、反復的な治療が可能であり、B細胞リンパ腫の大きい塊および小さい塊両方に対して有効である可能性がある。
【0130】
II.CMA−676およびCMC−544結合工程によって作られたコンジュゲートの生体内での比較
図20は、作為的に作ったRLリンパ腫を持つマウスが、CMA−676結合工程およびCMC−544結合工程を用いて作られたCMC−544を、標準的な投薬日程で、二つの異なった用量(80および320μg/kgの結合したカリチェアミシン)で与えられるような、代表的な実験の結果を示す。観察された抗腫瘍効果は、予期されたとおり用量依存的であり、二つのCMC−544調整法のどちらにおいても薬効に違いはなかった。対照的に、160μg/kgで腹膜内投与された非結合N−アセチルγカリチェアミシンDMHは不活性であった。しかしながら、結合したカリチェアミシンの各用量において、コンジュゲートの形で投薬された抗体タンパク質の量は、CMC−544で作られたCMC−544に対して、CMA−676で作られたCMC−544の方が4倍多いということは強調すべきである。標的とされたコンジュゲートのカリチェアミシン含有量が主に起こし得る抗腫瘍作用を規定するので、新しい工程によって作ったコンジュゲートを介して、遙かに少量の標的抗体を用いて必要量のカリチェアミシンを輸送することは可能である。CMC−544工程によって作られたコンジュゲートの負荷量が増加したのは、事実上、コンジュゲーションの低い画分(LCF)の量を有意に減少させたためである。
【0131】
III.リツキシマブ(リツキサン(登録商標))抵抗性の腫瘍の治療
次の調査すべき問題は、市販されている抗CD22リツキシマブ(リツキサン(登録商標))治療を停止した後に成長したB細胞リンパ腫は、依然としてCMC−544治療に感受性であるのかであった。このため、成長中の(人為的でない)RLリンパ腫を3週間リツキシマブ(リツキサン(登録商標))で治療した。リツキシマブ(リツキサン(登録商標))療法を継続している間は、RLリンパ腫の成長は抑制された。リツキシマブ(リツキサン(登録商標))療法を中止すると、RLリンパ腫は急速に成長し、CMC−544の160μg/Kgの腹膜内投与によって治療され始め、約1gの大きさの塊となった。
図21および
図22で示すように、これらのRLリンパ腫は、60日目までに腫瘍が消失したマウスの80%で、依然としてCMC−544に感受性であった。従って、CMC−544は、リツキシマブ(リツキサン(登録商標))連続投与によって抑制され得る3回の投与で、B細胞リンパ腫の退縮を引き起こすことができる。
【0132】
実施例8
CMC−544の試験管中および試験管中効果
I.結合および毒性研究
CMC−544をCD22に対する結合について評価し、また試験管中および生体内モデルにおけるその活性についても評価した。CMC−544はまた、AcBut結合カリチェアミシンを持つhP67.6(IgG4)のアイソタイプ適合対照群コンジュゲートであるCMA−676、およびキメラIgG1抗CD20mAbであり(IDEC Pharmceuticals、サンディエゴ、中央アメリカ)、市販で入手できてメドワールド製薬(Chestnut Ridge、NY)から購入したリツキシマブ(リツキサン(登録商標))と比較した。次の抗体はG5/44結合領域研究に用いられた:BU12(Celltech、Slough、イギリス);BLCAM、HD239(Santa Cruz Biotech、Santa Cruz、中央アメリカ);RFB−4(Ancell Corp、Bayport、MN);SHCL−1、Leu14(Becton Dickinson、Franklin Lakes、NJ);4KB128およびTo15(Dako Corp、Carpinteria、中央アメリカ);M6/13およびM5/44(Celltech、Slough、イギリス)。バーキットリンパ腫細胞系Ramos(CRL−1923)および非ホジキンリンパ腫(NHL)細胞系RL(CRL−2261)を含めた研究用の細胞系が、アメリカンタイプカルチャーコレクションから全て得られた。細胞系は、ポリメラーゼ連鎖反応マイコプラズマ検出アッセイ(ATCC、Manassas、VA)によって、マイコプラズマがいないことが確定された。細胞系は、10%FBS、10mMHEPES、1mMピルビン酸ナトリウム、0.2%グルコース、ペニシリンG塩100U/ml、およびストレプトマイシン硫酸塩を加えたRPMI媒体中に懸濁培養液として維持された。
【0133】
G5/44が、CD22に対する特異性が知られているネズミのmAbsの結合を抑制できるか否かを、BiacoreCM5チップに固定したFc−CD22を用いたBiacore分析によって、評価した。事前に固定したFc−CD22をG5/44で飽和させて、あるいは飽和させないで得られた表面プラスモン共鳴単位(RU)を比較した。生体分子相互作用分析をBIACORE2000を用いて行われた。抗体は、空の対照群の表面(フローセル1、何のタンパク質も結合しておらず、対照群をつとめる)、およびCM5センサーチップに固定されたFc−CD22(フローセル2)の試験表面に、アミン結合化学反応を介して、9042単位の濃度まで与えた。生じたセンサーグラムは、フローセル1の反応(RU)を差し引いたフローセル2の反応(RU)であった。第二センサーグラムは、以前結合を特徴づけていたCD22に対してネズミのmAbを導入する前に、フローセルをG5/44(100μg/ml)で最初に飽和させることによって得られた。G5/44反応を測定すると直ちに、ネズミの抗CD22mAbを、G544を除去せずに個別に灌流した。ネズミの抗CD22mAbのG5/44被覆CD22に対する結合によって生成した二次結合反応もまた記録した。ネズミの抗体がG5/44で占められる部位と関連しない部位で結合するならば、その結合反応は相加的であろう。G5/44のCD22に対する結合が第2の抗体の結合を干渉するかまたは妨げるならば、その結合反応は相加的ではないであろう。各第二の結合の測定を、G5/44:CD22相互作用の不活化速度について補正した。
【0134】
G5/44は、CD22のエピトープA/Ig様領域1に結合する抗体のみに対する結合を妨げ、G5/44はまたCD22のこの領域内に結合するということを示唆した。
CD22のエピトープB/Ig様領域3(RFB−4)、CD22のエピトープC/Ig様領域4(To15)、およびCD22のIg様領域2(4KB128)に結合する抗体は、G5/44によって結合が妨げられない。これらの結果はCD22上のG5/44結合部位は、CD22の最初のIg様領域(エピトープA)を認識する抗CD22mAbの結合を阻害するので、最初のIg様領域に局在していることを示唆している。未知の副特異性を持つ他の抗CD22抗体、M6/13(Celltech、Slough、イギリス)もまたG5/44によって結合が妨げられ、従ってM6/13のCD22のエピトープA/Ig様領域1に対する結合部位を地図に位置づけた。G5/44と同様の特異性を持つネズミの原種のG5/44である、抗体M5/44は、G5/44の結合を阻害し、陽性対照群として働く。抗CD19抗体BU12は、これらの評価法において陰性対照群として働く。結果を表7に要約した。
【0135】
【表7】
【0136】
個々の領域のCD22に対する結合特異性が知られているネズミのmAbを用いて、B細胞に対する抗体の結合を妨げるG5/44の能力は調査された。加えて、B細胞に対するG5/44の結合を妨げるmAbの能力もまた調査された。これらの研究について、1×10
5Ramos細胞を、G5/44(10μg/ml)にその細胞を曝露するのに先立って、ネズミ抗CD22抗体(10μg/mlのヒト化G5/44またはマウスモノクローナル抗CD22)に、4℃で1時間まず曝露した。細胞はさらに4℃で1時間インキュベートした。抗体処理の後、B細胞を球状にして、PBS−1%BSAで洗浄し、適切な二次抗体(FITC−ヤギ抗ヒト(重鎖および軽鎖)またはFITC−ヤギ抗マウス(重鎖および軽鎖))を、100μlのPBS1%BSAの1:100の希釈液に加え、4℃で30分間おいた。細胞を再び球状にして洗浄し、PBS−1%BSA中に再び懸濁し、PBS−1%ホルムアルデヒド250μlを含む管に加えた。細胞と関連した蛍光強度を、BDFACSortフローサイトメーターを用いて、フローサイトメトリーによって測定した。
【0137】
その結果は、事前にCD22陽性B細胞に対してG5/44に曝露すると、その後の抗CD22mAbであるM5/44およびM6/13の結合を有意に抑制するということを示した。対照的に、抗CD22mAbであるRFB4、To15、HD239および4KBのB細胞に対する結合は、G5/44によって阻害されなかった。特にBiacore分析はG5/44がHD239のCD22への結合を阻害し得ることが示唆したので、フローサイトメトリーによる検出でG5/44によってHD239のB細胞への結合の有意な阻害が見られなかったのは、予期しないことであった。G5/44によってHD239のB細胞への結合に対して強い阻害が見られなかったことは、それらのCD22に対する相対的親和性における違いに基づくと説明される可能性がある。上記のネズミの抗CD22mAbをCD22陽性B細胞に対するG5/44の結合を阻害する能力を調査すると、SHCL1およびM6/13は、他の抗CD22mAbではみられないが、G5/44の結合を阻害した。HD239およびSHCL1の結合エピトープは、CD22の最初のIg様領域に位置づけられた。しかしながら、M6/13またはM5/44によって認識されるエピトープは、位置づけられなかった。上で詳述した阻害研究は、上記の抗体は、集合的にエピトープAとして知られている、CD22の最初のIg様領域に局在しているエピトープを認識することを示唆している。
【0138】
2万個のRamos細胞を、様々な用量のCMC−544をリツキシマブ(リツキサン(登録商標))と共にまたはリツキシマブ(リツキサン(登録商標))なしで加えて、96時間インキュベートした。96時間後、細胞生存能力をフローサイトメトリーで分析したプロピジウムヨウ化物排除によって測定した。3ないし6ウェルの平均生存能力を算出し、細胞生存能力の用量反応性抑制を様々な治療法について算出した。細胞生存能力のバックグラウンドの反応抑制を濃度0のCMC−544から算出した。ロジスティック回帰分析は、CMC−544が0.01から3ng/mlの範囲のカリチェアミシンDMHで統計的に有意な用量依存性のRamos細胞の成長抑制を起こすか検査するために用いられた。ロジスティック回帰分析はまた、CMC−544のリツキシマブ(リツキサン(登録商標))との相互作用が統計的に重要であるかを決定するためにも用いられた。50%阻害濃度(IC
50)もまた算出し、それぞれの治療法のCMC−544単独治療と比較した有効性を記録した。統計的分析は、SAS第8版におけるPROBIT法を用いて行った。
【0139】
研究の結果は、CMC−544が0.01から3ng/mlの範囲のカリチェアミシンDMHで用量依存性のRamos細胞の成長抑制を起こすことを示した。CMC−544単独での50%阻害濃度(IC
50)は0.029ng/mlであった。CMC−544の細胞傷害活性とリツキシマブ(リツキサン(登録商標))の相互作用が統計的に重要であるかを決定するために、2,20および200μg/mlのリツキシマブ(リツキサン(登録商標))を、CMC−544で治療した細胞に加えた。リツキシマブ(リツキサン(登録商標))は、CMC−544を加えずに20および20μg/ml加えても、それだけでは細胞成長に何ら有意な影響を与えなかった(それぞれ111.7%および94.0%の培地の増量)。CMC−544と組み合わせると、三つ全ての濃度の(リツキサン(登録商標))で、統計的に有意な(p<0.05)CMC−544用量反応曲線の傾斜および切片の左方移動が起こった。2および200μg/mlのリツキシマブを組み合わせで、用量反応曲線の最も大きな移動が起こった。これら二つの曲線は互いには統計的に違いはないが、20μg/mlの用量の組み合わせとは有意差があった(p<0.05)。二次的な研究が(結果は報告されていない)、最初の研究でみられた結果を確証した。CMC−544を加えた2,20および200μg/mlのリツキシマブ(リツキサン(登録商標))の組み合わせについての50%阻害濃度は、それぞれ0.0072、0.0081および0.0072ng/mlであった。リツキシマブ(リツキサン(登録商標))を加えたCMC−544の50%阻害濃度は、CMC−544単独の50%阻害濃度より約4倍強力である。
【0140】
II.生体内抗腫瘍活性皮下異種移植片およびスキッドマウスにおける体系的散在性B細胞リンパ腫
メスの無胸腺のヌードマウス18−22gを全身放射線照射した(400rad)。腫瘍の発生を促進するために、さらなる放射線照射によって、マウスの免疫系を抑制した。放射線照射の3日後、マウスにマトリゲル(Collaborative Biomedical Product Belford、MA、RPMI中に1:1で希釈)中の107RL細胞で、背側の側腹部に皮下注射した。腫瘍が適当な大きさまで達したら(0.3g、典型的には21日後)、CMC−544、リツキシマブ(リツキサン(登録商標))またはCHOP療法(以下参照)を、無菌の塩で、マウスあたり0.2ml投薬した。投薬の最初の日を第1日とみなした。二回の追加投与を5日目および9日目に行った(治療=q4Dx3)。CHOP療法は、シクロホスファミド(C)40mg/kg静注(商標シトキサン、Bristol−Meyers Squibb Co.、Princeton、NJ);ドキソルビシンHCl(H)3.3mg/kg静注(Sigma−Aldrich、Co.、St Louis、MO);ビンクリスチン(O)0.5mg/kg静注(GensiaSicor Pharmaceuticals、Irvine、CA);およびプレドニゾン0.2mg/kg経口投与(Roxane Labs.、Columbia、OH)からなる。CHOは、CMC−544およびリツキシマブ(リツキサン(登録商標))療法と同様の投薬日程に従って投薬し(q4Dx3)、一方プレドニゾンは、経口的に隔日で5回投与した(q2Dx5)。腫瘍を、少なくとも1週間に1回測定し、腫瘍質量=0.5(腫瘍の幅/2)(腫瘍の長さ)で計算した。グループ平均、SEMを算出して媒質処理グループと多変量t検定を用いて統計的有意性について比較した。グループ平均は、50日まで、またはマウスが死ぬまで(グループ平均を乱す)または腫瘍が大きく成長しすぎるまで(>3.5g)およびマウスを安楽死させなければならなくなるまで記録した。この後、腫瘍質量は、全ての治療グループ中の個々のマウスそれぞれについてのみ報告された。それぞれの治療グループに対する各研究の最後に腫瘍の消失していたマウスの数もまた記録された。
【0141】
CMC−544単独または他の散在性リンパ腫に対する生物活性試薬と組み合わせた効果を決定するために、スキッドマウスモデルが用いられた。オスのスキッドマウス(CB17SCID)体重20〜25gに、尾の静脈から106Ramos細胞を注射した。細胞注射の3または9日後、マウスに媒質、コンジュゲート(CMC−544またはCMC−676)、またはリツキシマブ(リツキサン(登録商標))を静注で合計3回投与した。3日治療日程については、マウスに3、7、および11日に投薬した。9日治療日程については、マウスに9、13、および17日に投薬した。9日治療日程において、CMC−544およびリツキシマブ(リツキサン(登録商標))の組み合わせはまた、以下に記述するように与えられた。マウスは、殺された時に後肢の麻痺が出現するのを、毎日モニターした。グループ平均生存時間(±SD)、中央値、最小および最大生存時間を全て算出した。グループ間の生存時間の分布における違いは、ノンパラメトリック対数順位検定を用いて決定され、0.05の有意水準で報告された。生存曲線をカプラン−マイヤー法を用いて作図した。
【0142】
最初の研究は、散在性のリンパ腫のSCIDマウスの生存時間に対する、二つの異なる投薬日程の影響を検査した。一つ目の研究では、腫瘍細胞を静脈内に注射した3日後(進行したモデル)の反応開始剤の投与を考察し、一方二つ目の研究では、腫瘍細胞注射後9日まで、薬剤の投与を遅らせた(安定したモデル)。各研究において、CMC−544(160μg/kg)、CMA−676(160μg/kg)またはリツキシマブ(リツキサン(登録商標))(20mg/kg)を、静注で3回、4日おきに投与した。進行したモデルでは、媒質処理マウスは平均生存時間が27日であった(
図23、表8)。CMA−676は、CMC−544に対するアイソタイプ適合対照群であるが、生存時間は有意に増加しなかった(p>0.05)。CMC−544は、生存時間が41日まで有意に増加したが、一方リツキシマブは重大な効果を持ち、生存時間が125日より長くなるまで増加した(有意にCMC−544より効果が大きい)。腫瘍細胞が循環し(ホーミングし)、標的組織に集積するまで(安定したモデル)投薬を遅らせると、CMC−544およびリツキシマブ(リツキサン(登録商標))に対する結果が変化した。CMA−676この場合もまた生存時間に有意な影響を与えなかった(
図24、表8)。リツキシマブ(リツキサン(登録商標))は、平均生存時間を62.6日まで増加させ、一方CMC−544は、平均生存時間を83.5日まで改善した。安定したモデルにおいては、CMC−544およびリツキシマブ(リツキサン(登録商標))の効果の間に、有意差はなかった。
【0143】
【表8】
【0144】
予備研究は、リツキシマブ(リツキサン(登録商標))は、CMC−544の生存反応に、促進的または抑制的に、何らかの影響を与えるのかを決定するために行った。CMC−544は、リツキシマブ(リツキサン(登録商標))(20mg/kg、高用量薬剤組み合わせ(HD)と名付けた)と共におよびリツキシマブを加えないで、投薬した。加えて、低用量のCMC−544(80μg/kg)は、低用量のリツキシマブ(リツキサン(登録商標))と共に投薬した。研究におけるマウスの数が限られているために、組成物は80μg/kgまたは10mg/kgの用量それぞれに個別で与えられなかった。この組み合わせ、CMC−544(80μg/kg)およびリツキシマブ(リツキサン(登録商標))(10mg/kg)を、中用量薬剤組み合わせ(MD)と名付け、スキッドマウスの生存がより低用量の薬剤の組み合わせで可能であるかを決定するために用いた。CMC−544(160μg/kg)およびリツキシマブ(リツキサン(登録商標))(20mg/kg)は、単独で投与すると、安定したモデルにおいて報告されたとおりに作用した。それぞれの平均生存時間は、それぞれ58.5および50.5日まで延長した(
図25、表9)。組み合わせると、高用量薬剤組み合わせ(HD)については、平均生存時間は、わずかに(統計的に有意ではないけれども p>0.05)64.4日まで改善した。80μg/kgのCMC−544および10mg/kgのリツキシマブ(リツキサン(登録商標))の中用量薬剤組み合わせでは、生存時間が有意に平均92.4日まで改善した(媒質処理グループに対してp<0.05)。これらの結果は、より低用量のCMC−544およびリツキシマブ(リツキサン(登録商標))の組み合わせが正当化されたことを示唆した。
【0145】
【表9】
CMC MD=CMC544中用量;80 μg/kg
CMC HD=CMC-544高用量;160 μg/kg
Ritux MD=リツキシマブ中用量;10 mg/kg
Ritux HD=リツキシマブ高用量;20 mg/kg
【0146】
CMC−544およびリツキシマブ(リツキサン(登録商標))についてのさらなる組み合わせの研究が行われた。次の治療グループを用いた:CMC−544を40、80および160μg/kg;リツキシマブ(リツキサン(登録商標))を5、10および20mg/kg;およびCMC−544を40μg/kgに加えてリツキシマブ(リツキサン(登録商標))を5mg/kg、CMC−544を80μg/kgに加えてリツキシマブ(リツキサン(登録商標))を10mg/kg、およびCMC−544を160μg/kgに加えてリツキシマブ(リツキサン(登録商標))を20mg/kg。全てのリツキシマブ(リツキサン(登録商標))投与によって、平均生存時間がわずかに改善し、33−40日の範囲となった(媒質処理グループの平均生存時間25.8日と比較して全ての用量でp<0.05、
図26、表10)。160μg/kgのCMC−544高用量投与は、先の二つの研究で報告された結果と一致して、平均生存時間を85日まで改善した。CMC−544をリツキシマブ(リツキサン(登録商標))と組み合わせても、生存時間は有意に改善しなかった(
図27、表10)。二つの低用量CMC−544(80および40μg/kg)は、それぞれ有意に平均生存時間を高用量CMC−544よりも高く改善した(p<0.05)。40および80μg/kgの用量のCMC−544において、それぞれ90%および80%のマウスが、125日目で依然として生存していた。両方の薬剤の組み合わせのグループは、100%のマウスを125日目まで生存させた。低用量CMC−544は高用量160μg/kgよりも有効である。
【0147】
リツキシマブ(リツキサン(登録商標))は、CMC−544と組み合わせると、試験済み(上文参照)の用量でスキッドマウスの散在性B細胞モデルにおけるCMC−544活性に明らかな影響は示さない。CMC−544をリツキシマブ(リツキサン(登録商標))と共に投与すると抗腫瘍活性を向上または抑制するかもまた、Balb/cヌードマウスの皮下RLBリンパ腫異種移植片モデルを用いて評価した。皮下Bリンパ腫モデルにおいて、研究中の二つの治療薬を静脈注射で投与した後、腫瘍は平均腫瘍質量300mgの段階となった。CMC−544は、リツキシマブ(リツキサン(登録商標))(20mg/kg Q4D×3)と共にまたはリツキシマブを加えないで、20または80μg/kgQ4D×3用いられた。リツキシマブ(リツキサン(登録商標))の共投与は、CMC−544の治療効果を有意に(p>0.05)向上も抑制もしない(
図28)。リツキシマブ(リツキサン(登録商標))は、単独で投与すると、低用量CMC−544でみられるのと同様に、この研究中でRLBリンパ腫の成長を抑制した(20日目に腫瘍の成長を57%抑制、媒質処理グループに対してp<0.05)。
【0148】
組み合わせ化学療法養生法CHOP(シクロホスファミド、ドキソルビシン、ビンクリスチンおよびプレドニゾン)は、非ホジキンリンパ腫患者に対する最も一般に用いられている治療法である。CHOPの抗腫瘍効果を、確立したRLBリンパ腫異種移植片におけるCMC−544の抗腫瘍効果と比較した。CHOP療法の個々の組成物は、ヌードマウスで評価したそれぞれの最大許容投与量で用いられ、次の通りであった:シクロホスファミド(C)40mg/kg静注;ドキソルビシン(H)3.3mg/kg静注;ビンクリスチン(O)0.5mg/kg静注;およびプレドニゾン0.2mg/kg経口投与。CHOは、Q4D×3投与し、PはQ2D×5経口投与した。CMC−544はカリチェアミシン相当量160μg/kgの投与量でQ4D×3静注で投与した。CHOP治療は、最初はRLBリンパ腫の成長の有意な抑制を引き起こした(
図29)。しかしながら、3週間後、腫瘍は媒質処理グループと同様の成長速度で再び増殖した。対照的に、CMC−544の抗腫瘍効果は完全であり、実験時間の間持続した。これらの結果は、CMC−544は、ヌードマウスにおける非致死量の最大より有意に低い用量で、CHOP組み合わせ療法より効果的であった。
【0149】
これらの研究は、リツキシマブ(リツキサン(登録商標))をCMC−544に加えると、RamosBリンパ腫細胞でみられるCMC−544の細胞傷害性活性の有意な増加が起こった。Ramos細胞中でのリツキシマブ(リツキサン(登録商標))およびグルココルチコイドの相乗的相互作用もまた最近報告されている。加えて、八つの追加の細胞系のうち四つで相乗的成長抑制は、10μMのデキサメタゾンと組み合わせて与えられたリツキシマブ(リツキサン(登録商標))でみられた。
【0150】
リツキシマブ(リツキサン(登録商標))は、単独で0.4ないし10μg/mlで、有意ではあるがわずかな(最大18%)Ramos細胞の成長抑制を引き起こすことが報告された。加えて、10μg/mlでインキュベートしたとき(48時間インキュベート)、それは八つのB細胞非ホジキンリンパ腫細胞系のうち六つで活性があった。Ghetieらは、Ramos細胞を用いて、24時間インキュベート後、リツキシマブ(リツキサン(登録商標))が6.2%アポトーシスを増加させる(媒質処理細胞の3.5%に対して)ことを示した。現在の研究では、単独で投与すると、20および200μg/mlの用量でRamos細胞の成長に何ら影響を与えなかった。マウスでは、散在モデルでもまたは皮下異種移植片モデルでも、CMC−544およびリツキシマブ(リツキサン(登録商標))の間の何らかの相互作用の証拠はなかった。検査された薬剤の組み合わせは、互いの効果を抑制したりまたは向上させることはなかった。散在モデルにおいて各薬剤の投与量を減少させることでこの実験結果が変わるかどうかは、決定する必要がある。
【0151】
Ramos細胞を用いた散在性B細胞リンパ腫モデルは、Flavellらによって記述されてきた。媒質処理マウスの生存時間の中央値は、34−36日と報告された。マウスは後肢麻痺になり、進行して瀕死になり、その後まもなく死亡した。臓器の組織学的分析によって、最も一般に関連している臓器は、副腎、脾臓およびくも膜下腔であることが明らかになった。くも膜下腔は浸潤し、しばしば脳まで拡大する。散在性のスキッドマウスにおいて病期の早い段階で投薬すれば、リツキシマブ(リツキサン(登録商標))はよく機能するが(
図23)、そのモデルの9日目の安定期に投薬すると、リツキシマブは印象的な効果を示さなかった(
図24)。IgG1アイソタイプである、リツキシマブ(リツキサン(登録商標))はマウスの宿主エフェクター機構によって最も機能しやすい。この機構には、スキッドマウス中に存在するナチュラルキラー細胞の漸増による、補体媒介性細胞傷害、および/または抗体依存性細胞傷害を含む。注射したRamos腫瘍細胞は、リツキシマブ(リツキサン(登録商標))によって活性化される宿主の免疫機構に対して、おそらく腫瘍細胞が作用した臓器に浸潤する機会を得る前に、早期から敏感である。非結合G5/44抗体(CMC−544中の標的分子)は、スキッドマウスの散在性腫瘍モデルでまだ検査されていなかったが、皮下異種移植片に対する投薬では効果がなかった。G5/44は、IgG4アイソタイプであるので、宿主エフェクター機構を活性化することは予期されないであろうし、それゆえに抗腫瘍活性も発揮しないであろう。
【0152】
カリチェアミシン結合G5/44は、リツキシマブ(リツキサン(登録商標))とは反対の様式で振る舞い、病気の安定期に投薬すると、よい結果が得られた。CMC−544が安定期によく機能する理由は明らかではないが、安定期はより臨床的な状況を厳密に表している。CMA−676は、アイソタイプ適合非結合対照群のコンジュゲートであり、平均生存時間に何らかの有意な影響を与えなかった。散在性スキッドマウスにおける結果は、CMC−544の用量を減らして最大有効量(MED)を決定する必要があるということを明らかに示唆している。160μg/kgの用量は、より低用量の80および40μg/kgより有効でなかった。なぜそのようになるのかは明らかでないが、160μg/kgの用量は十分MEDを越えていると言ってよい。この問題に取り組むためにさらなる研究が計画された。
【0153】
Mohammadらは、瀰漫性大細胞型リンパ腫の細胞系DLCLを持つ皮下異種移植片モデルにおいて、CHOP療法(シクロホスファミド(C)40mg/kg静注;ドキソルビシン(H)3.3mg/kg静注;ビンクリスチン(O)0.5mg/kg静注;およびプレドニゾン0.2mg/kg経口投与)を用いた。CHOP療法について用いられる用量は、その最大許容量になるように決定した。治療法、静注および経口投与で一回投与するCHO、5日間毎日投与するCHOは、「有効」と評価され、25.8%のT/Cを生成した。腫瘍の治癒は記録されなかった。Mohammadらにとって記述されるそのモデルの結果は、本明細書で記述したRLモデルにおけるCHOP療法(静注で投与、Q4D×3)でみられた結果に類似しているように思われる。CMC−544と異なり、CHOPはどの研究でも長期間の治癒がみられなかった。
【0154】
【表10】
【0155】
実施例9
CMC−544の安定な処方
CMC−544の生体内投与のための安定な処方は、希釈剤、賦形剤、キャリアおよび安定剤によって調製した。HICクロマトグラフィーに続いて、クロマトグラフィー断片をSEC−HPLCおよび多波長UV分析によってアッセイする。凝集量、タンパク質濃度およびカリチェアミシン負荷量についての情報を提供する上記の分析を基にして、適切な断片をプールするために選択した。賦形剤、安定剤、体積増加薬剤および緩衝剤を、溶液を安定させるために加えた。CMC−544はいくつかの分解経路を介して分解を受ける可能性があるので、処方の開発において物理的不安定性は考慮される必要がある。処方の開発において熟考すべき一つが抗体からのカリチェアミシンの加水分解速度を最小限にしなければならないが、一方抗CD22抗体の物理的および化学的性質の完全性を維持しなければならないということである。加えて、カリチェアミシン抗体コンジュゲートの析出は、特定のpHおよび濃度条件下で起こり得るが、最小限にする必要がある。
【0156】
単量体カリチェアミシン誘導体−抗体コンジュゲートの処方を開発する上で、処方のpHは分解および物理的不安定性を最小にするので、決定的である。カリチェアミシンの加水分解を最小にし、コンジュゲートの適当な安定性を維持するために8.0のpHが選ばれた。SDS−PAGEおよび抗原結合ELISAを用いて得られた追加のデータは、重要な構造の完全性および抗体の特異性が8.0のpHで維持されることを示している。結果として、トロメタミンがpH8.0を維持するための緩衝剤として選ばれた。代替の緩衝剤には二塩基性の塩またはリン酸カリウムを含めることができた。緩衝剤の濃度の範囲は5ないし50mMであってよい。好ましいPH範囲の7.5ないし8.5は、最適の安定性/可溶性として示唆された。最終生成物における現在のpHの明細は7.0−9.0である。
【0157】
緩衝剤処理したコンジュゲート溶液の安定性は短時間には適しているけれども、長期間の安定性は乏しい。冷結乾燥はコンジュゲートの棚の温度を改善するために用いられる。タンパク質溶液の冷結乾燥に関する問題はよく立証され、二次、三次および四次構造の損失が凍結および乾燥工程中に起こり得る。コンジュゲートの不定形の安定剤として作用し、凍結および乾燥中抗体の完全な構造を維持するために、スクロースを処方に含めた。加えてデキストラン40またはヒドロキシエチル澱粉のようなポリマー充填剤は、重量で0.5−1.5%の濃度で冷結乾燥したケーキの外見および物理的剛性を高めるために組み込んでもよい。これらの原料は、相対的に低濃度で冷結乾燥したケーキを形成し、冷結乾燥した処方の全固体量を最小にしてより急速な冷結乾燥を可能にするために用いられ得る。処方研究は重量で0.9%のデキストラン40濃度を用いた。
【0158】
ポリソルベート80は、コンジュゲートの可溶性を高めるために処方に含める。好ましい0.01%の濃度は、0.005−0.05%の可能範囲で用いられる。ツゥイーンもまた、重量で0.91−0.05%の濃度で処方に加える。
電解質もまた処方中に存在してよく、最後の精製工程の効率を向上させるために用いてもよい。塩化ナトリウムは典型的には0.01Mないし0.1Mの濃度で用いられる。硫化ナトリウムのような追加の電解質は、容易に冷結乾燥されるため、塩化ナトリウムの代わりに用いてもよい。最適であるのは、最終的なCMC−544溶液は、1.5%スクロース(重量で)、0.9%デキストラン40(重量で)、0.01%ツゥイーン80、50mM塩化ナトリウム、0.01%ポリソルベート80(重量で)および20mMトロメタミンからなることである。
【0159】
冷結乾燥前の溶液の代表的な処方は以下で提示される:CMC−5440.5mg/ml、スクロースを重量で1.5%、デキストラン40を重量で0.9%、塩化ナトリウム0.05M、ツゥイーンを重量で0.01−0.05%、ポリソルベート80を重量で0.01%、トロメタミン0.02M、pH8.0および水。溶液をコハクの薬瓶に+5℃ないし10℃の温度で懸濁し(最適は+5℃);溶液を−35℃ないし−50℃の冷結温度で冷結し(最適は−45℃);冷結した溶液を20ないし80ミクロンの一次乾燥圧で最初の冷結乾燥工程にかけ(最適は60ミクロン);冷結乾燥した生成物を棚の温度−10℃ないし−40℃で(最適は−30℃)24ないし72時間保存し(最適は60時間);最後に冷結乾燥した生成物を20−80ミクロンの乾燥圧で(最適は60ミクロン)、棚の温度が+10℃ないし+35℃で(最適は+25℃)、15ないし30時間(最適は24時間)二次乾燥工程にかける。圧力上昇試験は、一次乾燥の終結を決定するために用いられる。冷結乾燥周期が終結すると、薬瓶を窒素で埋め戻し、栓をした。
【0160】
表11は、CMC−544に用いられる処方およびCMA−676に用いられる処方の違いを示す。CMA−676処方とCMC−544に用いられる処方の間の有意な違いには、新しい処方におけるタンパク質濃度の減少(0.5mg/ml)、緩衝剤としてのトロメタミンの利用および0.01%ツゥイーン80の存在を含む。これによって、復元したCMA−676処方にみられる濁りとは対照的に、新しい処方における復元したCMC−544は透明となる(表12および13を参照のこと)。
【0161】
【表11】
【0162】
【表12】
【0163】
【表13】
【0164】
上で引用した全ての参考文献および特許出願を本明細書の参考文献の項にて示す。本発明の非常に多くの修飾および変異は、上で同定した明細書に含まれており、当業者にとって自明であると考える。結合工程、その工程によって作られたコンジュゲート、およびコンジュゲートを含む組成物/処方についてのそのような修飾および変化は、本請求書の範疇の中に包含されると考える。
【0165】
本発明の態様を下記に例示する。
[1]コンジュゲーションの低い画分(LCF)の少ない、式:
Pr(−X−W)m
[式中;
Prはタンパク質キャリアであり;
Xはタンパク質キャリアと反応できる何らかの反応基の生成物を含むリンカーであり;
Wは細胞傷害薬であり;
mは細胞傷害薬がコンジュゲートの7〜9重量%を構成するように精製したコンジュゲーション生成物についての平均の負荷であり;
(−X−W)mは細胞傷害薬誘導体である]
で示される単量体細胞傷害薬/キャリアコンジュゲートの調製方法であって、
(1)細胞傷害薬誘導体がタンパク質キャリアの4.5〜11重量%となるように、細胞傷害薬誘導体をタンパク質キャリアに加え;
(2)細胞傷害薬誘導体およびタンパク質キャリアを、pHが約7から9の範囲で非求核性でタンパク融和性の緩衝溶液中でインキュベートし、単量体細胞傷害薬−キャリアコンジュゲートを生成する;ここでその溶液はさらに(a)有機共溶媒および(b)少なくとも一つのC
6−C
18カルボン酸またはその塩を含む添加剤を含み、このインキュベーションを約30℃から35℃までの範囲の温度で約15分から24時間までの範囲の期間行い;および
(3)工程(2)で生成したコンジュゲートをクロマトグラフィーによる分離法に付して、4〜10重量%の範囲の細胞傷害薬の負荷で、コンジュゲーションの低い画分(LCF)が10%未満である単量体細胞傷害薬誘導体/タンパク質キャリアコンジュゲートを、コンジュゲートしていないタンパク質キャリア、細胞傷害薬誘導体、および凝集したコンジュゲートから分離する工程を含む方法。
[2] タンパク質キャリアがホルモン、成長因子、抗体、抗体の断片、抗体の模擬物、およびそれらを遺伝子操作または酵素的に処理した等価物からなる群から選ばれるところの上記[1]記載の方法。
[3] タンパク質キャリアが抗体であるところの上記[1]記載の方法。
[4] 抗体がモノクローナル抗体、キメラ抗体、ヒト抗体、ヒト化抗体、一本鎖の抗体、Fab断片およびF(ab)2断片からなる群から選ばれるところの上記[3]記載の方法。
[5] ヒト化抗体が細胞表面抗原CD22に対するものであるところの上記[4]記載の方法。
[6] ヒト化抗CD22抗体がCDR移植抗体であり、軽鎖の可変領域5/44−gL1(配列番号:19)および重鎖の可変領域5/44−gH7(配列番号:27)を含むところの上記[5]記載の方法。
[7] ヒト化抗CD22抗体が配列番号:28に示す配列を持った軽鎖を含むCDR移植抗体であるところの上記[5]記載の方法。
[8] ヒト化抗CD22抗体が配列番号:30に示す配列を持った重鎖を含むCDR移植抗体であるところの上記[5]記載の方法。
[9] ヒト化抗CD22抗体が配列番号:28に示す配列を持った軽鎖および配列番号:30に示す配列を持った重鎖を含むCDR移植抗体であるところの上記[5]記載の方法。
[10] ヒト化抗CD22抗体が、親和性成熟プロトコールによって得られる変異した抗体であり、ヒトCD22に対する特異性を高めたCDR移植抗体であるところの上記[5]記載の方法。
[11] 細胞傷害薬がチューブリン重合の阻害剤であるところの上記[1]記載の方法。
[12] 細胞傷害薬が、DNAに結合して分裂させるアルキル化剤であるところの上記[1]記載の方法。
[13] 細胞傷害薬がタンパク質合成を阻害するところの上記[1]記載の方法。
[14] 細胞傷害薬がチロシンキナーゼ阻害剤であるところの上記[1]記載の方法。
[15] 細胞傷害薬が、カリチェアミシン、チオテパ、タキサン、ビンクリスチン、ダウノルビシン、ドキソルビシン、エピルビシン、エスペラミシン、アクチノマイシン、アウスラマイシン、アザセリン、ブレオマイシン、タモキシフェン、イダルビシン、ドラスタチン/アウリスタチン、ヘミアスタリンおよびマイタンシノイドから選ばれるところ上記[1]記載の方法。
[16] 細胞傷害薬がカリチェアミシンであるところの上記[1]記載の方法。
[17] カリチェアミシンがγカリチェアミシンまたはN−アセチルγカリチェアミシンであるところの上記[16]記載の方法。
[18] 細胞傷害薬を3−メルカプト−3−メチルブタノイルヒドラジドを用いて機能化するところの上記[1]記載の方法。
[19] 標的細胞と結合して細胞内に入った後にリンカーがコンジュゲートから細胞傷害薬を放出することのできる加水分解可能なリンカーであるところの上記[1]記載の方法。
[20] 加水分解可能なリンカーが、4−(4−アセチルフェノキシ)酪酸(AcBut)であるところの上記[19]記載の方法。
[21] 工程(2)(b)の添加剤がオクタン酸またはその塩であるところの上記[1]記載の方法。
[22] 工程(2)(b)の添加剤がデカン酸またはその塩であるところの上記[1]記載の方法。
[23] 工程(3)のクロマトグラフィー分離法がサイズ排除クロマトグラフィー(SEC)であるところの上記[1]記載の方法。
[24] 工程(3)のクロマトグラフィー分離法がHPLC、FPLCまたはSephacrylS−200クロマトグラフィーであるところの上記[1]記載の方法。
[25] 工程(3)のクロマトグラフィー分離法が疎水的相互作用クロマトグラフィー(HIC)であるところの上記[1]記載の方法。
[26] 疎水的相互作用クロマトグラフィー(HIC)が、フェニルセファロース6高流速クロマトグラフィー媒体、ブチルセファロース4高流速クロマトグラフィー媒体、オクチルセファロース4高流速クロマトグラフィー媒体、トヨパールエーテル−650Mクロマトグラフィー媒体、マクロプレップメチルHIC媒体またはマクロプレップt−ブチルHIC媒体を用いて行われるところの上記[25]記載の方法。
[27] 疎水的相互作用クロマトグラフィー(HIC)が、ブチルセファロース4高流速クロマトグラフィー媒体を用いて行われるところの上記[25]記載の方法。
[28] 請求項1記載の方法によって生成される単量体細胞傷害薬誘導体/キャリアコンジュゲート。
[29] 細胞傷害薬がカリチェアミシンであるところの上記[28]記載の単量体細胞傷害薬誘導体/キャリアコンジュゲート。
[30] キャリアが抗体であるところの、上記[28]記載の単量体細胞傷害薬誘導体/キャリアコンジュゲート。
[31] 抗体がモノクローナル抗体、キメラ抗体、ヒト抗体、ヒト化抗体、一本鎖の抗体、Fab断片およびF(ab)2断片からなる群から選ばれるところの上記[30]記載の単量体細胞傷害薬誘導体/キャリアコンジュゲート。
[32] ヒト化抗体が細胞表面抗原CD22に対するものであるところの上記[31]記載の単量体細胞傷害薬誘導体/キャリアコンジュゲート。
[33] ヒト化抗CD22抗体がCDR移植抗体であり、軽鎖の可変領域5/44−gL1(配列番号:19)および重鎖の可変領域5/44−gH7(配列番号:27)を含むところの上記[32]記載の単量体細胞傷害薬誘導体/キャリアコンジュゲート。
[34] ヒト化抗CD22抗体が配列番号:28に示す配列を持った軽鎖を含むCDR移植抗体であるところの上記[32]記載の単量体細胞傷害薬誘導体/キャリアコンジュゲート。
[35] ヒト化抗CD22抗体が配列番号:30に示す配列を持った重鎖を含むCDR移植抗体であるところの上記[32]記載の単量体細胞傷害薬誘導体/キャリアコンジュゲート。
[36] ヒト化抗CD22抗体が配列番号:28に示す配列を持った軽鎖および配列番号:30に示す配列を持った重鎖を含むCDR移植抗体であるところの上記[32]記載の単量体細胞傷害薬誘導体/キャリアコンジュゲート。
[37] ヒト化抗CD22抗体が、親和性成熟プロトコールによって得られる変異した抗体であり、ヒトCD22に対する特異性を高めたCDR移植抗体であるところの上記[32]記載の単量体細胞傷害薬誘導体/キャリアコンジュゲート。
[38] 細胞傷害薬誘導体がカリチェアミシンであるところの上記[32]記載の単量体細胞傷害薬誘導体/キャリアコンジュゲート。
[39] カリチェアミシンがγカリチェアミシンまたはN−アセチルγカリチェアミシンであるところの上記[38]記載の単量体細胞傷害薬誘導体/キャリアコンジュゲート。
[40] カリチェアミシン誘導体が3−メルカプト−3−メチルブタノイルヒドラジドを用いて機能化されているところの上記[38]または[39]記載の単量体細胞傷害薬誘導体/キャリアコンジュゲート。
[41] 標的細胞と結合してその細胞中に入った後にリンカーがコンジュゲートから細胞傷害薬を放出することのできる加水分解可能なリンカーであるところの上記[38]記載の単量体細胞傷害薬誘導体/キャリアコンジュゲート。
[42] 加水分解可能なリンカーが4−(4−アセチルフェノキシ)酪酸(AcBut)であるところの上記[41]記載の単量体細胞傷害薬誘導体/キャリアコンジュゲート。
[43] 式:
Pr(−X−S−S−W)m
[式中:
Prは抗CD22抗体であり;
Xは抗体と反応できるいずれかの反応基の生成物を含む加水分解可能なリンカーであり;
Wはカリチェアミシンラジカルであり;
mは、カリチェアミシンがコンジュゲートの4〜10重量%を構成するように精製したコンジュゲーション生成物についての平均の負荷であり;
および(−X−S−S−W)mはカリチェアミシンの誘導体である]
を有する単量体カリチェアミシン誘導体/抗CD22抗体コンジュゲート。
[44] 抗体がモノクローナル抗体、キメラ抗体、ヒト抗体、ヒト化抗体、一本鎖の抗体、Fab断片およびF(ab)2断片からなる群から選ばれるところの上記[43]記載の単量体カリチェアミシン誘導体/抗CD22抗体コンジュゲート。
[45] 抗CD22抗体が、ヒトCD22に対する特異性を持ち、且つCDR−H1については
図1中でH1(配列番号:1)として、CDR−H2については
図1でH2(配列番号:2)またはH2’(配列番号:13)またはH2''(配列番号:15)またはH2'''(配列番号:16)として、あるいはCDR−H3については
図1中でH3(配列番号:3)として与えられる配列のうち少なくとも一つ持つCDRをその可変領域に含むような重鎖、およびCDR−L1については
図1中でL1(配列番号:4)として、CDR−L2については
図1中でL2(配列番号:5)として、あるいはCDR−L3については
図1中でL3(配列番号:6)として与えられる配列のうち少なくとも一つ持つCDRをその可変領域に含むような軽鎖を含むところの上記[44]記載の単量体カリチェアミシン誘導体/抗CD22抗体コンジュゲート。
[46] 抗体が、CDR−H1については配列番号:1中で、CDR−H2については配列番号:2または配列番号:13または配列番号:15または配列番号:16中で、あるいはCDR−H3については配列番号:3中で与えられる配列のうち少なくとも一つ持つCDRをその可変領域に含む重鎖、およびCDR−L1については配列番号:4中で、CDR−L2については配列番号:5中で、あるいはCDR−L3については配列番号:6中で与えられる配列のうち少なくとも一つ持つCDRをその可変領域に含むような軽鎖を含むところの上記[44]記載の単量体カリチェアミシン誘導体/抗CD22抗体コンジュゲート。
[47] 抗体分子が、CDR−H1については配列番号:1、CDR−H2については配列番号:2または配列番号:13または配列番号:15または配列番号:16、あるいはCDR−H3については配列番号:3、CDR−L1については配列番号:4、CDR−L2については配列番号:5、およびCDR−L3については配列番号:6を含むところの上記[44]記載の単量体カリチェアミシン誘導体/抗CD22抗体コンジュゲート。
[48] ヒト化抗体が、CDR移植の抗CD22抗体であるところの、上記[44]記載の単量体カリチェアミシン誘導体/抗CD22抗体コンジュゲート。
[49] 抗体が、ヒトアクセプターアクセプターフレームワーク領域およびヒト以外のドナーのCDRからなる可変部からなるところの、上記[48]記載の単量体カリチェアミシン誘導体/抗CD22抗体コンジュゲート。
[50] 抗体の重鎖の可変部のヒトアクセプターアクセプターフレームワーク領域がヒトサブグループI共通配列を基にしており、1、28、48、71および93位にヒト以外のドナー残基を含むところの上記[49]記載の単量体カリチェアミシン誘導体/抗CD22抗体コンジュゲート。
[51] 抗体がさらに67位および69位にヒト以外のドナー残基を含むところの上記[50]記載の単量体カリチェアミシン誘導体/抗CD22抗体コンジュゲート。
[52] CDR移植抗体がヒトサブグループI共通配列を基にしているヒトアクセプターアクセプターフレームワーク領域を含み、さらに2、4、37、38、45および60位でヒト以外のドナー残基を含む軽鎖の可変部を含むところの上記[48]記載の単量体カリチェアミシン誘導体/抗CD22抗体コンジュゲート。
[53] CDR移植抗体が、さらに3位にヒト以外のドナー残基を含むところの上記[52]記載の単量体カリチェアミシン誘導体/抗CD22抗体コンジュゲート。
[54] CDR移植抗体が、軽鎖可変領域5/44−gL1(配列番号:19)および重鎖可変領域5/44−gH7(配列番号:27)を含むところの上記[48]記載の単量体カリチェアミシン誘導体/抗CD22抗体コンジュゲート。
[55] CDR移植抗体が、配列番号:28に示すような配列を持つ軽鎖を含むところの上記[48]記載の単量体カリチェアミシン誘導体/抗CD22抗体コンジュゲート。
[56] CDR移植抗体が、配列番号:30に示すような配列を持つ重鎖を含むところの上記[48]記載の単量体カリチェアミシン誘導体/抗CD22抗体コンジュゲート。
[57] CDR移植抗体が、配列番号:28に示すような配列を持つ軽鎖および、配列番号:30に示すような配列を持つ重鎖を含むところの上記[48]記載の単量体カリチェアミシン誘導体/抗CD22抗体コンジュゲート。
[58] CDR移植抗体が、親和性成熟プロトコールによって得られる変異した抗体であり、ヒトCD22に対して高い特異性を有するところの上記[48]記載の単量体カリチェアミシン誘導体/抗CD22抗体コンジュゲート。
[59] 抗CD22抗体が、それぞれ配列番号:7および配列番号:8に示すモノクローナル抗体の軽鎖および重鎖の可変部の配列を含むキメラ抗体であるところの上記[44]記載の単量体カリチェアミシン誘導体/抗CD22抗体コンジュゲート。
[60] 抗CD22抗体が、ドナーCDRの欠けた部分が異なった配列で置換され、機能的CDRを形成するような切断されたドナーCDRをもつハイブリッドCDRを含むところの上記[44]記載の単量体カリチェアミシン誘導体/抗CD22抗体コンジュゲート。
[61] カリチェアミシン誘導体が、γカリチェアミシンまたはN−アセチルγカリチェアミシン誘導体であるところの上記[43]記載の単量体カリチェアミシン誘導体/抗CD22抗体コンジュゲート。
[62] カリチェアミシン誘導体が、3−メルカプト−3−メチルブタノイルヒドラジドによって機能化されるところの上記[61]記載の単量体カリチェアミシン誘導体/抗CD22抗体コンジュゲート。
[63] 加水分解可能なリンカーが、標的細胞と結合してその中に入った後にコンジュゲートからカリチェアミシン誘導体を放出することのできる二機能を有するリンカーであるところの上記[43]記載の単量体カリチェアミシン誘導体/抗CD22抗体コンジュゲート。
[64] 二機能を有するリンカーが、4−(4−アセチルフェノキシ)酪酸(AcBut)であるところの上記[63]記載の単量体カリチェアミシン誘導体/抗CD22抗体コンジュゲート。
[65] 単量体細胞障害薬誘導体/キャリアコンジュゲートの安定して凍結乾燥した組成物の調製方法であって、
(a)単量体細胞傷害薬誘導体/キャリアコンジュゲートを、1.5重量%〜5重量%の濃度の凍結防止剤、0.5重量%〜1.5重量%の濃度のポリマー充填剤、0.01M〜0.1Mの濃度の電解質、0.005重量%〜0.05重量%の濃度の溶解促進剤、溶液の最終pHが7.8〜8.2になるような5〜50mMの濃度の緩衝液および水を含む溶液中に溶解して、0.5〜2mg/mlの最終濃度とし;
(b)上の溶液を+5℃〜+10℃の温度でガラス瓶に分配し;
(c)その溶液を−35℃〜−50℃の凍結温度で凍結させ;
(d)その凍結した溶液を、20〜80ミクロンの一次乾燥圧で、棚の温度が−10℃〜−40℃で、24〜78時間最初の凍結乾燥工程に付し;
(e)工程(d)の凍結乾燥生成物を、20〜80ミクロンの乾燥圧で、棚の温度が+10℃〜+35℃で、15〜30時間第二次凍結乾燥工程に付す
ことを含む、方法。
[66] 細胞傷害薬誘導体がチューブリン重合の阻害剤であるところの上記[65]記載の方法。
[67] 細胞傷害薬誘導体がDNAに結合して分裂させるアルキル化剤であるところの上記[65]記載の方法。
[68] 細胞傷害薬誘導体がタンパク質合成阻害剤であるところの上記[65]記載の方法。
[69] 細胞傷害薬誘導体がチロシンキナーゼ阻害剤であるところの上記[65]記載の方法。
[70] 細胞傷害薬誘導体がカリチェアミシン、チオテパ、タキサン、ビンクリスチン、ダウノルビシン、ドキソルビシン、エピルビシン、アクチノマイシン、アウスラマイシン、アザセリン、ブレオマイシン、タモキシフェン、イダルビシン、ドラスタチン/アウリスタチン、ヘミアスタリンおよびマイタンシノイドから選ばれるところの上記[65]記載の方法。
[71] 細胞傷害薬誘導体がカリチェアミシンであるところの上記[65]記載の方法。
[72] 細胞傷害薬誘導体がγカリチェアミシンまたはN−アセチルカリチェアミシンであるところの上記[65]記載の方法。
[73] さらに治療上有効濃度の生物活性試薬を含んでいてもよい上記[65]記載の方法。
[74] 生物活性試薬が細胞傷害薬であるところの上記[73]記載の方法。
[75] 生物活性試薬が成長因子であるところの上記[73]記載の方法。
[76] 生物活性試薬がホルモンであるところの上記[73]記載の方法。
[77] 凍結防止剤が、アルジトール、マンニトール、ソルビトール、イノシトール、ポリエチレングリコール、アルドン酸、ウロン酸、アルダン酸、アルドース類、ケトース類、アミノ糖類、アルジトール類、イノシトール類、グリセルアルデヒド類、アラビノース、リキソース、ペントース、リボース、キシロース、ガラクトース、グルコース、ヘキソース、イドース、マンノース、タロース、ヘプトース、グルコース、フルクトース、グルコン酸、ソルビトール、ラクトース、マンニトール、メチルα−グルコピラノシド、マルトース、イソアスコルビン酸、アスコルビン酸、ラクトン、ソルボース、グルカル酸、エリトロース、トレオース、アラビノース、アロース、アルトロース、グロース、イドース、タロース、エリトルロース、リブロース、キシルロース、プシコース、タガトース、グルクロン酸、グルコン酸、グルカル酸、ガラクツロン酸、マンヌロン酸、グルコサミン、ガラクトサミン、スクロース、トレハロース、ノイラミン酸、アラビナン類、フルクタン類、フカン類、ガラクタン類、ガラクツロナン類、グルカン類、マンナン類、キシラン類、レバン、フコイダン、カラゲーニン、ガラクトカロロース、ペクチン類、ペクチン酸、アミロース、プルラン、グリコーゲン、アミロペクチン、セルロース、デキストラン、プスツラン、キチン、アガロース、ケラチン、コンドロイチン、デルマタン、ヒアルロン酸、アルギン酸、キサンガム、澱粉、スクロース、グルコース、ラクトース、トレハロース、エチレングリコール、ポリエチレングリコール、ポリプロピレングリコール、グリセロールおよびペンタエリトリトールからなる群から選ばれるところの上記[73]記載の方法。
[78] 凍結防止剤がスクロースであるところの上記[65]記載の方法。
[79] スクロースが1.5重量%の濃度で存在するところの上記[78]記載の方法。
[80] ポリマー充填剤がデキストラン40であり、0.9重量%の濃度であるところの上記[65]記載の方法。
[81] ポリマー充填剤がヒドロキシエチル澱粉40であり、0.9重量%の濃度であるところの上記[65]記載の方法。
[82] 電解質が塩化ナトリウムであり、0.05Mの濃度で存在しているところの上記[65]記載の方法。
[83] 溶解促進剤が界面活性剤であるところの上記[65]記載の方法。
[84] 界面活性剤がポリソルベート80であり、0.01重量%の濃度で存在しているところの上記[83]記載の方法。
[85] 緩衝剤がトロメタミンであり、0.02Mの濃度で存在しているところの上記[65]記載の方法。
[86] 工程(a)の溶液のpHが8.0であるところの上記[65]記載の方法。
[87] 工程(b)の溶液を+5℃の温度でガラス瓶に分配するところの上記[65]記載の方法。
[88] 工程(c)においてガラス瓶中の溶液の冷凍を冷凍温度−45℃で行うところの上記[65]記載の方法。
[89] 工程(d)において、冷凍した溶液を60ミクロンの一次乾燥圧で、棚の温度が−30℃で、60時間最初の凍結乾燥工程に付すところの上記[65]記載の方法。
[90] 工程(e)において、工程(d)の凍結乾燥生成物を、60ミクロンの乾燥圧で、棚の温度が+25℃で、24時間第二次凍結乾燥工程に付すところの上記[65]記載の方法。
[91] 上記[65]記載の方法によって調製された治療上有効量の単量体細胞傷害薬誘導体−キャリアコンジュゲートを含む組成物。
[92] 単量体細胞傷害薬誘導体−キャリアコンジュゲート中のキャリアが、タンパク質のキャリアであるところの上記[91]記載の組成物。
[93] タンパク質のキャリアが、ホルモン、成長因子、抗体および抗体の模擬物からなる群から選ばれるところの上記[92]記載の組成物。
[94] 抗体がヒトモノクローナル抗体であるところの上記[93]記載の組成物。
[95] 抗体がキメラ抗体であるところの上記[93]記載の組成物。
[96] 抗体がヒト抗体であるところの上記[93]記載の組成物。
[97] 抗体がヒト化抗体であるところの上記[93]記載の組成物。
[98] ヒト化抗体が細胞表面抗原CD22に対するものであるところの上記[97]記載の組成物。
[99] 抗CD22抗体がヒトCD22に対する特異性を持ち、且つCDR−H1については
図1中でH1(配列番号:1)として、CDR−H2については
図1でH2(配列番号:2)またはH2’(配列番号:13)またはH2''(配列番号:15)またはH2'''(配列番号:16)として、あるいはCDR−H3については
図1中でH3(配列番号:3)として与えられる配列のうち少なくとも一つを持つCDRをその可変部に含むような重鎖ならびにCDR−L1については
図1中でL1(配列番号:4)として、CDR−L2については
図1中でL2(配列番号:5)として、あるいはCDR−L3については
図1中でL3(配列番号:6)として与えられる配列のうち少なくとも一つを持つCDRをその可変部に含むような軽鎖を含むところの上記[98]記載の組成物。
[100] 抗体がCDR−H1については配列番号:1中で、CDR−H2については配列番号:2または配列番号:13または配列番号:15または配列番号:16中で、あるいはCDR−H3については配列番号:3中で与えられる配列のうち少なくとも一つを持つCDRをその可変部に含むような重鎖およびCDR−L1については配列番号:4中で、CDR−L2については配列番号:5中で、あるいはCDR−L3については配列番号:6中で与えられる配列のうち少なくとも一つを持つCDRをその可変部に含むような軽鎖を持つところの上記[98]記載の組成物。
[101] 抗体が、CDR−H1については配列番号:1、CDR−H2については配列番号:2または配列番号:13または配列番号:15または配列番号:16、あるいはCDR−H3については配列番号:3、CDR−L1については配列番号:4、CDR−L2については配列番号:5、およびCDR−L3については配列番号:6を含むところの上記[98]記載の組成物。
[102] ヒト化抗CD22抗体がCDR移植ヒト化抗CD22抗体であり、軽鎖可変領域5/44−gL1(配列番号:19)および重鎖可変領域5/44−gH7(配列番号:27)を含むところの上記[98]記載の組成物。
[103] ヒト化抗CD22抗体がヒトCD22に対する特異性を持ったCDR移植抗体であり、配列番号:28に示される配列を持つ軽鎖を含むところの上記[98]記載の組成物。
[104] ヒト化抗CD22抗体がヒトCD22に対する特異性を持ったCDR移植抗体であり、配列番号:30に示される配列を持つ重鎖を含むところの上記[98]記載の組成物。
[105] ヒト化抗CD22抗体がヒトCD22に対する特異性を持ったCDR移植抗体であり、配列番号:28に示される配列を持つ軽鎖および、配列番号:30に示される配列を持つ重鎖を含むところの上記[98]記載の組成物。
[106] ヒト化抗CD22抗体がヒトCD22に対して高い特異性を有する変異抗体であり、その変異抗体が親和性成熟プロトコールによって得られるところの上記[98]記載の組成物。
[107] 細胞傷害薬がカリチェアミシンであるところの上記[91]記載の組成物。
[108] カリチェアミシンがγカリチェアミシンまたはN−アセチルカリチェアミシンであるところの上記[107]記載の組成物。
[109] さらに生物活性試薬を含んでいてもよいところの上記[91]記載の組成物。
[110] 生物活性試薬が細胞傷害薬であるところの上記[109]記載の組成物。
[111] 生物活性試薬が成長因子であるところの上記[109]記載の組成物。
[112] 生物活性試薬がホルモンであるところの上記[109]記載の組成物。
[113] 増殖性障害の対象を治療する方法であり、治療上有効量の上記[91]記載の組成物を投与することを含む方法。
[114] 治療上有効量の組成物を皮下、腹膜内、静脈内、動脈内、脊髄内、鞘内、経皮的、皮膚を介して、鼻腔内、局所的、経腸、経膣的、舌下、または経直腸で投与するところの上記[113]記載の方法。
[115] 治療上有効量の組成物を静脈内投与するところの上記[113]記載の方法。
[116] 対象がヒトであり、増殖性障害が癌であるところの上記[113]記載の方法。
[117] 癌がB細胞悪性腫瘍であるところの上記[116]記載の方法。
[118] B細胞悪性腫瘍が白血病であるところの上記[117]記載の方法。
[119] 白血病が細胞表面抗原CD22を発現するところの上記[118]記載の方法。
[120] B細胞悪性腫瘍がリンパ腫であるところの上記[117]記載の方法。
[121] リンパ腫が細胞表面抗原CD22を発現するところの上記[120]記載の方法。
[122] 癌が癌腫であるところの上記[116]記載の方法。
[123] 癌が肉腫であるところの上記[116]記載の方法。
[124] B細胞悪性腫瘍の治療法であり、治療上有効な細胞傷害薬−抗CD22抗体コンジュゲートを含む組成物を、当該治療を必要とする患者に投薬することを含む方法。
[125] B細胞悪性腫瘍がリンパ腫であるところの上記[124]記載の方法。
[126] B細胞悪性腫瘍が非ホジキンリンパ腫であるところの上記[125]記載の方法。
[127] 一つまたはそれ以上の生物活性試薬と共に、治療上有効な細胞傷害薬−抗CD22抗体コンジュゲートを投薬することを含むところの上記[124]記載の方法。
[128] 細胞傷害薬−抗CD22抗体コンジュゲート中の細胞傷害薬がカリチェアミシン、チオテパ、タキサン類、ビンクリスチン、ダウノルビシン、ドキソルビシン、エピルビシン、アクチノマイシン、アウスラマイシン、アザセリン、ブレオマイシン、タモキシフェン、イダルビシン、ドラスタチン/アウリスタチン、ヘミアスタリン、マイタンシノイドおよびエスペラミシンからなる群より選ばれるところの上記[124]記載の方法。
[129] 細胞傷害薬がカリチェアミシンであるところの上記[124]記載の方法。
[130] カリチェアミシンがγカリチェアミシンまたはN−アセチルカリチェアミシンであるところの上記[126]記載の方法。
[131] 一つまたはそれ以上の生物活性試薬が、抗体、成長因子、ホルモン、サイトカイン、抗ホルモン、キサンチン、インターロイキン、インターフェロンおよび細胞傷害薬からなる群から選ばれるところの上記[127]記載の方法。
[132] 生物活性試薬が抗体であるところの上記[131]記載の方法。
[133] 抗体がB細胞悪性腫瘍上に発現する細胞表面抗原に対するものであるところの上記[132]記載の方法。
[134] B細胞悪性腫瘍上に発現する細胞表面抗原に対する抗体は、抗CD19、抗CD20、および抗CD33抗体からなる群から選ばれるところの上記[133]記載の方法。
[135] 抗CD20抗体がリツキシマブであるところの上記[134]記載の方法。
[136] サイトカインまたは成長因子が、インターロイキン2(IL−2)、TNF、CSF、GM−CSFおよびG−CSFからなる群から選ばれるところの上記[131]記載の方法。
[137] ホルモンがステロイドホルモンであり、エストロゲン、アンドロゲン、プロゲスチンおよびコルチコステロイドから選ばれるところの上記[131]記載の方法。
[138] 細胞傷害薬が、ドキソルビシン、ダウノルビシン、イダルビシン、アクラルビシン、ゾルビシン、ミトザントロン、エピルビシン、カルビシン、ノガラマイシン、メノガリル、ピタルビシン、バルビシン、シタラビン、ゲムシタビン、トリフルリジン、アンシタビン、エノシタビン、アザシチジン、ドキシフルリジン、ペントスタチン、ブロクスリジン、カペシタビン、クラドリビン、デシタビン、フロクスウリジン、フルダラビン、ゴウゲロチン、ピューロマイシン、テガフール、チアゾフリン、アドリアマイシン、シスプラチン、カルボプラチン、シクロホスファミド、ダカーバジン、ビンブラスチン、ビンクリスチン、ミトザントロン、ブレオマイシン、メクロレタミン、ブレドニゾン、プロカルバジン、メトトレキサート、フルオロウラシル、エトポシド、タクソール、タクソール類似物およびマイトマイシンからなる群から選ばれるところの上記[131]記載の方法。
[139] 細胞傷害薬−抗CD22抗体コンジュゲートの治療上有効な組成物を、治療養生法の一部として一つまたはそれ以上の細胞傷害性試薬と組み合わせて共に投与する方法であり、細胞傷害性試薬の組み合わせが:
A.CHOPP(シクロホスファミド、ドキソルビシン、ビンクリスチン、プレドニゾンおよびプロカルバジン)
B.CHOP(シクロホスファミド、ドキソルビシン、ビンクリスチンおよびプレドニゾン)
C.COP(シクロホスファミド、ビンクリスチンおよびプレドニゾン)
D.CAP−BOP(シクロホスファミド、ドキソルビシン、プロカルバジン、ブレオマイシン、ビンクリスチンおよびプレドニゾン)
E.m−BACOD(メトトレキサート、ブレオマイシン、ドキソルビシン、シクロホスファミド、ビンクリスチン、デキサメタゾンおよびロイコボリン)
F.ProMACE−MOPP(プレドニゾン、メトトレキサート、ドキソルビシン、シクロホスファミド、エトポシド、ロイコボリン、メクロレタミン、ビンクリスチン、プレドニゾンおよびプロカルバジン)
G.ProMACE−CytaBOM(プレドニゾン、メトトレキサート、ドキソルビシン、シクロホスファミド、エトポシド、ロイコボリン、シタラビン、ブレオマシンおよびビンクリスチン)
H.MACOP−B(メトトレキサート、ドキソルビシン、シクロホスファミド、ビンクリスチン、プレドニゾン、ブレオマイシンおよびロイコボリン)
I.MOPP(メクロレタミン、ビンクリスチン、プレドニゾンおよびプロカルバジン)
J.ABVD(アドリアマイシン/ドキソルビシン、ブレオマイシン、ビンブラスチンおよびダカーバジン)
K.ABV(アドリアマイシン/ドキソルビシン、ブレオマイシンおよびとビンブラスチン)と交互に用いるMOPP(メクロレタミン、ビンクリスチン、プレドニゾンおよびプロカルバジン)
L.ABVD(アドリアマイシン/ドキソルビシン、ブレオマイシン、ビンブラスチンおよびダカーバジン)と交互に用いるMOPP(メクロレタミン、ビンクリスチン、プレドニゾンおよびプロカルバジン)
M.ChlVPP(クロラムブチル、ビンブラスチン、プロカルバジンおよびプレドニゾン)
N.IMVP−16(イホスファミド、メトトレキサートおよびエトポシド)
O.MIME(メチルグリコサミノグリカン、イホスファミド、メトトレキサートおよびエトポシド)
P.DHAP(デキサメタゾン、高用量シタラビンおよびシスプラチン)
Q.ESHAP(エトポシド、メチルプレジソロン、高用量シタラビンおよびシスプラチン)
R.CEPP(B)(シクロホスファミド、エトポシド、プロカルバジン、プレドニゾンおよびブレオマイシン)
S.CAMP(ロムスチン、ミトザントロン、シタラビンおよびプレドニゾン)
T.CVP−1(シクロホスファミド、ビンクリスチンおよびプレドニゾン)
U.ESHOP(エトポシド、メチルプレジソロン、高用量シタラビン、ビンクリスチンおよびシスプラチン)
V.EPOCH(丸薬用量のシクロホスファミドおよび経口プレドニゾンと一緒に96時間に及ぶエトポシド、ビンクリスチンおよびドキソルビシン)
W.ICE(イホスファミド、シクロホスファミドおよびエトポシド)
X.CEPP(B)(シクロホスファミド、エトポシド、プロカルバジン、プレドニゾンおよびブレオマイシン)
Y.CHOP−B(シクロホスファミド、ドキソルビシン、ビンクリスチン、プレドニゾンおよびブレオマイシン)および
Z.P/DOCE(エピルビシンまたはドキソルビシン、ビンクリスチン、シクロホスファミドおよびプレドニゾン)
から選ばれるところの上記[131]記載の方法。
[140] 細胞傷害薬−抗CD22抗体コンジュゲートの治療上有効な組成物を、治療養生法の一部として一つまたはそれ以上の細胞傷害性試薬を組み合わせて投与するのに先立って投与する方法であり、細胞傷害性試薬の組み合わせが:
A.CHOPP(シクロホスファミド、ドキソルビシン、ビンクリスチン、プレドニゾンおよびプロカルバジン)
B.CHOP(シクロホスファミド、ドキソルビシン、ビンクリスチンおよびプレドニゾン)
C.COP(シクロホスファミド、ビンクリスチンおよびプレドニゾン)
D.CAP−BOP(シクロホスファミド、ドキソルビシン、プロカルバジン、ブレオマイシン、ビンクリスチンおよびプレドニゾン)
E.m−BACOD(メトトレキサート、ブレオマイシン、ドキソルビシン、シクロホスファミド、ビンクリスチン、デキサメタゾンおよびロイコボリン)
F.ProMACE−MOPP(プレドニゾン、メトトレキサート、ドキソルビシン、シクロホスファミド、エトポシド、ロイコボリン、メクロレタミン、ビンクリスチン、プレドニゾンおよびプロカルバジン)
G.ProMACE−CytaBOM(プレドニゾン、メトトレキサート、ドキソルビシン、シクロホスファミド、エトポシド、ロイコボリン、シタラビン、ブレオマシンおよびビンクリスチン)
H.MACOP−B(メトトレキサート、ドキソルビシン、シクロホスファミド、ビンクリスチン、プレドニゾン、ブレオマイシンおよびロイコボリン)
I.MOPP(メクロレタミン、ビンクリスチン、プレドニゾンおよびプロカルバジン)
J.ABVD(アドリアマイシン/ドキソルビシン、ブレオマイシン、ビンブラスチンおよびダカーバジン)
K.ABV(アドリアマイシン/ドキソルビシン、ブレオマイシンおよびとビンブラスチン)と交互に用いるMOPP(メクロレタミン、ビンクリスチン、プレドニゾンおよびプロカルバジン)
L.ABVD(アドリアマイシン/ドキソルビシン、ブレオマイシン、ビンブラスチンおよびダカーバジン)と交互に用いるMOPP(メクロレタミン、ビンクリスチン、プレドニゾンおよびプロカルバジン)
M.ChlVPP(クロラムブチル、ビンブラスチン、プロカルバジンおよびプレドニゾン)
N.IMVP−16(イホスファミド、メトトレキサートおよびエトポシド)
O.MIME(メチルグリコサミノグリカン、イホスファミド、メトトレキサートおよびエトポシド)
P.DHAP(デキサメタゾン、高用量シタラビンおよびシスプラチン)
Q.ESHAP(エトポシド、メチルプレジソロン、高用量シタラビンおよびシスプラチン)
R.CEPP(B)(シクロホスファミド、エトポシド、プロカルバジン、プレドニゾンおよびブレオマイシン)
S.CAMP(ロムスチン、ミトザントロン、シタラビンおよびプレドニゾン)
T.CVP−1(シクロホスファミド、ビンクリスチンおよびプレドニゾン)
U.ESHOP(エトポシド、メチルプレジソロン、高用量シタラビン、ビンクリスチンおよびシスプラチン)
V.EPOCH(丸薬用量のシクロホスファミドおよび経口プレドニゾンと一緒に96時間に及ぶエトポシド、ビンクリスチンおよびドキソルビシン)
W.ICE(イホスファミド、シクロホスファミドおよびエトポシド)
X.CEPP(B)(シクロホスファミド、エトポシド、プロカルバジン、プレドニゾンおよびブレオマイシン)
Y.CHOP−B(シクロホスファミド、ドキソルビシン、ビンクリスチン、プレドニゾンおよびブレオマイシン)および
Z.P/DOCE(エピルビシンまたはドキソルビシン、ビンクリスチン、シクロホスファミドおよびプレドニゾン)
から選ばれるところの上記[131]記載の方法。
[141] 細胞傷害薬−抗CD22抗体コンジュゲートの治療上有効な組成物を、治療養生法の一部として一つまたはそれ以上の細胞傷害性試薬を組み合わせて投与した後に投与する方法であり、生物活性試薬の組み合わせが:
A.CHOPP(シクロホスファミド、ドキソルビシン、ビンクリスチン、プレドニゾンおよびプロカルバジン)
B.CHOP(シクロホスファミド、ドキソルビシン、ビンクリスチンおよびプレドニゾン)
C.COP(シクロホスファミド、ビンクリスチンおよびプレドニゾン)
D.CAP−BOP(シクロホスファミド、ドキソルビシン、プロカルバジン、ブレオマイシン、ビンクリスチンおよびプレドニゾン)
E.m−BACOD(メトトレキサート、ブレオマイシン、ドキソルビシン、シクロホスファミド、ビンクリスチン、デキサメタゾンおよびロイコボリン)
F.ProMACE−MOPP(プレドニゾン、メトトレキサート、ドキソルビシン、シクロホスファミド、エトポシド、ロイコボリン、メクロレタミン、ビンクリスチン、プレドニゾンおよびプロカルバジン)
G.ProMACE−CytaBOM(プレドニゾン、メトトレキサート、ドキソルビシン、シクロホスファミド、エトポシド、ロイコボリン、シタラビン、ブレオマシンおよびビンクリスチン)
H.MACOP−B(メトトレキサート、ドキソルビシン、シクロホスファミド、ビンクリスチン、プレドニゾン、ブレオマイシンおよびロイコボリン)
I.MOPP(メクロレタミン、ビンクリスチン、プレドニゾンおよびプロカルバジン)
J.ABVD(アドリアマイシン/ドキソルビシン、ブレオマイシン、ビンブラスチンおよびダカーバジン)
K.ABV(アドリアマイシン/ドキソルビシン、ブレオマイシンおよびとビンブラスチン)と交互に用いるMOPP(メクロレタミン、ビンクリスチン、プレドニゾンおよびプロカルバジン)
L.ABVD(アドリアマイシン/ドキソルビシン、ブレオマイシン、ビンブラスチンおよびダカーバジン)と交互に用いるMOPP(メクロレタミン、ビンクリスチン、プレドニゾンおよびプロカルバジン)
M.ChlVPP(クロラムブチル、ビンブラスチン、プロカルバジンおよびプレドニゾン)
N.IMVP−16(イホスファミド、メトトレキサートおよびエトポシド)
O.MIME(メチルグリコサミノグリカン、イホスファミド、メトトレキサートおよびエトポシド)
P.DHAP(デキサメタゾン、高用量シタラビンおよびシスプラチン)
Q.ESHAP(エトポシド、メチルプレジソロン、高用量シタラビンおよびシスプラチン)
R.CEPP(B)(シクロホスファミド、エトポシド、プロカルバジン、プレドニゾンおよびブレオマイシン)
S.CAMP(ロムスチン、ミトザントロン、シタラビンおよびプレドニゾン)
T.CVP−1(シクロホスファミド、ビンクリスチンおよびプレドニゾン)
U.ESHOP(エトポシド、メチルプレジソロン、高用量シタラビン、ビンクリスチンおよびシスプラチン)
V.EPOCH(丸薬用量のシクロホスファミドおよび経口プレドニゾンと一緒に96時間に及ぶエトポシド、ビンクリスチンおよびドキソルビシン)
W.ICE(イホスファミド、シクロホスファミドおよびエトポシド)
X.CEPP(B)(シクロホスファミド、エトポシド、プロカルバジン、プレドニゾンおよびブレオマイシン)
Y.CHOP−B(シクロホスファミド、ドキソルビシン、ビンクリスチン、プレドニゾンおよびブレオマイシン)および
Z.P/DOCE(エピルビシンまたはドキソルビシン、ビンクリスチン、シクロホスファミドおよびプレドニゾン)
から選ばれるところの上記[131]記載の方法。
[142] 細胞傷害薬−抗CD22抗体コンジュゲートの治療上有効な組成物をB細胞悪性腫瘍の細胞表面抗原に対する抗体と共に投与する方法であり、治療養生法の一部として、一つまたはそれ以上の細胞傷害性試薬の組み合わせを含んでいてもよく、その細胞傷害性試薬の組み合わせが:
A.CHOPP(シクロホスファミド、ドキソルビシン、ビンクリスチン、プレドニゾンおよびプロカルバジン)
B.CHOP(シクロホスファミド、ドキソルビシン、ビンクリスチンおよびプレドニゾン)
C.COP(シクロホスファミド、ビンクリスチンおよびプレドニゾン)
D.CAP−BOP(シクロホスファミド、ドキソルビシン、プロカルバジン、ブレオマイシン、ビンクリスチンおよびプレドニゾン)
E.m−BACOD(メトトレキサート、ブレオマイシン、ドキソルビシン、シクロホスファミド、ビンクリスチン、デキサメタゾンおよびロイコボリン)
F.ProMACE−MOPP(プレドニゾン、メトトレキサート、ドキソルビシン、シクロホスファミド、エトポシド、ロイコボリン、メクロレタミン、ビンクリスチン、プレドニゾンおよびプロカルバジン)
G.ProMACE−CytaBOM(プレドニゾン、メトトレキサート、ドキソルビシン、シクロホスファミド、エトポシド、ロイコボリン、シタラビン、ブレオマシンおよびビンクリスチン)
H.MACOP−B(メトトレキサート、ドキソルビシン、シクロホスファミド、ビンクリスチン、プレドニゾン、ブレオマイシンおよびロイコボリン)
I.MOPP(メクロレタミン、ビンクリスチン、プレドニゾンおよびプロカルバジン)
J.ABVD(アドリアマイシン/ドキソルビシン、ブレオマイシン、ビンブラスチンおよびダカーバジン)
K.ABV(アドリアマイシン/ドキソルビシン、ブレオマイシンおよびとビンブラスチン)と交互に用いるMOPP(メクロレタミン、ビンクリスチン、プレドニゾンおよびプロカルバジン)
L.ABVD(アドリアマイシン/ドキソルビシン、ブレオマイシン、ビンブラスチンおよびダカーバジン)と交互に用いるMOPP(メクロレタミン、ビンクリスチン、プレドニゾンおよびプロカルバジン)
M.ChlVPP(クロラムブチル、ビンブラスチン、プロカルバジンおよびプレドニゾン)
N.IMVP−16(イホスファミド、メトトレキサートおよびエトポシド)
O.MIME(メチルグリコサミノグリカン、イホスファミド、メトトレキサートおよびエトポシド)
P.DHAP(デキサメタゾン、高用量シタラビンおよびシスプラチン)
Q.ESHAP(エトポシド、メチルプレジソロン、高用量シタラビンおよびシスプラチン)
R.CEPP(B)(シクロホスファミド、エトポシド、プロカルバジン、プレドニゾンおよびブレオマイシン)
S.CAMP(ロムスチン、ミトザントロン、シタラビンおよびプレドニゾン)
T.CVP−1(シクロホスファミド、ビンクリスチンおよびプレドニゾン)、ESHOP(エトポシド、メチルプレジソロン、高用量シタラビン、ビンクリスチンおよびシスプラチン)
U.ESHOP(エトポシド、メチルプレジソロン、高用量シタラビン、ビンクリスチンおよびシスプラチン)
V.EPOCH(丸薬用量のシクロホスファミドおよび経口プレドニゾンと一緒に96時間に及ぶエトポシド、ビンクリスチンおよびドキソルビシン)
W.ICE(イホスファミド、シクロホスファミドおよびエトポシド)
X.CEPP(B)(シクロホスファミド、エトポシド、プロカルバジン、プレドニゾンおよびブレオマイシン)
Y.CHOP−B(シクロホスファミド、ドキソルビシン、ビンクリスチン、プレドニゾンおよびブレオマイシン)および
Z.P/DOCE(エピルビシンまたはドキソルビシン、ビンクリスチン、シクロホスファミドおよびプレドニゾン)
から選ばれるところの上記[131]記載の方法。
[143] 治療の必要のある患者に対して、治療上有効な単量体カリチェアミシン誘導体−抗CD22抗体コンジュゲートの組成物を、一つまたはそれ以上の生物活性試薬と共に投与することを含むところの浸潤性のリンパ腫の治療法。
[144] 単量体カリチェアミシン誘導体−抗CD22抗体コンジュゲートがCMC−544であるところの上記[143]記載の方法。
[145] 増殖性疾患の対象の治療に際して、治療上有効量の組成物を投薬することを含む、上記[91]記載の組成物の使用。
[146] 治療上有効量の組成物を、皮下、腹膜内、静脈内、動脈内、脊髄内、鞘内、経皮的、皮膚を介して、鼻腔内、局所的、経腸、経膣的、舌下、または経直腸で投与するところの上記[145]記載の使用。
[147] 治療上有効量の本発明の医薬組成物を静脈内に投与するところの上記[145]記載の使用。
[148] 対象がヒトであり、増殖性疾患が癌であるところの上記[145]記載の使用。
[149] 癌がB細胞悪性腫瘍であるところの上記[148]記載の使用。
[150] B細胞悪性腫瘍が白血病であるところの上記[149]記載の使用。
[151] 白血病が細胞表面抗原CD22を発現するところの上記[150]記載の使用。
[152] B細胞悪性腫瘍がリンパ腫であるところの上記[149]記載の使用。
[153] リンパ腫が細胞表面抗原CD22を発現するところの上記[152]記載の使用。
[154] 癌が癌腫であるところの上記[148]記載の使用。
[155] 癌が肉腫であるところの上記[148]記載の使用。
[156] 治療上有効量の細胞傷害薬−抗CD22抗体コンジュゲートを含む組成物を治療を必要とする患者に対して投薬することを含む、B細胞悪性腫瘍を治療するための細胞傷害薬−抗CD22抗体コンジュゲートを含む組成物の使用。
[157] B細胞悪性腫瘍がリンパ腫であるところの上記[156]記載の使用。
[158] B細胞悪性腫瘍が非ホジキンリンパ腫であるところの上記[157]記載の使用。
[159] 細胞傷害薬−抗CD22抗体コンジュゲートの治療上有効な組成物を、一つまたはそれ以上の生物活性試薬と共に投薬することからなる、上記[156]記載の使用。
[160] 細胞傷害薬−抗CD22抗体コンジュゲート中の細胞傷害薬が、カリチェアミシン、チオテパ、タキサン類、ビンクリスチン、ダウノルビシン、ドキソルビシン、エピルビシン、アクチノマイシン、アウスラマイシン、アザセリン、ブレオマイシン、タモキシフェン、イダルビシン、ドラスタチン/アウリスタチン、ヘミアスタリン、マイタンシノイド、およびエスペラミシンからなる群より選ばれるところの上記[156]記載の使用。
[161] 細胞傷害薬がカリチェアミシンであるところの上記[156]記載の使用。
[162] カリチェアミシンがγカリチェアミシンまたはN−アセチルカリチェアミシンであるところの上記[161]記載の使用。
[163] 生物活性試薬が、抗体、成長因子、ホルモン、サイトカイン、抗ホルモン、キサンチン、インターロイキン、インターフェロンおよび細胞傷害薬からなる群より選ばれるところの上記[159]記載の使用。
[164] 生物活性試薬が抗体であるところの上記[163]記載の使用。
[165] 抗体がB細胞悪性腫瘍で発現する細胞表面抗原に対するものであるところの上記[164]記載の使用。
[166] B細胞悪性腫瘍で発現する細胞表面抗原に対するものであるような抗体が、抗CD19、抗CD20および抗CD33抗体からなる群から選ばれるところの上記[165]記載の使用。
[167] 抗CD20抗体がリツキシマブであるところの上記[166]記載の使用。
[168] サイトカインまたは成長因子が、インターロイキン2(IL−2)、TNF、CSF、GM−CSFおよびG−CSFからなる群から選ばれるところの上記[163]記載の使用。
[169] ホルモンがステロイドホルモンであり、エストロゲン、アンドロゲン、プロゲスチンまたはコルチコステロイドから選ばれるところの上記[163]記載の使用。
[170] 細胞傷害薬が、ドキソルビシン、ダウノルビシン、イダルビシン、アクラルビシン、ゾルビシン、ミトザントロン、エピルビシン、カルビシン、ノガラマイシン、メノガリル、ピタルビシン、バルビシン、シタラビン、ゲムシタビン、トリフルリジン、アンシタビン、エノシタビン、アザシチジン、ドキシフルリジン、ペントスタチン、ブロクスリジン、カペシタビン、クラドリビン、デシタビン、フロクスウリジン、フルダラビン、ゴウゲロチン、ピューロマイシン、テガフール、チアゾフリン、アドリアマイシン、シスプラチン、カルボプラチン、シクロホスファミド、ダカーバジン、ビンブラスチン、ビンクリスチン、ミトザントロン、ブレオマイシン、メクロレタミン、ブレドニゾン、プロカルバジン、メトトレキサート、フルオロウラシル、エトポシド、タクソール、タクソール類似物およびマイトマイシンからなる群から選ばれるところの上記[163]記載の使用。
[171] 細胞傷害薬−抗CD22抗体コンジュゲートの治療上有効な組成物を、治療養生法の一部として一つまたはそれ以上の細胞傷害薬と組み合わせて共に投与する使用であり、細胞傷害薬の組み合わせが:
A.CHOPP(シクロホスファミド、ドキソルビシン、ビンクリスチン、プレドニゾンおよびプロカルバジン)
B.CHOP(シクロホスファミド、ドキソルビシン、ビンクリスチンおよびプレドニゾン)
C.COP(シクロホスファミド、ビンクリスチンおよびプレドニゾン)
D.CAP−BOP(シクロホスファミド、ドキソルビシン、プロカルバジン、ブレオマイシン、ビンクリスチンおよびプレドニゾン)
E.m−BACOD(メトトレキサート、ブレオマイシン、ドキソルビシン、シクロホスファミド、ビンクリスチン、デキサメタゾンおよびロイコボリン)
F.ProMACE−MOPP(プレドニゾン、メトトレキサート、ドキソルビシン、シクロホスファミド、エトポシド、ロイコボリン、メクロレタミン、ビンクリスチン、プレドニゾンおよびプロカルバジン)
G.ProMACE−CytaBOM(プレドニゾン、メトトレキサート、ドキソルビシン、シクロホスファミド、エトポシド、ロイコボリン、シタラビン、ブレオマシンおよびビンクリスチン)
H.MACOP−B(メトトレキサート、ドキソルビシン、シクロホスファミド、ビンクリスチン、プレドニゾン、ブレオマイシンおよびロイコボリン)
I.MOPP(メクロレタミン、ビンクリスチン、プレドニゾンおよびプロカルバジン)
J.ABVD(アドリアマイシン/ドキソルビシン、ブレオマイシン、ビンブラスチンおよびダカーバジン)
K.ABV(アドリアマイシン/ドキソルビシン、ブレオマイシンおよびとビンブラスチン)と交互に用いるMOPP(メクロレタミン、ビンクリスチン、プレドニゾンおよびプロカルバジン)
L.ABVD(アドリアマイシン/ドキソルビシン、ブレオマイシン、ビンブラスチンおよびダカーバジン)と交互に用いるMOPP(メクロレタミン、ビンクリスチン、プレドニゾンおよびプロカルバジン)
M.ChlVPP(クロラムブチル、ビンブラスチン、プロカルバジンおよびプレドニゾン)
N.IMVP−16(イホスファミド、メトトレキサートおよびエトポシド)
O.MIME(メチルグリコサミノグリカン、イホスファミド、メトトレキサートおよびエトポシド)
P.DHAP(デキサメタゾン、高用量シタラビンおよびシスプラチン)
Q.ESHAP(エトポシド、メチルプレジソロン、高用量シタラビンおよびシスプラチン)
R.CEPP(B)(シクロホスファミド、エトポシド、プロカルバジン、プレドニゾンおよびブレオマイシン)
S.CAMP(ロムスチン、ミトザントロン、シタラビンおよびプレドニゾン)
T.CVP−1(シクロホスファミド、ビンクリスチンおよびプレドニゾン)
U.ESHOP(エトポシド、メチルプレジソロン、高用量シタラビン、ビンクリスチンおよびシスプラチン)
V.EPOCH(丸薬用量のシクロホスファミドおよび経口プレドニゾンと一緒に96時間に及ぶエトポシド、ビンクリスチンおよびドキソルビシン)
W.ICE(イホスファミド、シクロホスファミドおよびエトポシド)
X.CEPP(B)(シクロホスファミド、エトポシド、プロカルバジン、プレドニゾンおよびブレオマイシン)
Y.CHOP−B(シクロホスファミド、ドキソルビシン、ビンクリスチン、プレドニゾンおよびブレオマイシン)および
Z.P/DOCE(エピルビシンまたはドキソルビシン、ビンクリスチン、シクロホスファミドおよびプレドニゾン)
から選ばれるところの上記[163]記載の使用。
[172] 細胞傷害薬−抗CD22抗体コンジュゲートの治療上有効な組成物を、治療養生法の一部として一つまたはそれ以上の細胞傷害薬を組み合わせて投与するのに先立って、投与する使用であり、細胞傷害薬の組み合わせが:
A.CHOPP(シクロホスファミド、ドキソルビシン、ビンクリスチン、プレドニゾンおよびプロカルバジン)
B.CHOP(シクロホスファミド、ドキソルビシン、ビンクリスチンおよびプレドニゾン)
C.COP(シクロホスファミド、ビンクリスチンおよびプレドニゾン)
D.CAP−BOP(シクロホスファミド、ドキソルビシン、プロカルバジン、ブレオマイシン、ビンクリスチンおよびプレドニゾン)
E.m−BACOD(メトトレキサート、ブレオマイシン、ドキソルビシン、シクロホスファミド、ビンクリスチン、デキサメタゾンおよびロイコボリン)
F.ProMACE−MOPP(プレドニゾン、メトトレキサート、ドキソルビシン、シクロホスファミド、エトポシド、ロイコボリン、メクロレタミン、ビンクリスチン、プレドニゾンおよびプロカルバジン)
G.ProMACE−CytaBOM(プレドニゾン、メトトレキサート、ドキソルビシン、シクロホスファミド、エトポシド、ロイコボリン、シタラビン、ブレオマシンおよびビンクリスチン)
H.MACOP−B(メトトレキサート、ドキソルビシン、シクロホスファミド、ビンクリスチン、プレドニゾン、ブレオマイシンおよびロイコボリン)
I.MOPP(メクロレタミン、ビンクリスチン、プレドニゾンおよびプロカルバジン)
J.ABVD(アドリアマイシン/ドキソルビシン、ブレオマイシン、ビンブラスチンおよびダカーバジン)
K.ABV(アドリアマイシン/ドキソルビシン、ブレオマイシンおよびとビンブラスチン)と交互に用いるMOPP(メクロレタミン、ビンクリスチン、プレドニゾンおよびプロカルバジン)
L.ABVD(アドリアマイシン/ドキソルビシン、ブレオマイシン、ビンブラスチンおよびダカーバジン)と交互に用いるMOPP(メクロレタミン、ビンクリスチン、プレドニゾンおよびプロカルバジン)
M.ChlVPP(クロラムブチル、ビンブラスチン、プロカルバジンおよびプレドニゾン)
N.IMVP−16(イホスファミド、メトトレキサートおよびエトポシド)
O.MIME(メチルグリコサミノグリカン、イホスファミド、メトトレキサートおよびエトポシド)
P.DHAP(デキサメタゾン、高用量シタラビンおよびシスプラチン)
Q.ESHAP(エトポシド、メチルプレジソロン、高用量シタラビンおよびシスプラチン)
R.CEPP(B)(シクロホスファミド、エトポシド、プロカルバジン、プレドニゾンおよびブレオマイシン)
S.CAMP(ロムスチン、ミトザントロン、シタラビンおよびプレドニゾン)
T.CVP−1(シクロホスファミド、ビンクリスチンおよびプレドニゾン)
U.ESHOP(エトポシド、メチルプレジソロン、高用量シタラビン、ビンクリスチンおよびシスプラチン)
V.EPOCH(丸薬用量のシクロホスファミドおよび経口プレドニゾンと一緒に96時間に及ぶエトポシド、ビンクリスチンおよびドキソルビシン)
W.ICE(イホスファミド、シクロホスファミドおよびエトポシド)
X.CEPP(B)(シクロホスファミド、エトポシド、プロカルバジン、プレドニゾンおよびブレオマイシン)
Y.CHOP−B(シクロホスファミド、ドキソルビシン、ビンクリスチン、プレドニゾンおよびブレオマイシン)および
Z.P/DOCE(エピルビシンまたはドキソルビシン、ビンクリスチン、シクロホスファミドおよびプレドニゾン)
から選ばれるところの上記[163]記載の使用。
[173] 細胞傷害薬−抗CD22抗体コンジュゲートの治療上有効な組成物を、治療養生法の一部として一つまたはそれ以上の細胞傷害性試薬を組み合わせて投与した後に投与する使用であり、生物活性試薬の組み合わせが:
A.CHOPP(シクロホスファミド、ドキソルビシン、ビンクリスチン、プレドニゾンおよびプロカルバジン)
B.CHOP(シクロホスファミド、ドキソルビシン、ビンクリスチンおよびプレドニゾン)
C.COP(シクロホスファミド、ビンクリスチンおよびプレドニゾン)
D.CAP−BOP(シクロホスファミド、ドキソルビシン、プロカルバジン、ブレオマイシン、ビンクリスチンおよびプレドニゾン)
E.m−BACOD(メトトレキサート、ブレオマイシン、ドキソルビシン、シクロホスファミド、ビンクリスチン、デキサメタゾンおよびロイコボリン)
F.ProMACE−MOPP(プレドニゾン、メトトレキサート、ドキソルビシン、シクロホスファミド、エトポシド、ロイコボリン、メクロレタミン、ビンクリスチン、プレドニゾンおよびプロカルバジン)
G.ProMACE−CytaBOM(プレドニゾン、メトトレキサート、ドキソルビシン、シクロホスファミド、エトポシド、ロイコボリン、シタラビン、ブレオマシンおよびビンクリスチン)
H.MACOP−B(メトトレキサート、ドキソルビシン、シクロホスファミド、ビンクリスチン、プレドニゾン、ブレオマイシンおよびロイコボリン)
I.MOPP(メクロレタミン、ビンクリスチン、プレドニゾンおよびプロカルバジン)
J.ABVD(アドリアマイシン/ドキソルビシン、ブレオマイシン、ビンブラスチンおよびダカーバジン)
K.ABV(アドリアマイシン/ドキソルビシン、ブレオマイシンおよびとビンブラスチン)と交互に用いるMOPP(メクロレタミン、ビンクリスチン、プレドニゾンおよびプロカルバジン)
L.ABVD(アドリアマイシン/ドキソルビシン、ブレオマイシン、ビンブラスチンおよびダカーバジン)と交互に用いるMOPP(メクロレタミン、ビンクリスチン、プレドニゾンおよびプロカルバジン)
M.ChlVPP(クロラムブチル、ビンブラスチン、プロカルバジンおよびプレドニゾン)
N.IMVP−16(イホスファミド、メトトレキサートおよびエトポシド)
O.MIME(メチルグリコサミノグリカン、イホスファミド、メトトレキサートおよびエトポシド)
P.DHAP(デキサメタゾン、高用量シタラビンおよびシスプラチン)
Q.ESHAP(エトポシド、メチルプレジソロン、高用量シタラビンおよびシスプラチン)
R.CEPP(B)(シクロホスファミド、エトポシド、プロカルバジン、プレドニゾンおよびブレオマイシン)
S.CAMP(ロムスチン、ミトザントロン、シタラビンおよびプレドニゾン)
T.CVP−1(シクロホスファミド、ビンクリスチンおよびプレドニゾン)
U.ESHOP(エトポシド、メチルプレジソロン、高用量シタラビン、ビンクリスチンおよびシスプラチン)
V.EPOCH(丸薬用量のシクロホスファミドおよび経口プレドニゾンと一緒に96時間に及ぶエトポシド、ビンクリスチンおよびドキソルビシン)
W.ICE(イホスファミド、シクロホスファミドおよびエトポシド)
X.CEPP(B)(シクロホスファミド、エトポシド、プロカルバジン、プレドニゾンおよびブレオマイシン)
Y.CHOP−B(シクロホスファミド、ドキソルビシン、ビンクリスチン、プレドニゾンおよびブレオマイシン)および
Z.P/DOCE(エピルビシンまたはドキソルビシン、ビンクリスチン、シクロホスファミドおよびプレドニゾン)
から選ばれるところの上記[163]記載の使用。
[174] 細胞傷害薬−抗CD22抗体コンジュゲートの治療上有効な組成物をB細胞悪性腫瘍の細胞表面抗原に対する抗体と共に投与する方法であり、治療養生法の一部として、一つまたはそれ以上の細胞傷害性試薬の組み合わせを含んでいてもよく、その細胞傷害性試薬の組み合わせが:
A.CHOPP(シクロホスファミド、ドキソルビシン、ビンクリスチン、プレドニゾンおよびプロカルバジン)
B.CHOP(シクロホスファミド、ドキソルビシン、ビンクリスチンおよびプレドニゾン)
C.COP(シクロホスファミド、ビンクリスチンおよびプレドニゾン)
D.CAP−BOP(シクロホスファミド、ドキソルビシン、プロカルバジン、ブレオマイシン、ビンクリスチンおよびプレドニゾン)
E.m−BACOD(メトトレキサート、ブレオマイシン、ドキソルビシン、シクロホスファミド、ビンクリスチン、デキサメタゾンおよびロイコボリン)
F.ProMACE−MOPP(プレドニゾン、メトトレキサート、ドキソルビシン、シクロホスファミド、エトポシド、ロイコボリン、メクロレタミン、ビンクリスチン、プレドニゾンおよびプロカルバジン)
G.ProMACE−CytaBOM(プレドニゾン、メトトレキサート、ドキソルビシン、シクロホスファミド、エトポシド、ロイコボリン、シタラビン、ブレオマシンおよびビンクリスチン)
H.MACOP−B(メトトレキサート、ドキソルビシン、シクロホスファミド、ビンクリスチン、プレドニゾン、ブレオマイシンおよびロイコボリン)
I.MOPP(メクロレタミン、ビンクリスチン、プレドニゾンおよびプロカルバジン)
J.ABVD(アドリアマイシン/ドキソルビシン、ブレオマイシン、ビンブラスチンおよびダカーバジン)
K.ABV(アドリアマイシン/ドキソルビシン、ブレオマイシンおよびとビンブラスチン)と交互に用いるMOPP(メクロレタミン、ビンクリスチン、プレドニゾンおよびプロカルバジン)
L.ABVD(アドリアマイシン/ドキソルビシン、ブレオマイシン、ビンブラスチンおよびダカーバジン)と交互に用いるMOPP(メクロレタミン、ビンクリスチン、プレドニゾンおよびプロカルバジン)
M.ChlVPP(クロラムブチル、ビンブラスチン、プロカルバジンおよびプレドニゾン)
N.IMVP−16(イホスファミド、メトトレキサートおよびエトポシド)
O.MIME(メチルグリコサミノグリカン、イホスファミド、メトトレキサートおよびエトポシド)
P.DHAP(デキサメタゾン、高用量シタラビンおよびシスプラチン)
Q.ESHAP(エトポシド、メチルプレジソロン、高用量シタラビンおよびシスプラチン)
R.CEPP(B)(シクロホスファミド、エトポシド、プロカルバジン、プレドニゾンおよびブレオマイシン)
S.CAMP(ロムスチン、ミトザントロン、シタラビンおよびプレドニゾン)
T.CVP−1(シクロホスファミド、ビンクリスチンおよびプレドニゾン)、ESHOP(エトポシド、メチルプレジソロン、高用量シタラビン、ビンクリスチンおよびシスプラチン)
U.ESHOP(エトポシド、メチルプレジソロン、高用量シタラビン、ビンクリスチンおよびシスプラチン)
V.EPOCH(丸薬用量のシクロホスファミドおよび経口プレドニゾンと一緒に96時間に及ぶエトポシド、ビンクリスチンおよびドキソルビシン)
W.ICE(イホスファミド、シクロホスファミドおよびエトポシド)
X.CEPP(B)(シクロホスファミド、エトポシド、プロカルバジン、プレドニゾンおよびブレオマイシン)
Y.CHOP−B(シクロホスファミド、ドキソルビシン、ビンクリスチン、プレドニゾンおよびブレオマイシン)および
Z.P/DOCE(エピルビシンまたはドキソルビシン、ビンクリスチン、シクロホスファミドおよびプレドニゾン)
から選ばれるところの上記[163]記載の使用。
[175] 治療上有効量のコンジュゲートを、治療を必要とする患者に対して投薬することを含む、B細胞悪性腫瘍の対象の治療における、上記[43]記載の単量体カリチェアミシン誘導体/抗CD22抗体コンジュゲートの使用。
[176] 対象がB細胞悪性腫瘍に罹患しているところの上記[175]記載の使用。
[177] B細胞悪性腫瘍がリンパ腫であるところの上記[176]記載の使用。
[178] B細胞悪性腫瘍が非ホジキンリンパ腫であるところの上記[177]記載の使用。
[179] コンジュゲートを一つまたはそれ以上の生物活性試薬と一緒に投薬するところの上記[175]記載の使用。
[180] カリチェアミシン誘導体がγカリチェアミシンまたはN−アセチルカリチェアミシン誘導体であるところの上記[175]記載の使用。
[181] 生物活性試薬が、抗体、成長因子、ホルモン、サイトカイン、抗ホルモン、キサンチン、インターロイキン、インターフェロンおよび細胞傷害薬からなる群より選ばれるところの上記[179]記載の使用。
[182] 生物活性試薬が抗体であるところの上記[181]記載の使用。
[183] 抗体がB細胞悪性腫瘍で発現する細胞表面抗原に対するものであるところの上記[182]記載の使用。
[184] B細胞悪性腫瘍で発現する細胞表面抗原に対するものであるような抗体が、抗CD19、抗CD20および抗CD33抗体からなる群から選ばれるところの上記[183]記載の使用。
[185] 抗CD20抗体がリツキシマブであるところの上記[184]記載の使用。
[186] サイトカインまたは成長因子が、インターロイキン2(IL−2)、TNF、CSF、GM−CSFおよびG−CSFからなる群から選ばれるところの上記[181]記載の使用。
[187] ホルモンがステロイドホルモンであり、エストロゲン、アンドロゲン、プロゲスチン、またはコルチコステロイドから選ばれるところの上記[181]記載の使用。
[188] 細胞傷害薬が、ドキソルビシン、ダウノルビシン、イダルビシン、アクラルビシン、ゾルビシン、ミトザントロン、エピルビシン、カルビシン、ノガラマイシン、メノガリル、ピタルビシン、バルビシン、シタラビン、ゲムシタビン、トリフルリジン、アンシタビン、エノシタビン、アザシチジン、ドキシフルリジン、ペントスタチン、ブロクスリジン、カペシタビン、クラドリビン、デシタビン、フロクスウリジン、フルダラビン、ゴウゲロチン、ピューロマイシン、テガフール、チアゾフリン、アドリアマイシン、シスプラチン、カルボプラチン、シクロホスファミド、ダカーバジン、ビンブラスチン、ビンクリスチン、ミトザントロン、ブレオマイシン、メクロレタミン、ブレドニゾン、プロカルバジン、メトトレキサート、フルオロウラシル、エトポシド、タクソール、タクソール類似物およびマイトマイシンからなる群から選ばれるところの上記[181]記載の使用。
[189] 治療上有効量の単量体カリチェアミシン誘導体/抗CD22抗体コンジュゲートを、治療養生法の一部として一つまたはそれ以上の細胞傷害性試薬の組み合わせと共に投与する使用であり、細胞傷害性試薬の組み合わせが:
A.CHOPP(シクロホスファミド、ドキソルビシン、ビンクリスチン、プレドニゾンおよびプロカルバジン)
B.CHOP(シクロホスファミド、ドキソルビシン、ビンクリスチンおよびプレドニゾン)
C.COP(シクロホスファミド、ビンクリスチンおよびプレドニゾン)
D.CAP−BOP(シクロホスファミド、ドキソルビシン、プロカルバジン、ブレオマイシン、ビンクリスチンおよびプレドニゾン)
E.m−BACOD(メトトレキサート、ブレオマイシン、ドキソルビシン、シクロホスファミド、ビンクリスチン、デキサメタゾンおよびロイコボリン)
F.ProMACE−MOPP(プレドニゾン、メトトレキサート、ドキソルビシン、シクロホスファミド、エトポシド、ロイコボリン、メクロレタミン、ビンクリスチン、プレドニゾンおよびプロカルバジン)
G.ProMACE−CytaBOM(プレドニゾン、メトトレキサート、ドキソルビシン、シクロホスファミド、エトポシド、ロイコボリン、シタラビン、ブレオマシンおよびビンクリスチン)
H.MACOP−B(メトトレキサート、ドキソルビシン、シクロホスファミド、ビンクリスチン、プレドニゾン、ブレオマイシンおよびロイコボリン)
I.MOPP(メクロレタミン、ビンクリスチン、プレドニゾンおよびプロカルバジン)
J.ABVD(アドリアマイシン/ドキソルビシン、ブレオマイシン、ビンブラスチンおよびダカーバジン)
K.ABV(アドリアマイシン/ドキソルビシン、ブレオマイシンおよびとビンブラスチン)と交互に用いるMOPP(メクロレタミン、ビンクリスチン、プレドニゾンおよびプロカルバジン)
L.ABVD(アドリアマイシン/ドキソルビシン、ブレオマイシン、ビンブラスチンおよびダカーバジン)と交互に用いるMOPP(メクロレタミン、ビンクリスチン、プレドニゾンおよびプロカルバジン)
M.ChlVPP(クロラムブチル、ビンブラスチン、プロカルバジンおよびプレドニゾン)
N.IMVP−16(イホスファミド、メトトレキサートおよびエトポシド)
O.MIME(メチルグリコサミノグリカン、イホスファミド、メトトレキサートおよびエトポシド)
P.DHAP(デキサメタゾン、高用量シタラビンおよびシスプラチン)
Q.ESHAP(エトポシド、メチルプレジソロン、高用量シタラビンおよびシスプラチン)
R.CEPP(B)(シクロホスファミド、エトポシド、プロカルバジン、プレドニゾンおよびブレオマイシン)
S.CAMP(ロムスチン、ミトザントロン、シタラビンおよびプレドニゾン)
T.CVP−1(シクロホスファミド、ビンクリスチンおよびプレドニゾン)
U.ESHOP(エトポシド、メチルプレジソロン、高用量シタラビン、ビンクリスチンおよびシスプラチン)
V.EPOCH(丸薬用量のシクロホスファミドおよび経口プレドニゾンと一緒に96時間に及ぶエトポシド、ビンクリスチンおよびドキソルビシン)
W.ICE(イホスファミド、シクロホスファミドおよびエトポシド)
X.CEPP(B)(シクロホスファミド、エトポシド、プロカルバジン、プレドニゾンおよびブレオマイシン)
Y.CHOP−B(シクロホスファミド、ドキソルビシン、ビンクリスチン、プレドニゾンおよびブレオマイシン)および
Z.P/DOCE(エピルビシンまたはドキソルビシン、ビンクリスチン、シクロホスファミドおよびプレドニゾン)
から選ばれるところの上記[181]記載の使用。
[190] 治療上有効量の単量体カリチェアミシン誘導体/抗CD22抗体コンジュゲートを、治療養生法の一部として一つまたはそれ以上の細胞傷害性試薬を組み合わせて投与するのに先立って、投与する使用であり、細胞傷害性試薬の組み合わせが:
A.CHOPP(シクロホスファミド、ドキソルビシン、ビンクリスチン、プレドニゾンおよびプロカルバジン)
B.CHOP(シクロホスファミド、ドキソルビシン、ビンクリスチンおよびプレドニゾン)
C.COP(シクロホスファミド、ビンクリスチンおよびプレドニゾン)
D.CAP−BOP(シクロホスファミド、ドキソルビシン、プロカルバジン、ブレオマイシン、ビンクリスチンおよびプレドニゾン)
E.m−BACOD(メトトレキサート、ブレオマイシン、ドキソルビシン、シクロホスファミド、ビンクリスチン、デキサメタゾンおよびロイコボリン)
F.ProMACE−MOPP(プレドニゾン、メトトレキサート、ドキソルビシン、シクロホスファミド、エトポシド、ロイコボリン、メクロレタミン、ビンクリスチン、プレドニゾンおよびプロカルバジン)
G.ProMACE−CytaBOM(プレドニゾン、メトトレキサート、ドキソルビシン、シクロホスファミド、エトポシド、ロイコボリン、シタラビン、ブレオマシンおよびビンクリスチン)
H.MACOP−B(メトトレキサート、ドキソルビシン、シクロホスファミド、ビンクリスチン、プレドニゾン、ブレオマイシンおよびロイコボリン)
I.MOPP(メクロレタミン、ビンクリスチン、プレドニゾンおよびプロカルバジン)
J.ABVD(アドリアマイシン/ドキソルビシン、ブレオマイシン、ビンブラスチンおよびダカーバジン)
K.ABV(アドリアマイシン/ドキソルビシン、ブレオマイシンおよびとビンブラスチン)と交互に用いるMOPP(メクロレタミン、ビンクリスチン、プレドニゾンおよびプロカルバジン)
L.ABVD(アドリアマイシン/ドキソルビシン、ブレオマイシン、ビンブラスチンおよびダカーバジン)と交互に用いるMOPP(メクロレタミン、ビンクリスチン、プレドニゾンおよびプロカルバジン)
M.ChlVPP(クロラムブチル、ビンブラスチン、プロカルバジンおよびプレドニゾン)
N.IMVP−16(イホスファミド、メトトレキサートおよびエトポシド)
O.MIME(メチルグリコサミノグリカン、イホスファミド、メトトレキサートおよびエトポシド)
P.DHAP(デキサメタゾン、高用量シタラビンおよびシスプラチン)
Q.ESHAP(エトポシド、メチルプレジソロン、高用量シタラビンおよびシスプラチン)
R.CEPP(B)(シクロホスファミド、エトポシド、プロカルバジン、プレドニゾンおよびブレオマイシン)
S.CAMP(ロムスチン、ミトザントロン、シタラビンおよびプレドニゾン)
T.CVP−1(シクロホスファミド、ビンクリスチンおよびプレドニゾン)
U.ESHOP(エトポシド、メチルプレジソロン、高用量シタラビン、ビンクリスチンおよびシスプラチン)
V.EPOCH(丸薬用量のシクロホスファミドおよび経口プレドニゾンと一緒に96時間に及ぶエトポシド、ビンクリスチンおよびドキソルビシン)
W.ICE(イホスファミド、シクロホスファミドおよびエトポシド)
X.CEPP(B)(シクロホスファミド、エトポシド、プロカルバジン、プレドニゾンおよびブレオマイシン)
Y.CHOP−B(シクロホスファミド、ドキソルビシン、ビンクリスチン、プレドニゾンおよびブレオマイシン)および
Z.P/DOCE(エピルビシンまたはドキソルビシン、ビンクリスチン、シクロホスファミドおよびプレドニゾン)
から選ばれるところの上記[181]記載の使用。
[191] 治療上有効量の単量体カリチェアミシン誘導体/抗CD22抗体コンジュゲートを、治療養生法の一部として一つまたはそれ以上の細胞傷害性試薬を組み合わせて投与した後に投与する使用であり、生物活性試薬の組み合わせが:
A.CHOPP(シクロホスファミド、ドキソルビシン、ビンクリスチン、プレドニゾンおよびプロカルバジン)
B.CHOP(シクロホスファミド、ドキソルビシン、ビンクリスチンおよびプレドニゾン)
C.COP(シクロホスファミド、ビンクリスチンおよびプレドニゾン)
D.CAP−BOP(シクロホスファミド、ドキソルビシン、プロカルバジン、ブレオマイシン、ビンクリスチンおよびプレドニゾン)
E.m−BACOD(メトトレキサート、ブレオマイシン、ドキソルビシン、シクロホスファミド、ビンクリスチン、デキサメタゾンおよびロイコボリン)
F.ProMACE−MOPP(プレドニゾン、メトトレキサート、ドキソルビシン、シクロホスファミド、エトポシド、ロイコボリン、メクロレタミン、ビンクリスチン、プレドニゾンおよびプロカルバジン)
G.ProMACE−CytaBOM(プレドニゾン、メトトレキサート、ドキソルビシン、シクロホスファミド、エトポシド、ロイコボリン、シタラビン、ブレオマシンおよびビンクリスチン)
H.MACOP−B(メトトレキサート、ドキソルビシン、シクロホスファミド、ビンクリスチン、プレドニゾン、ブレオマイシンおよびロイコボリン)
I.MOPP(メクロレタミン、ビンクリスチン、プレドニゾンおよびプロカルバジン)
J.ABVD(アドリアマイシン/ドキソルビシン、ブレオマイシン、ビンブラスチンおよびダカーバジン)
K.ABV(アドリアマイシン/ドキソルビシン、ブレオマイシンおよびとビンブラスチン)と交互に用いるMOPP(メクロレタミン、ビンクリスチン、プレドニゾンおよびプロカルバジン)
L.ABVD(アドリアマイシン/ドキソルビシン、ブレオマイシン、ビンブラスチンおよびダカーバジン)と交互に用いるMOPP(メクロレタミン、ビンクリスチン、プレドニゾンおよびプロカルバジン)
M.ChlVPP(クロラムブチル、ビンブラスチン、プロカルバジンおよびプレドニゾン)
N.IMVP−16(イホスファミド、メトトレキサートおよびエトポシド)
O.MIME(メチルグリコサミノグリカン、イホスファミド、メトトレキサートおよびエトポシド)
P.DHAP(デキサメタゾン、高用量シタラビンおよびシスプラチン)
Q.ESHAP(エトポシド、メチルプレジソロン、高用量シタラビンおよびシスプラチン)
R.CEPP(B)(シクロホスファミド、エトポシド、プロカルバジン、プレドニゾンおよびブレオマイシン)
S.CAMP(ロムスチン、ミトザントロン、シタラビンおよびプレドニゾン)
T.CVP−1(シクロホスファミド、ビンクリスチンおよびプレドニゾン)
U.ESHOP(エトポシド、メチルプレジソロン、高用量シタラビン、ビンクリスチンおよびシスプラチン)
V.EPOCH(丸薬用量のシクロホスファミドおよび経口プレドニゾンと一緒に96時間に及ぶエトポシド、ビンクリスチンおよびドキソルビシン)
W.ICE(イホスファミド、シクロホスファミドおよびエトポシド)
X.CEPP(B)(シクロホスファミド、エトポシド、プロカルバジン、プレドニゾンおよびブレオマイシン)
Y.CHOP−B(シクロホスファミド、ドキソルビシン、ビンクリスチン、プレドニゾンおよびブレオマイシン)および
Z.P/DOCE(エピルビシンまたはドキソルビシン、ビンクリスチン、シクロホスファミドおよびプレドニゾン)
から選ばれるところの上記[181]記載の使用。
[192] 治療上有効量の単量体カリチェアミシン誘導体/抗CD22抗体コンジュゲートをB細胞悪性腫瘍の細胞表面抗原に対する抗体と共に投与する方法であり、治療養生法の一部として、一つまたはそれ以上の細胞傷害性試薬の組み合わせを含んでいてもよく、その細胞傷害性試薬の組み合わせが:
A.CHOPP(シクロホスファミド、ドキソルビシン、ビンクリスチン、プレドニゾンおよびプロカルバジン)
B.CHOP(シクロホスファミド、ドキソルビシン、ビンクリスチンおよびプレドニゾン)
C.COP(シクロホスファミド、ビンクリスチンおよびプレドニゾン)
D.CAP−BOP(シクロホスファミド、ドキソルビシン、プロカルバジン、ブレオマイシン、ビンクリスチンおよびプレドニゾン)
E.m−BACOD(メトトレキサート、ブレオマイシン、ドキソルビシン、シクロホスファミド、ビンクリスチン、デキサメタゾンおよびロイコボリン)
F.ProMACE−MOPP(プレドニゾン、メトトレキサート、ドキソルビシン、シクロホスファミド、エトポシド、ロイコボリン、メクロレタミン、ビンクリスチン、プレドニゾンおよびプロカルバジン)
G.ProMACE−CytaBOM(プレドニゾン、メトトレキサート、ドキソルビシン、シクロホスファミド、エトポシド、ロイコボリン、シタラビン、ブレオマシンおよびビンクリスチン)
H.MACOP−B(メトトレキサート、ドキソルビシン、シクロホスファミド、ビンクリスチン、プレドニゾン、ブレオマイシンおよびロイコボリン)
I.MOPP(メクロレタミン、ビンクリスチン、プレドニゾンおよびプロカルバジン)
J.ABVD(アドリアマイシン/ドキソルビシン、ブレオマイシン、ビンブラスチンおよびダカーバジン)
K.ABV(アドリアマイシン/ドキソルビシン、ブレオマイシンおよびとビンブラスチン)と交互に用いるMOPP(メクロレタミン、ビンクリスチン、プレドニゾンおよびプロカルバジン)
L.ABVD(アドリアマイシン/ドキソルビシン、ブレオマイシン、ビンブラスチンおよびダカーバジン)と交互に用いるMOPP(メクロレタミン、ビンクリスチン、プレドニゾンおよびプロカルバジン)
M.ChlVPP(クロラムブチル、ビンブラスチン、プロカルバジンおよびプレドニゾン)
N.IMVP−16(イホスファミド、メトトレキサートおよびエトポシド)
O.MIME(メチルグリコサミノグリカン、イホスファミド、メトトレキサートおよびエトポシド)
P.DHAP(デキサメタゾン、高用量シタラビンおよびシスプラチン)
Q.ESHAP(エトポシド、メチルプレジソロン、高用量シタラビンおよびシスプラチン)
R.CEPP(B)(シクロホスファミド、エトポシド、プロカルバジン、プレドニゾンおよびブレオマイシン)
S.CAMP(ロムスチン、ミトザントロン、シタラビンおよびプレドニゾン)
T.CVP−1(シクロホスファミド、ビンクリスチンおよびプレドニゾン)、ESHOP(エトポシド、メチルプレジソロン、高用量シタラビン、ビンクリスチンおよびシスプラチン)
U.ESHOP(エトポシド、メチルプレジソロン、高用量シタラビン、ビンクリスチンおよびシスプラチン)
V.EPOCH(丸薬用量のシクロホスファミドおよび経口プレドニゾンと一緒に96時間に及ぶエトポシド、ビンクリスチンおよびドキソルビシン)
W.ICE(イホスファミド、シクロホスファミドおよびエトポシド)
X.CEPP(B)(シクロホスファミド、エトポシド、プロカルバジン、プレドニゾンおよびブレオマイシン)
Y.CHOP−B(シクロホスファミド、ドキソルビシン、ビンクリスチン、プレドニゾンおよびブレオマイシン)および
Z.P/DOCE(エピルビシンまたはドキソルビシン、ビンクリスチン、シクロホスファミドおよびプレドニゾン)
から選ばれるところの上記[181]記載の使用。
[193] 増殖性疾患の治療に対する医薬の製造における、上記[43]記載の単量体カリチェアミシン誘導体/抗CD22抗体コンジュゲートの使用。
[194] カリチェアミシンがγカリチェアミシンまたはN−アセチルカリチェアミシンであるところの上記[193]記載の使用。
[195] 増殖性疾患がB細胞悪性腫瘍であるところの上記[193]記載の使用。
[196] B細胞悪性腫瘍が非ホジキンリンパ腫であるところの上記[195]記載の使用。
[197] 医薬が一つまたはそれ以上の生物活性試薬を含んでいてもよいところの上記[193]記載の使用。
[198] 生物活性試薬が、抗体、成長因子、ホルモン、サイトカイン、抗ホルモン、キサンチン、インターロイキン、インターフェロンおよび細胞傷害薬からなる群より選ばれるところの上記[197]記載の使用。
[199] 生物活性試薬が抗体であるところの上記[198]記載の使用。
[200] 抗体がB細胞悪性腫瘍で発現する細胞表面抗原に対するものであるところの上記[199]記載の使用。
[201] B細胞悪性腫瘍で発現する細胞表面抗原に対するものである抗体が、抗CD19、抗CD20および抗CD33抗体からなる群から選ばれるところの上記[200]記載の使用。
[202] 抗CD20抗体がリツキシマブであるところの上記[201]記載の使用。
[203] サイトカインまたは成長因子が、インターロイキン2(IL−2)、TNF、CSF、GM−CSFおよびG−CSFからなる群から選ばれるところの上記[198]記載の使用。
[204] ホルモンがステロイドホルモンであり、エストロゲン、アンドロゲン、プロゲスチンまたはコルチコステロイドから選ばれるところの上記[198]記載の使用。
[205] 細胞傷害薬が、ドキソルビシン、ダウノルビシン、イダルビシン、アクラルビシン、ゾルビシン、ミトザントロン、エピルビシン、カルビシン、ノガラマイシン、メノガリル、ピタルビシン、バルビシン、シタラビン、ゲムシタビン、トリフルリジン、アンシタビン、エノシタビン、アザシチジン、ドキシフルリジン、ペントスタチン、ブロクスリジン、カペシタビン、クラドリビン、デシタビン、フロクスウリジン、フルダラビン、ゴウゲロチン、ピューロマイシン、テガフール、チアゾフリン、アドリアマイシン、シスプラチン、カルボプラチン、シクロホスファミド、ダカーバジン、ビンブラスチン、ビンクリスチン、ミトザントロン、ブレオマイシン、メクロレタミン、ブレドニゾン、プロカルバジン、メトトレキサート、フルオロウラシル、エトポシド、タクソール、タクソール類似物およびマイトマイシンからなる群から選ばれるところの上記[198]記載の使用。
[206] 細胞傷害薬が、
A.CHOPP(シクロホスファミド、ドキソルビシン、ビンクリスチン、プレドニゾンおよびプロカルバジン)
B.CHOP(シクロホスファミド、ドキソルビシン、ビンクリスチンおよびプレドニゾン)
C.COP(シクロホスファミド、ビンクリスチンおよびプレドニゾン)
D.CAP−BOP(シクロホスファミド、ドキソルビシン、プロカルバジン、ブレオマイシン、ビンクリスチンおよびプレドニゾン)
E.m−BACOD(メトトレキサート、ブレオマイシン、ドキソルビシン、シクロホスファミド、ビンクリスチン、デキサメタゾンおよびロイコボリン)
F.ProMACE−MOPP(プレドニゾン、メトトレキサート、ドキソルビシン、シクロホスファミド、エトポシド、ロイコボリン、メクロレタミン、ビンクリスチン、プレドニゾンおよびプロカルバジン)
G.ProMACE−CytaBOM(プレドニゾン、メトトレキサート、ドキソルビシン、シクロホスファミド、エトポシド、ロイコボリン、シタラビン、ブレオマシンおよびビンクリスチン)
H.MACOP−B(メトトレキサート、ドキソルビシン、シクロホスファミド、ビンクリスチン、プレドニゾン、ブレオマイシンおよびロイコボリン)
I.MOPP(メクロレタミン、ビンクリスチン、プレドニゾンおよびプロカルバジン)
J.ABVD(アドリアマイシン/ドキソルビシン、ブレオマイシン、ビンブラスチンおよびダカーバジン)
K.ABV(アドリアマイシン/ドキソルビシン、ブレオマイシンおよびとビンブラスチン)と交互に用いるMOPP(メクロレタミン、ビンクリスチン、プレドニゾンおよびプロカルバジン)
L.ABVD(アドリアマイシン/ドキソルビシン、ブレオマイシン、ビンブラスチンおよびダカーバジン)と交互に用いるMOPP(メクロレタミン、ビンクリスチン、プレドニゾンおよびプロカルバジン)
M.ChlVPP(クロラムブチル、ビンブラスチン、プロカルバジンおよびプレドニゾン)
N.IMVP−16(イホスファミド、メトトレキサートおよびエトポシド)
O.MIME(メチルグリコサミノグリカン、イホスファミド、メトトレキサートおよびエトポシド)
P.DHAP(デキサメタゾン、高用量シタラビンおよびシスプラチン)
Q.ESHAP(エトポシド、メチルプレジソロン、高用量シタラビンおよびシスプラチン)
R.CEPP(B)(シクロホスファミド、エトポシド、プロカルバジン、プレドニゾンおよびブレオマイシン)
S.CAMP(ロムスチン、ミトザントロン、シタラビンおよびプレドニゾン)
T.CVP−1(シクロホスファミド、ビンクリスチンおよびプレドニゾン)、ESHOP(エトポシド、メチルプレジソロン、高用量シタラビン、ビンクリスチンおよびシスプラチン)
U.ESHOP(エトポシド、メチルプレジソロン、高用量シタラビン、ビンクリスチンおよびシスプラチン)
V.EPOCH(丸薬用量のシクロホスファミドおよび経口プレドニゾンと一緒に96時間に及ぶエトポシド、ビンクリスチンおよびドキソルビシン)
W.ICE(イホスファミド、シクロホスファミドおよびエトポシド)
X.CEPP(B)(シクロホスファミド、エトポシド、プロカルバジン、プレドニゾンおよびブレオマイシン)
Y.CHOP−B(シクロホスファミド、ドキソルビシン、ビンクリスチン、プレドニゾンおよびブレオマイシン)および
Z.P/DOCE(エピルビシンまたはドキソルビシン、ビンクリスチン、シクロホスファミドおよびプレドニゾン)
から選ばれる組み合わせであるところの上記[198]記載の使用。
【0166】
参考文献一覧
1.G. Kohler and Milstein, C., Nature, 256:495 (1975).
2.T. G. Hose and Blair, A.H. CRC Critical Rev. Drug Carrier Systems 3:263 (1987).
3.U.S. Patent No. 5,877,296
4.U.S. Patent No. 5,773,001
5.U.S. Patent No. 5,714,586
6.U.S. Patent No. 5,712,374
7.U.S. Patent. No. 5,053,394
8.J. Tramontano; et al., J. Mol. Recognit. 7:9 (1994).
9.H. McConnell and Hoess, J., J. Mol. Biol. 250:460 (1995).
10.Nord et al., Nat Biotechnol. 15:772 (1997).
11.Nord et al., Protein Eng. 8:601 (1995).
12.Ku and Schultz, Proc. Natl. Acad. Sci., USA 92:6552 (1995).
13.Markand et al., Biochemistry 35:8045 (1996).
14.Markand et al., Biochemistry 35:8098 (1996).
15.Rottgen and Collins, Gene 164:243 (1995).
16.Wang et al, J. Biol. Chem., 270:12250 (1995).
17.I.D. Bernstein et al., J. Clin. Invest. 79:1153 (1987).
18.I.D. Bernstein et al., J. Immunol. 128:867-881 (1992).
19.Kabat et al. Seqencing. of Proteins of Immunological . Interest, 1:310-334 (1994).
20.PCT publication No. WO 91/09967.
21.Yang et al., J. Mol. Biol., 254, 392-403 (1995).
22.Low et al., J. Mol. Biol., 250, 359-368 (1996).
23.Patten et al., Curr. Opin. Biotechnol., 8, 724-733, (1997).
24.Thompson et al., J. Mol. Biol., 256, 77-88, (1996).
25.Crameri et al., Nature, 391, 288-291, (1998).
26.U.S. Patent No. 4,671,958
27.U.S. Patent No. 4,970,198
28.U.S. Patent No. 5,037,651
29.U.S. Patent No. 5,079,233
30.U.S. Patent No. 5,877,296
31.PCT publication No. WO 98/20734
32.Trail P and Bianchi A., Current Opin. Immunol. , 11:584-588, (1999).
33.Dubowchik G. and Walker M., Pharmacol. & Therapeutics, 83:67-123 (1999).
34.Bross P.F., Beitz J., Chen G., Chen X.H., Duffy E., Keiffer-Bross P., Beitz J., Chen G., Chen X., Duffy E., Kieffer L., Roy S., Sridhara R., Rahman A., Williams G., Pazdur R., Clin. Cancer Res., 7:1490-1496 (2001).
35.Berger M., Leopold L., Dowell J., Korth-Bradley J., Sherman M., Invest. New Drugs; 20: 395-406 (2002).
36.Sievers E., Larson R., Stadmauer E., Estey E., Lowenberg B., Dombret H., Karanes C., Theobald M., Bennet J., Sherman M., et al., J. Clin. Oncol.; 19:3244-3254 (2001).
37.Larson R., Boogaerts M., Estey E., Karanes C., Stadtmauer E., Sievers E., Mineur P., Bennett J., Berger M., Eten C. et al. Leukemia; 16:1627-1636 (2002).
38.Hamann P., Hinman L., Beyer C., Kindh D., Upeslacis J., Flowers D., Bernstein I., Choice of Linker. Bioconj. Chem.; 13:40-46 (2002).
39.Hamann P., Hinman L., Hollander I., Beyer C., Lindh D., Holcomb R., Hallet W., Tsou H., Upeslacis J., Shochat D., et al., Bioconj. Chem.; 13:47-58 (2002).
40.Lee M., Dunne T., Chang C., Siegal M., Morton G., Ellestad G., McGahren W., Borders D.. , J. Am. Chem. Soc. 1992; 114:985-987 (1992).
41.Zein N., Sinha A., McGahren W., Ellestad G., Science; 240:1198-1201 (1988).
42.Thorson J., Sievers E., Ahlert J., Shepard E., Whitwam R., Onwueme K., Ruppen M., Current Pharmaceut. Design; 6:1841-1879 (2000).
43.Andrews R., Singer J., Bernstein I., J. Exp. Med.; 169:1721-1731 (1989).
44.Kreitman R.J., Current Pharmaceut. Biotech.; 2:313-325 (2001).
45.Pastan I., Kreitman R.J., Current Opin. Investig. Drugs, 3(7):1089-1091 (2002).
46.Kreitman R.J., Curr. Opin. Mol. Ther. ; 5:44-551 (2003).
47.Crocker P.R. and Varki A. Siglecs, Trends in Immunol.; 22:337-342 (2001).
48.Hursey M., Newton D.L., Hansen H.J., Ruby D., Goldenberg D.M., Rybak S.M., Leukemia and Lymphoma; 43:953-959 (2002).
49.Nitschke L., Floyd H., and Crocker P.R., Scand. J. Immunol.; 53:227-234 (2001).
50.Moyron-Quiroz J.E., Partida-Sanchez S., Donis-Hernandez R., Sandoval-Montes C. and Santos-Argumedo L., Scand. J. Immunol.; 55:343-351 (2002).
51.Tedder T.F., Tuscano J., Sato S., Kehrl J.H., Ann. Rev. Immunol.; 15:481-504 (1997).
52.Hanna R., Ong G.L., Mattes M.J., Cancer Res.; 56:3062-3068 (1996).
53.Shan D. and Press O.W., J. Immunol. 1995; 154:4466-4475 (1995).
54.Dowell J.A., Korth-Bradley J., Liu H., King S.P., Berger M.S., J. Clin. Pharmacol.; 41:1206-1214 (2001).
55.Gibaldi M., Perrier D., Pharmacokinetics, 2
nd ed., Marcel-Dekker Inc., NY (1982).
56.Van Horssen P.J., Preijers, F.W., Van Oosterhout, Y.V., Eling W.M. and De Witte, T., Leukemia & Lymphoma; 39(5-6):591-599 (2000).
57.Hinman L.M., Hamann P.R., Wallace R., Menendez A.T., Durr F.E., Upeslacis J., Cancer Res. 53:3336-3342 (1993).
58.Kreitman R.J., Wilson W.H., Bergeron K., Raggio M., Stetler-Stevenson M., Fitzgerald D.J., Pastan I., N. Engl. J. Med.; 345:241-247 (2001).
59.Leonard J.P. and Link B.K., Sem. Oncol. 29:81-86 (2002).
60.Schindler J., Sausville E., Messmann R., Uhr J.W. & Vitetta, E.S., Clin.Cancer Res., 7,255-258 (2001).
61.Vincent T. DeVita, Samuelo Hellman, Steven A. Rosenberg, Eds., Cancer Principles and Practice of Oncology, 6
th Edition, Publishers: Lippincott, Williams and Wilkins (2001).
62.Edward Chu and Vincent T. Devita, Physician's Cancer Chemotherapy Drug Manual, Publishers: Jones and Bartlett (2002).