【実施例】
【0039】
以下、本発明の実施例について説明する。
【0040】
(実施例1)
軟磁性金属粉末としてカルボニル鉄粉、絶縁粒子としてジルコニア粒子を用いて実施の形態に示す複合磁性体を作製した。
【0041】
市販のカルボニル鉄粉末を、湿式アトライターにて粉砕処理を行い、粉砕後のスラリーを真空乾燥機にて乾燥させた後メッシュで分級し、比表面積Sp=2.2 m
2/gの扁平状の軟磁性金属粉末を得た。
【0042】
絶縁粒子として粒子径D
50=12nmで比表面積Sz=41.7 m
2/g のジルコニア粒子を、固形分10wt%となるように分散剤、水とともに混合し、超音波分散機にて分散処理を行い、pH7.4のジルコニアゾルを得た。
【0043】
扁平状軟磁性金属粉末の1粒子表面に1層のジルコニアナノ粒子が付くよう、すなわち(Sz/2)/Sp=1となるようにジルコニアゾルの添加量を決定し、決定した量のジルコニアゾルと金属軟磁性粉末を混合し、その後大気中オーブンで乾燥させ、表面がジルコニア粒子で被覆された軟磁性金属粉末を得た。
図2(c)、
図2(d)に示すように、得られた複合磁性体の走査型電子顕微鏡(SEM)像から、軟磁性金属粉末の表面にジルコニア粒子がほぼ均一に固着していることが確認できた。
【0044】
前記のジルコニアナノ粒子で被覆された扁平状カルボニル鉄粉を50vol%、アクリルゴムを40vol%、シランカップリング剤を10vol%で配合し、自転・公転ミキサーAR−100(株式会社シンキー製)を用いて12分間混合し、塗液を作製した。
【0045】
前記の塗液を、ベーカーアプリケーターを用いてポリエステルシート上に塗工成膜を行い、乾燥させてグリーンシートを作製した。次に、成膜したグリーンシートを積層して熱圧着を行い、厚み100μmのシート状の複合磁性体を得た。得られた複合磁性体を切断した走査型電子顕微鏡(SEM)像から、軟磁性金属粉末の厚さ方向の断面における軟磁性金属粉末の表面の長さ0.2μmあたりに絶縁粒子であるジルコニア粒子が1個以上配されていることを確認した。シート状複合磁性体の表面抵抗は1.5×10
5Ω、シート密度は3.8g/ccであった。
【0046】
(比較例1)
扁平状の軟磁性金属粉末に絶縁粒子を被覆させない事以外、実施例1と同様にして、厚み100μmのシート状の複合磁性体を得た。シート状複合磁性体の表面抵抗は2.5×10
1Ω、シート密度は4.3g/ccであった。
【0047】
実施例1および比較例1のシート状複合磁性体を外径7.9mm、内径3.05mm、厚さ100μmのトロイダル形状に打ち抜き、インピーダンスマテリアルアナライザE4991A(Agilent technology)と磁性体測定治具16454A(Agilent technology)で面内の透磁率を測定した。周波数に対しフラットなμ’の値は、実施例1は18で、比較例1は24であった。比較例1の軟磁性金属粉末間の距離が実施例1の距離よりも小さい構成であったため、磁気的な結合が強まり、比較例1の透磁率が高い値となったが、表面抵抗が2.5×10
1Ωと非常に低く、絶縁性が不十分であった。一方、実施例1の表面抵抗は1.5×10
5Ωと高く、かつ透磁率の低下は18程度に抑制できている。
【0048】
実施例1および比較例1のシート状複合磁性体を外径7.00mm、内径3.05mm、厚さ100μmのトロイダル形状に打ち抜き、ネットワークアナライザENA E5080A(KEYSIGHT technology)と伝送線路法同軸型サンプルホルダーCSH2−APC7(株式会社関東電子応用開発)で面内の誘電率を測定した結果を
図3に示す。実施例1の0.1GHzにおけるε’10の値は137であり、ε’’11の値は17で、比較例1の0.1GHzにおけるε’12の値は320であり、ε’’13の値は116であった。ε’およびε’’ともに実施例1は比較例1より低減していることを確認した。
【0049】
実施例1および比較例1のシート状複合磁性体を縦40mm、横40mm、厚さ100μmのシートを切り出し、国際規格IEC62333-2に規定される方法で測定した結果を
図4に示す。実施例1のRda(Intra−decoupling ratio)は1.1GHzまでRda>0であり、比較例1のRdaは0.7GHzまでRda>0であった。実施例1に示す複合磁性体は比較例1に示す複合磁性体よりも減結合している周波数が伸びていることを確認した。
【0050】
次に、実施例1および比較例1のシート状複合磁性体の特性について詳細に説明する。
【0051】
図5(a)は、実施例1および比較例1のシート状複合磁性体を適用する携帯電話等の通信機器100の内部構造の断面を示す模式図である。
図5(a)に示すように、通信機器100は、電子部品21と、アンテナ22と、金属筐体23とを含んでいる。
【0052】
ここで、通信機器100において、電子部品21はノイズを発生するノイズ源である。この場合、電子部品21から発生するノイズは、反射領域110において金属筐体23を介してアンテナ22に干渉する。このようなノイズを抑制する方法として、通信機器100の内部において金属筐体23に磁性シートを貼付してノイズを抑制する方法が知られている。
【0053】
図5(b)は、
図5(a)に示す通信機器100の内部構造を模した評価系200を示す模式図である。評価系200は、ノイズ源Txと、アンテナRxと、金属板24と、磁性シート25とを含んでいる。ここで、ノイズ源Txは、
図5(a)における電子部品21に対応する。アンテナRxは
図5(a)におけるアンテナ22に対応する。金属板24は、
図5(a)における金属筐体23に対応する。
【0054】
磁性シート25は、金属板24の表面に貼り付けられている。この場合、ノイズ源Txが発するノイズは金属板24に貼付されている磁性シート25を介してアンテナRxに干渉する。
【0055】
評価系200において、上述の実施例1、および比較例1のシート状複合磁性体を磁性シート25として用いた場合の減結合の周波数特性を比較した。具体的には、周波数が0〜9GHzの領域における、ノイズ源TxとアンテナRxとの間で生じる結合の減衰量を確認した。
【0056】
図6は、評価系200における、実施例1および比較例1の減結合の周波数特性を示すグラフである。具体的には、
図6の横軸は周波数(GHz)を示し、縦軸はノイズ源TxとアンテナRxとのカップリング(dB)を示している。
図6において、第1周波数特性31は実施例1の周波数特性であり、第2周波数特性32は比較例1の周波数特性である。
【0057】
図6を参照すると、第1周波数特性31に示されるように、実施例1は周波数が0〜9GHzの全体域において減結合していることが示されている。一方、第2周波数特性32に示されるように、比較例1は周波数が3.6〜6.2GHzの領域でノイズの結合が生じている。
【0058】
具体的には、評価系200における実施例1のカップリングは計測を行った9GHzまでの範囲でカップリング<0であったが、評価系200における比較例1のカップリングは3.5GHzまでカップリング<0であった。すなわち、評価系200における実施例1の複合磁性体は比較例1の複合磁性体よりも、減結合の生じる周波数帯が高周波に及んでいる。
【0059】
したがって、
図6に示されるように、実施例1に示す複合磁性体は、比較例1に示す複合磁性体と比較して、良好に減結合させることができることを確認した。