(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6873084
(24)【登録日】2021年4月22日
(45)【発行日】2021年5月19日
(54)【発明の名称】静電式スプレーガン用インペラ
(51)【国際特許分類】
B05B 5/053 20060101AFI20210510BHJP
B05B 7/08 20060101ALI20210510BHJP
H02K 1/27 20060101ALI20210510BHJP
【FI】
B05B5/053
B05B7/08
H02K1/27 501M
【請求項の数】19
【外国語出願】
【全頁数】13
(21)【出願番号】特願2018-107445(P2018-107445)
(22)【出願日】2018年6月5日
(62)【分割の表示】特願2015-534797(P2015-534797)の分割
【原出願日】2013年9月30日
(65)【公開番号】特開2018-187625(P2018-187625A)
(43)【公開日】2018年11月29日
【審査請求日】2018年6月19日
(31)【優先権主張番号】61/708,150
(32)【優先日】2012年10月1日
(33)【優先権主張国】US
(31)【優先権主張番号】61/751,006
(32)【優先日】2013年1月10日
(33)【優先権主張国】US
(73)【特許権者】
【識別番号】308025451
【氏名又は名称】グラコ ミネソタ インコーポレーテッド
(74)【代理人】
【識別番号】100090022
【弁理士】
【氏名又は名称】長門 侃二
(72)【発明者】
【氏名】ウィロビー ジェイソン ジェイ
(72)【発明者】
【氏名】ウルリッヒ, マーク イー.
【審査官】
塩屋 雅弘
(56)【参考文献】
【文献】
特開昭52−001251(JP,A)
【文献】
特開2004−211707(JP,A)
【文献】
米国特許第04219865(US,A)
【文献】
特開2008−190455(JP,A)
【文献】
特表2011−514844(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B05B 5/00−5/16
7/08
F03D 1/00−80/80
F04D 1/00−13/16
17/00−19/02
21/00−25/16
29/00−35/00
H02K 1/27
7/00−7/20
(57)【特許請求の範囲】
【請求項1】
エア供給口及び流体供給口が組み付けられたスプレーガンハウジングと、
スプレーノズル組立体と、
前記流体供給口と前記スプレーノズル組立体との間の流路に介装された弁と、
前記スプレーガンハウジングの内部に設けられた電源部と、
前記スプレーノズル組立体に取り付けられ、前記電源部と電気的に接続された電極と、
前記スプレーガンハウジングの内部に設けられ、前記電源部に電力を供給する発電機とを備え、
前記発電機は、
発電機ハウジングと、
ロータを取り囲むステータを備え、前記発電機ハウジング内に配置された電磁式発電機構と、
前記ロータから延設されたシャフトと、
前記スプレーガンハウジングの内部に設けられ、前記エア供給口と流体的に接続されるインペラとを備え、
前記インペラは、
前記シャフトに取り付けられたハブと、
前記ハブから延設されて湾曲する複数の羽根とを備え、
前記発電機ハウジングが、該ハウジングを貫通して延びる、等間隔に配置された複数の流入開口を有し、且つ、前記複数の羽根は湾曲した前端面および後端面を有し、
前記複数の流入開口のそれぞれについて、ひとつの羽根のみが一度にひとつの流入開口の視線上に実質的にあるようにして、前記複数の羽根が前記ハブの周りに等間隔で配置されており、
各前記羽根は、羽根が流入開口の視線上にあるときに、その1つの流入開口に実質的に直交する湾曲部を有している
ことを特徴とする静電式スプレーガン。
【請求項2】
前記発電機ハウジングの4つとされた前記流入開口は、8つとされた前記羽根の後端面に向けてエアを指向するように配設され、
前記羽根のそれぞれの前記後端面は、前記流入開口から当該後端面に接するエアの噴流に対して常に直交するように湾曲している
ことを特徴とする請求項1に記載の静電式スプレーガン。
【請求項3】
前記ハブは環状であり、且つ、ハブ中心軸線を中心として設けられている、
ことを特徴とする請求項1に記載の静電式スプレーガン。
【請求項4】
前記複数の流入開口のそれぞれは、前記ハブ中心軸線を通って前記発電機ハウジングを横切る線に平行に延設されることを特徴とする請求項3に記載の静電式スプレーガン。
【請求項5】
前記インペラは、8つの羽根を備え、
前記発電機ハウジングは、4つの流入開口を備える
ことを特徴とする請求項1に記載の静電式スプレーガン。
【請求項6】
前記流入開口のそれぞれは、前記ハブ中心軸線を中心として直線で囲まれた図形を形成するように交差する軸線に沿って延設されることを特徴とする請求項5に記載の静電式スプレーガン。
【請求項7】
前記ハブ中心軸線を中心とした前記ハブの回転位置に関わらず、4つの羽根が、前記4つの流入開口のそれぞれの視線上に1つずつ位置することを特徴とする請求項5に記載の静電式スプレーガン。
【請求項8】
前記羽根のそれぞれは、前記インペラが45度回転する間、同じ前記流入開口の視線上に位置することを特徴とする請求項1に記載の静電式スプレーガン。
【請求項9】
前記ロータはネオジム磁石を備えることを特徴とする請求項1に記載の静電式スプレーガン。
【請求項10】
前記電源部は、前記電磁式発電機構に接続されることを特徴とする請求項1に記載の静電式スプレーガン。
【請求項11】
エア供給口及び流体供給口が組み付けられたスプレーガンハウジングと、
スプレーノズル組立体と、
前記流体供給口と前記スプレーノズル組立体との間の流路に介装された弁と、
前記スプレーガンハウジングの内部に設けられた電源部と、
前記スプレーノズル組立体に取り付けられ、前記電源部と電気的に接続された電極と、
前記スプレーガンハウジングの内部に設けられ、前記電源部に電力を供給する発電機とを備え、
前記発電機は、
電磁式発電機構と、
シャフトと、
前記電磁式発電機構が中に配置され、エア用開口を有する発電機ハウジングと、
前記スプレーガンハウジングの内部に設けられ、前記エア供給口と流体的に接続されており、湾曲した複数の羽根を有するインペラとを備え、
前記インペラは、前記エア用開口の視線上に位置するように、前記発電機ハウジングの内部で前記シャフトに取り付けられ、
前記インペラの前記複数の羽根は、湾曲した前端面及び湾曲した後端面を有しており、
前記発電機ハウジングは前記エア用開口を4つ備え、
前記インペラの回転位置に関わらず、前記複数の羽根に含まれる4つの羽根が前記4つのエア用開口のそれぞれの視線上に1つずつ位置することを特徴とする静電式スプレーガン。
【請求項12】
前記エア用開口から供給されたエアが、前記後端面に直角に衝突するように、前記後端面の形状及び前記エア用開口の向きが定められていることを特徴とする請求項11に記載の静電式スプレーガン。
【請求項13】
前記エア用開口は、実質的に一度に1つの前記羽根の後端面にしか指向しない軸線に沿って延設されることを特徴とする請求項11に記載の静電式スプレーガン。
【請求項14】
前記羽根の前記後端面は、当該羽根の前記前端面が形成する曲線よりも長い曲線に沿って延設されることを特徴とする請求項11に記載の静電式スプレーガン。
【請求項15】
複数の前記エア用開口が、前記発電機ハウジングを貫通して設けられることを特徴とする請求項11に記載の静電式スプレーガン。
【請求項16】
前記インペラは、ハブの周囲に等間隔で設けられた8つの前記羽根を備え、
前記発電機ハウジングは、前記発電機ハウジングの周方向に等間隔で設けられた4つの前記エア用開口を備える
ことを特徴とする請求項11に記載の静電式スプレーガン。
【請求項17】
シャフトを有する電磁式発電機構と、
前記電磁式発電機構が中に配置され、エア用開口を有する発電機ハウジングと、
前記エア用開口の視線上に位置するように、前記発電機ハウジングの内部で前記シャフトに取り付けられたインペラとを備え、
前記インペラは、湾曲した前端面及び湾曲した後端面を有した複数の羽根を備え、
前記羽根の前記後端面は、当該羽根の前記前端面が形成する曲線よりも長い曲線に沿って延設される
ことを特徴とする発電機。
【請求項18】
前記エア用開口から供給されたエアが、前記後端面に直角に衝突するように、前記後端面の形状及び前記エア用開口の向きが定められていることを特徴とする請求項17に記載の発電機。
【請求項19】
前記エア用開口は、実質的に一度に1つの前記羽根の後端面にしか指向しない軸線に沿って延設されることを特徴とする請求項17に記載の発電機。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、塗料、シール材、コーティング材、エナメル、接着剤、粉末等の流体のスプレーを行う塗布装置に関するものであり、より具体的には、静電式スプレーガンに関するものである。
【背景技術】
【0002】
静電式スプレー装置では、スプレーガンと、目標物、即ちスプレー対象物との間の周辺に静電場を生成する。噴霧された粒子は、この静電場を介して伝播し、静電場を通過する際に帯電する。このため、帯電した粒子は、スプレー対象物に引き寄せられる。このような方法により、噴出された粒子を高い割合でスプレー対象物に向かわせることが可能となり、従来の方法に比べ、スプレーの効率が大幅に改善される。静電式スプレーガンは、導電性の液体のスプレーに用いることも可能であるが、非導電性の液体や粉末の塗布に特に有用である。
【0003】
典型的な静電式スプレー装置では、スプレーガンのスプレー開口部の近傍にイオン化用の電極を配置し、塗布対象物を接地電位に保持して、イオン化用の電極と塗布対象物との間に静電場を生成する。電極と接地された塗布対象物との距離は、概ね0.5m程度もしくはそれ以下であり、塗料粒子と塗布対象物との間に十分な吸引力が生じるような、イオン化された多くの塗料粒子の相互作用を生成する上で十分な強度の静電場を発生させるためには、スプレーガンの電極に印加する電圧を極めて高くせざるを得ない。スプレー作業において適度の効率を得るために、スプレーガンの電極に2万〜10万V(20〜100kV)といった静電電圧を印加することは、特殊なことではない。一般的に、スプレーガンの電極には、50μA程度のイオン化電流が流れる。
【0004】
静電式スプレーガンは、手持ち式スプレーガン、または遠隔制御により作動可能な自動スプレーガンとすることができる。噴出された流体は、加圧エア、液圧、或いは遠心力といった、様々な直接的霧化力を用いて霧化することができる。静電電圧のための電力は、様々な方法で生成することができる。多くの装置では、外部電源が静電式スプレーガンに接続される。但し、別の構成として、静電式スプレーガンの中に配設された発電機を用いて電力を生成するようにしてもよい。例えば、特許文献1〜特許文献6には、印加電圧を得るための昇圧器に電圧を供給するための発電機を駆動するエア駆動タービンを有した静電式スプレーガンが記載されている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】米国特許第4554622号明細書
【特許文献2】米国特許第4462061号明細書
【特許文献3】米国特許第4290091号明細書
【特許文献4】米国特許第4377838号明細書
【特許文献5】米国特許第4491276号明細書
【特許文献6】米国特許第7226004号明細書
【発明の概要】
【発明が解決しようとする課題】
【0006】
本発明は、改善された静電式スプレーガン用インペラの提供を目的とするものである。
【課題を解決するための手段】
【0007】
静電式スプレーガン内に用いられるような発電機は、電磁式発電機構、発電機ハウジング、及びインペラを備える。電磁式発電機構は、シャフトを有する。電磁式発電機構は、発電機ハウジング内に配置される。発電機ハウジングは、エア用開口を有する。インペラは、エア用開口の延長線上に位置するように、発電機ハウジング内でシャフトに取り付けられている。インペラは、湾曲した前端面及び後端面を有した羽根を備える。
【0008】
もう1つの態様において、発電機組立体は、発電機ハウジング、発電機構、シャフト、及びインペラを備える。発電機ハウジングは、流入開口を有する。発電機構は、ハウジング内に配置されている。発電機構は、ロータを取り囲むステータを備える。シャフトは、ロータから延設されている。インペラは、シャフトに取り付けられたハブと、ハブから延設された複数の羽根を備える。前記羽根のそれぞれは、流入開口の延長線上に位置する弧の部分が当該流入開口の中心軸線に対して直交するように形成された湾曲部を有する。
【図面の簡単な説明】
【0009】
【
図1】流体供給源に接続されて、目標物へのスプレーを行う静電式スプレーガンを示す、静電式スプレー装置の概要図である。
【
図2】ガンハンドル部及びスプレーノズル組立体が結合されたガン胴体部を示す、
図1の静電式スプレーガンの斜視図である。
【
図3】ガン胴体部内に配置されるように構成された発電機及び電源部を示す、
図2の静電式スプレーガンの分解図である。
【
図4A】ステータ組立体の内側に設けられるインペラ及びロータを示す、
図3の発電機の分解図である。
【
図4B】ロータに組み付けられたベアリング及びインペラを示す、
図3の発電機の断面図である。
【
図5A】発電機ハウジングに形成されたエア流入開口に対するインペラの位置を示す図である。
【
図5B】発電機ハウジングに形成されたエア流入開口に対するインペラの位置を示す図である。
【
図5C】発電機ハウジングに形成されたエア流入開口に対するインペラの位置を示す図である。
【発明を実施するための形態】
【0010】
本発明の実施形態において、静電式スプレーガンは、湾曲した羽根が設けられたインペラを有する発電機組立体を備えている。静電式スプレーガンは、電磁式発電機構のステータ内にあるロータを駆動する空気駆動式タービンを用い、内部で電力を生成する。インペラの羽根は、当該羽根に作用して回転を生じさせる加圧エアを最適に受けるように湾曲している。具体的には、羽根の後端面が、発電機ハウジングから当該羽根に指向された加圧エアの噴流に対して直交するように湾曲している。
図1〜
図3には、インペラの湾曲した羽根を適用可能な静電式スプレーガンを示し、
図4A、
図4B、
図5A、
図5B、及び
図5Cには、インペラの様々な特徴、形態、及び利点を示している。
【0011】
図1は、流体供給源14に接続されて目標物16へのスプレーを行う静電式スプレーガン12を示す、静電式スプレー装置10の概要図である。流体供給源14には、ポンプ18が組み付けられており、ポンプ18により、ホース20を介して加圧流体が静電式スプレーガン12に供給される。また、静電式スプレーガン12は、ホース22を介し、加圧エアの供給源(図示せず)にも接続されている。目標物16は、吊り下げ棚24から吊り下げるなどして接地されている。流体スプレー装置に基づき静電式スプレー装置10を説明しているが、粉末などのような、これとは異なるコーティング材を本発明と共に用いることも可能である。
図1〜
図3は、特にエアアシスト式の装置に関して図示するものであるが、本発明はエア噴霧式の装置にも適用することが可能である。
【0012】
作業者26は、目標物16から約0.5m以下の距離となるように、静電式スプレーガン12を目標物16に近接させて位置させる。静電式スプレーガン12のトリガを操作すると、静電式スプレーガン12内部のタービンに加圧エアが供給され、電力を生成する発電機に動力が供給される。発生した電力は、静電式スプレーガン12のスプレーノズル近傍にある電極に供給される。これにより、電極と目標物16との間に静電場EFが生成される。静電式スプレー装置10は様々な箇所で接地されている。例えば、接地線28及び導電性のホース22の少なくとも一方により、静電式スプレーガン12を接地するようにしてもよい。静電式スプレー装置10の様々な箇所で、別の接地線や導電材料を用いて接地を行うようにしてもよい。また、静電式スプレーガン12のトリガの操作により、ポンプ18から供給される加圧流体がスプレーノズルを通過し、それによって霧化した流体の粒子が静電場EF内で帯電する。こうして帯電した粒子は、接地されている目標物16に引き寄せられる。目標物16は吊り下げ棚24を介して吊り下げられており、帯電した流体の粒子が目標物16を包み込むことにより、余分なスプレーが大幅に低減される。
【0013】
図2は、ガンハンドル部32及びスプレーノズル組立体34が結合されたガン胴体部30を示す、
図1の静電式スプレーガン12の斜視図である。ガンハンドル部32のハンドル36には、エア供給口38、エア排出口40、及び流体供給口42が組み付けられている。ガン胴体部30には、ガンハンドル部32のハウジング44が結合されている。エア制御弁46が、ハウジング44内の開閉弁(
図3中のエア用ニードル66を参照)に接続されており、エア供給口38から静電式スプレーガン12の各部材への加圧エアの流動を制御する。エア調節器47A及びエア調節器47Bにより、上述した開閉弁からスプレーノズル組立体34へのエアの流動を調整する。トリガ48が、ガン胴体部30内の流体弁(
図3中の流体用ニードル74を参照)に連結され、流体供給口42から流体管50を経てスプレーノズル組立体34へと至る加圧流体の流動を調整するように構成されている。エア制御弁46は、発電機へのエアの流動を制御する。その後、このエアは、エア排出口40を介して静電式スプレーガン12から排出される。
【0014】
トリガ48の操作により、加圧エア及び加圧流体が同時にスプレーノズル組立体34に供給される。加圧エアの一部は、スプレーノズル組立体34からの流体の流動に対する作用に用いられ、ポート52A及びポート52B、またはこれらポートと同様の別のポートを介して静電式スプレーガン12から排出される。エア噴霧式の装置の場合、加圧エアの一部は、噴出口から吐出される際の流体の霧化にも用いられる。エア噴霧式及びエアアシスト式のいずれの装置においても、加圧エアの一部は、電極54に電力を供給する発電機の回転駆動にも用いられ、エア排出口40を介して静電式スプレーガン12から排出される。発電機、及び発電機に付随して電極54用に設けられる電源部は、
図3に示されている。
【0015】
図3は、ガンハンドル部32及びガン胴体部30の内部に配置されるように構成された発電機56及び電源部58を示す、
図2の静電式スプレーガン12の分解図である。発電機56は、リボンケーブル60を介して電源部58に接続されている。発電機56は電源部58に組み付けられ、組み立てた状態において、発電機56がハウジング44内にはめ込まれると共に、電源部58がガン胴体部30内にはめ込まれるようになっている。発電機56が発電した電力は、電源部58に伝送される。エアアシスト式の装置の場合、スプリング62及び導電リング64を含む電気回路が、電源部58からスプレーノズル組立体34の内側にある電極54に電荷を供給する。エア噴霧式の装置では、発電機と電極とを接続する回路として別の電気回路を有するようにしてもよい。
【0016】
エア用ニードル66及びシール68により、静電式スプレーガン12を流動する加圧エアを制御するための開閉弁が構成される。エア制御弁46は、ハウジング44を通ってトリガ48まで延設されたエア用ニードル66を備え、このエア用ニードル66が駆動されることによりシール68を移動させ、エア供給口38からガンハンドル部32内の流路を通過する加圧エアの流動を制御することができるようになっている。スプリング70によってシール68及びトリガ48が閉位置に付勢されており、ノブ72を調整することにより、エア制御弁46を操作することができるようになっている。シール68が開状態にあると、エア供給口38から供給された加圧エアが、ガンハンドル部32内の流路を通って発電機56やスプレーノズル組立体34に流動する。
【0017】
流体用ニードル74は、静電式スプレーガン12を流動する加圧流体を制御するための流体弁の一部を構成する。トリガ48の操作により、キャップ76を介してトリガ48に連結された流体用ニードル74が直ちに移動する。キャップ76とトリガ48との間にはスプリング78が配設され、流体用ニードル74を閉位置に付勢している。流体用ニードル74は、ガン胴体部30を通ってスプレーノズル組立体34まで延設されている。
【0018】
スプレーノズル組立体34は、シートハウジング80、ガスケット81、ノズル82、エアキャップ84、及び保持リング86を備えている。エアアシスト式の装置の場合、流体用ニードル74はシートハウジング80に係止し、流体管50からスプレーノズル組立体34への加圧流体の流動を制御する。ガスケット81は、シートハウジング80とノズル82との間をシールする。ノズル82は、シートハウジング80から加圧流体を吐出させる噴出口87を備えている。電極54は、エアキャップ84から延設されている。エアアシスト式の装置の場合、噴出口87を介して高圧の加圧流体が吐出され、電極54は噴出口87からずれた位置にある。高圧の加圧流体が小さな噴出口を通過することによって霧化が生じる。エア噴霧式の装置では、電極と噴出口とが同軸状に位置するように、電極が噴出口から延設される。低圧の加圧流体が大きな噴出口を通過し、エアキャップ84から供給されるエアの作用によって霧化が行われる。いずれの装置においても、エアキャップ84は、エア調整器47A及びエア調整器47Bの設定に基づき、ノズル82からの流体の霧化及び成形を行うための加圧エアを受け取るための、ポート52A及びポート52B(
図2)のようなポートを備えている。別の実施形態として、ポート52A及びポート52Bのいずれも有さずに、静電式スプレーガン12を作動させるようにしてもよいし、ポート52A及びポート52Bの一方のみを有して、静電式スプレーガン12を作動させるようにしてもよい。
【0019】
加圧エアの力で発電機56が作動することにより、電源部58に電気エネルギが供給され、電源部58は、これを受けて電極54に電圧を印加する。電極54は、ノズル82から発せられた霧化流体を帯電させるための静電場EF(
図1)を生成する。静電場EFによって生じるコロナ作用により、流体で被覆しようとする目標物に向け、帯電した流体粒子が移動する。保持リング86は、エアキャップ84及びノズル82を、ガン胴体部30に組み付けた状態で保持し、シートハウジング80は、ガン胴体部30内に螺合する。
【0020】
図4Aは、電磁式発電機構及びインペラを示す、
図3の発電機56の分解図であって、具体的には、発電機56が、発電機ハウジング88、インペラ90、ベアリング92A、ベアリング92B、ロータ94、シャフト96、ステータ組立体98、リボンケーブル60、エンドキャップ102、保持クリップ104、及びシール106を備えている。
図4Bは、ステータ組立体98を示す、
図3の発電機56の断面図である。ステータ組立体98は、ステータコア108、巻線110、カバー112、及び被覆部材114を備えている。
図4A及び
図4Bの両方に基づき説明を行う。
【0021】
エンドキャップ102は、発電機ハウジング88に結合されており、発電機56の構成部品が設けられる容器を形成する。シャフト96は、両端部分がロータ94から延設されるようにしてロータ94の中心孔を貫通している。ベアリング92A及びベアリング92Bは、シャフト96に組み付けられ、被覆部材114に結合されている。具体的には、ロータ94の両方の側において、ハブ116A及びハブ116Bにシャフト96が嵌挿されると共に、突起部118A及び突起部118Bが被覆部材114まで延設されている。
図4Bに示すように、突起部118Aは、被覆部材114に形成された凹部120Aに、また突起部118Bは、被覆部材114に形成された凹部120Bに、それぞれ固定されている。本発明の一実施形態では、ベアリング92A及びベアリング92Bが焼結含油青銅ベアリングからなる。別の実施形態では、ベアリング92A及びベアリング92Bが、フッ素重合体といった耐溶剤性コーティングで被覆されている。このようなベアリング用のコーティングは、グラコ・ミネソタ社に譲受された米国特許第7226004号に示されている。インペラ90は、ベアリング92Aの近傍において、シャフト96に装着されている。具体的には、ハブ121にシャフト96が嵌挿されると共に、羽根122が、ハブ121から発電機ハウジング88に向けて、概ね径方向に延設されている。
【0022】
インペラ90、ロータ94、及びステータ組立体98は、発電機ハウジング88の中に挿入されている。ステータ組立体98の被覆部材114は、圧入等によりしっかりと発電機ハウジング88にはめ込まれ、ステータ組立体98を発電機ハウジング88内に確実に保持する。被覆部材114は、肩部124(
図4B)に押し付けられることにより、開口128に対してインペラ90を適切に位置決めする。このようにして、インペラ90が、ステータ組立体98とエンドキャップ102との間の空間内に配置される。シャフト96がベアリング92A及びベアリング92Bにおいて回転自在となっていることにより、インペラ90が発電機ハウジング88内で回転することができる。保持クリップ104が発電機ハウジング88に挿入され、爪125(
図4A)が、発電機ハウジング88に形成された切欠126(
図4A)に係合する。保持クリップ104は、ベアリング92Bが凹部120Bから外れるのを防止する。また、保持クリップ104は、ステータ組立体98を肩部124に押圧することにより、発電機ハウジング88内へのステータ組立体98の保持を補助する。
【0023】
インペラ90に回転を生じさせるため、開口128を介して発電機ハウジング88内に加圧エアが導入される。この加圧エアは、羽根122に衝突して、インペラ90の回転を発生させ、この回転により、ステータ組立体98における巻線110の内側で、シャフト96及びロータ96が回転する。本実施形態において、カバー112は、巻線110の周囲に設けられたエポキシコーティングからなる。別の実施形態として、巻線110とコア108との間で、コア108の周囲にコーティングを形成するようにしてもよい。ロータ94及び巻線110は、リボンケーブル60に供給する電流を生成するための電磁式発電機構を形成する。本発明の実施形態では、ロータ94がネオジム磁石を備え、巻線110が銅線で構成されている。ネオジム磁石は、アルニコ磁石のような通常の磁石に比べてエネルギ密度が高い。このような高いエネルギ密度により、ロータ94の大きさ及び重量を低減することが可能となる。一実施形態では、ネオジム磁石を用いることにより、従来の静電式スプレーガンの発電機に比べ、大きさを40%低減することができる。ロータ94の大きさを低減することにより、慣性モーメントを低減させると共に、加圧エアの力が加えられたときのロータ94の加速性を向上させることができ、作業者26(
図1)にとって良好な応答性が得られると共に、発電機56の作動に必要な加圧エアの量を低減することができる。
【0024】
上述したように、羽根122は、発電機ハウジング88の開口128からのエアを受ける位置に配置される。加圧エアの流動から得られる動力が最大限となるように、羽根122の形状及び数が選定される。具体的には、各開口128からの加圧エアを、実質的に1つずつの羽根でしか受けないように間隔を置いて、羽根122がハブ121の周囲に配設されると共に、これらの羽根122は、加圧エアが各羽根に対して常に実質的に直角に衝突するような形状となっている。
【0025】
図5A〜
図5Cは、発電機ハウジング88に形成された4つのエア流入開口128A〜128Dに対して様々な位置にあるインペラ90を示す図である。インペラ90は、ハブ121から延設された8つの羽根122A〜122Hを備える。エア流入開口128A〜128Dのそれぞれは、エア供給口38(
図2)から供給される加圧エアの噴流が流動するように構成されている。例えば、エア流入開口128Aは、エアの噴流J
Aが流動するように構成されている。
【0026】
本実施形態において、インペラ90は、羽根122として8つの羽根122A〜122Hを有し、発電機ハウジング88は、開口128として4つのエア流入開口128A〜128Dを有する。羽根122A〜122H及びエア流入開口128A〜128Dは、エア流入開口128A〜128Dからのエアの噴流に接する羽根の数が、常に実質的に4つだけとなるように、間隔を置いて配設されている。従って、エアの噴流に実質的に接しなくなる羽根の数も、常に4つとなる。
【0027】
発電機ハウジング88は、軸線Aを中心とする、実質的に円筒状の部材として形成される。同様に、インペラ90のハブ121も、軸線Aを中心として同軸状に配設される。開口128は、発電機ハウジング88の周面に沿って等間隔に配設される。従って、エア流入開口128A〜128Dは、軸線Aを中心にほぼ90度の間隔で設けられている。これら4つのエア流入開口128A〜128Dは、軸線Aを中心として直線で囲まれた図形を形成するように交差する軸線にそれぞれが沿うように配設されている。エア流入開口128A〜128Dのそれぞれは、軸線Aを通って発電機ハウジング88を横切る線に平行に延設されている。従って、図示した実施形態において、エア流入開口128A〜128Dの中心軸線は、正方形を形成する。
【0028】
羽根122A〜122Hのそれぞれは湾曲している。具体的には、羽根122Aに関して図示しているように、羽根122A〜122Hのそれぞれが、湾曲した前端面LEと湾曲した後端面TEとを備えている。羽根122A〜122Hは、ハブ121の外周に等間隔で配置されている。従って、羽根122A〜122Hは、軸線Aを中心にほぼ45度の間隔で設けられている。
【0029】
前端面LE及び後端面TEは、エアの噴流J
Aによって最大限のトルクが生じるように成形されている。即ち、後端面TEが、常にエアの噴流J
Aに対して実質的に直交するように成形されている。
図5Aは、羽根122Aの先端部分がエアの噴流J
Aに接するようになった状態を示している。インペラ90が軸線Aを中心に回転すると、羽根122Aの後端面においてエアの噴流J
Aに接する位置が変化する。即ち、エアの噴流J
Aは、ハブ121にわずかに近付いた位置に作用するようになる。
図5Bは、
図5Aの状態に比べ、羽根122Aが、軸線Aを中心に10度回転して、エア流入開口128Aから離れた状態を示している。エアの噴流J
Aが羽根122Aを押してエア流入開口128Aから遠ざける際には、後端面TEの湾曲により、常に羽根122Aがエアの噴流J
Aと実質的に直交するようになっている。
図5Cは、
図5Aの状態に比べ、羽根122Aが、軸線Aを中心に20度回転して、エア流入開口128Aから更に離れた状態を示している。一実施形態では、エアの噴流J
Aが、直角から10度以内の角度で後端面TEに衝突する。好ましい実施形態では、エアの噴流J
Aが、直角から5度以内の角度で後端面TEに衝突する。
【0030】
エアの噴流J
Aは、エアの噴流J
Aが実質的に1つずつの羽根にしか衝突せず、且つ連続的に羽根と接触することで得られる最大限のトルクをハブ121に与える。本実施形態のインペラを用いることにより、インペラ90のアーム距離(インペラの中心軸線と、羽根においてエアの噴流J
Aが衝突する領域との間の距離)に対し、エアの噴流J
Aの力のベクトルの作用は、ハブに対するトルク(エアの噴流の力のベクトル×アーム距離=トルク)を増大させるようなエア流入開口128Aの配置により、可能な限り直角に生じるので、最大限のトルクを得ることが可能となる。一実施形態において、羽根122Aの後端面TEは、前端面LEを延設する際に当該前端面LEが沿う弧よりも長い弧に沿って延設される。羽根122Aの前端面LEは、エアの噴流J
Aに関わるようには構成されていないため、羽根122Aの寸法及び重量を低減するような形状とされる。このような後端面及び前端面の湾曲及び長さとすることにより、隣接する羽根の前端面と後端面とは、サメのひれ状の形状をなす。
【0031】
本発明のインペラの羽根により、従来の発電機の羽根に比べ、高い効率での動力の取り出しが可能となる。静電式スプレーガンに適用するための従来の発電機用のタービンは、三角形状または鋸歯状をなして、前端面及び後端面が平坦な羽根を有したインペラで作動するものであった。このため、インペラの平坦面がエアの噴流となす角は、エアの噴流による作用の効率を低下させるような角度となる。即ち、エアの噴流は、例えば30度というような90度より小さな角度で平坦な羽根と衝突することになる。このため、エアの噴流により羽根の表面に作用してハブにトルクを与える力は、エアの噴流により得られる全ての力よりも小さな力となり、動力の取り出しが非効率的となる。上述したような湾曲したインペラの羽根は、加圧エアからの、より多くのエネルギの取り出しを可能とするものである。即ち、エアの噴流がほぼ90度でインペラの表面に衝突することにより、ハブにトルクを与える力のベクトルの大きさを最大限とすることができる。本発明により、羽根の表面に対して実質的に直角となる(そして、ハブにトルクを与える)エアの噴流の力のベクトルの大きさは、エアの噴流により得られる全ての力の大きさとほぼ等しくなる。インペラ90によって一層効率的に動力の取り出しを行うことで、同じ動力を得るのに必要なエアの消費量が低減され、装置全体の効率が向上する。
【0032】
本発明に関し、好ましい実施形態に基づいて説明したが、本発明の趣旨及び範囲から逸脱することなく、形態を詳細にわたって変更可能であることは、当業者が理解しうるものである。