特許第6873163号(P6873163)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ コーニンクレッカ フィリップス エヌ ヴェの特許一覧

特許6873163外部微小凸面−リニア超音波プローブのための画像の向きの特定
<>
  • 特許6873163-外部微小凸面−リニア超音波プローブのための画像の向きの特定 図000002
  • 特許6873163-外部微小凸面−リニア超音波プローブのための画像の向きの特定 図000003
  • 特許6873163-外部微小凸面−リニア超音波プローブのための画像の向きの特定 図000004
  • 特許6873163-外部微小凸面−リニア超音波プローブのための画像の向きの特定 図000005
  • 特許6873163-外部微小凸面−リニア超音波プローブのための画像の向きの特定 図000006
  • 特許6873163-外部微小凸面−リニア超音波プローブのための画像の向きの特定 図000007
  • 特許6873163-外部微小凸面−リニア超音波プローブのための画像の向きの特定 図000008
  • 特許6873163-外部微小凸面−リニア超音波プローブのための画像の向きの特定 図000009
  • 特許6873163-外部微小凸面−リニア超音波プローブのための画像の向きの特定 図000010
  • 特許6873163-外部微小凸面−リニア超音波プローブのための画像の向きの特定 図000011
  • 特許6873163-外部微小凸面−リニア超音波プローブのための画像の向きの特定 図000012
  • 特許6873163-外部微小凸面−リニア超音波プローブのための画像の向きの特定 図000013
  • 特許6873163-外部微小凸面−リニア超音波プローブのための画像の向きの特定 図000014
  • 特許6873163-外部微小凸面−リニア超音波プローブのための画像の向きの特定 図000015
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6873163
(24)【登録日】2021年4月22日
(45)【発行日】2021年5月19日
(54)【発明の名称】外部微小凸面−リニア超音波プローブのための画像の向きの特定
(51)【国際特許分類】
   A61B 8/14 20060101AFI20210510BHJP
【FI】
   A61B8/14
【請求項の数】15
【全頁数】13
(21)【出願番号】特願2018-565054(P2018-565054)
(86)(22)【出願日】2017年6月12日
(65)【公表番号】特表2019-517881(P2019-517881A)
(43)【公表日】2019年6月27日
(86)【国際出願番号】EP2017064209
(87)【国際公開番号】WO2017216078
(87)【国際公開日】20171221
【審査請求日】2020年6月9日
(31)【優先権主張番号】62/350,848
(32)【優先日】2016年6月16日
(33)【優先権主張国】US
【早期審査対象出願】
(73)【特許権者】
【識別番号】590000248
【氏名又は名称】コーニンクレッカ フィリップス エヌ ヴェ
【氏名又は名称原語表記】KONINKLIJKE PHILIPS N.V.
(74)【代理人】
【識別番号】110001690
【氏名又は名称】特許業務法人M&Sパートナーズ
(72)【発明者】
【氏名】フリーマン スティーブン ラッセル
【審査官】 佐々木 龍
(56)【参考文献】
【文献】 特開2010−099467(JP,A)
【文献】 特開平08−229034(JP,A)
【文献】 特開平05−095945(JP,A)
【文献】 特開2010−214015(JP,A)
【文献】 特開2004−135693(JP,A)
【文献】 特開2008−237787(JP,A)
【文献】 特開2014−161444(JP,A)
【文献】 国際公開第2015/099835(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
A61B 8/00−8/15
G01N 29/00−29/52
H04R 1/00−31/00
(57)【特許請求の範囲】
【請求項1】
マイクロコンベックス超音波素子及びリニア超音波素子のアレイを含む、マイクロコンベックス−リニア超音波プローブと、
前記マイクロコンベックス−リニア超音波プローブからエコー信号を受信し、所望の画像フォーマットで超音波画像をレンダリングする走査変換器であって、前記エコー信号は、前記マイクロコンベックス超音波素子及びリニア超音波素子のアレイの全体に沿って空間的に連続する連続画像フィールドが走査されるように、前記マイクロコンベックス超音波素子及びリニア超音波素子のアレイの全体に沿って、アクティブアパーチャ面に垂直にビームを形成する、走査変換器と、
前記走査変換器へ入力される、画像の垂直方向を特定する画像向き信号を生成するように、前記マイクロコンベックス−リニア超音波プローブ又は前記走査変換器の少なくとも一方と結合されるプロセッサと、
前記画像向き信号によって制御される前記走査変換器によって生成される画像を、組織深度が大きい方が下部にあるように表示する超音波画像ディスプレイと、
を含む、超音波システム。
【請求項2】
前記マイクロコンベックス−リニア超音波プローブは更に、加速度計を含み、
記プロセッサは更に、前記加速度計から信号を受信する、請求項1に記載の超音波システム。
【請求項3】
記プロセッサは更に、重力方向を検出する、請求項2に記載の超音波システム。
【請求項4】
前記マイクロコンベックス−リニア超音波プローブは、マイクロコンベックス−リニアトランスデューサ素子のアレイを含み、
記プロセッサは更に、前記マイクロコンベックス−リニアトランスデューサ素子からエコー信号を受信する、請求項1に記載の超音波システム。
【請求項5】
記プロセッサは更に、被験者に音響的に結合されていない素子からのリングダウン信号を特定する、請求項4に記載の超音波システム。
【請求項6】
記プロセッサは更に、超音波画像プロセッサを含む、請求項1に記載の超音波システム。
【請求項7】
記プロセッサは更に、超音波画像内の特定の特徴を特定する、請求項6に記載の超音波システム。
【請求項8】
記プロセッサは更に、超音波画像のシーケンスにおいて特定の特徴を追跡する、請求項7に記載の超音波システム。
【請求項9】
記プロセッサは更に、スペックル追跡によって、超音波画像のシーケンスにおいて前記特定の特徴を追跡する、請求項8に記載の超音波システム。
【請求項10】
記プロセッサは更に、超音波画像の前記シーケンスにおいて前記特定の特徴の位置を安定させる、請求項8に記載の超音波システム。
【請求項11】
記プロセッサは更に、穿刺用ニードルから戻るエコー信号を特定する、請求項7に記載の超音波システム。
【請求項12】
記プロセッサは更に、超音波画像のシーケンスにおいて前記穿刺用ニードルの位置を安定させる、請求項11に記載の超音波システム。
【請求項13】
前記マイクロコンベックス−リニア超音波プローブ内のトランスデューサ素子のアレイのトランスデューサ素子からのエコー信号を受信するビームフォーマを更に含む、請求項1に記載の超音波システム。
【請求項14】
前記ビームフォーマと結合される検出器を更に含む、請求項13に記載の超音波システム。
【請求項15】
前記検出器と結合される走査線メモリを更に含む、請求項14に記載の超音波システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、医用診断超音波システムに関し、具体的には、生検手順用の微小凸面−リニア超音波プローブに関する。
【背景技術】
【0002】
超音波画像誘導は、生検及び他のニードル手順を導くためによく使用され、これにより、ニードルが体内に導入され、生検を行うか、又は、体内の物質を吸引若しくは剥離する。ニードルのターゲットまでの経路を導き、観察することができるように、ニードルが皮膚表面を侵入するとすぐに当該ニードルを撮像することが望まれる手順の始まりにおいて、よく知られた問題が生じる。できる限り表在性血管及び神経を視覚化し、それらに侵入することを回避できることが望ましい。
【0003】
更に、密な皮下組織があることにより、ニードルが曲がるか、又は、その意図する進行経路から外れて逸脱してしまうことがある。したがって、これらの潜在的な問題をすぐに観察及び克服できるように、ニードルが体内に入るとすぐに当該ニードルを撮像し始めることが望ましい。
【発明の概要】
【発明が解決しようとする課題】
【0004】
ニードルの取り扱いにおける一般的な支援は、生検ガイドを使用することである。これは、超音波プローブの周りに取り付けられ、ニードルをその意図する進行経路に対して直列に保持するブラケットである。不都合なことに、生検ガイドは、通常、プローブの側面から外側で且つプローブの音響窓から離れてニードルを保持するため、ニードルの初期の視覚化の問題を悪化させる。この問題を軽減するために、アレイトランスデューサの隣のプローブ面、時には、アレイの素子間にもスロットを作成するといったような他のアプローチも試みられている。しかし、特殊なプローブ構造におけるこれらのアプローチは高価であり、このようなプローブを清潔にすることは難しく、特定デザインの特定のニードルアクセスに限定される。したがって、多くの熟練の臨床医は、ニードルを可能な限りプローブ及びその音響窓に近くで患者の皮膚に挿入できるように、生検ガイドのない標準的な撮像プローブを使用することを好む。したがって、優れた画像誘導で、支援なし生検と、生検ガイド付き生検との両方を容易にすることが望ましい。
【0005】
本発明は、ニードル挿入のために皮膚表面近くの広い側方視野と、ニードルが体内のターゲット病変に近づくにつれて視野のより深い深度における高分解能画像とを提供することによって、ニードル挿入の視覚的誘導を向上させることを更なる目的とする。
【課題を解決するための手段】
【0006】
本発明の原理によれば、ニードル挿入手順の画像誘導用の外部プローブは、微小凸面アレイとリニアアレイとが組み合わされた構造を有する。プローブは、ニードル挿入を視覚化するために、手順の始まりにおいて、ユーザが、微小凸面アレイ部を患者の皮膚に押し付け、その後、ニードルが体のより深い深度まで侵入する際のニードルを観察するために、リニアアレイ部が患者の皮膚と優れた音響的接触状態となるように、プローブを回転させることができるハンドルを有する。
【0007】
ニードル手順においてプローブを使用する方法は、微小凸面アレイを用いて撮像するために、微小凸面アレイ部を被験者に押し付けるステップと、微小凸面アレイ部の近傍にニードルを挿入するステップと、ニードルの初期侵入を観察するステップと、リニアアレイ部が患者と優れた音響的接触状態となるように、プローブを回転させるステップと、リニアアレイ部を用いてニードルのより奥への侵入を観察するステップとを含む。
【0008】
本発明の更なる態様によれば、向きプロセッサ回路は、プローブがニードル挿入及び深度侵入の際に回転される間に、患者の皮膚面が常に表示の上部にあるように、超音波画像の表示を制御する。向きプロセッサは、所望の画像の向きを決定するために、重力の方向、画像処理又は音響的接触を決定するように処理される信号を生成する加速度計を使用してもよい。
【図面の簡単な説明】
【0009】
図1図1は、微小凸面アレイプローブによって視線誘導されるニードル挿入を示す。
図2図2は、リニアアレイプローブによって視線誘導されるニードル挿入を示す。
図3図3は、本発明の原理に従って構成される外部超音波プローブの微小凸面音響アパーチャ及びリニア音響アパーチャを示す。
図4図4は、本発明の外部超音波プローブの内部構造の概略図である。
図5図5は、本発明に従って行われる侵襲的ニードル手順のステップのフローチャートである。
図6図6は、本発明の微小凸面−リニアアレイプローブを使用する初期ニードル挿入誘導を示す。
図7図7は、本発明の微小凸面−リニアアレイプローブを使用するより深いニードル挿入の誘導を示す。
図8a図8aは、ニードル挿入を追従するように、本発明の微小凸面−リニアアレイプローブを回転させる際に生じる画像の向きの変化を示す。
図8b図8bは、ニードル挿入を追従するように、本発明の微小凸面−リニアアレイプローブを回転させる際に生じる画像の向きの変化を示す。
図9a図9aは、画像の向きを決定するために、本発明による向きプロセッサによって実行されるアルゴリズムを示す。
図9b図9bは、画像の向きを決定するために、本発明による向きプロセッサによって実行されるアルゴリズムを示す。
図9c図9cは、画像の向きを決定するために、本発明による向きプロセッサによって実行されるアルゴリズムを示す。
図9d図9dは、画像の向きを決定するために、本発明による向きプロセッサによって実行されるアルゴリズムを示す。
図10図10は、本発明による画像向きプロセッサを有する超音波システムをブロック図で示す。
【発明を実施するための形態】
【0010】
図1は、微小凸面アレイ32をその遠位端に有する微小凸面トランスデューサアレイプローブ30によって提供される視線誘導を用いるニードル挿入手順を示す。「微小凸面」との用語は、比較的小さい曲率半径で密に曲げられた曲面アレイトランスデューサに適用される。微小凸面アレイは、一般に、広視野を有する小型アレイが必要である繊細な手順に使用される。微小凸面超音波トランスデューサは、皮膚面のすぐ下の広視野を提供するので、ニードル介入に望ましい。手順は、図示されるように、プローブ30の微小凸面アレイアパーチャを皮膚面に押し付け、ニードルを、プローブの近傍に挿入することによって、また、2次元撮像プローブについては、画像の平面に沿って挿入することによって行われる。ニードルは、ニードル経路34によって示されるように、ある角度で体内に挿入される。体内の矢印は、微小凸面アレイ32からのビーム方向を示す。ニードルは、皮膚面に侵入した略直後に視覚的に追従することができるが、素子の指向性及びアレイの曲率による微小凸面アレイの限られたアクティブアパーチャが、深いところでの画像の分解能を制限する。したがって、リニアアレイプローブが微小凸面プローブよりも深い深度においてより優れた侵入及び分解能を提供することから、当該リニアアレイプローブが、ニードル誘導のためによく使用される。
【0011】
図2は、リニアアレイトランスデューサ42をその遠位端に有するリニアアレイトランスデューサプローブ40を示す。リニアアレイは、一般に、アレイアパーチャから体内へと延在する矢印によって示されるように、体のかなり奥までニードルの経路44を視覚的に追従することができる。しかし、標準的なリニアアレイプローブでは、プローブ40の近傍の初期侵入点におけるニードル経路46の一部が全く視覚化されず、リニアアレイのビームは、アレイの端では分解能が低い。
【0012】
図3は、本発明の原理に従って構成される微小凸面−リニアアレイトランスデューサプローブ10を示す。プローブ10は、本体12の真っすぐな端から、本体12の遠位端まで且つ遠位端に沿って延在するトランスデューサ素子のアクティブアパーチャを有する本体12を有する。したがって、トランスデューサ素子は、当該トランスデューサ素子の一部が一直線であるリニアアレイ16を含み、リニアアレイ16は、素子がプローブの遠位端に沿って湾曲する微小凸面アレイ14へと移行する。素子のアレイに沿って、アクティブアパーチャ面に垂直にビームを送受信するビーム形成を用いて、微小凸面素子及びリニア素子の全体の前の連続画像フィールドを走査及び撮像することができる。リニアアレイ部とは反対側の本体12の側部には、本体から斜角に延在し、ニードル手順中に、プローブ10を皮膚表面と接触した状態に保つために使用されるハンドル20がある。この例では、プローブ10を超音波撮像システムに接続するケーブル22が、プローブからハンドル20の端を通り出る。ケーブルは、ハンドルへの取り付け点において、ケーブル張力緩和部24で保護される。
【0013】
図4の断面図に、プローブ10の内部コンポーネントが示される。この断面図では、微小凸面素子14は、左側でプローブの遠位先端に沿って湾曲し、素子のリニアアレイ16に移行する。アレイの背面には、アレイ素子に取り付けられる導体を有するフレックス回路18が取り付けられる。フレックス回路の導体は、プローブのハンドル部20内のコネクタ26aにおいて終端する。ハンドルの端に入るケーブル22は、コネクタ26b内で終端する導体を有する。コネクタ26bは、アレイ素子を、ケーブルの導体、最終的には超音波システムのビームフォーマと電気的に結合されるためにコネクタ26aと嵌合する。ケーブル22は、この例では、ハンドル20の端に取り付けられているものとして示されているが、図に破線28で示されるように、本体12の近位端でプローブに取り付けられてもよい。
【0014】
図5は、本発明による典型的なニードル挿入手順におけるステップを示すフローチャートである。第1のステップ50において、臨床医がプローブのハンドル20を掴み、微小凸面アレイ14を、患者の皮膚と優れた音響的接触状態となるように押し付ける。プローブがこのように保持されるとき、図6に示されるように見える。この位置では、臨床医は、図における72に示されるように、ハンドルの軸方向に且つ微小凸面アレイ14に真っすぐに沿って接触力を及ぼすことができる。患者の皮膚70に対するプローブの力は、微小凸面アレイと皮膚との優れた音響的接触を確実とするだけでなく、皮膚の沈み込みによって接触面を広げる。これにより、プローブの端における接触が向上されることにより、より広いセクタでの走査が可能となる。セクタは、図に破線のニードル進路によって示される体内へのニードルの初期侵入を撮像することができる。これは、図5におけるステップ52である。ステップ54において、臨床医は、図6に示されるように、微小凸面アレイ14の隣でニードルを挿入し、ステップ56において、臨床医は、微小凸面アレイによって走査された画像フィールド内のニードル挿入の初期経路を観察する。臨床医がニードルを前進させると、次のステップ58は、図7に示されるように、ハンドル20を用いてプローブを回転させて、リニアアレイ16を皮膚70と音響的に接触させる。この回転は更に、微小凸面アレイの遠端を皮膚との音響的接触から外すことも見て取れる。これは、プローブを回転させる際に、微小凸面アレイ素子及びリニアアレイ素子のアパーチャの少なくとも一部が常に皮膚と音響的に接触しているため、ニードルを見失うことなく行われる。図7が示すように、ハンドル20は、今度は、リニアアレイ16の上方にあり、臨床医が、リニアアレイアパーチャを皮膚70との優れた音響的接触状態となるように強く押すために力72を用いて押し下げることを可能にする。ニードルの継続挿入は、プローブアパーチャのリニアアレイ部分の下にあり、ステップ60によって示されるように、リニアアレイ16が、ニードルの先端が意図するターゲットに到達するまでの体の奥へのニードルの継続挿入を、優れた分解能及び明瞭さで視覚化することを可能にする。
【0015】
プローブは、ニードル挿入手順の間に回転されることを意図していることにより、また、微小凸面−リニアアレイは、100°以上に亘る方向においてビームを送受信することにより、撮像時に、画像をどのように表示すべきか、曖昧さが生じる。超音波画像は、通常、プローブに対して固定の向きで表示され、画像の最上部においてビーム深度が最も浅く、下部においてより深いビーム深度まで延在する。しかし、プローブを、図6及び図7に示されるように、手順中に回転させると、ニードル位置が画面上で動くように見えるため、表示の方向感覚が失われる。臨床医は、ニードル先端を体内のそのターゲット組織まで導くために、ニードル位置に一心に集中しているので、このような方向感覚の喪失を阻止することが望ましい。
【0016】
本発明の更なる態様では、組織深度の大きい方が常にディスプレイの下部にあるように、表示フォーマットがプローブの回転中に動的に調整され、これにより、臨床医は、一貫性のある基準系が与えられる。好適には、これは、走査変換器の画像レンダリング方法の制御によって行われる。従来の超音波システムでは、走査変換器は、受信ビーム走査線のrθ座標を、ラスタディスプレイに適し、また、適切なセクタ、リニア又は湾曲リニア走査フォーマットにおけるxy座標を有する画像に変換することを目的とする。本発明の実施態様では、走査変換器は更に、画像の垂直の向き(上下方向)を特定する向き信号によって制御される。これを実現するためには幾つかのやり方がある。1つのやり方は、図8a及び図8bに示されるように、プローブ10内にある加速度計90を使用するやり方である。加速度計90は、重力方向といった一定の向き方向を測定する信号を生成する。この結果、走査変換器は、超音波画像を、その垂直方向が測定向き方向と位置合わせされた状態でレンダリングする。
【0017】
米国特許第5,529,070号(Augustine他)に説明されるように、従前から、3D画像の再構成のために移動を測定する加速度計が超音波プローブ内で使用されてきている。当該特許に説明されるプローブでは、加速度計からの信号は、経時的に処理されて、加速度信号の二次導関数であるプローブ変位量が測定される。この動的加速度測定では、重力ベクトルは、処理アルゴリズムにおいて相殺される。しかし、本発明の実施態様では、静的重力ベクトルのみを向き信号として使用することができる。
【0018】
向き信号を生成する第2のやり方は、任意の時点において、皮膚面に音響的に結合されるアレイ14、16の一部の検出によるやり方である。この場合、垂直画像方向が、アレイの音響的に結合される部分の中心に垂直なベクトル100と見なされる。例えば図8aは、ニードル挿入時に、微小凸面アレイの素子14’のほとんどが皮膚と接触した状態で保持されるプローブ10を示す。リニアアレイ16の素子は、このとき、皮膚面と接触していない。微小凸面アレイ部14’の中心に垂直なベクトル矢印100が示され、このベクトル方向が、画像向き信号に使用される。手順の後の時点において、プローブのリニアアレイ部16’が皮膚面70と音響的に接触するように回転されると、アレイの音響的に結合される部分16’の中心に垂直なベクトル矢印100が、図8bに示されるように見える。ベクトル矢印方向と平行の走査線102は、走査変換された画像内で垂直にレンダリングされ、他の角度における走査線は、向き信号のベクトル矢印方向からのそれらの角度オフセットに応じて方向付けられる。
【0019】
適切な向き信号を生成する第3のやり方は、画像解析によるやり方であり、当技術分野では、特徴追跡とも知られている。例えば皮膚の層、脂肪及び皮膚のすぐ下の横紋筋が、画像内で特定され、水平方向の向きは、向き信号によって、これらの層と大体一直線であると設定される。第2の画像解析技術は、画像内のニードル手順の病変ターゲットを特定することであり、これは、手動で行われても自動で行われてもよい。例えば臨床医は、ニードル挿入を開始する前に、画像内のターゲット上をクリックすることができる。次に、ターゲット生体構造は、各連続画像フレーム内の同じ場所でレンダリングされる。これは、画像安定化技術を使用して行われてよい。米国特許第6,589,176号(Jago他)に説明されているように、超音波画像安定化はよく知られている。本発明の一実施態様における画像安定化は、好適には、回転は除外するようにあまり激しくは行われない。というのは、回転は、プローブの動きの予想される結果だからである。プローブが回転される際に一貫して有用である画像のシーケンスを生成するのに、中心間安定化で十分である。
【0020】
或いは、特定されたターゲット生体構造を、フレーム毎に同じ場所に維持するために、当該生体構造のスペックル特徴をフレーム毎に追跡することができる。
【0021】
図9a、図9b、図9c及び図9dは、向き信号を生成する幾つかの方法を示す。図9aは、プローブ内の加速度計を使用する技術について説明する。この目的に適した加速度計は、マサチューセッツ州ボストンのアナログデバイセズ社から入手できるMEMS(マイクロエレクトロメカニカルシステム)加速度計のADXL300シリーズのような3軸加速度計である。ステップ110において、3軸の信号が向きプロセッサによって受信される。これらの3つの信号のサンプルが、数秒といったサンプリング間隔に亘ってそれぞれ平均化され、これらの3軸から値v、v及びvが生成される。ステップ112に示されるように、3つの値は、重力に相当する垂直加速度ベクトルvを生成するように、ベクトル的に組み合わされ、垂直加速度ベクトルvは、公称的に9.81メートル/秒であり、真っすぐ上の方向にある。次に、ステップ114において、図8a及び図8bにおいて矢印Gによって示される重力のベクトル方向は、出力向き信号に使用されて、走査変換器に、示された方向Gを垂直方向として画像をレンダリングさせる。したがって、「上」と一般的に呼ばれる方向は、常に表示画像の最上部にある。
【0022】
図9bは、トランスデューサアレイ14、16の素子と、患者の皮膚との間の音響的接触を使用する向き信号特定処理について説明する。ステップ120において、アレイのすべての素子からの信号が向きプロセッサに入力(結合)される。ステップ122において、向きプロセッサにおいて、信号は、音響的リングダウンについて解析される。超音波トランスデューサ素子が、皮膚と音響的に結合していない場合、そのエコー反応は、独特なリングダウンアーチファクトを示す。例えば米国特許第5,517,994号(Burke他)の図6に、結合していないトランスデューサ素子からの典型的なリングダウン信号が示されている。対照的に、被験者と音響的に結合される素子は、組織からエコー信号のシーケンスを受信する。向きプロセッサのアルゴリズムが、患者と音響的に結合される素子を特定し、音響的に結合される素子のシーケンスの中心を特定し、アレイの形状の知識から、当該中心に垂直な方向を特定する。ステップ124において、向き信号は、この方向(図8a及び図8bにおける矢印100)を走査変換器に伝える。走査変換器は、当該方向を、レンダリングされる画像内の垂直方向として使用する。素子結合及び矢印方向は常に更新されるので、画像の垂直方向は、ニードル挿入手順の間、絶えず改良される。
【0023】
図9cは、画像処理及び特徴追跡による画像向き信号の生成について説明する。ステップ130において、ここでは画像プロセッサである向きプロセッサによって、超音波画像のシーケンスが受信される。ステップ132において、解析が行われて、皮膚のすぐ下の上記表在性層又はターゲット生体構造といった既知の画像特徴の位置が特定される。或いは、これらの画像特徴は、手動で画像内に特定されてもよい。ステップ134において、特定された特徴は追跡され、その向き又は画像位置が、走査変換器に伝えられる。走査変換器は、画像フレーム間で一貫性があるように画像特徴をレンダリングする。
【0024】
図9dでは、特定の画像解析技術が説明される。ニードル挿入中、臨床医は、ニードルが体に入る際のニードルの位置、特にターゲット生体構造に向かうその傾斜に注目する。図9dの方法は、画像内のニードルの位置を安定させることによって、上記点において、臨床医を支援する。ステップ140において、超音波画像が、向きプロセッサによって受信される。向きプロセッサは、ニードルからのエコー信号反射を検出する。当該エコー信号は、ニードルが超音波の高度な鏡面反射体であり、また、ニードルからのエコー信号は非常に強いため、非常に特徴的である。例えば米国特許第6,951,542号(Greppi他)を参照されたい。ステップ142において、これらの特徴的なエコーが向きプロセッサによって検出されると、それらの画像位置が、向き信号によって走査変換器に伝えられる。走査変換器は、ニードルをフレーム毎に一貫した位置にレンダリングすることによって応える。画像安定化技術を使用して、安定したニードル位置を有する画像のシーケンスをレンダリングすることができる。例えば米国特許第6,589,176号(Jago他)を参照されたい。
【0025】
図10に、本発明の原理に従って構成される超音波システムがブロック図で示される。プローブ10の微小凸面−リニアアレイ14、16は、ビームフォーマ150と結合される。ビームフォーマ150は、アレイの素子に、超音波を送信させ、反応としてエコー信号を受信させる。受信エコー信号は、ビームフォーマによって、コヒーレントなエコー信号の走査線にビーム形成される。エコー信号は、フィルタリング、周波数又は空間複合、高調波分離及び直交復調といった機能を行う信号プロセッサ152によって処理される。検出器154が、Bモード画像の場合には、信号検出、振幅検出を行い、ドップラー信号の場合には、ドップラー検出を行う。エコー信号の走査線は、従来のデジタルメモリデバイスであってよい走査線メモリ156に記憶される。エコー信号の走査線は、走査変換器160によって、デカルト座標の所望の画像フォーマットでレンダリングされ、前述されたように、画像の垂直軸又は特定の画像物体の位置が、向き信号によって決定される。向き信号は、前述されたように、向きプロセッサ170によって生成される。向きプロセッサ170は、電子ハードウェアコンポーネント、ソフトウェアによって制御されるハードウェア、又は、図9から図9dで説明された信号及び/又は画像処理アルゴリズムを実行するマイクロプロセッサを含んでよい。向きプロセッサ170は、図9a及び図9bで説明されたように、垂直ベクトル解析及び/又は音響結合解析のために、プローブ10から加速度信号及び/又はエコー信号を受信する。向きプロセッサ170は更に、図9c及び図9dで説明されたように、向き信号を生成する画像処理技術の実行のために、画像プロセッサ162から超音波画像を受信する。画像プロセッサ162は、レンダリングされた超音波画像を走査変換器160から受信し、当該画像を、臨床医が見れるようにモニタ又はディスプレイ164に適用する。
【0026】
なお、本明細書において説明される様々な実施形態は、ハードウェア、ソフトウェア又はそれらの組み合わせで実現されてよい。様々な実施形態、及び/又は、例えばモジュール若しくはその中のコンポーネント及びコントローラであるコンポーネントも、1つ以上のコンピュータ又はマイクロプロセッサの一部として実現されてよい。コンピュータ又はプロセッサは、コンピュータデバイス、入力デバイス、表示ユニット及び例えばインターネットにアクセスするためのインターフェースを含む。コンピュータ又はプロセッサは、マイクロプロセッサを含んでもよい。マイクロプロセッサは、例えばPACSシステムにアクセスするために通信バスに接続されてよい。コンピュータ又はプロセッサは更に、メモリを含んでよい。メモリには、ランダムアクセスメモリ(RAM)及び読み出し専用メモリ(ROM)が含まれてよい。コンピュータ又はプロセッサは更に、ハードディスクドライブ、又は、フロッピー(登録商標)ディスクドライブ、光学ディスクドライブ、固体サムドライブ等といったリムーバブルストレージドライブであってよいストレージデバイスを含んでよい。ストレージデバイスは更に、コンピュータプログラム又は他の命令をコンピュータ又はプロセッサにロードするための他の同様の手段であってもよい。
【0027】
本明細書において使用される場合、「コンピュータ」、「モジュール」又は「プロセッサ」との用語には、マイクロコントローラ、縮小命令セットコンピュータ(RISC)、ASIC、論理回路及び本明細書において説明される機能を実行可能である任意の他の回路又はプロセッサを使用するシステムを含む任意のプロセッサベース又はマイクロプロセッサベースのシステムが含まれる。上記例は例示に過ぎないので、これらの用語の定義及び/又は意味をいかようにも限定することを意図していない。
【0028】
コンピュータ又はプロセッサは、入力データを処理するために、1つ以上のストレージ要素に記憶される命令のセットを実行する。ストレージ要素は更に、必要に応じて、データ又は他の情報も記憶する。ストレージ要素は、処理マシン内の情報源又は物理的なメモリ要素の形であってよい。
【0029】
命令のセットには、本発明の様々な実施形態の方法及び処理といった特定の演算を行うように、コンピュータ又はプロセッサに処理マシンとして命令する様々なコマンドが含まれる。命令のセットは、ソフトウェアプログラムの形であってよい。ソフトウェアは、システムソフトウェア又はアプリケーションソフトウェアといった様々な形式であってよく、また、有形及び非一時的なコンピュータ可読媒体として具体化される。更に、ソフトウェアは、別箇のプログラム又はモジュールの集合体、より大きいプログラム内のプログラムモジュール又はプログラムモジュールの一部の形であってよい。ソフトウェアは更に、オブジェクト指向プログラミングの形のモジュラプログラミングを含んでもよい。処理マシンによる入力データの処理は、操作者のコマンドに応えて、前の処理の結果に応じて、又は、別の処理マシンによるリクエストに応えて行われる。
【0030】
更に、以下の請求項における限定は、ミーンズ・プラス・ファンクション形式で記載されておらず、当該請求項の限定が、更なる構造のない機能の説明が続く「〜の手段(means for)」の表現を明示的に使用しない限り及び明示的に使用するまで、米国特許法第112条第6パラグラフに基づいて解釈されることを意図していない。
図1
図2
図3
図4
図5
図6
図7
図8a
図8b
図9a
図9b
図9c
図9d
図10