特許第6872434号(P6872434)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ルネサスエレクトロニクス株式会社の特許一覧

特許6872434無線信号処理装置、半導体装置、及び発振周波数変動補正方法
<>
  • 特許6872434-無線信号処理装置、半導体装置、及び発振周波数変動補正方法 図000002
  • 特許6872434-無線信号処理装置、半導体装置、及び発振周波数変動補正方法 図000003
  • 特許6872434-無線信号処理装置、半導体装置、及び発振周波数変動補正方法 図000004
  • 特許6872434-無線信号処理装置、半導体装置、及び発振周波数変動補正方法 図000005
  • 特許6872434-無線信号処理装置、半導体装置、及び発振周波数変動補正方法 図000006
  • 特許6872434-無線信号処理装置、半導体装置、及び発振周波数変動補正方法 図000007
  • 特許6872434-無線信号処理装置、半導体装置、及び発振周波数変動補正方法 図000008
  • 特許6872434-無線信号処理装置、半導体装置、及び発振周波数変動補正方法 図000009
  • 特許6872434-無線信号処理装置、半導体装置、及び発振周波数変動補正方法 図000010
  • 特許6872434-無線信号処理装置、半導体装置、及び発振周波数変動補正方法 図000011
  • 特許6872434-無線信号処理装置、半導体装置、及び発振周波数変動補正方法 図000012
  • 特許6872434-無線信号処理装置、半導体装置、及び発振周波数変動補正方法 図000013
  • 特許6872434-無線信号処理装置、半導体装置、及び発振周波数変動補正方法 図000014
  • 特許6872434-無線信号処理装置、半導体装置、及び発振周波数変動補正方法 図000015
  • 特許6872434-無線信号処理装置、半導体装置、及び発振周波数変動補正方法 図000016
  • 特許6872434-無線信号処理装置、半導体装置、及び発振周波数変動補正方法 図000017
  • 特許6872434-無線信号処理装置、半導体装置、及び発振周波数変動補正方法 図000018
  • 特許6872434-無線信号処理装置、半導体装置、及び発振周波数変動補正方法 図000019
  • 特許6872434-無線信号処理装置、半導体装置、及び発振周波数変動補正方法 図000020
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6872434
(24)【登録日】2021年4月21日
(45)【発行日】2021年5月19日
(54)【発明の名称】無線信号処理装置、半導体装置、及び発振周波数変動補正方法
(51)【国際特許分類】
   H03L 7/095 20060101AFI20210510BHJP
   H04B 1/04 20060101ALI20210510BHJP
【FI】
   H03L7/095
   H04B1/04 Z
【請求項の数】20
【全頁数】33
(21)【出願番号】特願2017-117757(P2017-117757)
(22)【出願日】2017年6月15日
(65)【公開番号】特開2019-4330(P2019-4330A)
(43)【公開日】2019年1月10日
【審査請求日】2019年11月15日
(73)【特許権者】
【識別番号】302062931
【氏名又は名称】ルネサスエレクトロニクス株式会社
(74)【代理人】
【識別番号】100103894
【弁理士】
【氏名又は名称】家入 健
(72)【発明者】
【氏名】柴田 賢一
【審査官】 ▲高▼橋 徳浩
(56)【参考文献】
【文献】 特開平11−308285(JP,A)
【文献】 特開2010−252289(JP,A)
【文献】 特開2014−135641(JP,A)
【文献】 国際公開第2012/101774(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H03L1/00−H03L9/00
H04B1/02−H04B1/04
(57)【特許請求の範囲】
【請求項1】
インダクタ、第1の制御信号に応じて容量値が変更可能な第1の容量部、及び第2の制御信号に応じて容量値が変更可能な第2の容量部を含む共振回路を有し、該共振回路の共振周波数に応じた発振周波数の発振信号を出力する発振器と、
前記第1の制御信号を生成して前記発振器に出力することで前記発振器を制御し、前記発振器から基準信号に同期した発振信号を出力させる位相同期ループと、
前記位相同期ループが前記発振器が出力する発振信号を所定周波数に制御している状態で、前記発振信号に基づく無線送信信号の増幅を行う電力増幅器であって、前記共振回路に対して干渉源となる電力増幅器が増幅動作を開始した後、前記第1の制御信号の時間変化に対する変動を検出する変動検出部と、
前記変動検出部が検出した変動に基づいて前記第2の制御信号を生成し、該生成した第2の制御信号を前記発振器に出力することで、前記電力増幅器の増幅動作に伴う干渉に起因する前記発振周波数の変動の補正を実施する変動補正部とを備える無線信号処理装置。
【請求項2】
前記変動補正部は、前記第2の制御信号により、前記電力増幅器の干渉に起因する前記発振周波数の変動を打ち消すように前記発振周波数を変化させる請求項1に記載の無線信号処理装置。
【請求項3】
前記第1の制御信号は制御上の上限値と下限値とを有しており、前記変動補正部は、前記位相同期ループが前記発振器に出力する第1の制御信号が前記上限値より低く、かつ前記下限値より高くなるように、前記補正を行う請求項1に記載の無線信号処理装置。
【請求項4】
前記変動検出部は、前記電力増幅器における前記増幅動作の開始に関連した基準タイミングから、前記第1の制御信号が所定のしきい値に到達するまでの間の第1の時間を検出する請求項1に記載の無線信号処理装置。
【請求項5】
前記変動検出部は、前記第1の制御信号が所定のしきい値に到達するまでの間の時間と前記所定のしきい値とに基づいて、前記第1の制御信号の時間変化に対する傾きを検出する請求項4に記載の無線信号処理装置。
【請求項6】
前記電力増幅器は、前記無線送信信号の電力が所定の電力となるまで複数の段階で増幅率が増加するように制御され、
前記変動補正部は、前記変動検出部が検出した傾きと、前記基準タイミングから前記増幅率の増加の完了タイミングまでの間の第2の時間と、前記発振器における前記第1の制御信号の変化に対する前記発振周波数の変化量とに基づいて、前記電力増幅器の干渉に起因する発振周波数の変動の量を推定する請求項5に記載の無線信号処理装置。
【請求項7】
前記変動補正部は、前記推定した発振周波数の変動の量と、前記発振器における前記第2の制御信号の変化量に対する前記発振周波数の変化量とに基づいて、前記第2の制御信号を生成する請求項6に記載の無線信号処理装置。
【請求項8】
変動補正部は、前記生成した前記第2の制御信号を前記発振器に出力することで、前記発振器における前記第1の制御信号と前記発振周波数との関係を、前記推定した発振周波数の変動の量だけ変化させる請求項6に記載の無線信号処理装置。
【請求項9】
前記変動補正部は、前記第1の時間に対応して前記補正の補正量に関連する値が記憶されたテーブルを更に有し、前記変動検出部が検出した第1の時間に対応する前記補正量に関連する値を前記テーブルから取得し、該取得した補正量に関連する値に基づいて前記第2の制御信号を生成する請求項4に記載の無線信号処理装置。
【請求項10】
前記第2の制御信号は、サーモメータコードで符号化されている請求項1に記載の無線信号処理装置。
【請求項11】
前記発振器は、送信データに応じて位相又は周波数が変調された発振信号を出力する請求項1に記載の無線信号処理装置。
【請求項12】
前記変動検出部は、前記発振信号が前記送信データで変調される前の期間において前記第1の制御信号の変動の検出を行う請求項11に記載の無線信号処理装置。
【請求項13】
前記電力増幅器は、前記発振器が出力する発振信号を増幅する請求項11に記載の無線信号処理装置。
【請求項14】
電力増幅器は、前記送信データに応じて増幅率が制御され、前記無線送信信号の振幅を前記送信データに応じて更に変調する請求項11に記載の無線信号処理装置。
【請求項15】
前記位相同期ループはアナログ位相同期ループで構成され、アナログ電圧信号である第1の制御信号を前記発振器に出力し、
前記発振器は、前記第1の制御信号に応じて制御される電圧制御発振器として構成される請求項1に記載の無線信号処理装置。
【請求項16】
前記位相同期ループはデジタル位相同期ループとして構成され、デジタル信号である第1の制御信号を前記発振器に出力し、
前記発振器は、前記第1の制御信号に応じて制御されるデジタル制御発振器として構成される請求項1に記載の無線信号処理装置。
【請求項17】
前記変動検出部は、前記第1の制御信号をモニタし、所定時間における前記第1の制御信号の変化の大きさに基づいて前記変動を検出する請求項16に記載の無線信号処理装置。
【請求項18】
前記共振回路は、第4の制御信号に応じて容量値が変化する第4の容量部を更に含んでおり、前記第4の制御信号は前記発振信号の周波数が所定周波数となるように調整される請求項1に記載の無線信号処理装置。
【請求項19】
インダクタ、第1の制御信号に応じて容量値が変更可能な第1の容量部、及び第2の制御信号に応じて容量値が変更可能な第2の容量部を含む共振回路を有し、該共振回路の共振周波数に応じた発振周波数の発振信号を出力する発振器と、
前記第1の制御信号を生成して前記発振器に出力することで前記発振器を制御し、前記発振器から基準信号に同期した発振信号を出力させる位相同期ループと、
前記発振信号に基づく無線送信信号の増幅を行う電力増幅器と、
前記電力増幅器と前記無線送信信号の送信に用いられるアンテナとの間に配置され、インダクタを含み、平衡信号と非平衡信号との間で信号の変換を行うバラン回路と、
前記位相同期ループが前記発振器が出力する発振信号を所定周波数に制御している状態で前記電力増幅器が増幅動作を開始した後、前記第1の制御信号の時間変化に対する変動を検出する変動検出部と、
前記変動検出部が検出した変動に基づいて前記第2の制御信号を生成し、該生成した第2の制御信号を前記発振器に出力することで、前記共振回路に含まれるインダクタと前記バラン回路に含まれるインダクタとの間の電磁結合に起因する前記発振周波数の変動の補正を実施する変動補正部とを備える半導体装置。
【請求項20】
位相同期ループを用いて、インダクタ、第1の制御信号に応じて容量値が変更可能な第1の容量部、及び第2の制御信号に応じて容量値が変更可能な第2の容量部を含む共振回路を有する発振器が出力する発振信号の位相と基準信号の位相とを比較して比較結果を生成し、該比較結果に基づいて前記第1の制御信号を生成し、該生成した第1の制御信号を前記発振器に入力することで、前記発振器から前記基準信号に同期した発振信号を出力させ、
前記位相同期ループを用いて前記発振信号が所定周波数に制御されている状態で、前記発振信号に基づく無線送信信号の電力を増幅し、
前記無線送信信号の電力の増幅動作が開始された後、前記発振器に入力される第1の制御信号の時間変化に対する変動を検出し、
記検出した変動に基づいて前記第2の制御信号を生成し、該生成した第2の制御信号を前記発振器に入力することで、前記無線送信信号の電力の増幅動作に伴う干渉に起因する前記発振信号の周波数の変動の補正を実施する発振周波数変動補正方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、無線信号処理装置及び半導体装置に関し、例えば、発振周波数が可変に構成された発振器を含む無線信号処理装置及び半導体装置に関する。
【0002】
また、本発明は、発振周波数変動補正方法に関し、例えば上記発振器の発振周波数の変動を補正する発振周波数変動補正方法に関する。
【背景技術】
【0003】
関連技術の一例として、特許文献1は、MCA(Multi-Channel Access)用直接変調FSK(Frequency Shift Keying)送信機を開示する。特許文献1に記載されるMAC用直接変調FSK送信機は、位相同期ループ(PLL:Phase Locked Loop)と、電圧制御発振器(VCO:Voltage Controlled Oscillator)と、送信電力増幅器とを有する。特許文献1において、電圧制御発振器は、位相同期ループにより、特定チャンネルの目的周波数の発振信号を出力するように制御される。
【0004】
特許文献1に記載のMCA用直接変調FSK送信機において、無線送信の開始時に送信電力増幅器への供給電力をオンにすると、送信電力増幅器の入力インピーダンスが変化し、この入力インピーダンスの変化に起因して、送信電力増幅器の前段に配置された電圧制御発振器の発振周波数が変化する。特許文献1には、送信電力増幅器への電源供給開始時の発振周波数の変動を抑制するために、送信電力増幅器のオン/オフ用制御信号を電圧制御発振器に加え、発振周波数の変動を打ち消すことが記載されている。
【0005】
また、関連技術の別の一例として、特許文献2は、通信用のRFIC(無線周波数集積回路:Radio Frequency Integrated Circuit)を開示する。特許文献2に記載のRFICは、LC発振器を含むPLL回路を有する。特許文献2には、送信出力段の増幅アンプをオン又はオフに切替えた場合に、電源ラインの電圧が変動し、この電圧変動に起因してPLL回路のロック外れが生じ得ることが記載されている。このロック外れの問題に対し、特許文献2では、ノイズ源である増幅アンプに供給される制御信号に応じて、LC発振器の容量値が制御される。このようにすることで、増幅アンプの状態変化に起因した発振周波数の変動を抑制することが可能である。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開平11−308285号公報
【特許文献2】特許第5668082号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
特許文献1及び2では、送信電力増幅器のオン時に、発振器の発振周波数が所定の補正量だけ補正される。このようにすることで、送信電力増幅器の状態変化に起因する発振周波数の変動を打ち消すことができる。しかしながら、特許文献1及び2では、発振周波数の補正量が固定されているため、発振周波数の変動を抑制しきれないことがあるという問題があった。
【0008】
その他の課題と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
【課題を解決するための手段】
【0009】
一実施の形態によれば、無線信号処理装置は、電力増幅器の動作後に、位相同期ループが発振器に出力する第1の制御信号の変動を検出する変動検出部と、検出された変動に基づいて第2の制御信号を生成し、電力増幅器の増幅動作に伴う干渉に起因する発振器の発振周波数の変動の補正を実施する変動補正部とを備えるものである。
【発明の効果】
【0010】
前記一実施の形態によれば、電力増幅器の増幅動作に伴う発振器への干渉の量や極性が一定でない場合でも、発振器の発振周波数の変動を抑制できる。
【図面の簡単な説明】
【0011】
図1】実施形態1に係る無線信号処理装置を含む無線送信装置を示すブロック図。
図2】発振器の構成例を示すブロック図。
図3】(a)〜(c)は、それぞれ粗調用可変容量、微調用可変容量、及び補正用可変容量の構成例を示すブロック図。
図4】位相同期ループの構成例を示すブロック図。
図5】変動検出部及び変動補正部の構成例を示すブロック図。
図6】制御信号Vcontを表す波形図。
図7】(a)は、制御信号Vcontと発振周波数との関係を示すグラフ、(b)は、制御信号FREQ_CTRLと発振周波数との関係を示すグラフ。
図8】無線送信装置の各部の動作波形を示すタイミングチャート。
図9】無線送信装置を含む半導体装置を示すブロック図。
図10】デジタルPLLの構成例を示すブロック図。
図11】実施形態2において用いることができる変動検出部の構成例を示すブロック図。
図12】変形例における変動検出部の構成例を示すブロック図。
図13】実施形態3における変動補正部の構成例を示すブロック図。
図14】補正テーブルの具体例を示す図。
図15】ポーラー変調方式の無線送信装装置を示すブロック図。
図16】LDOレギュレータと電力増幅器を示すブロック図。
図17】検討に用いられた無線送信装置を示すブロック図。
図18】発振器と整合回路との干渉作用を説明するためのモデル図。
図19】ロック外れが起こる場合の動作の一例を示すタイミングチャート。
【発明を実施するための形態】
【0012】
実施形態の説明に先立って、本発明者が検討した事項を説明する。図17は、検討に用いられた無線送信装置を示す。無線送信装置200は、位相同期ループ(PLL)201、発振器(VCO)202、電力増幅器(PA:Power Amplifier)203、整合回路204、基準信号生成回路205、PLL制御部206、及びPA制御部207を有する。
【0013】
発振器202は、位相同期ループ201から出力される制御信号(その電圧)Vcontに応じた発振周期で発振し、発振信号Voutを出力する。また、発振器202は、PLL制御部206から出力される制御信号FREQ_BANDに応じて、発振周波数の調整が可能に構成される。さらに、VCO202は、PLL制御部206から出力される制御信号MOD_VCOに応じて発振周波数を変化させることが可能に構成されている。
【0014】
位相同期ループ201は、例えば位相比較器、チャージポンプ、ローパスフィルタ、及び分周器を含む。位相同期ループ201は、発振器202に出力する制御信号Vcontを通じて、発振器202が出力する発振信号Voutを、基準信号生成回路205から入力される基準信号REFCKLに同期させる。また、位相同期ループ201は、PLL制御部206から出力される制御信号DIV_PLLに応じて、発振信号Voutを分周する分周器の分周比を変化させることで、発振器202の発振周波数を変化させる。位相同期ループ201は、例えば分周器の出力信号を、信号PLLCLKとしてPLL制御部206に出力する。
【0015】
電力増幅器203は、発振器202が出力する発振信号Voutの電力を増幅する。電力増幅器203が出力する信号Poutは、整合回路204を介してアンテナから送信される。一般に、整合回路204は、電力増幅器203が出力する不平衡信号を平衡信号に変換するためのバラン(Balun:balanced/unbalanced)を含む。
【0016】
PLL制御部206は、位相同期ループ201と発振器202とを制御する。PLL制御部206は、発振器202に制御信号FREQ_BANDを出力し、発振器202の発振周波数が所望の周波数となるように、発振器202の発振周波数をキャリブレーションする。また、PLL制御部206は、送信データに応じて発振器202に出力する信号MOD_VCOを変化させ、発振器202が出力する発振信号Voutを送信データに応じて変調する。さらに、PLL制御部206は、送信データに応じて位相同期ループ201に出力する信号DIV_PLLを変化させることで、発振器202が出力する発振信号Voutを送信データに応じて変調する。
【0017】
PA制御部207は、電力増幅器203を制御する。PA制御部207は、電力増幅器203に出力する制御信号PA_ONを通じて、電力増幅器203のオンとオフとを制御する。また、PA制御部207は、電力増幅器203に出力する信号POWER_CODEを通じて、電力増幅器203における無線信号の増幅度を制御する。PA制御部207は、例えば制御信号POWER_CODEの数値を段階的に増加させることで、無線信号の送信電力が段階的に増大するように、電力増幅器203を制御する。
【0018】
例えば、BLE(Bluetooth (登録商標) Low Energy)やZigBee(登録商標)などの近距離無線システムでは、電流を削減するために、図17に示されるように位相同期ループ201を用いて発振周波数が正確に制御された発振器202の出力を直接に電力増幅器203に入力する構成が採用される。このシステムは「直接変調システム」と呼ばれる。また、図17に示される無線送信装置200では、位相同期ループ201と発振器202との計2箇所において変調を行う2点変調方式が採用されている。直接変調システムでは、送信出力(Pout)の周波数frfと発振器202の発振周波数fvcoとは等しい。
【0019】
ここで、近年、プリント回路板(PCB:Printed-Circuit-Board)上の部品点数を減らすことが求められおり、電力増幅器203のためのバランを含む整合回路204をIC(Integrated Circuit)に内蔵することが設計トレンドとなっている。整合回路204をIC内に形成した場合、バランに用いられるインダクタなどの部品をプリント回路板に搭載する必要がなくなり、無線送信機の低コスト化を図ることができる。
【0020】
一般に、発振器202は、インダクタとキャパシタとを含むLC発振回路を含んで構成される。また、バランはインダクタを含んで構成される。その場合、電力増幅器203が比較的高い送信電力で信号出力を行うと、整合回路204のバランと発振器202のインダクタとの間で磁気結合などの干渉作用が生じる。この干渉作用に起因して発振器202の発振周波数が大きく変動すると、位相同期ループ201のロックが外れるという問題が生じる。
【0021】
図18は、発振器202と整合回路204との干渉作用を説明するためのモデル図である。図18において、発振器202に含まれるインダクタ(そのインダクタンス)はL1で表され、整合回路204に含まれるインダクタ(そのインダクタンス)はL2で表されている。発振器202においてインダクタL1には電流(AC(Alternating Current)電流)i1が流れ、電力増幅器203の出力側(整合回路204)においてインダクタL2には電流(AC電流)i2が流れているとする。
【0022】
上記において、インダクタL1とインダクタL2との間で磁気結合が生じると、インダクタL1の実効インダクタンスはL1からLeffに変化する。実効インダクタンスLeffは、Mを所定の係数として、下記式で定義される。
Leff=L1+(i2/i1)M
上記式から理解されるように、実効インダクタンスの変動量は、電力増幅器203側の電流i2に比例し、発振器202側の電流i1に反比例する。従って、電力増幅器203における送信電力の増幅度が高いほど、つまり送信パワーが高いほど、発振器202における実効インダクタンスの変動量が大きくなる。
【0023】
実効インダクタンスの変化は、発振器202において発振周波数を変化させるように作用する。送信パワーがそれほど高くない場合、実効インダクタンスの変動は比較的小さい。その場合、実効インダクタンスの変動に伴って発振器202の発振周波数が変動しそうになっても、位相同期ループ201が出力する制御信号Vcontが変化することで、発振器202が出力する発振信号Voutの周波数を一定の周波数に維持できる。しかし、実効インダクタンスの変動に伴う発振器202の発振周波数の変化量が位相同期ループ201のロックレンジ許容値を超えると、位相同期ループ201は、発振器VCO202の発振周波数を所望の周波数に維持することができなくなる。つまり、位相同期ループ201のロックが外れる。
【0024】
図19は、ロック外れが起こる場合の動作の一例を示す。時刻t0で無線送信装置200が起動し、バイアス設定などのパワーオン時の動作が実施される。このとき、電力増幅器203はまだ起動されておらず、送信電力の増幅は実施されない(図19(c)を参照)。その後、PLL制御部206は、時刻t1で発振器202の発振周波数のキャリブレーションを開始する。発振周波数のキャリブレーションとは、発振周波数の粗調整動作である。発振周波数のキャリブレーションでは、制御信号FREQ_BANDによりVCO202のLC共振回路の容量バンクの設定が変更されつつ発振周波数がモニタされ、発振周波数がターゲットの周波数に近づく容量バンクの設定が取得される(図19(a)を参照)。別の言い方をすると、発振周波数がターゲットの周波数に近づく制御信号FREQ_BANDの値が確定される。発振周波数のキャリブレーションは、位相同期ループ201によるフィードバックループが形成されず、位相同期ループ201から一定電圧の制御信号Vcontが出力された状態で実施される。
【0025】
キャリブレーションが実施され、発振器202の発振周波数がターゲットの周波数に近づくと、PLL制御部206は、時刻t2で位相同期ループ201を動作させる。発振器202の発振周波数は、位相同期ループ201の位相引き込み過程(トラッキング動作)を経て、ターゲットの周波数に正確に制御される(図19(b)を参照)。この動作は、発振器202の発振周波数の微調整動作であり、位相同期ループ201は、発振器202に含まれるアナログ可変容量(バラクタ)に供給される制御信号(その電圧)Vcontを変化させることで、発振器202の発振周波数をターゲットの周波数に一致させる。
【0026】
位相同期ループ201がロック状態となった後、PA制御部207は、時刻t3で、電力増幅器203に出力する制御信号PA_ONをアサートし、電力増幅器203をオンにしてランプアップ動作が開始する(図19(c)を参照)。ランプアップ動作とは、電力増幅器203に出力される信号POWER_CODEの値を段階的に増加することで、電力増幅器203の出力電力を段階的に増加させる動作である。
【0027】
電力増幅器203が動作すると、上記したように、発振器202が整合回路204から干渉を受ける。この干渉は、発振器202の発振周波数を変動させるように作用する。発振器202の発振周波数が変動すると、位相同期ループ201から発振器202に出力される制御信号Vcontが変化し(図19(b)を参照)、発振器202が出力する発振信号Voutの周波数は一定に保たれる(図19(a)を参照)。例えば、干渉に起因して発振周波数が低下しそうになると、位相同期ループ201は発振周波数が増加する方向に制御信号Vcontを変化させることで、発振器202が出力する発振信号Voutの周波数を所定周波数に保つ。
【0028】
ここで、制御信号Vcontは、制御上の上限値と下限値とを有しており、位相同期ループ201は上限値よりも高い電圧の制御信号Vcontを出力することはできず、また、下限値よりも低い電圧の制御信号Vcontを出力することはできない。制御信号Vcontの上限値は、例えば位相同期ループ201への供給電圧と等しい。
【0029】
制御信号Vcontの電圧が制御可能な電圧範囲にある場合、干渉に起因する周波数変動作用は制御信号Vcontが変化することで吸収され、位相同期ループ201はロック動作を維持できる。しかし、時刻t4において、位相同期ループ201が出力する制御信号Vcontが上限値に到達すると、制御信号Vcontの電圧はそれ以上大きくならず、一定の電圧となる(図19(b)を参照)。その場合に、発振器202への干渉量が増加し、発振器202の発振周波数が更に変動すると、位相同期ループ201はロック動作を維持できず、ロック外れへと至る(図19(a)を参照)。
【0030】
上記ロック外れの問題のため、ある一定以上の出力を持つ電力増幅器203を発振器202と同じチップに集積化することはできなかった。あるいは、磁気干渉の原因となる電力増幅器203の整合回路204を、発振器202と同じチップに集積することができなかった。電力増幅器203及び整合回路204を発振器202と同じチップに集積化する場合、磁気干渉を低減するために、発振器202と電力増幅器203との間の距離を大きくとる必要があり、チップサイズを縮小することができなかった。また、その場合、チップ上で高周波信号を長距離伝送する必要があることから、高周波信号の特性劣化や消費電力の増加などが生じた。あるいは、発振器202を送信出力の周波数frfの2倍の周波数で動作させるなどして、発振器202と電力増幅器203とで動作周波数を一致させない構成を採用する必要があった。
【0031】
上記ロック外れの問題の問題に対し、特許文献1及び2では、送信電力増幅器のオン時に、発振器の発振周波数が所定の補正量だけ補正される。しかしながら、上記干渉の量は位相に応じて変化し、また、温度やプロセス条件などに応じても変化すると考えられる。従って、所定の固定量だけ発振周波数の補正を行ったとしても、ロック外れの問題を解消することができるとは限らない。干渉の極性は変化し得るため、固定的な補正では、逆補正となる場合も考えられる。本発明者は、以上のような検討を行った結果、以下に説明する実施形態を想到するに至った。
【0032】
以下、図面を参照しつつ、上記課題を解決するための手段を適用した実施形態を詳細に説明する。説明の明確化のため、以下の記載及び図面は、適宜、省略、及び簡略化がなされている。また、様々な処理を行う機能ブロックとして図面に記載される各要素は、ハードウェア的には、CPU(Central Processing Unit)、メモリ、又はその他の回路で構成することができ、ソフトウェア的には、メモリにロードされたプログラムなどによって実現される。したがって、これらの機能ブロックがハードウェアのみ、ソフトウェアのみ、又はそれらの組合せによっていろいろな形で実現できることは当業者には理解されるところであり、何れかに限定されるものではない。なお、各図面において、同一の要素には同一の符号が付されており、必要に応じて重複説明は省略されている。
【0033】
また、上述したプログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスク)、光磁気記録媒体(例えば光磁気ディスク)、CD−ROM(Read Only Memory)CD−R、CD−R/W、及び半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(Random Access Memory))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。
【0034】
以下の実施の形態においては便宜上その必要があるときは、複数のセクション又は実施の形態に分割して説明するが、特に明示した場合を除き、それらはお互いに無関係なものではなく、一方は他方の一部又は全部の変形例、応用例、詳細説明、又は補足説明等の関係にある。また、以下の実施の形態において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でもよい。
【0035】
さらに、以下の実施の形態において、その構成要素(動作ステップ等も含む)は、特に明示した場合及び原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではない。同様に、以下の実施の形態において、構成要素等の形状、又は位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうでないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数等(個数、数値、量、範囲等を含む)についても同様である。
【0036】
また、実施の形態の各機能ブロックを構成する回路素子は、特に制限されないが、公知のCMOS(Complementary MOS(Metal Oxide Semiconductor))などの集積回路技術によって、単結晶シリコンのような半導体基板上に形成される。なお、実施の形態では、MISFET(Metal Insulator Semiconductor Field Effect Transistor)の一例としてMOSFET(Metal Oxide Semiconductor Field Effect Transistor)(MOSトランジスタと略す)を用いるが、ゲート絶縁膜として非酸化膜を除外するものではない。
【0037】
[実施形態1]
図1は、実施形態1に係る無線信号処理装置を含む無線送信装置を示す。無線送信装置10は、位相同期ループ(PLL)11、発振器(VCO)12、電力増幅器(PA)13、整合回路14、変動検出部15、変動補正部16、PLL制御部17、PA制御部18、及び基準信号生成回路21を有する。無線送信装置10の構成要素のうち、位相同期ループ11、発振器12、変動検出部15、及び変動補正部16は、無線信号処理装置(高周波数信号処理装置)20を構成する。本実施形態に係る無線送信装置10は、上記検討に用いられた無線送信装置200(図17を参照)とは、主に、変動検出部15及び変動補正部16が追加されている点で相違する。
【0038】
発振器12は、位相同期ループ11から出力される制御信号Vcontに応じた周期で発振し、発振信号Voutを出力する。位相同期ループ11は、発振器12からフィードバックされた発振信号Voutと、基準信号生成回路21から出力される基準信号REFCLKとに基づいて制御信号Vcontを生成する。位相同期ループ11は、発振器12に出力する制御信号Vcontを通じて発振器12を制御し、発振器12が出力する発振信号Voutを基準信号REFCKLに同期させる。位相同期ループ11は、例えばアナログPLLで構成されており、アナログ電圧信号である制御信号Vcontを発振器12に出力する。発振器12は、制御信号Vcontの電圧に応じて発振周波数が制御される電圧制御発振器として構成される。PLL制御部17は、位相同期ループ11及び発振器12に対する制御などを行う。
【0039】
電力増幅器13は、発振器12が出力する発振信号Voutの電力を増幅する。電力増幅器13は、位相同期ループ11が発振器12から出力される発振信号Voutを所定周波数に制御している状態で、発振信号Vout(無線送信信号)を増幅する。電力増幅器13が出力する信号Poutは、整合回路14を介してアンテナから送信される。整合回路14は、インピーダンスを整合させるための回路と、電力増幅器13から出力される不平衡信号を平衡信号に変換するためのバランとを含む。本実施形態において、発振器12は、送信データに応じて位相又は周波数が変調された発振信号を出力し、無線送信装置10は、位相同期ループ11と発振器12とを用いて直接変調を行う装置として構成される。
【0040】
PA制御部18は、電力増幅器13に対する制御などを行う。PA制御部18は、電力増幅器13に出力する制御信号PA_ONを通じて、電力増幅器13のオンとオフとを制御する。また、PA制御部18は、電力増幅器13に出力する信号POWER_CODEを通じて、電力増幅器13における無線信号の増幅度を制御する。PA制御部18は、例えば制御信号POWER_CODEの数値を段階的に増加させることで、電力増幅器13の送信電力を、所定の電力まで段階的に増加させる。PA制御部18は、送信電力を所定電力まで増加させた後、PLL制御部17に制御信号MOD_ONを出力する。PLL制御部17は、制御信号MOD_ONが出力された後、発振器12の変調動作を行う。
【0041】
[発振器]
図2は、発振器12の構成例を示す。発振器12は、p型のMOSトランジスタ(PMOSトランジスタ)Q11及びQ12と、n型のMOSトランジスタ(NMOSトランジスタ)Q21及びQ22と、インダクタLと、粗調用可変容量25と、微調用可変容量26と、変調用可変容量27と、補正用可変容量28とを有する。発振器12において、インダクタLと、粗調用可変容量25、微調用可変容量26、変調用可変容量27、及び補正用可変容量28とは、LC共振型の発振回路を構成する。インダクタL、粗調用可変容量25、微調用可変容量26、変調用可変容量27、及び補正用可変容量28は、一対の発振出力ノードの間に並列に接続される。
【0042】
発振器12において、PMOSトランジスタQ11及びQ12のソースは、電源電圧VDDに接続される。また、PMOSトランジスタQ11及びQ12の一方のゲートは他方のドレインに相互接続される。つまり、PMOSトランジスタQ11及びQ12のゲート及びドレインはクロスカップル接続される。一方、NMOSトランジスタQ21及びQ22のソースはそれぞれ接地電源電圧GNDに接続され、ゲート及びドレインはクロスカップル接続される。PMOSトランジスタQ11及びNMOSトランジスタQ22のドレインと、PMOSトランジスタQ12及びNMOSトランジスタQ22のドレインとは、それぞれ一対の発振出力ノードに接続される。
【0043】
微調用可変容量(容量部1)26は、発振周波数の微調整用に用いられる可変容量である。微調用可変容量26は、位相同期ループ11(図1を参照)から出力される制御信号(制御信号1)Vcontに応じて容量値を変化させる。補正用可変容量(容量部2)28は、電力増幅器13の動作に起因する発振周波数の変動を補正する場合に用いられる可変容量である。補正用可変容量28は、変動補正部16から出力される制御信号(制御信号2)FREQ_CTRLに応じて容量値を変化させる。
【0044】
変調用可変容量(容量部3)27は、発振信号Voutを送信データに応じて変調する場合に用いられる可変容量である。変調用可変容量27は、PLL制御部17から出力される制御信号(制御信号3)MOD_VCOに応じて容量値を変化させる。PLL制御部17は、送信データに応じて制御信号MOD_VCOを変化させる。発振器12は、変調用可変容量27に入力される制御信号MOD_VCOが送信データに応じて制御されることで、送信データに応じて変調された発振信号Voutを出力する。
【0045】
粗調用可変容量(容量部4)25は、発振周波数の粗調整に用いられる可変容量である。粗調用可変容量25は、PLL制御部17から出力される制御信号(制御信号4)FREQ_BANDに応じて容量値を変化させる。制御信号FREQ_BANDは、制御信号Vcontの信号範囲において、発振信号Voutの周波数が所定周波数となるように調整される。PLL制御部17は、発振器12に制御信号FREQ_BANDを出力し、発振器12の発振周波数が所望の周波数となるように、発振器12の発振周波数をキャリブレーションする。
【0046】
ここで、本実施形態において、制御信号Vcontはアナログ電圧信号であり、制御信号FREQ_CTRL、MOD_VCO、及びFRQE_BANDはそれぞれ所定ビット数のデジタル信号である。また、本実施形態において、特に制御信号FREQ_CTRLはサーモメータコードで符号化されている。
【0047】
図3(a)〜(c)は、それぞれ粗調用可変容量25、微調用可変容量26、及び補正用可変容量28の構成例を示す。粗調用可変容量25は、図3(a)に示されるように、一対の発振出力ノードの間にキャパシタCa及びCbがスイッチSWを介して直列に接続された回路を複数有する容量バンクを含む。粗調用可変容量25に入力される制御信号FREQ_BANDは、例えばnを所定の整数としてnビットのバイナリコードで表されている。その場合、粗調用可変容量25は、iを1以上n以下の整数として、キャパシタCai及びCbiがスイッチSWiを介して直列に接続された回路を、n個有する。キャパシタCai及びCbiのキャパシタンスは、ビット位置に応じた重みで重み付けされている。スイッチSWiを制御信号FREQ_BANDの各ビットの値に応じて制御することで、粗調用可変容量25の容量値を制御信号FREQ_BANDに応じて変化させることが可能である。その結果として、発振器12の発振周波数を制御信号FREQ_BANDに応じて制御することが可能である。
【0048】
PLL制御部17は、位相同期ループ11がオープンループの状態で発振器12のキャリブレーションを実施する(図19の時刻t1から時刻t2に対応)。PLL制御部17は、キャリブレーションにおいて、発振器12の粗調用可変容量25に与えられる制御信号FREQ_CTRLを変化させつつ発振信号Voutの周波数をモニタし、所望の発振周波数が得られる制御信号FREQ_BANDを探索する。別の言い方をすると、PLL制御部17は、発振信号Voutの周波数が所定周波数となるように制御信号FREQ_BANDを調整する。このキャリブレーションにより、発振信号Voutの発振周波数が、所定周波数に粗調整される。
【0049】
微調用可変容量26は、図3(b)に示されるように、一対の発振出力ノードの間に直列に接続されたバラクタCvr1及びCvr2を有する。バラクタCvr1及びCvr2の接続ノードには制御信号Vcontが入力され、バラクタCvr1及びCvr2のキャパシタンスは、アナログ電圧信号である制御信号Vcontの電圧の大きさに応じて変化する。バラクタCvr1及びCvr2のキャパシタンスを制御信号Vcontに応じて変化させることで、発振器12の発振周波数を制御信号Vcontに応じて制御することが可能である。微調用可変容量26により変化可能な発振周波数の範囲は、粗調用可変容量25により変化可能な発振周波数の範囲よりも狭い。上記キャリブレーションの後、位相同期ループ11は、発振器12からフィードバックされた発振信号Voutに基づく制御信号Vcontの生成を開始し、発振信号Voutの周波数を所望の周波数に正確に制御する。
【0050】
補正用可変容量28は、図3(c)に示されるように、一対の発振出力ノードの間に2つのキャパシタとスイッチSWとが直列に接続された回路を複数有する容量バンクを含む。制御信号FREQ_CTRLは、例えばmを所定の整数としてmビットのサーモメータコードで表されている。補正用可変容量28と粗調用可変容量25との相違点の1つは、補正用可変容量28では、制御信号FREQ_CTRLがサーモメータコードであるため、各キャパシタがビット位置に応じて重み付けされていない点である。後述する変動補正部16は、制御信号FREQ_CTRLを生成し、制御信号FREQ_CTRLに応じて補正用可変容量28の容量値を制御することで、電力増幅器13の動作後の発振器12の発振周波数の変動を補正する。
【0051】
なお、変調用可変容量27の構成は、粗調用可変容量25の構成と同様でよい。ただし、変調用可変容量27における制御信号MOD_VCOの変化に対する容量値の変化(発振周波数の変化)は、粗調用可変容量25における制御信号FREQ_BANDの変化に対する容量の変化よりも小さいものとする。具体的に、例えば粗調用可変容量25が1MHzのオーダーで発振周波数を変化させるように構成されている場合、変調用可変容量27は1kHzのオーダーで発振周波数を変化させるように構成されていればよい。
【0052】
上記に代えて、変調用可変容量27の構成は、微調用可変容量26の構成と同様でもよい。その場合は、例えばデジタル信号である制御信号MOD_VCOをアナログ電圧信号に変換するためのDAC(Digital to Analog Converter)を変調用可変容量27の前段に配置すればよい。PLL制御部17は、送信データに応じて制御信号MOD_VCOを制御する。制御信号MOD_VCOが送信データに応じて制御されることで、発振器12が出力する発振信号Voutは、送信データに応じて変調される。
【0053】
[位相同期ループ]
図4は、位相同期ループ11の構成を示す。位相同期ループ11は、位相比較器(PFD:Phase Frequency Detector)31、チャージポンプ(CP:Charge Pump)32、ローパスフィルタ(LPF:Low Pass Filter)33、及び分周器(DIV:Divider)34を有する。分周器34は、発振器12が出力する発振信号Voutを所定の分周比で分周する。分周器34で分周された発振信号Vout(PLLCLK)は、位相比較器31及びPLL制御部17に入力される。
【0054】
位相比較器31は、分周器34を介してフィードバックされる発振信号Voutと、基準信号生成回路21から出力される基準信号REFCLKとを比較する。チャージポンプ32は、位相比較器31での比較結果に応じて信号をローパスフィルタ(ループフィルタ)33に出力する。ローパスフィルタ33は、チャージポンプ32が出力する信号の低周波成分を、制御信号Vcontとして出力する。このような動作により、位相同期ループ11は、発振器12が出力する発振信号Voutを基準信号REFCLKに同期させる。
【0055】
PLL制御部17は、デルタシグマ変調器(DSM:Delta-Sigma Modulator)71を含んでおり、デルタシグマ変調器71は、分周器34に制御信号DIV_PLLを出力する。分周器34は、PLL制御部17から出力される制御信号DIV_PLLに応じて分周比を変化させる。デルタシグマ変調器71は、送信データに応じて制御信号DIV_PLLを制御する。分周器34の分周比が送信データに応じて制御されることで、位相同期ループ11は、送信データに応じて制御信号Vcontが変化するように制御され、発振器12が出力する発振信号Voutは、送信データに応じて更に変調される。
【0056】
[変動検出部及び変動補正部]
図1に戻り、変動検出部15は、位相同期ループ11が出力する制御信号Vcontをモニタする。変動検出部15は、発振器12に対して干渉源となる電力増幅器13が増幅動作を開始した後、制御信号Vcontの時間変化に対する変動を検出する。変動検出部15は、例えば電力増幅器13における増幅動作の開始に関連した基準タイミングから、制御信号Vcontが所定のしきい値に到達するまでの時間(時間1)を検出する。本実施形態では、変動検出部15は、電力増幅器13がオンになってから、発振器12において変調動作が開始されるタイミングまでの間の期間において、制御信号Vcontの変動を検出する。変動検出部15は、検出した時間と、所定のしきい値とに基づいて、制御信号Vcontの時間変化に対する傾きを検出する。
【0057】
変動補正部16は、変動検出部15が検出した変動に基づいて制御信号FREQ_CTRLを生成する。変動補正部16は、例えば変動検出部15が検出した制御信号Vcontの時間変化に対する傾きと、電力増幅器13における増幅動作の開始に関連した基準タイミングから増幅率の増加完了のタイミングまでの間の時間(時間2)とに基づいて、電力増幅器13の干渉に起因する発振器12の発振周波数の変動の量を推定する。変動補正部16は、推定した発振周波数の変動の量に基づいて、制御信号FREQ_CTRLを生成する。変動補正部16は、生成した制御信号FREQ_CTRLを発振器12の補正用可変容量28(図2を参照)に出力することで、電力増幅器13の増幅動作に伴う干渉に起因する発振周波数の変動の補正を実施する。
【0058】
変動補正部16は、例えば電力増幅器13の増幅動作に伴う干渉に起因する発振周波数の変動を打ち消すように、発振器12の発振周波数を変化させる。制御信号Vcontは制御上の上限値と下限値とを有しており、変動補正部16は、位相同期ループ11が発振器12に出力する制御信号Vcontが上限値より低く、かつ下限値より高くなるように、上記補正を行う。変動補正部16は、例えば制御信号Vcontがその信号範囲の中央となるように、上記補正を行う。なお、変動補正部16は、PLL制御部17に含まれていてもよい。
【0059】
図5は、変動検出部15及び変動補正部16の構成例を示す。変動検出部15は、ロック外れ検出部51、スロープ検出部52、及び基準電圧発生回路53を有する。ロック外れ検出部51は、制御信号Vcontをモニタし、位相同期ループ11のロックが外れそうになっているか否かを検出する。より詳細には、ロック外れ検出部51は、制御信号Vcontが制御上の上限値、又は下限値に近づいているか否かを検出する。
【0060】
PLL制御部17は、変動検出部15に、変動検出の実施を有効するための信号VDET_ENを出力する。PLL制御部17は、例えばPA制御部18が制御信号PA_ONをアサートして電力増幅器13をオンにすると、信号VDET_ENをアサートする。PLL制御部17は、PA制御部18が制御信号MOD_ONをアサートすると、信号VDET_ENをネゲートする。ロック外れ検出部51は、信号VDET_ENがアサートされている期間に、制御信号Vcontのモニタを実施する。
【0061】
ロック外れ検出部51は、比較器54及び55を含む。比較器(比較器1)54は、制御信号Vcontと所定のしきい電圧(しきい電圧1)VrefHとを比較する。比較器54は、制御信号Vcontがしきい電圧VrefH以上になると、検出信号VDETHを例えばL(Low)レベルからH(High)レベルに変化させる。別の言い方をすると、比較器54は、検出信号VDETHをアサートする。比較器(比較器2)55は、制御信号Vcontと所定のしきい電圧(しきい電圧2)VrefLとを比較する。比較器54は、制御信号Vcontがしきい電圧VrefL以下になると、検出信号VDETLをアサートする。比較器54及び55は、例えば信号VDET_ENがアサートされている場合、制御信号Vcontとしきい電圧との比較を実施する。
【0062】
基準電圧発生回路53は、しきい電圧VrefH及びVrefLを生成する。PLL制御部17は、例えば変動検出部15に、位相同期ループ11のロックが外れそうになっているか否かの検出に使用されるしきい電圧を設定するための信号(デジタルコード)VDETH_TH及びVDETL_THを出力する。基準電圧発生回路53は、信号VDETH_TH及びVDETL_THに基づいて基準電圧VrefH及びVrefLをそれぞれ生成する。基準電圧VrefHは、例えば制御信号Vcontの制御上の上限値よりも少し低い電圧に設定される。基準電圧VrefLは、例えば制御信号Vcontの制御上の下限値よりも少し高い電圧に設定される。基準電圧発生回路53は、例えば抵抗分圧回路を含む。
【0063】
スロープ検出部52は、電力増幅器13における増幅動作の開始に関連した基準タイミングから、ロック外れ検出部51から検出信号VDETH又はVDETLが出力されるタイミングまでの時間を計測する。スロープ検出部52は、例えばカウンタを含む。スロープ検出部52のカウンタは、制御信号PA_ONがアサートされるとカウント動作を開始する。その後、カウンタは、検出信号VDETH又はVDETLの一方がアサートされると、カウント動作を停止する。カウンタのカウント値は、増幅開始から制御信号Vcontが所定のしきい電圧に到達するまでの間の時間に対応する。この時間は、電力増幅器13の増幅動作に伴う干渉に起因する発振周波数の変動の量に応じて変化する。発振周波数の変動が大きいほど、制御信号Vcontが早くしきい電圧に到達し、スロープ検出部52により計測される時間は短くなる。反対に、発振周波数の変動が小さければ、制御信号Vcontの変化は小さく、スロープ検出部52により計測される時間は長くなる。スロープ検出部52は、計測した時間と、しきい電圧VrefH又はVrefLとに基づいて、制御信号Vcontの時間変化に対する傾きを検出する。
【0064】
変動補正部16は、変動量算出部61と、補正制御信号生成部62とを有する。変動量算出部61は、例えば、スロープ検出部52が検出した制御信号Vcontの時間変化に対する傾きと、電力増幅器13における増幅動作の開始に関連した基準タイミングから増幅率の増加完了のタイミングまでの間の時間と、発振器12における制御信号Vcontの変化に対する発振周波数の変化量とに基づいて、電力増幅器13の増幅動作に伴う干渉に起因する発振周波数の変動量を算出(推定)する。補正制御信号生成部62は、変動量算出部61が算出した変動量に基づいて、制御信号FREQ_CTRLを生成する。
【0065】
図6は、制御信号Vcontを表す波形図である。図6において、時刻tsは、電力増幅器13がオンになり増幅動作を開始する時刻を表し、時刻teは増幅率の増加動作が完了する時刻を表す。時刻tsは、図19に示されるタイミングチャートにおける時刻t3に対応し、時刻teは、電力増幅器13のランプアップ動作(図19(c)を参照)が完了する時刻に対応する。時刻tsにおける制御信号Vcontの電圧V0は、制御上限電圧VHと制御下限電圧VLとの中間の電圧であるとする。
【0066】
スロープ検出部52(図5を参照)は、時刻tsで制御信号PA_ONがアサートされると時間計測を開始する。電力増幅器13が増幅動作を開始すると、磁気結合などの干渉作用により、発振器12の発振周波数が変動しそうになる。位相同期ループ11は、出力する制御信号Vcontを変化させることで、発振器12の発振周波数を所定周波数に維持する。図6の例では、位相同期ループ11が制御信号Vcontを上昇させることで、発振器12の発振周波数が所定周波数に維持される。
【0067】
時刻tdetで制御信号VcontがHigh側のしきい電圧VrefHに到達すると、比較器54は、検出信号VDETHを出力する。スロープ検出部52は、時刻tsから検出信号VDETHが出力される時刻tdetまでの間の時間Δtdetを計測する。時刻tsから時刻tdetまでの間の制御信号Vcontの変化量をΔVとすると、ΔVは、下記式で表すことができる。
ΔV=VrefH−V0
スロープ検出部52は、ΔV/Δtdetを、制御信号Vcontの時間変化に対する傾きとして検出する。
【0068】
電力増幅器13がランプアップ動作を継続し、送信パワーの増加に伴って干渉が更に増加すると、制御信号Vcontは制御上限電圧VHに到達し、位相同期ループ11のロックが外れることとなる(図19(b)の時刻t4も参照)。変動量算出部61(図5を参照)は、制御信号Vcontの変化の割合が一定であると仮定し、かつ制御信号Vcontが制御上限電圧VHを超えて変化可能であると仮定し、その仮定の下で時刻teでの制御信号Vcontの変化量ΔVeffを推定する。時刻teでの制御信号Vcontの変化量ΔVeffは、下記式で表すことができる。
ΔVeff=(ΔV/Δtdet)×(te−ts)=(VrefH−V0)×(tdet−ts)/(te−ts)
【0069】
仮に、干渉の極性が上記とは逆向きであったとすると、位相同期ループ11は、制御信号Vcontを低下させることで、発振器12の発振周波数を所定周波数に維持しようとする。スロープ検出部52は、時刻tsから、比較器55が検出信号VDETLを出力するまでの間の時間Δtdetを計測する。その場合における制御信号Vcontが制御下限電圧VLを超えて変化可能であると仮定したときの時刻teでの制御信号Vcontの変化量ΔVeffは、下記式で表すことができる。
ΔVeff=(ΔV/Δtdet)×(te−ts)=(VrefL−V0)×(tdet−ts)/(te−ts)
【0070】
なお、上記では、変動量算出部61は、スロープ検出部52で検出された傾きΔV/Δtdetを用いて制御信号Vcontの変化量ΔVeffを計算することとしたが、これには限定されない。例えば、スロープ検出部52は、計測した時間Δtdetを、制御信号Vcontの時間変化に対する傾きに対応する計測量として変動量算出部61に出力してもよい。その場合も、変動量算出61は、上記式に従って、時間Δtdetから制御信号Vcontの変化量Veffを計算することができる。
【0071】
図7(a)は、発振器12における制御信号Vcontと発振周波数との関係を示し、(b)は、発振器12における制御信号FREQ_CTRLと発振周波数との関係を示す。ここでは、制御信号Vcontの変化に対する発振周波数の変化の割合(傾き)をKvとし、制御信号FREQ_CTRLの変化に対する発振周波数の変化の割合をKcorrとする。なお、ここでは、説明簡略化のために、発振周波数が制御信号Vcont及びFREQ_CTRLに対して一次関数的に変化する例を説明するが、制御信号Vcontと発振周波数との関係、及び制御信号FREQ_CTRLと発振周波数との関係は、より高次の関数により表されていてもよい。
【0072】
変動量算出部61(図5を参照)は、上記制御信号Vcontの変化量ΔVeffと、図7(a)に示される制御信号Vcontと発振周波数との関係とに基づいて、時刻teにおける、電力増幅器13の増幅動作に伴う干渉に起因する発振周波数の変動量ΔFeffを推定する。具体的には、変動量算出部61は、下記式により、時刻teにおける発振周波数の変動量ΔFeffを推定する。
ΔFeff=Kv×ΔVeff
例えば、Kv=50MHz/V、VrefH=0.7V、V0=0.45V、(tdet−ts)=0.5μs、(te−ts)=1μsであったとすると、ΔFeff=50[MHz/V]×(0.7[V]−0.45[V]/0.5[μs])×(1[μs])=25MHzとなる。
【0073】
補正制御信号生成部62は、変動量算出部61で推定された発振周波数の変動量ΔFeffと、発振器12における制御信号FREQ_CTRLの変化量に対する発振周波数の変化の割合Kcorr(図7(b)を参照)とに基づいて、制御信号FREQ_CTRLを生成する。具体的には、補正制御信号生成部62は、下記式により、制御信号FREQ_CTRLの変化量Δxを算出し、現在の制御信号FREQ_CTRLから算出した変化量Δxだけ増減させることで、制御信号FREQ_CTRLを生成する。
Δx=−ΔFeff/Kcorr=−(Kv/Kcorr)×ΔVeff
例えば、Kcorr=1MHz/LSB(least significant bit)出であった場合、Δx=25[MHz]/1[MHz/LSB]=25となる。
【0074】
制御信号Vcontが一定であると仮定した場合、補正用可変容量28の容量値が制御信号FREQ_CTRLの変化に応じて変化すると、発振器12の発振周波数は、補正用可変容量28の容量値の変化分だけ変化する。変動補正部16は、制御信号FREQ_CTRLにより補正用可変容量28の容量値を変化させることで、発振器12における制御信号Vcontと発振周波数との関係を、上記推定した発振周波数の変動の量だけ変化させる。このようにすることで、電力増幅器13の増幅動作に伴う干渉に起因する発振器12の発振周波数の変動を補正できる。
【0075】
[動作例]
次いで、動作例について説明する。図8は、無線送信装置10の各部の動作波形を示す。なお、図8においては、図19の時刻t0からt2に対応する期間の動作波形は図示を省略している。図8において、時刻t10は、位相同期ループ11の引き込み動作が開始する図19の時刻t2に対応する。時刻t10以前の期間において、発振器12のキャリブレーションが実施されており、粗調用可変容量25(図2を参照)に入力される制御信号FREQ_BANDは、制御信号Vcontがその中央付近にある場合に発振器12の発振周波数が所望の発振周波数となるように調整されている。
【0076】
時刻t10で位相同期ループ11が引き込み動作を開始すると、発振器12が出力する発振信号Voutの周波数は、所定周波数に正確に制御される(図8(a)を参照)。位相同期ループ11がロック状態となった後、PA制御部18は、時刻t11で、制御信号PA_ONをアサートし、電力増幅器13をオンにする。また、PA制御部18は、電力増幅器13に出力する制御信号POWER_CODEを段階的に増加させていくことで、電力増幅器13の出力電力を段階的に増加させる(図8(d)を参照)。変動検出部15のスロープ検出部52(図5を参照)は、制御信号PA_ONがアサートされると、時間計測を開始する。
【0077】
電力増幅器13が動作すると、発振器12の発振周波数は、主に整合回路14から受ける干渉に起因して変動しそうになる。位相同期ループ11は、フィードバックされる発振信号Voutの周波数が一定となるように制御信号Vcontを変化させることで、発振器12の発振周波数の変動を抑制する(図8(b)を参照)。図8(d)では、位相同期ループ11は、制御信号Vcontの電圧を上昇させることで、発振器12の発振周波数を所定周波数に維持している(図8(a)を参照)。
【0078】
変動検出部15の比較器54は、時刻t12で、制御信号Vcontがしきい電圧VrefHに到達すると、検出信号VDETHをアサートする(図8(c)を参照)。スロープ検出部52は、検出信号VDETHがアサートされると、時刻t11で開始した時間の計測を停止する。スロープ検出部52は、例えば時刻t11における制御信号Vcontの電圧値が制御上限値と制御下限値との中央の電圧値であるとみなし、計測した時間としきい電圧VrefHとに基づいて、制御信号Vcontの時間変化に対する傾きを検出する。
【0079】
変動補正部16の変動量算出部61は、スロープ検出部52が検出した傾きに基づいて、電力増幅器13におけるランプアップ動作の終了時刻での干渉に起因する発振器12の発振周波数の変動量を推定する。補正制御信号生成部62は、推定された変動量に基づいて制御信号FREQ_CTRLを生成し、時刻t13で、生成した制御信号FREQ_CTRLを発振器12の補正用可変容量28(図2を参照)に出力する(図8(e)を参照)。
【0080】
発振器12の発振信号Voutの周波数は、時刻t13で補正用可変容量28の容量値が変化すると、一瞬変動する(図8(a))。しかしながら、位相同期ループ11が発振信号Voutの周波数が所定周波数となるように制御信号Vcontを変化させることで(図8(b)を参照)、発振信号Voutの周波数は、位相同期ループの時定数で所定周波数に引き戻される。電力増幅器13の増幅動作に伴う干渉に起因する発振周波数の変動を打ち消すように、補正用可変容量28の容量値を変化させることで、制御信号Vcontの電圧は、制御上の上限値と下限値との中央付近に戻り、位相同期ループ11のロック状態を維持することが可能である。このとき、比較器54が出力する検出信号VDETHはネゲートされる(図8(c)を参照)。
【0081】
PA制御部18は、電力増幅器13のランプアップ動作が完了した後、時刻t14で、PLL制御部17に出力する制御信号MOD_ONをアサートする。PLL制御部17は、制御信号MOD_ONがアサートされると、位相同期ループ11に出力する制御信号DIV_PLL、及び発振器12に出力する制御信号MOD_VCOを用いて、発振器12が出力する発振信号Voutを送信データに応じて変調する(図8(a)及び(b)を参照)。電力増幅器13は、発振器12が出力する変調された発振信号Voutを増幅し、アンテナから送信させる。
【0082】
[RFIC]
図9は、図1の無線送信装置10を含む半導体装置を示す。半導体装置(RFIC)100は、デジタル回路ブロック101、パワーマネージメントモジュール(PMU:Power Management Module)102、位相同期ループ/発振器ブロック103、受信ブロック104、送信ブロック106、整合回路ブロック106、及びその他のブロック107を有する。半導体装置100は、例えば1個の半導体チップで構成される。半導体装置100は、MCU(Micro Computer Unit)などを更に有していてもよい。
【0083】
パワーマネージメントモジュール102は、例えばDC−DC(Direct Current - Direct Current)コンバータ121や、LDO(Low Drop Out)レギュレータ122などを含む。デジタル回路ブロック101は、例えば図1に示される変動補正部16、PLL制御部17、及びPA制御部18などを含む。デジタル回路ブロック101は、その他、例えば媒体アクセス制御を行う制御部や、送信データの変調及び受信データの復調を制御する制御部、DC−DCコンバータ121及びLDOレギュレータ122を制御する制御部などを含んでいてもよい。
【0084】
位相同期ループ/発振器ブロック103は、位相同期ループ11及び発振器12を含む。受信ブロック104は、LNA(Low Noise Amplifier)141、ミキサ142、ローパスフィルタ143、及びAD(Analog to Digital)変換器144を含む。送信ブロック105は、電力増幅器13を含む。電力増幅器13は、発振器12の出力信号を直接に増幅する。その他のブロック107は、基準信号生成回路21を含む。基準信号生成回路21は、例えば半導体装置100に外付けされた水晶振動子22に基づいて基準信号を生成する。
【0085】
整合回路ブロック106は、受信整合回路161及び送信整合回路162を含む。アンテナで受信された信号は、受信整合回路161を介してLNA141に入力される。一方、電力増幅器13で所定の送信電力に増幅された発振器12の出力信号は、送信整合回路162を介してアンテナに伝達され、アンテナから送信される。送信整合回路162は、図1の整合回路14に対応しており、非平衡信号を平衡信号に変換するバラン回路を含む。なお、図9においては、変動検出部15及び変動補正部16などは図示を省略している。変動補正部16、及び変動検出部15におけるスロープ検出部52(図5を参照)は例えばデジタル回路ブロック101に含まれる。
【0086】
なお、上記では、電力増幅器13及び送信整合回路162が発振器12と同じ半導体装置100に搭載される例を示したが、これには限定されない。送信整合回路162は、必ずしも発振器12と同じ半導体装置100に搭載されていなくてもよく、半導体装置100の外部に配置されていてもよい。電力増幅器13も、同様に、発振器12と同じ半導体装置100に搭載されている必要はなく、半導体装置100の外部に配置されていてもよい。電力増幅器13や送信整合回路162が半導体装置100の外部に配置されている場合でも、電力増幅器13や送信整合回路162が発振器12に対して干渉源となる場合があり、本実施形態は、そのような場合にも適用可能である。
【0087】
[まとめ]
本実施形態では、発振器12は、制御信号Vcont及び制御信号FREQ_CTRLに応じて発振周期が可変に構成される。位相同期ループ11は、制御信号Vcontを通じて、発振器12が出力する発振信号Voutを所定周波数に維持するように動作する。変動検出部15は、電力増幅器13の増幅動作開始後に位相同期ループ11が出力する制御信号Vcontの変動を検出する。変動補正部16は、変動検出部15が検出した変動に基づいて、制御信号FREQ_CTRLを生成し、生成した制御信号FREQ_CRLを発振器12に出力することで、電力増幅器13の増幅動作に伴う干渉に起因する発振周波数の変動の補正を実施する。
【0088】
発振器12と電力増幅器13との間で磁気結合が発生し、発振器12の発振周波数が大きく変動すると、位相同期ループ11のロック外れが生じる。特に、直接変調方式では、発振器12の発振周波数と電力増幅器13が増幅する信号の周波数とが等しいため、磁気結合などの干渉に起因する実効インダクタンスの変化が大きく、発振器12の発振周波数の変動が大きい。本実施形態では、変動検出部15が検出した制御信号Vcontの変動に応じて発振器12の発振周波数の補正を行うことで、発振器12と電力増幅器13との間の磁気結合に起因する位相同期ループ11のロック外れを防止することができる。特に、本実施形態では、変動検出部15において変動の方向や大きさが検出され、検出された変動に基づいて変動補正部16により発振周波数の補正が実施されており、電力増幅器13の増幅動作に伴う発振器12への干渉の量や極性が一定でない場合でも、発振器12の発振周波数の変動を抑制できる。
【0089】
本実施形態では、発振器12と電力増幅器13との間の磁気結合に起因する位相同期ループ11のロック外れを防止することができるため、電力増幅器13の送信出力が比較的高い場合でも、発振器12と電力増幅器13とを同じチップに搭載することができる。一般に、発振器12と電力増幅器13とを同じチップに搭載される場合、インダクタ間の距離を長く取り、或いは特別な形状のインダクタを使用するなどして、干渉を低減する必要があった。また、干渉を低減させるために、発振器12を送信出力の周波数frfの2倍の周波数で動作させる必要があった。本実施形態では、上記したように発振器12の発振周波数の変動を抑制できるため、発振器202と電力増幅器203との間の距離を大きくとる必要がなく、チップサイズを縮小することができる。また、チップ上で高周波信号を長距離伝送する必要がないため、高周波信号の特性劣化を抑制し、或いは消費電力の増加を抑制することができる。さらに、本実施形態では、発振器12と電力増幅器13との干渉の影響を抑制するために、発振器12を送信出力の周波数frfの2倍の周波数で動作させる必要がなくなる。
【0090】
本実施形態では、変動検出部15は、特にPA制御部18が出力する制御信号PA_ONがアサートされてから、制御信号MOD_ONがアサートされて変動動作が開始される前の期間において、制御信号Vcontの変動を検出する。本実施形態を直接変調方式に適用した場合、変調開始後、制御信号Vcontは送信データに応じて変化する。このため、変調開始後に変動検出部15において制御信号Vcontの変動を検出すると、誤動作の可能性がある。本実施形態では、PLL制御部17が出力する信号VDET_ENは、制御信号PA_ONのアサートから制御信号MOD_ONのアサートまでの期間だけアサートされる。このようにすることで、変調動作の開始後に変動検出部15が制御信号Vcontの変動を検出することに起因する誤動作を回避できる。
【0091】
さらに、本実施形態では、制御信号FREQ_CTRLにサーモメータコードが用いられる。仮に、補正用可変容量28において、容量バンクが、粗調用可変容量25と同様にバイナリコードで重み付けられていると、全ビットが反転した場合の誤差が大きくなる。本実施形態では、特に位相同期ループ11がロックしている状態で変更される制御信号FREQ_CTRLにサーモメータコードが用いられているため、制御信号変更時の誤差を小さくできる効果がある。
【0092】
[実施形態2]
次いで、実施形態2を説明する。本実施形態に係る無線送信装置の構成は、図1に示される実施形態1に係る無線送信装置の構成と同様である。本実施形態に係る無線送信装置は、主に、位相同期ループ11にデジタルPLLが使用される点で、実施形態1と相違する。他の点は、実施形態1と同様でよい。
【0093】
[デジタルPLL]
図10は、デジタルPLLとして構成される位相同期ループの構成を示す。位相同期ループ11aは、アキュムレータ(ACC:Accumulator)41、加算器(減算器)42、ループフィルタ(LF:Loop Filter)、加算器44、ノーマライザ(NORM:Normalizer)45、アキュムレータ(ACC)46、及びTDC(time-to-digital converter)47を有する。位相同期ループ11aには、基準信号生成回路21から基準信号REFCKLが入力される。
【0094】
本実施形態では、発振器12は、デジタル信号(デジタルコード)に従って発振周波数が制御されるデジタル制御発振器(DCO:Digitally controlled oscillator)として構成される。発振器12の構成は、微調用可変容量26(図2を参照)がデジタル信号に応じて制御される点を除けば、実施形態1において説明したものと同様な構成でよい。本実施形態において、微調用可変容量26は、例えば図3(a)に示される粗調用可変容量25と同様なトラッキング用容量バンクを含み、制御信号Vcontの値に応じて容量値が制御される。
【0095】
PLL制御部17は、制御信号DIV_PLLを用いてアキュムレータ41に分周情報を入力する。アキュムレータ46及びTDC47は、発振器12からフィードバックされた発振信号Voutの整数部及び小数部の分周情報を計算する。加算器42は、制御信号DIV_PLLを受けたアキュムレータ41の出力と、アキュムレータ46及びTDC47から出力される整数部及び小数部の分周情報とを加減算する。加算器42の演算結果は、ループフィルタ43で平滑化され、加算器44を経てノーマライザ45に入力される。ノーマライザ45は、ループ利得を調整する規格化回路であり、ノーマライザ45の出力は、制御信号Vcontとして発振器12に入力される。
【0096】
PLL制御部17は、発振信号Voutを変調する場合は、送信データに応じて制御信号DIV_PLL及びMOD_VCOを制御する。制御信号MOD_VCOは、加算器44によってループフィルタ43の出力に加算され、ノーマライザ45を介して発振器12に出力される。発振器12は、制御信号DIV_PLL及びMOD_VCOに基づいて制御される制御信号Vcontに応じた発振周波数で発振することで、送信データに応じて変調された発振信号Voutを出力する。
【0097】
[変動検出部]
図11は、本実施形態において用いることができる変動検出部の構成例を示す。変動検出部15aは、スロープ検出部52と判定回路56とを有する。判定回路56は、制御信号Vcontをモニタし、制御信号Vcontがしきい値に到達したか否かを判定する。判定回路56は、例えば制御信号Vcontとしきい値VDETH_TH及びVDETL_THとを比較する。しきい値VDETH_THは、例えば制御信号Vcontの制御上の上限値よりも少し小さい値に設定され、しきい値VDETL_THは、例えば制御信号Vcontの制御上の下限値より少し大きい値に設定される。
【0098】
判定回路56は、制御信号Vcontがしきい値VDETH_TH以上である場合は、制御信号Vcontが上側のしきい値に到達した旨をスロープ検出部52に通知する。また、判定回路56は、制御信号Vontがしきい値VDETL_TH以下である場合は、制御信号Vcontが下側のしきい値に到達した旨をスロープ検出部52に通知する。判定回路56は、例えばPLL制御部17から信号VDET_ENが出力されている場合に、上記判定を実施する。
【0099】
スロープ検出部52は、実施形態1において説明したものと同様に、電力増幅器13における増幅動作の開始に関連した基準タイミングから、判定回路56において制御信号Vcontがしきい値に到達した旨の通知を受けるタイミングまでの時間を計測する。スロープ検出部52は、例えばPA制御部18が出力する制御信号PA_ONがアサートされると、カウンタのカウント動作を開始する。このとき、スロープ検出部52は、制御信号PA_ONがアサートされたタイミングにおける制御信号Vcontの値を保存する。スロープ検出部52は、判定回路56から制御信号Vcontがしきい値に到達した旨の通知を受け取ると、カウンタ動作を停止する。スロープ検出部52は、制御信号PA_ONがアサートされたタイミングにおける制御信号Vcontの値と、しきい値VDETH_TH又はVDETL_THと、カウンタのカウント値とに基づいて、制御信号Vcontの時間変化に対する傾きを検出する。変動補正部16(図5などを参照)における制御信号FREQ_CTRLの生成は、実施形態1と同様でよい。
【0100】
[傾き検出の別例]
本実施形態では、制御信号Vcontがデジタル信号であるため、制御信号Vcontにアナログ電圧信号が用いられる場合に比べて、制御信号Vcontの時間変化に対する傾きの検出の自由度が高い。スロープ検出部52は、したしきい値への到達時間に基づいて傾きを検出するのに代えて、制御信号Vcontをモニタし、所定期間における制御信号Vcontの変化の大きさに基づいて、制御信号Vcontの時間変化に対する傾きを検出してもよい。
【0101】
スロープ検出部52は、例えば図6の時刻tsで制御信号Vcontの値を保存し、カウンタの動作を開始させる。スロープ検出部52は、カウンタのカウント値が所定の固定時間に対応した値となると、制御信号Vcontの値を取得し、取得した値と時刻tsで保存した値との差分を計算する。この差分は、一定時間における制御信号Vcontの変化量を表している。スロープ検出部52は、一定時間における制御信号Vcontの変化量を、変動量算出部61に出力する。
【0102】
変動量算出部61は、スロープ検出部52が出力した一定時間における制御信号Vcontの変化量と、一定時間の長さとに基づいて、電力増幅器13のランプアップが完了する時刻te(図6を参照)における制御信号Vcontの変化量を推定する。変動量算出部61は、推定した制御信号Vcontの変化量に基づいて、時刻teにおける発振周波数の変動量ΔFeffを推定する。補正制御信号生成部62は、発振周波数の変動量ΔFeffに基づいて制御信号FREQ_CTRLの変化量Δxを算出し、制御信号FREQ_CTRLを生成する。
【0103】
上記の場合、変動補正部16は、例えば判定回路56において制御信号Vcontがしきい値VDETH_TH又はVDETL_THに到達したと判断された場合に、制御信号FREQ_CTRLを生成し、発振周波数の変動の補正を実施する。あるいは、変動補正部16は、電力増幅器13のランプアップが完了する時刻teにおいて制御信号Vcontが制御上限以上、又は制御下限以下となることが見込まれる場合に、発振周波数の変動の補正を実施してもよい。
【0104】
[まとめ]
本実施形態では、位相同期ループ11aにデジタルPLLが用いられる。本実施形態では、位相同期ループ11aをデジタル回路で構成することができ、CMOSプロセス微細化の恩恵を受け、位相同期ループをアナログ回路で実現する場合に比べて小面積化が可能となる。また、制御信号Vcontがデジタル化されるため、アナログ回路で問題となる比較器のばらつきの要素が除去され、判定回路56における判定の精度を向上できる。さらに、変動検出部15及び変動補正部16などは、制御信号Vcontを常時モニタすることもでき、例えばしきい値を自由に設定できるなど、制御自由度を高めることができると考えられる。
【0105】
[変形例]
上記では、位相同期ループ11aにデジタルPLLを用いる例を説明したが、アナログPLLを用いつつ、変動検出部15などにおいて制御信号Vcontをデジタル信号処理する構成も採用できる。図12は、変形例における変動検出部の構成例を示す。この変形例において、位相同期ループ11はアナログPLLで構成されており、制御信号Vcontはアナログ電圧信号である。変動検出部15bは、図11に示される変動検出部15aの構成に加えて、AD変換器57を有する。
【0106】
AD変換器57は、制御信号Vcontをデジタル信号に変換する。AD変換器57は、PLL制御部17から信号VDET_ENが出力されている場合に、制御信号Vcontをデジタル信号に変換する。判定回路56は、AD変換器57でデジタル信号に変換された制御信号Vcontをモニタし、制御信号Vcontがしきい値に到達したか否かを判定する。制御信号Vcontがデジタル信号に変換された後の変動検出部15b及び変動補正部16の動作は、実施形態2において説明したものと同様でよい。
【0107】
本変形例においては、アナログPLLから出力される制御信号Vcontは、AD変換器57を用いてデジタル信号に変換される。このようにすることで、位相同期ループ自体をデジタル化しなくても、制御信号Vcontがデジタル信号である場合に得られる効果を得ることが可能である。
【0108】
[実施形態3]
続いて、実施形態3を説明する。本実施形態に係る無線送信装置の構成は、図1に示される実施形態1に係る無線送信装置の構成と同様である。本実施形態に係る無線送信装置は、主に、変動補正部16における制御信号FREQ_CTRLの生成が実施形態1と相違する。他の点は、実施形態1又は実施形態2と同様でよい。
【0109】
図13は、本実施形態における変動補正部16の構成例を示す。変動補正部16aは、補正制御信号生成部62、及び補正テーブル63を有する。本実施形態では、変動検出部15は、基準タイミングから、制御信号Vcontがしきい電圧に到達したタイミングまでの時間(図6のΔtdetに対応)を計測し、時間Δtdetを変動補正部16aに出力する。補正テーブル63は、時間Δtdetと、制御信号FREQ_CTRLの制御量(補正量)に関連した値とを対応付けて記憶する。補正テーブル63は、例えば比較器54及び55(図5を参照)において比較に使用されるしきい電圧VrefH及びVrefLごとに、時間Δtdetと、制御信号FREQ_CTRLの制御量(補正量)とを対応付けて記憶する。
【0110】
本実施形態において、補正制御信号生成部62は、変動検出部15において計測された時間Δtdetに対応する補正量に関連する値を補正テーブル63から取得する。補正制御信号生成部62は、補正テーブル63から取得した補正量に関連する値を用いて、制御信号FREQ_CTRLを生成する。
【0111】
図14は、補正テーブル63の具体例を示す。例えば、補正テーブル63は、制御信号FREQ_CTRLの変化量Δx(図7(b)を参照)を、時間Δtdetに対応して記憶している。変化量Δxは、時間Δtdetと、しきい電圧VrefH(VDEFH_TH)及びVrefL(VDETL_TH)を用いて計算で求めることができる。補正制御信号生成部62は、変動検出部15で計測された時間Δtdetに対応する変化量Δxを補正テーブル63から取得し、制御信号FREQ_CTRLをΔxだけ増減することで、制御信号FREQ_CTRLを生成する。
【0112】
[まとめ]
本実施形態では、補正テーブル63を用い、補正制御信号生成部62は、補正テーブル63から取得した値を用いて制御信号FREQ_CTRLを生成する。補正テーブル63を用いることで、変動量算出部61(図5を参照)を用いて発振周波数の変動量を毎回算出しなくても、制御信号FREQ_CTRLを生成することができ、演算負荷を軽減することができる。
【0113】
[他の変形例]
上記各実施形態では、発振器12が出力する発振信号の周波数又は位相が変調される例を説明したが、これには限定されない。上記各実施形態において、電力増幅器13に振幅変調機能を追加し、ポーラー変調方式を採用することとしてもよい。図15は、ポーラー変調方式の無線送信装装置を示す。本変形例に係る無線送信装置10aは、図1に示す実施形態に係る無線送信装置10の構成に加えて、LDOレギュレータ19を有する。PA制御部18は、LDOレギュレータ19に制御信号MOD_PAを送信する。他の点は、実施形態1〜3と同様でよい。
【0114】
図16は、LDOレギュレータ19と電力増幅器13とを示す。電力増幅器13は、例えば並列に接続された複数のインバータ出力回路を有している。LDOレギュレータ19は、電力増幅器13用のLDOレギュレータであり、電源電圧から、電力増幅器13のインバータ回路に供給する電圧VDD_PAを生成する。LDOレギュレータ19は、制御信号MOD_PAに応じて電圧VDD_PAを変化させる。電力増幅器13は、電源電圧VDD_PAが変化すると、その変化の分だけ出力Poutの振幅を変化させる。PA制御部18は、送信データに応じて制御信号MOD_PAを変化させ、電力増幅器13の出力Poutの振幅を送信データに応じて変調する。
【0115】
[変調方式]
上記各実施形態に適用可能な変調方式として、一次変調方式が位相であるnPSK(phase shift keying))、MSK(minimum shift keying)、GMSK(Gaussian filtered minimum shift keying)、及びOQPSK(offset quadriphase PSK)が挙げられ、また、一次変調方式が周波数であるnFSK(frequency shift keying)、及びnGFSK(Gaussian filtered frequency shift keying)が挙げられる。振幅の変調が可能な変形例においては、上記したものに加えて、一次変調方式が振幅であるnASK(amplitude-shift keying)及びOOK(on-off-keying)が挙げられ、また、一次変調方式が直角位相振幅であるnQAM(quadrature amplitude modulation)が挙げられる。
【0116】
以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は既に述べた実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において種々の変更が可能であることはいうまでもない。
【0117】
例えば、上記の実施形態の一部又は全部は、以下の付記のようにも記載され得るが、以下には限られない。
【0118】
[付記1]
インダクタ、第1の制御信号に応じて容量値が変更可能な第1の容量部、及び第2の制御信号に応じて容量値が変更可能な第2の容量部を含む共振回路を有し、該共振回路の共振周波数に応じた発振周波数の発振信号を出力する発振器と、
前記第1の制御信号を生成して前記発振器に出力することで前記発振器を制御し、前記発振器から基準信号に同期した発振信号を出力させる位相同期ループと、
前記位相同期ループが前記発振器が出力する発振信号を所定周波数に制御している状態で、前記発振信号に基づく無線送信信号の増幅を行う電力増幅器であって、前記共振回路に対して干渉源となる電力増幅器が増幅動作を開始した後、前記第1の制御信号の時間変化に対する変動を検出する変動検出部と、
前記変動検出部が検出した変動に基づいて前記第2の制御信号を生成し、該生成した第2の制御信号を前記発振器に出力することで、前記電力増幅器の増幅動作に伴う干渉に起因する前記発振周波数の変動の補正を実施する変動補正部とを備える無線信号処理装置。
【0119】
[付記2]
前記変動補正部は、前記第2の制御信号により、前記電力増幅器の干渉に起因する前記発振周波数の変動を打ち消すように前記発振周波数を変化させる付記1に記載の無線信号処理装置。
【0120】
[付記3]
前記第1の制御信号は制御上の上限値と下限値とを有しており、前記変動補正部は、前記補正が実施された後に、前記位相同期ループが前記発振器に出力する第1の制御信号が前記上限値より低く、かつ前記下限値より高くなるように、前記補正を行う付記1に記載の無線信号処理装置。
【0121】
[付記4]
前記変動検出部は、前記電力増幅器における前記増幅動作の開始に関連した基準タイミングから、前記第1の制御信号が所定のしきい値に到達するまでの間の第1の時間を検出する付記1に記載の無線信号処理装置。
【0122】
[付記5]
前記変動検出部は、前記第1の制御信号が所定のしきい値に到達するまでの間の時間と前記所定のしきい値とに基づいて、前記第1の制御信号の時間変化に対する傾きを検出する付記4に記載の無線信号処理装置。
【0123】
[付記6]
前記電力増幅器は、前記無線送信信号の電力が所定の電力となるまで複数の段階で増幅率が増加するように制御され、
前記変動補正部は、前記変動検出部が検出した傾きと、前記基準タイミングから前記増幅率の増加の完了タイミングまでの間の第2の時間とに基づいて、前記電力増幅器の干渉に起因する発振周波数の変動の量を推定する付記5に記載の無線信号処理装置。
【0124】
[付記7]
前記変動補正部は、前記変動検出部が検出した傾きと、前記第2の時間と、前記発振器における前記第1の制御信号の変化に対する前記発振周波数の変化量とに基づいて、前記発振周波数の変動の量を推定する付記6に記載の無線信号処理装置。
【0125】
[付記8]
前記変動補正部は、前記推定した発振周波数の変動の量と、前記発振器における前記第2の制御信号の変化量に対する前記発振周波数の変化量とに基づいて、前記第2の制御信号を生成する付記6に記載の無線信号処理装置。
【0126】
[付記9]
変動補正部は、前記生成した前記第2の制御信号を前記発振器に出力することで、前記発振器における前記第1の制御信号と前記発振周波数との関係を、前記推定した発振周波数の変動の量だけ変化させる付記6に記載の無線信号処理装置。
【0127】
[付記10]
前記変動補正部は、前記第1の時間に対応して前記補正の補正量に関連する値が記憶されたテーブルを更に有し、前記変動検出部が検出した第1の時間に対応する前記補正量に関連する値を前記テーブルから取得し、該取得した補正量に関連する値に基づいて前記第2の制御信号を生成する付記4に記載の無線信号処理装置。
【0128】
[付記11]
前記第2の制御信号は、サーモメータコードで符号化されている付記1に記載の無線信号処理装置。
【0129】
[付記12]
前記発振器は、送信データに応じて位相又は周波数が変調された発振信号を出力する付記1に記載の無線信号処理装置。
【0130】
[付記13]
前記共振回路は、第3の制御信号に応じて容量値が変化する第3の容量部を更に含んでおり、前記発振器は、入力される第3の制御信号が送信データに応じて制御されることで、前記送信データに応じて変調された発振信号を出力する付記12に記載の無線信号処理装置。
【0131】
[付記14]
前記位相同期ループは、前記送信データに応じて前記第1の制御信号が変化するように制御され、
前記発振信号は、前記第1の制御信号が前記送信データに応じて制御されることで更に変調される付記13に記載の無線信号処理装置。
【0132】
[付記15]
前記変動検出部は、前記発振信号が前記送信データで変調される前の期間において前記第1の制御信号の変動の検出を行う付記12に記載の無線信号処理装置。
【0133】
[付記16]
前記電力増幅器は、前記発振器が出力する発振信号を増幅する付記12に記載の無線信号処理装置。
【0134】
[付記17]
電力増幅器は、前記送信データに応じて増幅率が制御され、前記無線送信信号の振幅を前記送信データに応じて更に変調する付記12に記載の無線信号処理装置。
【0135】
[付記18]
前記位相同期ループはアナログ位相同期ループで構成され、アナログ電圧信号である第1の制御信号を前記発振器に出力し、
前記発振器は、前記第1の制御信号に応じて制御される電圧制御発振器として構成される付記1に記載の無線信号処理装置。
【0136】
[付記19]
前記第1の制御信号をデジタル信号に変換するアナログデジタル変換器を更に有し、
前記変動検出部は、前記アナログデジタル変換器を介して入力される第1の制御信号の変化をモニタし、前記変動を検出する付記18に記載の無線信号処理装置。
【0137】
[付記20]
前記位相同期ループはデジタル位相同期ループとして構成され、デジタル信号である第1の制御信号を前記発振器に出力し、
前記発振器は、前記第1の制御信号に応じて制御されるデジタル制御発振器として構成される付記1に記載の無線信号処理装置。
【0138】
[付記21]
前記変動検出部は、前記第1の制御信号をモニタし、所定時間における前記第1の制御信号の変化の大きさに基づいて前記変動を検出する付記20に記載の無線信号処理装置。
【0139】
[付記22]
前記変動検出部は、前記第1の制御信号と第1のしきい値とを比較する第1のコンパレータと、前記第1の制御信号と第2のしきい値とを比較する第2のコンパレータとを含み、前記基準タイミングから前記第1のコンパレータにおいて前記第1の制御信号が前記第1のしきい値以上である旨を示す比較結果が得られるタイミングまでの間の時間、又は前記基準タイミングから前記第2のコンパレータにおいて前記第1の制御信号が前記第2のしきい値以下である旨を示す比較結果が得られるタイミングまでの間の時間を、前記第1の時間として検出する付記4に記載の無線信号処理装置。
【0140】
[付記23]
前記共振回路は、第4の制御信号に応じて容量値が変化する第4の容量部を更に含んでおり、前記第4の制御信号は前記発振信号の周波数が所定周波数となるように調整される付記1に記載の無線信号処理装置。
【0141】
[付記24]
インダクタ、第1の制御信号に応じて容量値が変更可能な第1の容量部、及び第2の制御信号に応じて容量値が変更可能な第2の容量部を含む共振回路を有し、該共振回路の共振周波数に応じた発振周波数の発振信号を出力する発振器と、
前記第1の制御信号を生成して前記発振器に出力することで前記発振器を制御し、前記発振器から基準信号に同期した発振信号を出力させる位相同期ループと、
前記発振信号に基づく無線送信信号の増幅を行う電力増幅器と、
前記電力増幅器と前記無線送信信号の送信に用いられるアンテナとの間に配置され、インダクタを含み、平衡信号と非平衡信号との間で信号の変換を行うバラン回路と、
前記位相同期ループが前記発振器が出力する発振信号を所定周波数に制御している状態で前記電力増幅器が増幅動作を開始した後、前記第1の制御信号の時間変化に対する変動を検出する変動検出部と、
前記変動検出部が検出した変動に基づいて前記第2の制御信号を生成し、該生成した第2の制御信号を前記発振器に出力することで、前記共振回路に含まれるインダクタと前記バラン回路に含まれるインダクタとの間の電磁結合に起因する前記発振周波数の変動の補正を実施する変動補正部とを備える半導体装置。
【0142】
[付記25]
位相同期ループを用いて、インダクタ、第1の制御信号に応じて容量値が変更可能な第1の容量部、及び第2の制御信号に応じて容量値が変更可能な第2の容量部を含む共振回路を有する発振器が出力する発振信号の位相と基準信号の位相とを比較し、該比較の結果に基づいて前記第1の制御信号を生成し、該生成した第1の制御信号を前記発振器に入力することで、前記発振器から前記基準信号に同期した発振信号を出力させ、
前記位相同期ループを用いて前記発振信号が所定周波数に制御されている状態で、前記発振信号に基づく無線送信信号の電力を増幅し、
前記無線送信信号の電力の増幅動作が開始された後、前記発振器に入力される第1の制御信号の時間変化に対する変動を検出し、
前記検出された変動に基づいて前記第2の制御信号を生成し、該生成した第2の制御信号を前記発振器に入力することで、前記無線送信信号の電力の増幅動作に伴う干渉に起因する前記発振器の発振周波数の変動の補正を実施する発振周波数変動補正方法。
【符号の説明】
【0143】
10:無線送信装置
11:位相同期ループ
12:発振器
13:電力増幅器
14:整合回路
15:変動検出部
16:変動補正部
17:PLL制御部
18:PA制御部
19:LDOレギュレータ
20:無線信号処理装置
21:基準信号生成回路
22:水晶振動子
25:粗調用可変容量
26:微調用可変容量
27:変調用可変容量
28:補正用可変容量
31:位相比較器
32:チャージポンプ
33:ローパスフィルタ
34:分周器
41:アキュムレータ
42:加算器
43:ループフィルタ
44:加算器
45:ノーマライザ
46:アキュムレータ
47:TDC
51:ロック外れ検出部
52:スロープ検出部
53:基準電圧発生回路
54、55:比較器
56:判定回路
57:AD変換器
61:変動量算出部
62:補正制御信号生成部
63:補正テーブル
71:デルタシグマ変調器
100:半導体装置
101:デジタル回路ブロック
102:パワーマネージメントモジュール
103:位相同期ループ/発振器ブロック
104:受信ブロック
105:送信ブロック
106:送信ブロック
106:整合回路ブロック
107:その他のブロック
121:DC−DCコンバータ
122:LDOレギュレータ
142:ミキサ
143:ローパスフィルタ
144:AD変換器
161:受信整合回路
162:送信整合回路
200:無線送信装置
201:位相同期ループ
202:発振器
203:電力増幅器
204:整合回路
205:基準信号生成回路
206:PLL制御部
207:PA制御部
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19