特許第6873687号(P6873687)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社京三製作所の特許一覧

<>
  • 特許6873687-電源装置、及び電源装置の制御方法 図000067
  • 特許6873687-電源装置、及び電源装置の制御方法 図000068
  • 特許6873687-電源装置、及び電源装置の制御方法 図000069
  • 特許6873687-電源装置、及び電源装置の制御方法 図000070
  • 特許6873687-電源装置、及び電源装置の制御方法 図000071
  • 特許6873687-電源装置、及び電源装置の制御方法 図000072
  • 特許6873687-電源装置、及び電源装置の制御方法 図000073
  • 特許6873687-電源装置、及び電源装置の制御方法 図000074
  • 特許6873687-電源装置、及び電源装置の制御方法 図000075
  • 特許6873687-電源装置、及び電源装置の制御方法 図000076
  • 特許6873687-電源装置、及び電源装置の制御方法 図000077
  • 特許6873687-電源装置、及び電源装置の制御方法 図000078
  • 特許6873687-電源装置、及び電源装置の制御方法 図000079
  • 特許6873687-電源装置、及び電源装置の制御方法 図000080
  • 特許6873687-電源装置、及び電源装置の制御方法 図000081
  • 特許6873687-電源装置、及び電源装置の制御方法 図000082
  • 特許6873687-電源装置、及び電源装置の制御方法 図000083
  • 特許6873687-電源装置、及び電源装置の制御方法 図000084
  • 特許6873687-電源装置、及び電源装置の制御方法 図000085
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6873687
(24)【登録日】2021年4月23日
(45)【発行日】2021年5月19日
(54)【発明の名称】電源装置、及び電源装置の制御方法
(51)【国際特許分類】
   H02M 3/155 20060101AFI20210510BHJP
【FI】
   H02M3/155 W
【請求項の数】12
【全頁数】46
(21)【出願番号】特願2016-254291(P2016-254291)
(22)【出願日】2016年12月27日
(65)【公開番号】特開2018-107966(P2018-107966A)
(43)【公開日】2018年7月5日
【審査請求日】2019年8月14日
(73)【特許権者】
【識別番号】000001292
【氏名又は名称】株式会社京三製作所
(74)【代理人】
【識別番号】110001151
【氏名又は名称】あいわ特許業務法人
(74)【代理人】
【識別番号】100101915
【弁理士】
【氏名又は名称】塩野入 章夫
(72)【発明者】
【氏名】譲原 逸男
(72)【発明者】
【氏名】大間 亮介
(72)【発明者】
【氏名】國玉 博史
(72)【発明者】
【氏名】細山田 悠
【審査官】 須藤 竜也
(56)【参考文献】
【文献】 特開2015−213402(JP,A)
【文献】 特開2013−240133(JP,A)
【文献】 特開2010−233439(JP,A)
【文献】 特開2016−119753(JP,A)
【文献】 特開2015−136202(JP,A)
【文献】 特開2013−059141(JP,A)
【文献】 特開2016−123158(JP,A)
【文献】 特開2015−220976(JP,A)
【文献】 特開2010−119285(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H02M 3/155
(57)【特許請求の範囲】
【請求項1】
複数の相電流によって多相制御を行う多相インターリーブ制御の電源装置であって、
スイッチング回路とその後段に配置されたLC回路とを含み、多相インターリーブの多相制御によって動作する降圧チョッパ回路を構成するLCチョッパ回路と、
前記LCチョッパ回路の多相制御によってステップ応答を制御する制御部を備え、
前記制御部は、前記LCチョッパ回路の多相制御において、前記LCチョッパ回路の各相電流の合成電流を制御電流とする定電流制御において、互いに重なることを許容した各相のパルス幅とすることにより、前記LC回路の各相のスイッチングを制御することを特徴とする電源装置。
【請求項2】
スイッチング回路とその後段に配置されたLC回路とを含むLCチョッパ回路を備えた電源装置に対して、複数の相電流によって多相制御を行う多相インターリーブ制御の電源装置の制御方法であって、
前記LCチョッパ回路の多相制御によるステップ応答の制御において、前記LCチョッパ回路の各相電流の合成電流を制御電流とする定電流制御において、互いに重なることを許容した各相のパルス幅とすることにより、前記LC回路の各相のスイッチングを制御することを特徴とする電源装置の制御方法。
【請求項3】
前記定電流制御は、
出力電圧を指令電圧に追従させる、インダクタンス電流の定電流制御であることを特徴とする請求項2に記載の電源装置の制御方法。
【請求項4】
前記インダクタンス電流の定電流制御において、
前記制御電流は、前記LC回路の各相のインダクタンスの接続端を流れるインダクタンス電流の合成電流であることを特徴とする請求項3に記載の電源装置の制御方法。
【請求項5】
前記インダクタンス電流の定電流制御において、
前記制御電流は、前記LC回路のキャパシタンスを流れるキャパシタンス電流であることを特徴とする請求項3に記載の電源装置の制御方法。
【請求項6】
前記定電流制御は、
キャパシタンス電流を指令電流に追従させる、キャパシタンス電流の定電流制御であることを特徴とする請求項2に記載の電源装置の制御方法。
【請求項7】
前記キャパシタンス電流の定電流制御において、
前記制御電流は、前記LC回路のキャパシタンスを流れるキャパシタンス電流であることを特徴とする請求項6に記載の電源装置の制御方法。
【請求項8】
前記定電流制御は、2段の定電流制御であり、
第1段目の定電流制御は、キャパシタンス電流を指令電流に追従させるキャパシタンス電流の定電流制御であり、
第2段目の定電流制御は、出力電圧を指令電圧に追従させる、インダクタンス電流の定電流制御であり、
第1段目の定電流制御において出力電圧が切り替え電圧Vcに達した時点で第2段の定電流制御に切り替えることを特徴とする請求項2に記載の電源装置の制御方法。
【請求項9】
前記第1段目のキャパシタンス電流の定電流制御は、更に、mode1の定電流制御とmode2の定電流制御の2つのモードを備え、
第1段目のキャパシタンス電流の定電流制御において、
mode1の定電流制御において、第1の切り替え電圧Vc1においてmode1の定電流制御からmode2の定電流制御に切り替え、
mode2の定電流制御において、第2の切り替え電圧Vc2においてmode2の定電流制御から第2段目のインダクタンス電流の定電流に切り替えるとを備えることを特徴とする請求項8に記載の電源装置の制御方法。
【請求項10】
前記定電流制御は、設定電圧VをHighレベルのVHとLowレベルのVLとする2レベル制御であり、
設定電圧VがHighレベルVHである場合には、
前記第1の切り替え電圧Vc1は、


αHはHighレベルの電流係数、
IR-ratは定格電流
VLはLowレベルの設定電圧
Tはサンプリング周期
Cはキャパシタンス
NはHighレベル時の整数
であり、
設定電圧VがLowレベルVLである場合には、
前記第1の切り替え電圧Vc1は、


αLはLowレベルの電流係数、
IR-ratは定格電流
VHはHighレベルの設定電圧
Tはサンプリング周期
Cはキャパシタンス
NはLowレベル時の整数
であり、
前記第2の切り替え電圧Vc2は、


VREFはHighレベルの設定電圧VH又はLowレベルの設定電圧VL、
Vc1は第1の切り替え電圧、
IC-REFは指令電流、
Av、β3は指令電圧VREFに対する追従特性を定める係数、
Tはサンプリング周期
Cはキャパシタンス
であることを特徴とする請求項9に記載の電源装置の制御方法。
【請求項11】
前記mode2の定電流制御の指令電流は、前記mode1の定電流制御における指令電流に係数β2を乗じた値であることを特徴とする請求項9に記載の電源装置の制御方法。
【請求項12】
前記係数β2は


VREFはHighレベルの設定電圧VH又はLowレベルの設定電圧VL、
Av、β3は指令電圧VREFに対する追従特性を定める係数、
Vc2は第2の切り替え電圧、
IC-REFは指令電流、
であることを特徴とする請求項11に記載の電源装置の制御方法。
【発明の詳細な説明】
【技術分野】
【0001】
本願発明は、電源装置、及び電源装置の制御方法に関する。
【背景技術】
【0002】
半導体やフラットパネル製造装置等は、アッシングやエッチング等の薄膜生成の高密度・高精度化に伴い、プラズマ負荷にRF電力をパルス状態で供給できる機能が要求されている。特に、プラズマを消滅させない最少電力のLow電力と薄膜生成に必要なHigh電力との間で連続してRF電力を可変させる方式のHigh/Lowパルス電力動作を広帯域で行う2レベルパルス電力制御が要望されている。
【0003】
例えば、High/Lowパルス電力動作に要求される周波数帯域は1Hz〜50kHzである。RF電力を供給する電源装置として、PI制御によるA級〜E級増幅器を用いたものが知られているが、PI制御では数Hz〜数十kHzの広帯域をカバーする2レベルパルス電力制御は実現不可能である。
【0004】
このような状況において、設備用RF電源など分野で使用する電源では、High/Lowパルス電力動作を広帯域で行う2レベルパルス電力制御が可能な電源が求められている。
【0005】
高速応答が期待される電源として、インターリーブ方式を用いた電源があり、例えば、以下の特許文献1〜3が知られている。
【0006】
特許文献1には、力率改善を行うインターリーブ制御電源装置において、マスターのコンバータとスレーブのコンバータを備え、マスターのコンバータのスイッチング素子とスレーブのコンバータのスイッチング素子を所定の位相差でそれぞれ動作させること、及びフィードバックした出力電圧に基づいて行うインターリーブによる電圧制御を行うことが記載されている。
【0007】
特許文献2には、相互に所定位相差で主スイッチがスイッチング動作する2相n以上の多相制御型のインターリーブ回路で昇圧チョッパ回路を構成すること、及びフィードバックした出力電圧に基づいて行うインターリーブによる制御を行うことが記載されている。
【0008】
特許文献3には、多相インターリーブ方式のコンバータで起こる相ごとの電流不均等の問題を解決し、パワー素子を保護することが記載され、相ごとに設けたサブ回路の相電流に基づいて行うインターリーブによる電流制御を行うことが記載されている。
【先行技術文献】
【特許文献】
【0009】
【特許文献1】特開2010−119285号
【特許文献2】特開2015−177636号
【特許文献3】特開2015−220976号
【特許文献4】特許第5704772号
【発明の概要】
【発明が解決しようとする課題】
【0010】
電源装置において、広帯域でのパルス電力制御として多相インターリーブの適用が考えられる。しかしながら、前記した特許文献1,2に開示されるインターリーブ制御は、フィードバックした出力電圧に基づいて電圧制御を行う制御方式であり、また、特許文献3は、各相の相電流に基づいて電流制御を行う制御方式であって、それぞれ以下に示すような問題がある。
【0011】
特許文献1,2で示されるインターリーブ制御は、出力電圧voをフィードバックして行う定電圧制御であるため、ステップ応答において二次振動電圧が発生し、出力電圧にオーバーシュートやアンダーシュートが生じるという問題がある。このオーバーシュートやアンダーシュートを抑制するには、制御応答の速度を低速に設定する必要があり、高速応答に対応することができない。
【0012】
図19はLCR回路の等価回路を示し、出力電圧voをフィードバックする定電圧制御を説明するための図である。なお、ここでは、LCR回路で構成された降圧チョッパ回路を含む電源装置の例を示している。
【0013】
図19に示したLCR回路において、入力電圧Uを入力したときのステップ応答で得られる出力電圧voは、以下の式で表される。
【数1】
【0014】
上記の式(1)は、出力電圧voが二次振動電圧であることを示し、オーバーシュートやアンダーシュートの発生を示唆している。
【0015】
また、特許文献3で示されるインターリーブ制御は、各相の相電流に基づいて行う電流制御であるため、各相電流を検出するために複数個の検出部が必要である他、制御が複雑となるという問題がある。
【0016】
本発明は前記した従来の問題点を解決し、電源装置の多相インターリーブ制御において、出力電圧のオーバーシュートやアンダーシュートの発生を抑制すると共に、検出部の個数や制御系が相数に依存しない制御を目的とする。
【課題を解決するための手段】
【0017】
制御方式として、PI制御と比較して速い動的応答と高利得が得られるデッドビート制御が知られている。デッドビート制御は、入力及び出力を状態変数とする回路状態を離散モデルで展開して得られる状態方程式について、サンプリング周期(k+1)番目の出力が目標値と等しくなるようにパルス幅ΔT(k)をサンプリング周期ごとに演算し、求めたパルス幅ΔT(k)によってスイッチング動作を制御する。
【0018】
多相インターリーブにデッドビート制御を適用した電源装置の電力制御は知られていない。仮に、多相インターリーブの各相に対してデッドビート制御を適用しようとした場合においても、引用文献3で示したように相ごとにサブ回路を設けて各相の相電流を検出し、各相電流に基づいて各相のパルス幅ΔT(k)を求める必要がある。そのため、複数個の検出部が必要となる他、相ごとに制御を行う必要があるため、依然として、検出部の個数や制御系は相数と共に増加及び複雑化する課題がある。
【0019】
本発明は、多相インターリーブにデッドビート制御を適用した電源装置の電力制御において、多相インターリーブによる多相制御において、多相の相電流の合成電流を制御電流とすることによって、検出部の個数や制御系が相数に依存しない制御を実現し、この制御電流を用いて定電流制御を行うことによって、オーバーシュートやアンダーシュートの発生を抑制する。
【0020】
本発明は電源装置の態様、及び電源装置の制御方法の態様を含む。
本発明の電源装置は、複数の相電流によって多相制御を行う多相インターリーブ制御の電源装置であって、多相インターリーブの多相制御によって動作する降圧チョッパ回路を構成するLCチョッパ回路と、LCチョッパ回路の多相制御によってステップ応答を制御する制御部とを備える。
【0021】
制御部は、LCチョッパ回路の多相制御において、LCチョッパ回路の各相電流の合成電流を制御電流とする定電流制御によってLC回路の各相のスイッチングを制御する。
【0022】
本発明の電源装置の制御方法は、LCチョッパ回路を含む電源装置の制御方法であって、複数の相電流によって多相制御を行う多相インターリーブ制御の電源装置の制御方法であり、LCチョッパ回路の多相制御によるステップ応答の制御において、LCチョッパ回路の各相電流の合成電流を制御電流とする定電流制御によって、LC回路の各相のスイッチングを制御する。
【0023】
本発明の電源装置及び電源装置の制御方法において、LCチョッパ回路の各相電流の合成電流を制御電流として定電流制御を行うことによって、フィードバック信号を検出する検出機構は合成電流を検出する一つの検出手段で足り、LC回路の各相をスイッチングする制御系についても一つの制御系で足りる。したがって、検出部の個数や制御系は多相制御の相数に依存することなく一つの検出手段及び一つの制御系で構成することができる。
【0024】
また、制御電流によって定電流制御を行うことによって、オーバーシュートやアンダーシュートの発生を抑制することができる。
【0025】
各相電流の合成電流は、LCチョッパ回路の各相のインダクタンスの接続端に流れるインダクタンス電流、あるいは、LCチョッパ回路のキャパシタンスに流れるキャパシタンス電流を用いることができる。
【0026】
インダクタンスの接続端に電流計を設ける構成によって、各相のインダクタンスに流れる各インダクタンス電流を合わせた合成電流を検出し、検出した合成電流のフィードバック信号を制御電流として定電流制御を行う。
【0027】
また、キャパシタンスに電流計を設ける構成によって、キャパシタンス電流を検出し、検出したキャパシタンス電流のフィードバック信号を制御電流として定電流制御を行う。キャパシタンス電流は、各相のインダクタンス電流の合成電流から負荷電流を差し引いた電流であるため、キャパシタンス電流を検出することで、インダクタンス電流の合成電流を検出することができる。
【0028】
インダクタンス電流を検出する構成、及びキャパシタンス電流を検出する構成のいずれの構成においても、制御電流を検出する検出機構は一つの検出手段で足りる。
【0029】
また、インダクタンス電流を検出する構成、及びキャパシタンス電流を検出する構成のいずれの構成においても、制御電流を用いて定電流制御を行う制御系は一つの制御系で足りる。
【0030】
本発明の電源装置の制御方法において、制御電流として、インダクタンス電流、キャパシタンス電流、及びインダクタンス電流とキャパシタンス電流との組み合わせを用いることができ、各電流を制御電流とする定電流制御について複数の形態を採用することができる。
【0031】
表1は、定電流制御の複数の形態を示している。表1では、インダクタンス電流の定電流制御の形態、キャパシタンス電流の定電流制御の形態、キャパシタンス電流の定電流制御とインダクタンス電流の定電流制御とを組み合わせた形態について、オーバーシュート、アンダーシュート、過大電流、及び目標値への制御の各課題に対する作用と共に示している。
【0032】
【表1】
【0033】
(インダクタンス電流の定電流制御)
定電流制御の第1の形態は、インダクタンス電流の定電流制御によって、オーバーシュート及びアンダーシュートを抑制すると共に、出力電圧を目標値である指令電圧に追従させる。
【0034】
インダクタンス電流をフィードバックして定電流制御を行った場合には、出力電圧のステップ応答は二次振動電圧を起こすこと無く、所定のインダクタンス電流値に応じて定まる電圧に向かって指数関数的に増加する。したがって、インダクタンス電流の定電流制御によって、出力電圧をオーバーシュート又はアンダーシュートさせることなく、所定値に収束するステップ応答させることができる。
【0035】
インダクタンス電流の定電流制御において、制御電流として、LC回路の各相のインダクタンスの接続端を流れるインダクタンス電流、あるいは、インダクタンス電流はキャパシタンス電流と負荷電流との和であることから、LC回路のキャパシタンスを流れるキャパシタンス電流を用いる。インダクタンス電流の定電流制御は、インダクタンス電流が定格電流値あるいは定格電流値に所定係数を乗じた値との差分が零となるように電流制御を行う。
【0036】
(キャパシタンス電流の定電流制御)
定電流制御の第2の形態は、キャパシタンス電流の定電流制御によって、オーバーシュート及びアンダーシュートを抑制すると共に、過大電流を抑制する。
【0037】
キャパシタンス電流の定電流制御は、LC回路のキャパシタンスを定電流充電または定電流放電させる。各サンプリング周期の出力電圧は、前サンプリング周期の出力電圧に係数が乗ぜられた指令電流との和で表され、サンプリング周期毎に出力電圧が増加、あるいは減少する。このキャパシタンス電流の定電流制御では、出力電圧は指令電圧に収束しないが、キャパシタンス電流が定電流に制御されることから過大電流の発生が抑制される。
【0038】
キャパシタンス電流の定電流制御において、制御電流として、LC回路のキャパシタンスを流れるキャパシタンス電流を採用する。
【0039】
(キャパシタンス電流の定電流制御とインダクタンス電流の定電流制御)
定電流制御の第3の形態は、キャパシタンス電流の定電流制御とインダクタンス電流の定電流制御とを含む2段階の定電流制御であり、オーバーシュート及びアンダーシュートを抑制すると共に、過大電流を抑制し、出力電圧を目標値である指令電圧に追従させる。
【0040】
第1段目の定電流制御は、キャパシタンス電流を指令電流に追従させるキャパシタンス電流の定電流制御であり、第2段目の定電流制御は、出力電圧を指令電圧に追従させるインダクタンス電流の定電流制御である。
【0041】
第1段目のキャパシタンス電流の定電流制御において出力電圧が切り替え電圧Vcに達した時点で第2段のインダクタンス電流の定電流制御に切り替える。
【0042】
定電流制御の第3の形態において、更に、第1段目のキャパシタンス電流の定電流制御はmode1の定電流制御とmode2の定電流制御の2つのモードとを備える。
【0043】
第1段目のキャパシタンス電流の定電流制御において、mode1の定電流制御において、第1の切り替え電圧Vc1においてmode1の定電流制御からmode2の定電流制御に切り替え、mode2の定電流制御において、第2の切り替え電圧Vc2においてmode2の定電流制御から第2段目のインダクタンス電流の定電流に切り替える。
【0044】
出力電圧を目標値である指定電圧に制御するには、インダクタンス電流の定電流制御を行う必要があるが、mode1のキャパシタンス電流の定電流制御で得られる出力電圧は指定電圧への制御を行わないため、mode3のインダクタンス電流の定電流制御に切り替えるときの電圧は、仮に全区間をインダクタンス電流の定電流制御したときの電圧と相違が生じる。そのため、電流制御に切り替え時に出力電圧に波形乱れが発生するおそれがある。そこで、mode1とmode3との間に、両mode間の電圧を繋ぐための移行区間としてmode2を設ける。mode1とmode3との間にmode2を挟むことによって、出力電圧の波形乱れの発生を抑制する。
【0045】
定電流制御は、設定電圧VをHighレベルのVHとLowレベルのVLとする2レベル制御に適用することができる。
【0046】
この2レベル制御において、設定電圧VがHighレベルVHである場合には、
第1の切り替え電圧Vc1は、
【数2】
によって得られる。
なお、αHはHighレベルの電流係数、IR-ratは定格電流、VLはLowレベルの設定電圧、Tはサンプリング周期、Cはキャパシタンス、NはHighレベル時の整数である。
【0047】
また、設定電圧VがLowレベルVLである場合には、
前記第1の切り替え電圧Vc1は、
【数3】
によって得られる。
なお、αLはLowレベルの電流係数、IR-ratは定格電流、VHはHighレベルの設定電圧、Tはサンプリング周期、Cはキャパシタンス、NはLowレベル時の整数である。
【0048】
第2の切り替え電圧Vc2は、
【数4】
によって得られる。
なお、VREFはHighレベルの設定電圧VH又はLowレベルの設定電圧VL、Vc1は第1の切り替え電圧、IC-REFは指令電流、Av、β3は指令電圧VREFに対する追従特性を定める係数、Tはサンプリング周期、Cはキャパシタンスである。
【0049】
mode2の定電流制御の指令電流は、mode1の定電流制御における指令電流に係数β2を乗じた値として、mode1における指令電流IC-REFから減少した指令電流β2・IC-REFを用いる。
【0050】
係数β2は、
【数5】
により得られる。
なお、VREFはHighレベルの設定電圧VH又はLowレベルの設定電圧VL、Av及びβ3は指令電圧VREFに対する追従特性を定める係数、Vc2は第2の切り替え電圧、IC-REFは指令電流である。
【0051】
(制御形態)
本発明の電源装置の制御の一形態は、PI制御を用いない多相インターリーブの双方向降圧チョッパ回路による2レベルデッドビート制御である。
【0052】
インターリーブ方式では、相数nを多相とすることにより、スイッチング周波数を駆動スイッチング周波数のn倍として制御応答をn倍とすることができる他、平滑キャパシタを駆動スイッチング周波数のn倍のスイッチング周波数に相当した値を採用することによって平滑キャパシタの量を大幅な低減が期待される。
【0053】
一般に、直流信号を検出する検出器は低速応答であるのに対して、交流信号を検出する交流変流器は高速応答が可能であることから、本発明の電源装置の制御において制御電流としてキャパシタンス電流を用いる形態によれば、キャパシタンス電流の交流信号を高速検出することで、その他の交流分を含む直流信号を比較的低速で検出してもデッドビート制御の高速応答が可能である。
【0054】
更に、本発明の形態によれば、定電流制御を行うことによって、ステップ応答のオーバーシュートやアンダーシュートを抑制することができる。
【0055】
また、本発明の形態によれば、制御電流は各相のインダクタンス電流の合成電流であることから、制御電流であるフィードバック信号を検出する検出部の個数を減少させることができる。
【0056】
なお、LCチョッパ回路において、インバータを用いて前段の直流電圧を交流電圧に変換することによってRF電力を制御する増幅器として、A級〜E級増幅器が知られている。これら増幅器の内、A級〜C級増幅器はドロッパー方式によってRF電力を制御しているため、RF電力の変換効率は30%〜50%程度である。一方、D級増幅器及びE級増幅器はスイッチング方式を用いて前段の直流電圧を可変させてRF電力を制御しているため、代表的な13.56MHzの高周波では、RF電力の変換効率は90%〜93%の高効率が得られる。
【0057】
したがって、本発明の電源装置の多相インターリーブによるデッドビート制御においては、スイッチング制御が適用できる増幅器としてD級増幅器及びE級増幅器が好適である。
【図面の簡単な説明】
【0058】
図1】本発明の電源装置の概略構成例を説明するための図である。
図2】本発明の電源装置の制御において位相電流の場合のパルス幅ΔT(k)の例を示す図である。
図3】本発明の電源装置のインダクタンス電流制御の例を説明するための図である。
図4】本発明の電源装置のキャパシタンス電流制御の例を説明するための図である。
図5】本発明の電源装置のインダクタンス電流制御及びキャパシタンス電流制御の例を説明するための図である。
図6】本発明の電源装置のインダクタンス電流制御及びキャパシタンス電流制御の一形態を説明するための図である。
図7】本発明の電源装置のインダクタンス電流制御及びキャパシタンス電流制御の一形態を説明するための図である。
図8】本発明の電源装置のインダクタンス電流制御及びキャパシタンス電流制御の例を説明するための図である。
図9mode1〜mode3による出力電圧の指定電圧への整定を説明するためのフローチャートである。
図10】本発明の電源装置のチョッパ回路例を説明するための図である。
図11】本発明の電源装置のLCR回路を説明するための図である。
図12】本発明の電源装置のLCR回路の等価回路を説明するための図である。
図13】定電圧制御の一次系伝達関数を説明するための図である。
図14】定電圧制御の二次系伝達関数を説明するための図である。
図15】本発明の電源装置を適用したRFジェネレータの制御例を説明するための図である。
図16】本発明の電源装置を適用したRFジェネレータの制御例を説明するためのフローチャートである。
図17】本発明の電源装置を適用した装置のHigh/Low制御例を説明するためのフローチャートである。
図18】本発明の電源装置を適用した直流電源装置及び交流電源装置の制御例を説明するための図である。
図19】出力電圧voをフィードバックする定電圧制御を説明するための図である。
【発明を実施するための形態】
【0059】
本発明の電源装置、及び電源装置の制御方法について図1図18を用いて説明する。 以下、図1を用いて本発明の電源装置の概略構成例を説明し、図2〜9を用いて本発明の電源装置の制御例を説明する。図10〜12を用いて本発明のパルス幅ΔT(k)の導出について説明し、図13,14を用いて指令値に対する追従性を説明し、図15図18を用いて本発明の電源装置の適用例を説明する。
【0060】
(本発明の電源装置の概略構成)
本発明の電源装置の概略構成について図1を用いて説明する。本発明の電源装置1は、入力電圧Vinを入力とし、出力電圧vo及び負荷電流iRを出力するLCチョッパ回路2、LCチョッパ回路2のスイッチング素子のオン/オフ動作を制御するスイッチング信号を生成するスイッチング信号生成部5、LCチョッパ回路2及び負荷からのフィードバック信号を入力してパルス幅ΔT(k)を演算し、演算したパルス幅ΔT(k)をスイッチング信号生成部5に出力する制御部6を備える。
【0061】
LCチョッパ回路2は、インダクタンスLとキャパシタンスCの直並列接続で構成されるLC回路4と、入力電圧Vinを多相でスイッチング制御して形成したインダクタンス電流iLをLC回路4に供給するスイッチング回路3とにより構成される。
【0062】
制御部6は、スイッチング回路3のスイッチング素子のオン/オフ動作を制御するスイッチング信号のパルス幅ΔT(k)を演算する。パルス幅ΔT(k)はスイッチングの1周期内において、スイッチング素子のオン状態の時間幅を定め、パルス幅ΔT(k)の長短によってLC回路4を経て負荷に供給する電力を制御する。例えば、スイッチング周期の時間幅をTとした場合には、時間幅Tに対するパルス幅ΔT(k)はデューティー比として表される。
【0063】
制御部6は、サンプリング周期(k+1)番目の出力が目標値と等しくなるようにパルス幅ΔT(k)をサンプリング周期ごとに演算し、求めたパルス幅ΔT(k)によってスイッチング動作を制御するデッドビート制御を行う。制御部6は、デッドビート制御において、LCチョッパ回路2中の相電流を合成して得られる合成電流を含む制御電流に基づいて所定周期で定電流制御を行い、LCチョッパ回路2のスイッチング回路3のスイッチング素子(図示していない)を駆動するスイッチング信号のパルス幅ΔT(k)の演算をサンプリング周期T毎に行う。
【0064】
制御部6は、合成電流を含む制御電流の定電流制御により演算されたパルス幅ΔT(k)を各相電流のパルス幅ΔT(k)とする。制御電流を定電流制御することによって、ステップ応答において出力電圧の二次振動電圧を抑制する。
【0065】
本発明のスイッチング信号生成部5は、制御部6が演算したパルス幅ΔT(k)を各相電流のパルス幅ΔT(k)として各相のスイッチング信号を生成する。パルス幅ΔT(k)の演算において、相電流を合成して得られる合成電流を含む制御電流に基づいてパルス幅ΔT(k)を演算する。この演算において、制御電流は相電流の合成電流に基づくものであるため、各相のパルス幅ΔT(k)の重なりによる制限を除くことができ、各相のパルス幅ΔTが互いに重なることを許容したパルス幅ΔT(k)を求めることができる。
【0066】
図2は、3相の位相電流の場合のパルス幅ΔT(k)の例について示している。図2(a)はスイッチングの1周期の時間幅Tに対してパルス幅ΔT(k)が、3相の位相電流の内3つの位相電流のパルス幅ΔT(k)に重なりがある例を示している。図2(b)はスイッチングの1周期の時間幅Tに対してパルス幅ΔT(k)が、3相の位相電流の内2つの位相電流のパルス幅ΔT(k)に重なりがある例を示している。図2(c)は3相の位相電流について位相電流のパルス幅ΔT(k)に重なりがない例を示している。
【0067】
n相の多相インターリーブによってスイッチング回路3をスイッチング動作させる場合には、LCチョッパ回路2において、n個のインダクタンスL(L1〜Ln)にはそれぞれインダクタンス電流iL1〜iLnが流れる。制御部6は、これらのインダクタンス電流iL1〜iLnである各相電流を合成した合成電流iLを含む電流を制御電流として入力する。
【0068】
制御電流は、各相電流のインダクタンス電流を合成した合成電流iLの他、合成電流iLから負荷電流iRを減算したキャパシタンス電流icを用いても良い。
【0069】
(定電流制御)
制御部6による定電流制御は複数の制御形態を備える。制御形態として、インダクタンス電流制御の制御形態、キャパシタンス電流制御の制御形態、及びインダクタンス電流制御とキャパシタンス電流制御とを組み合わせた制御形態がある。
【0070】
以下、図3図8を用いて定電流制御の複数の制御形態、及び各制御形態におけるパルス幅ΔT(k)について説明する。
【0071】
(定電流制御の制御形態及びパルス幅ΔT(k))
図1のLCチョッパ回路2に負荷7を接続して構成されるLCR回路において、LCチョッパ回路中のインダクタンスLのインダクタンス電流iL、あるいはキャパシタンスCのキャパシタンス電流icを制御電流として定電流制御を行う。インダクタンス電流iL(t)、キャパシタンス電流ic(t)、及び出力電圧vo(t)はそれぞれ以下の式(2)で表される。
【数6】
【0072】
多相インターリーブにおいては、上記式(2)のインダクタンス電流iL(t)は、LCチョッパ回路が含むn個のインダクタンスL(L1〜Ln)の各相のインダクタンス電流iL1〜iLnを合成した合成電流である。インダクタンス電流iL(t)とキャパシタンス電流icとの間にはiL(t)=ic(t)+iR(t)の関係がある。なお、iR(t)は負荷Rの負荷電流である。
【0073】
多相インターリーブ制御において、一例である3相インターリーブ制御では、上記したインダクタンス電流及びキャパシタンス電流を制御電流として定電流制御を行うときのパルス幅ΔT(k)は以下の式(3)で表される。
【数7】
なお、Vin(k)は入力電圧、vo(k)は出力電圧、iL(k)は各相のインダクタンス電流の合成電流、iR(k)は負荷電流、LはLC回路のインダクタンス、CはLC回路のキャパシタンス、Tはサンプリング周期である。
【0074】
定電流制御は、インダクタンス電流を制御電流とするインダクタンス電流の定電流制御、あるいは、キャパシタンス電流を制御電流とするキャパシタンス電流の定電流制御とすることができる。
【0075】
以下、インダクタンス電流の定電流制御の制御形態、キャパシタンス電流の定電流制御の制御形態、及びインダクタンス電流の定電流制御とキャパシタンス電流の定電流制御とを組み合わせた制御形態の各制御形態について説明する。ここでは、多相インターリーブ制御において3相インターリーブ制御を例として説明する。
【0076】
(インダクタンス電流の定電流制御の制御形態)
図3は、制御部によるインダクタンス電流制御の制御形態の概略を説明するための図であり、図3(a)、(b)は制御形態の概略構成を示し、図3(c)は指令電圧VREFの例を示し、図3(d)は出力電圧voの例を示している。
【0077】
図3は、インダクタンス電流の定電流制御についての2つの構成例について、3相インターリーブ制御を例として示している。インダクタンス電流の定電流制御は、インダクタンス電流が定格電流値あるいは定格電流値に所定係数を乗じた値との差分が零となるように電流制御を行う。
【0078】
図3(a)の構成では、3相インターリーブ制御においてインダクタンス電流の定電流制御の制御形態において、以下の式(4)で表されるパルス幅ΔT(k)を用い、フィードバックされたキャパシタンス電流ic(k)及び出力電圧vo(k)を用いて、出力電圧vo(k)が指令電圧VREFとなるようにステップ応答を制御する。
【数8】
【0079】
図3(b)の構成では、3相インターリーブ制御においてインダクタンス電流の定電流制御の制御形態において、以下の式(5)で表されるパルス幅ΔT(k)を用い、フィードバックされたキャパシタンス電流ic(k)を用いて、出力電圧vo(k)が指令電圧VREFとなるようにステップ応答の制御を行う。なお、この構成では、係数AvをAv=3T/Lに設定することによって、出力電圧vo(k)のフィードバックを不要とし、キャパシタンス電流ic(k)のみを検出してフィードバックするだけでパルス幅ΔT(k)を定めることができる。
【0080】
【数9】
【0081】
図3(c)に示す指令電圧VREFは、H/Lの2レベル制御において、HighレベルのVHとLowレベルのVLとの2レベルの指令電圧の例を示し、図3(d)に示す出力電圧voは、2レベルのステップ応答例を示している。
【0082】
なお、図3(c)、(d)に示す電圧波形は説明の為に模式的に示すものであって、実際の電圧波形を示すものではない。
【0083】
(キャパシタンス電流の定電流制御の制御形態)
図4は、制御部によるキャパシタンス電流制御について、3相インターリーブ制御を例とした概略を説明するための図であり、図4(a)は概略構成を示し、図4(b)はキャパシタンス電流の指令電流IC-REFの例を示し、図4(c)はキャパシタンス電流icを示している。
【0084】
図4(a)の構成では、3相インターリーブ制御においてキャパシタンス電流の定電流制御の制御形態において、以下の式(6)で表されるパルス幅ΔT(k)を用い、フィードバックされたキャパシタンス電流ic(k)及び出力電圧vo(k)を用いて、キャパシタンス指令電流IC-REFとなるようにステップ応答を制御する。
【数10】
【0085】
図4)に示すキャパシタンス電流の指令電流IC-REFは、H/Lの2レベル制御において、HighレベルのVHに対応するIC-REFHと、LowレベルのVLに対応するIC-REFLとの2レベルの指令電流の例を示し、図4(c)に示すキャパシタンス電流icは、2レベルのステップ応答例を示している。
【0086】
なお、図4(b)、(c)に示す電圧波形は説明の為に模式的に示すものであって、実際の電圧波形を示すものではない。
【0087】
(インダクタンス電流の定電流制御とキャパシタンス電流の定電流制御とを組み合わせた制御形態)
本発明の定電流制御は、前記したインダクタンス電流の定電流制御の制御形態、及びキャパシタンス電流の定電流制御の制御形態の他、キャパシタンス電流の定電流制御と、その後に行うインダクタンス電流の定電流制御の多段階の定電流制御によってステップ応答を制御する制御形態を備える。
【0088】
この多段階の制御形態は、キャパシタンス電流の定電流制御の後にインダクタンス電流の定電流制御を行う第1の制御形態の他、キャパシタンス電流の定電流制御を2段階で行い、その後にインダクタンス電流の定電流制御を行う第2の制御形態を備える。
【0089】
図5図7はインダクタンス電流の定電流制御とキャパシタンス電流の定電流制御の組み合わせの制御態様を説明するための図であり、図5(a)は制御部の概略を示し、図5(b)は指令電圧VREFを示している。
【0090】
キャパシタンス電流の定電流制御とインダクタンス電流の定電流制御との組み合わせの制御形態において、図6(a)、(b)は第1の制御形態において、指令電流IC-REFと出力電圧voを示し、図7(a)、(b)は第2の制御形態において、キャパシタンス電流の定電流制御をmode1及びmode2の2段階で行い、その後にインダクタンス電流の定電流制御をmode3で行う際のそれぞれ指令電流IC-REFと出力電圧voを示している。
【0091】
(第1の制御形態)
キャパシタンス電流の定電流制御とインダクタンス電流の定電流制御との組み合わせの制御形態において、第1の制御形態では、第1段目のキャパシタンス電流の定電流制御を行い、出力電圧voが切り替え電圧Vcに達した時点で、第2段目のインダクタンス電流の定電流制御に切り替え、指令電圧VREFに向けて定電流制御を行う。
【0092】
第1段目のキャパシタンス電流の定電流制御では前記したキャパシタンス電流の定電流制御によるパルス幅ΔT(k)を用い、第2段目のインダクタンス電流の定電流制御では前記したインダクタンス電流の定電流制御によるパルス幅ΔT(k)を用いる。
【0093】
仮に、ステップ応答の全区間をインダクタンス電流の定電流制御した場合には過大電流の発生が想定される。この過大電流を避けるために、キャパシタンス電流の定電流制御を組み合わせる。
【0094】
キャパシタンス電流の定電流制御とインダクタンス電流の定電流制御とを組み合わせて行う制御形態は、インダクタンス電流の定電流制御で想定される過大電流の発生を避ける。第1段目でキャパシタンス電流の定電流制御を行うことによって過大電流の発生を抑制し、過大電流の発生のおそれが無くなった後、第2段目においてキャパシタンス電流の定電流制御からインダクタンス電流の定電流制御に切り替えて、出力電圧voを目標値の制御指令電圧VREFに向けて制御する。
【0095】
第1段目のキャパシタンス電流の定電流制御を第2段目のインダクタンス電流の定電流制御に切り替えるときの切り替え電圧Vcは、キャパシタンス電流の定電流制御において、インダクタンスに保有された電流エネルギーによって出力電圧が目標値を行き過ぎない様に切り替えるための電圧である。
【0096】
図6に示す制御形態は、キャパシタンス電流制御に続いてインダクタンス電流制御を行う態様を示している。図6(b)に示す電圧波形において、薄い実線で示した電圧V1は全区間をインダクタンス電流の定電流制御によって制御した場合のステップ応答を示し、濃い実線で示した電圧はキャパシタンス電流の定電流制御とインダクタンス電流の定電流制御とを組み合わせた制御形態のステップ応答を示し、キャパシタンス電流制御時の電圧V2とインダクタンス電流制御時の電圧V3を含む。
【0097】
キャパシタンス電流制御では、図6(a)に示す指令電流IC-REFに基づいて、過大電流の発生を抑制しながら出力電圧voを目標値に向けて定電流制御を行い、出力電圧voが目標値を過ぎないように設定した切り替え電圧Vcに達した時点でインダクタンス電流の定電流制御に切り替える。キャパシタンス電流制御時の電圧を電圧V2で示している。その後、インダクタンス電流の定電流制御によって指令電圧VREFに制御する。インダクタンス電流制御時の電圧を電圧V3で示している。
【0098】
(第2の制御形態)
キャパシタンス電流の定電流制御とインダクタンス電流の定電流制御との組み合わせの制御形態において、第2の制御形態では、キャパシタンス電流の定電流制御を2段階で行った後、インダクタンス電流の定電流制御を行う。
【0099】
図7に示す制御形態は、キャパシタンス電流制御の定電流制御に続いてインダクタンス電流の定電流制御を行う、2段階による形態を示している。図7(a)は、キャパシタンス電流の定電流制御における指令電流IC-REFを示し、図7(b)は出力電圧voの電圧波形を示している。図7(b)に示す電圧波形において、薄い実線で示した電圧V1は全区間をインダクタンス電流の定電流制御を行った場合のステップ応答を示している。濃い実線で示した電圧はキャパシタンス電流の定電流制御とインダクタンス電流の定電流制御とを組み合わせた態様において、第1段目のキャパシタンス電流の定電流制御時の電圧V2a、第2段目のキャパシタンス電流の定電流制御時の電圧V2b、及びインダクタンス電流制御時の電圧V3bによるステップ応答を示している。なお、図7(b)では、インダクタンス電流の定電流制御時において、電圧V1と電圧V3bとはほぼ重なった状態で示されている。
【0100】
第1段目のキャパシタンス電流の定電流制御では、図7(a)に示す指令電流IC-REFに基づいて、過大電流の発生を抑制しながら出力電圧voを目標値に向けて定電流制御を行い、出力電圧voが目標値を過ぎないように設定した切り替え電圧Vc1に達した時点で第2段目のキャパシタンス電流の定電流制御に切り替える。第1段目のキャパシタンス電流の定電流制御の電圧を電圧V2aで示し、第2段目のキャパシタンス電流の定電流制御の電圧を電圧V2bで示している。
【0101】
第2段目のキャパシタンス電流の定電流制御において、出力電圧voが切り替え電圧Vc2に達した時点においてインダクタンス電流の定電流制御に切り替える。第2段目のキャパシタンス電流の定電流制御時の電圧を電圧V2bで示している。
【0102】
その後、インダクタンス電流の定電流制御によって指令電圧VREFに制御する。インダクタンス電流の定電流制御時の電圧を電圧V3bで示している。
【0103】
第2段目のキャパシタンス電流の定電流制御は、第1段目のキャパシタンス電流の定電流制御とインダクタンス電流の定電流制御との間をつなぐ定電流制御であり、定電流制御の切り替え時における電圧のずれを解消して、キャパシタンス電流の定電流制御から切り替えてインダクタンス電流の定電流制御を開始する時点の電圧を、仮にキャパシタンス電流制御を行うことなく、全区間をインダクタンス電流の定電流制御のみで行ったときの電圧と一致させる。したがって、第2段目のキャパシタンス電流の定電流制御からインダクタンス電流の定電流制御への切り替え電圧Vc2は、インダクタンス電流の定電流制御のみで得られる電圧の切り替え時点での電圧に相当する。
【0104】
上記した第1段目のキャパシタンス電流の定電流制御、第2段目のキャパシタンス電流の定電流制御、及びインダクタンス電流の定電流制御は、以後で説明するmode1,mode2のキャパシタンス電流の定電流制御、及びにmode3のインダクタンス電流の定電流制御に相当する。なお、図6図7に示す指令電流及び電圧の波形は説明の為に模式的に示すものであって、実際の波形を示すものではない。
【0105】
表2は、インダクタンス電流の定電流制御と、キャパシタンス電流の定電流制御の指令信号及び入力信号の関係を示している。
【0106】
【表2】
【0107】
次に、一ステップ応答において、mode1、mode2およびmode3の各モードによって行う定電流制御の制御形態を説明する。図8はmode1、mode2およびmode3の各制御形態を説明するための図である。図8(a)はmode1の制御形態を示し、図8(b)はmode2の制御形態を示し、図8(c)はmode3の制御形態を示している。以下では、多相インターリーブ制御として3相インターリーブ制御を例として説明する。
【0108】
この定電流制御では、mode1とmode2の2段階のキャパシタンス電流の定電流制御と、その後に行うmode3のインダクタンス電流の定電流制御とによる多段階の定電流制御によってステップ応答を行う。
【0109】
mode1:
mode1の定電流制御は2段階で行うキャパシタンス電流の定電流制御の第1段目である。このmode1の定電流制御では、インダクタンスに保有された電流エネルギーによって、出力電圧が目標値を行き過ぎない様にするモードである。第1段目のmode1では次の第2段目のmode2に切り替えるための電圧Vc1を予め設定しておき、出力電圧voが切り替え電圧Vc1に到達した時点でmode1を終了し、mode2に移行する。
【0110】
3相インターリーブ制御のmode1のパルス幅ΔT(k)は、
【数11】
で表される。
【0111】
図8(a)はmode1のキャパシタンス電流の定電流制御の制御形態を説明するための図である。制御部は、入力電圧Vinを入力すると共に、キャパシタンス電流ic(k)及び出力電圧vo(k)をフィードバックし、キャパシタンス電流の指令電流IC-REFに向けて定電流制御を行う。
【0112】
mode2:
mode2の定電流制御は2段階で行うキャパシタンス電流の定電流制御の第2段目である。このmode2の定電流制御では、mode1のキャパシタンス電流の定電流制御によって達した出力電圧voを、mode3のインダクタンス電流の定電流制御を開始するときの初期電圧に移行させる移行モード(Transfer mode)である。
【0113】
キャパシタンス電流の定電流制御は、過大電流を抑制するという機能を有するが、出力電圧を目標値に向かわせる機能を有していないため、出力電圧が目標値を行き過ぎないように制御する必要がある。キャパシタンス電流の定電流制御を行った後、インダクタンス電流の定電流制御に切り替えて出力電圧が目標値を行き過ぎない制御しようとした際、切り替え時の出力電圧voは、ステップ応答の全区間をインダクタンス電流で定電流制御した場合の出力電圧voと異なる電圧となり、ギャップが生じる。
【0114】
このように、キャパシタンス電流の定電流制御を行った後に、インダクタンス電流の定電流制御に切り替える制御形態では、インダクタンス電流の定電流制御に切り替えた際の電圧とステップ応答の全区間をインダクタンス電流で定電流制御した場合の出力との間にギャップが発生するため、切り替え後のインダクタンス電流の定電流制御は、全区間をインダクタンス電流で定電流制御した場合の出力電圧と異なる電圧から制御を開始することになる。
【0115】
キャパシタンス電流の定電流制御をmode1とmode2の2段階で行う態様は、上記した切り替え時の電圧の差異を解消する。この制御形態は、キャパシタンス電流の定電流制御をmode1とmode2の2段階とし、mode1の定電流制御で発生した出力電圧のずれをmode2で解消して、mode3のインダクタンス電流の定電流制御を開始する際の電圧値を、ステップ応答の全区間をインダクタンス電流で定電流制御した場合の出力電圧に合わせる。これによって、mode3のインダクタンス電流の定電流制御で開始する出力電圧を、仮にステップ応答の全区間をインダクタンス電流で定電流制御した場合の出力電圧から開始することができる。
【0116】
したがって、mode2の区間はmode2の最終値がmode3の所定値になるよう調整する移行区間であり、mode2の初期値をmode1の最終値Vc1とし、mode2の最終値がmode3で要求される初期値Vc2になる様に定電流制御を行う。
【0117】
3相インターリーブ制御のmode2のパルス幅ΔT(k)は、
【数12】
で表される。
【0118】
図8(b)はmode2のキャパシタンス電流の定電流制御の制御形態を説明するための図である。制御部は、キャパシタンス電流の指令電流β2・IC-REFに向けて定電流制御を行う。β2は、mode2における指令電流を設定する係数である。
【0119】
mode3:
mode3ではインダクタンス電流の定電流制御によって、出力電圧voが目標値を行き過ぎない様に制御する。High/Lowの2レベル制御の場合には、それぞれの目標値VH,VLを行き過ぎない様に定電流制御を行う。
【0120】
3相インターリーブ制御のmode3のパルス幅ΔT(k)は、
【数13】
で表され、更に、Av=3T/Lに設定した場合には、
【数14】
で表される。
【0121】
図8(c)はmode3のインダクタンス電流の定電流制御の制御形態を説明するための図である。制御部は、キャパシタンス電流ic(k)及び出力電圧vo(k)をフィードバックして、あるいは、キャパシタンス電流ic(k)をフィードバックして、出力電圧を指令電圧VREFに向けて定電流制御を行う。β3は、出力電圧を指令電圧VREFに安定して追従させるために設定する係数である。
【0122】
以下の表3はmode1〜mode3の各定電流制御における信号関係を示している。
【0123】
【表3】
【0124】
(指令電圧への整定)
次に、上記したmode1〜mode3の工程による指令電圧への整定工程について、図9のフローチャートを用いて説明する。図9のフローチャートでは各工程をP1〜P14の符号を付して示している。
【0125】
はじめに、指令電圧VREF、指令電流IC-REF、定格出力電流IR-rat、定電流係数αH,αLを設定する。なお、High/Lowの2レベルパルス電力制御の場合には、Highレベルの指令電圧をVHとし、Lowレベルの指令電圧をVLとする。また、αHはHigh/Lowの2レベルパルス電力制御のHighレベルの定電流係数であり、αLはHigh/Lowの2レベルパルス電力制御のLowレベルの定電流係数である(P1)。
【0126】
mode1からmode2への切り替え電圧Vc1、及びmode2からmode3への切り替え電圧Vc2を算出する。切り替え電圧Vc1及びVc2の電圧の算出は、以後で説明する式(34)、式(39)を用いて行う(P2)。
【0127】
(mode1の工程:P3〜P6)
初めにmode1の工程によってキャパシタンス電流の定電流制御を行う。
【0128】
ic(k)、vo(k)を検出し(P3)、mode1のパルス幅ΔT(k)を算出する。mode1のパルス幅ΔT(k)の算出は式(7)(式(24))を用いて行う。なお、以後で説明する式(24)は式(7)と同じ算出式である(P4)。P4で算出したパルス幅ΔT(k)に基づいて、LCチョッパ回路のスイッチング動作を制御して、キャパシタンス電流の定電流制御を行い、出力電圧vo(k)を検出する(P5)。
【0129】
検出した出力電圧vo(k)がP2で算出した切り替え電圧vc1に到達したか否かを判定する(P6)。出力電圧vo(k)が切り替え電圧vc1に達していない場合には、P3〜P5の工程を繰り返し、出力電圧vo(k)が切り替え電圧vc1に達した場合には、次のmode2の工程に移行する。
【0130】
(mode2の工程:P7〜P10)
mode2の工程によってキャパシタンス電流の定電流制御を行う。
【0131】
ic(k)、vo(k)を検出し(P7)、mode2のパルス幅ΔT(k)を算出する。mode2のパルス幅ΔT(k)の算出は式(8)(式(25))を用いて行う。なお、以後で説明する式(25)は式(8)と同じ算出式である(P8)。P8で算出したパルス幅ΔT(k)に基づいて、LCチョッパ回路のスイッチング動作を制御して、キャパシタンス電流の定電流制御を行い、出力電圧vo(k)を検出する(P9)。
【0132】
検出した出力電圧vo(k)がP2で算出した切り替え電圧vc2に到達したか否かを判定する(P10)。出力電圧vo(k)が切り替え電圧vc2に達していない場合には、P7〜P9の工程を繰り返し、出力電圧vo(k)が切り替え電圧vc2に達した場合には、次にmode3の工程に移行する。
【0133】
(mode3の工程:P11〜P14)
mode3の工程によってインダクタンス電流の定電流制御を行う。
【0134】
ic(k)、vo(k)を検出し(P11)、mode3のパルス幅ΔT(k)を算出する。mode3のパルス幅ΔT(k)の算出は式(9)(式(26),式(28))を用いて行う。なお、以後で説明する式(26)は式(9)と同じ算出式である(P12)。P12で算出したパルス幅ΔT(k)に基づいて、LCチョッパ回路のスイッチング動作を制御して、インダクタンス電流の定電流制御を行い、出力電圧vo(k)を検出する(P13)。
【0135】
検出した出力電圧vo(k)がP1で設定した指令電圧VREFに到達したか否かを判定する(P14)。出力電圧vo(k)が指令電圧VREFに達していない場合には、P11〜P13の工程を繰り返し、出力電圧vo(k)が指令電圧VREFに達した場合には、指令電圧VREFへの整定を終了する。次の指令電圧VREFが設定された場合には、上記したP1〜P14の工程を繰り返して出力電圧voを指令電圧VREFに整定する。
【0136】
(パルス幅ΔT(k)の導出(導出1〜導出9))
図10に示すLCチョッパ回路の構成例は、多相インターリーブ方式による双方向降圧チョッパ回路の一例である。この降圧チョッパ回路は全負荷から無負荷まで高速制御が可能になる様に、一般的な降圧チョッパ回路に用いられているダイオードD1〜D3の転流ダイオードを可制御素子に置換え、出力の余分なエネルギーが入力側に回生している。
【0137】
ここでは多相インターリーブとして3相インターリーブを示している。3相インターリーブを構成する3つのスイッチング回路を備え、それぞれスイッチング素子Q1〜Q3とダイオードD1〜D3を備える。3相インターリーブの各相は、LC回路4のインダクタンスLが3つのスイッチング回路のそれぞれのインダクタンスLに対応し、各インダクタンスLのインダクタンス電流iL1〜iL3はインターリーブの各相電流である。多相インターリーブにおいて、LC回路4は1つののキャパシタンスCは備え、キャパシタンスCにはインダクタンス電流iL1〜iL3の合成電流(iL1+iL2+iL3)から負荷電流iRを減算した電流が流れる。
【0138】
以下、パルス幅ΔT(k)の導出について説明する。パルス幅ΔT(k)の導出において、はじめに前段工程を説明する。前段工程では、多相インターリーブの合成電流を制御電流としてフィードバックする定電流制御(導出工程1)において、多相インターリーブ方式の双方向降圧チョッパ回路、及びパルス幅ΔT(k)の状態方程式を求め(導出工程2,3)、この状態方程式に基づいてパルス幅ΔT(k)の関数式(導出工程4)を求める。
【0139】
次に、前段工程において制御電流について求めたパルス幅ΔT(k)の関式を用いて、インダクタンス電流の定電流制御のパルス幅ΔT(k)の導出(導出工程5)、及びキャパシタンス電流の定電流制御のパルス幅ΔT(k)の導出(導出工程6)を説明する。
【0140】
その後、mode1とmode2の2段階のキャパシタンス電流の定電流制御と、その後に行うmode3のインダクタンス電流の定電流制御の多段階の定電流制御とによってステップ応答を行う制御形態において、各mode1、mode2、mode3のパルス幅ΔT(k)を導出する導出工程(導出工程7〜導出工程9)を説明する。
【0141】
・導出工程1:
合成電流を制御電流としてフィードバックする定電流制御の制御電流および出力電圧の式を導出する。図11図10の回路の等価回路であり、閉ループ自動制御応答の領域において、スイッチング周波数より充分長い時間帯域の等価回路を表している。
【0142】
図11に等価回路において、各相の相電流iL1、iL2、及びiL3の合成電流(iL1+iL2+iL3=iL)を電流源で表し、3つのスイッチング回路のそれぞれのインダクタンスLの合成インダクタンスを(L/3)で表している。この等価回路において、電流源から入力された入力電流(iL)による出力電圧voのステップ応答は、
【数15】
で表される。
【0143】
式 (11)は、出力電圧voのステップ応答は、二次振動電圧を起こすことなく、(R・iL)に向かって指数関数的に増加することを示している。
【0144】
インダクタンス電流iLの合成電流の時間関数iL(t)を以下の式(12)で定義すると、
【数16】
【0145】
合成電流(iL(t))、キャパシタンス電流ic(t)、及び出力電圧vo(t)はそれぞれ以下の式(13)で表される。
【数17】
【0146】
式(13)で示される出力電圧vo(t)は、式(11)で表される出力電圧vo(t)から負荷抵抗Rが削除され、十分な時間が経過した後(t→∞)の最終値は指令電圧VREFに収束することを示している。
【0147】
したがって、式(12)で示されるインダクタンス電流iL(t)の合成電流を制御電流として定電流制御を行うことによって、二次振動電圧を生じさせることなく、ステップ応答を制御することができる。
【0148】
なお、式(13)で示される出力電圧vo(t)において、Avは出力電圧Vo(t)と指令電圧VREFとの差分値(VREF−Vo(t))に乗じる係数であり、βはキャパシタンス電流ic(t)に乗じる係数であり、指令電圧VREFに対する追従特性を定める。
【0149】
例えば、係数Avが"1"に近いほど、差分値(VREF−Vo(t))の大きさが強く反映されたステップ応答となり、係数βが"1"に近いほど、指令電圧VREFに対する追従度が高いステップ応答となる。
【0150】
・導出工程2:
次に、3相インターリーブ方式の双方向降圧チョッパ回路の状態方程式を導出する。図12は3相の内の一つの相での等価回路を示している。前記式(12)で表される合成電流(iL)を、定電流制御に適用した形態に変換するために、図10に示すiL1,iL2,及びiL3の合成電流であるiL(=iL1+iL2+iL3)の状態方程式を求め、パルス幅ΔTとの関係式を導出する。
【0151】
図10の各相のQ1/D1〜Q3/D3のON/OFF動作によって、U1(τ)、U2(τ)およびU3(τ)にはVinまたは0電圧が印加される。重ねの理を用いて表現すると、U1(τ)に関しては図12の等価回路で表される。図12において、U1(τ)は、Q1をオンとしD1をオフとした場合にはVinとなり、Q1をオフとしD1をオンとした場合にはU1(τ)は0となる。
【0152】
図10に対する状態方程式において、U(t)が一定である区間ごとに分割したU(τ)による状態方程式の一般解は、それぞれ以下の式(14)で表される。
【数18】
【0153】
合成電流i(t)は、一般解x(t)に図10の回路構成に対応した変換行列Fを左から乗じることで得られる。
【数19】
【0154】
但し、
【数20】
である。
【0155】
上記したi(t)からiL(t)=iL1(t)+iL2(t)+iL3(t)を得るために変換行列Gを用いてGFeATを導出する。また、FB、FABは下式に示すように変換される。
【数21】
【0156】
・導出工程3:
次に、パルス幅ΔT(k)の状態方程式を導出する。
【0157】
図2(a)に示す一周期の区間Tにおいて、パルス幅ΔT(k)の関係式を求める。式(15)に対して式(16)及び式(17)を用いてi(T)を導出すると以下の式(18)で表される状態方程式が得られる。なお、記述しないが、図2(b)及び(c)の一周期の区間Tにおけるi(T)も式(18)と同式になる。
【0158】
【数22】
【0159】
・導出工程4:
次に、パルス幅ΔT(k)の関数式を導出する。
【0160】
式(17)を用いて式(18)のパルス幅ΔT(k)の状態方程式を変換すると、
【数23】
が得られる。
【0161】
負荷電流iR(k)をiR(k)=vo(k)/Rとして、上記式(19)中からRを除くと以下の式(20)が得られる。
【数24】
【0162】
上記式(20)からパルス幅ΔT(k)を求めると、
【数25】
が得られる。
【0163】
上記式(21)で示されるパルス幅ΔT(k)は、インダクタンス電流の制御電流の定電流制御におけるパルス幅ΔT(k)を示している。以下、式(21)に基づいて、インダクタンス電流制御のパルス幅ΔT(k)の導出(導出工程5)と、キャパシタンス電流制御のパルス幅ΔT(k)の導出(導出工程6)を示す。
【0164】
・導出工程5:
次に、インダクタンス電流の定電流制御のパルス幅ΔT(k)を導出する。
【0165】
式(21)に示すパルス幅ΔT(k)において、iL(k+1)として式(12)で示したインダクタンス電流iLを離散時間形式に変換した関数式を用いることによって、インダクタンス電流の定電流制御によるパルス幅ΔT(k)が得られる。ここでは式(12)に示すβを、mode3のインダクタンス電流の定電流制御に合わせてβ=β3としている。
【数26】
【0166】
なお、上記したパルス幅ΔT(k)は、インダクタンス電流の定電流制御において、インダクタンス電流iL(k)に代えてキャパシタンス電流ic(k)及び出力電圧vo(k)を用いて示している。インダクタンス電流iL(k)に替えてキャパシタンス電流ic(k)を用いて表すことによって、インダクタンス電流の定電流制御とキャパシタンス電流の定電流制御とを、共通のキャパシタンス電流ic(k)をフィードバックすることで行うことができる。
【0167】
・導出工程6:
次に、キャパシタンス電流の定電流制御のパルス幅ΔT(k)を導出する。
【0168】
キャパシタンス電流の定電流制御では、指令電流をIC-REFとして、iL(k+1)=IC-REF+iR(k)を定義する。
【0169】
式(21)のパルス幅ΔT(k)において、iL(k+1)=IC-REF+iR(k)を用いることによって、キャパシタンス電流の定電流制御のパルス幅ΔT(k)は以下の式(23)で表される。
【数27】
【0170】
上記したパルス幅ΔT(k)によれば、負荷電流iR(k)及びインダクタンス電流iL(k)の要素が除かれているため、負荷電流iR(k)及びインダクタンス電流iL(k)をフィードバックすることなく、キャパシタンス電流ic(k)及び出力電圧vo(k)をフィードバックすることでパルス幅ΔT(k)を求めることができる。
【0171】
次に、キャパシタンス電流の定電流制御においてmode1とmoed2のパルス幅ΔT(k)、及びインダクタンス電流の定電流制御のmode3のパルス幅ΔT(k)の導出(導出工程7〜導出工程9)を説明する。
【0172】
・導出工程7:
mode1におけるキャパシタンス電流の定電流制御のパルス幅ΔT(k)の導出を説明する。
【0173】
mode1ではキャパシタンス電流の第1段目の定電流制御を実行する。第1段目の定電流制御における指令電流をIC-REFとして、インダクタンス電流iL(k+1)としてiL(k+1)=IC-REF+iR(k)を定義する。式(21)で示される制御電流の定電流制御におけるパルス幅ΔT(k)を用いることによってmode1のパルス幅ΔT(k)は以下の式(24)が得られる。
【数28】
【0174】
mode1の制御を定めるパルス幅ΔT(k)の関数式は、負荷電流iR(k)及びインダクタンス電流iL(k)の要素が除かれているため、負荷電流iR(k)及びインダクタンス電流iL(k)のフィードバックは不要となる。
【0175】
mode1のキャパシタンス電流の定電流制御では、このmode1の期間内において出力電圧vo(k)が直流指令電圧VREFを超えて行き過ぎない様にするために、出力電圧vo(k)がVc1に達した時点で第1段のmode1のキャパシタンス電流の定電流制御を終了して、第2段のmode2のキャパシタンス電流の定電流制御に切り替える。なお、Vc1はmode1からmode2への切り替え時の出力電圧である。2レベルデッドビート制御では、直流指令電圧としてHighの直流指令電圧VH、及びLowの直流指令電圧VLを定める。
【0176】
・導出工程8:
次に、mode2におけるキャパシタンス電流の定電流制御のパルス幅ΔT(k)の導出を説明する。
【0177】
mode2のパルス幅ΔT(k)は、vo(k)=Vc1とiL(k+1)=β2・IC-REF+iR(k)を、パルス幅ΔT(k)の一般式(21)に代入することにより以下の式(25)で得られる。
【数29】
【0178】
上記式(25)はmode2の制御を定めるΔT(k)の関数式において負荷電流iR(k)及びインダクタンス電流iL(k)の要素が除かれて表される。
【0179】
mode2の期間において、定電流制御を高速応答とするために、出力電圧vo(k)からvo(k+1)の1期間において、初期値であるVc1から最終値Vc2に到達するようにβ2を選定することによって、mode2を1サンプリング時間で終了させることができる。
【0180】
・導出工程9:
次に、mode3におけるインダクタンス電流の定電流制御のパルス幅ΔT(k)の導出を説明する。
【0181】
mode3のインダクタンス電流の定電流制御のパルス幅ΔT(k)は、(導出工程5)で示したインダクタンス電流の定電流制御のパルス幅ΔT(k)と同様であり、以下の式(26)で表される。
【数30】
【0182】
一般的に交流信号を検出する交流変流器は高速応答が可能であるのに対して、直流信号を検出する汎用品の検出器は比較的に低速応答である。
【0183】
上記式で示すパルス幅ΔT(k)は、キャパシタンス電流ic(k)と出力電圧vo(k)とを検出し、フィードバック信号としている。キャパシタンス電流ic(k)は交流変流器によって高速応答が可能であるが、出力電圧vo(k)を検出する検出器の応答は比較的に低速である。ステップ応答を高速化するには、フィードバック信号を高速で得ることが必要であり、そのためには検出器の検出は高速であることが望ましい。
【0184】
そこで、低速応答の出力電圧vo(k)の検出を省き、キャパシタンス電流の交流信号のみを高速で検出することによって応答の高速化を図る制御を示す。
【0185】
上記式(26)で示すパルス幅ΔT(k)において、Avを以下の式(27)の関係に定めることで出力電圧vo(k)の影響を除く。
Av=3T/L …(27)
なお、Tはサンプリング周期であり、Lは図10に示すLC回路のインダクタンスである。
【0186】
Avを、サンプリング周期T、及びLC回路のインダクタンスLによって上記式(27)の関係となるように設定することによって、パルス幅ΔT(k)は、出力電圧vo(k)を含まない以下の式(28)で表される。
【数31】
【0187】
式(28)で示されるパルス幅ΔT(k)は、フィードバック信号としてキャパシタンス電流ic(k)のみを含む。キャパシタンス電流ic(k)を検出する交流変流器は高速応答が可能であるため、パルス幅ΔT(k)を高速応答で得ることができる。
【0188】
したがって、mode3のインダクタンス電流の定電流制御を定めるパルス幅ΔT(k)の関数式から出力電圧vo(k)、負荷電流iR(k)およびインダクタンス電流iL(k)の要素を除くことができる。なお、β3はインダクタンス電流iL(t)の定電流制御において、直流指令電圧VREFに追従した制御応答が得られるように選定される。
【0189】
(切り替え電圧Vc1,Vc2の導出)
以下、mode1からmode2に切り替える際の切り替え電圧Vc1、及びmode2からmode3に切り替える際の切り替え電圧Vc2の導出を説明する。
【0190】
・切り替え電圧Vc1の導出
ここで、2レベルデッドビート制御では、直流指令電圧VREFとしてHighの直流指令電圧VH、及びLowの直流指令電圧VLを定める。
【0191】
ステップ応答の目標電圧がHighレベル指令電圧VHの場合とLowレベル指令電圧VLの場合の各切り替え電圧Vc1の導出を説明する。
【0192】
(Highレベルのパルス制御時のmode1におけるVc1の導出)
Highレベルの目標電圧をVH、定格出力電流をIR-rat、定電流係数をαH、出力電圧の初期値をvo(0)とすると、指令電圧VREF=VH、キャパシタンス電流の指令電流IC-REF=αH・IR-rat、出力電圧の初期値vo(0)=VLとなる。
【0193】
mode1のキャパシタンス電流の定電流制御は、コンデンサを定電流充電する電流制御であるため、各時点での出力電圧vo(1)〜vo(n)は以下の式(29)で表される。ここで、サンプリング回数を1,2,…k,…n,…としている。
【数32】
ただし、k及びnは正の整数である。
【0194】
切り替え電圧Vc1は、mode1のキャパシタンス電流の定電流制御の期間内において、出力電圧vo(k)が指令電圧VREF(=VH)を超えて行き過ぎることを防いでmode1を終了させるための電圧である。出力電圧vo(k)が切り替え電圧Vc1に達した時点で第1段のmode1のキャパシタンス電流の定電流制御を終了し、次の第2段のmode2のキャパシタンス電流の定電流制御への切り替えを行う。
【0195】
出力電圧vo(n)をHighレベルの指令電圧VHを越えてオーバーシュートさせないためには、図11に示す等価回路において、コンデンサに蓄積されるエネルギーと、入出力エネルギーとの関係から、以下の式(30)で表される関係式を満たす必要がある。
【数33】
【0196】
この関係式(30)を、式(29)を用いて書き換えると、出力電圧vo(n)をHighレベルの指令電圧VHを越えてオーバーシュートさせないサンプリング回数nに係わる式が得られる。
【数34】
【0197】
ここで、Nはnの整数部分の値を表す。したがって、サンプリング回数がN回以下であれば、出力電圧vo(N)はHighレベルの指令電圧VHを越えてオーバーシュートしない。
【0198】
mode1からmode2に移行させるための移行電圧をVtransとすれば、上記式(31)の条件を満たすサンプリング回数Nにおいて、式(29)で示される出力電圧vo(n)は以下の関係を満足する。なお、VLは、High/Low制御において出力電圧の初期電圧vo(0)である。
【数35】
【0199】
ここで、上記の関係式(32)の上下の値の平均値を用いて移行電圧Vtransを選択すると以下の式(33)で表される。
【数36】
【0200】
出力電圧voが、式(33)を満足する移行電圧Vtrans以上のVc1となった時点でmode2に移行する。したがって、Highレベルのパルス制御時のmode1における切り替え電圧Vc1は以下の式(34)で表される。
【数37】
【0201】
(Lowパルス制御時のmode1におけるVc1の導出 )
次に、Lowパルス制御時のmode1におけるVc1の導出について説明する。
【0202】
Lowレベルの目標電圧をVL、定格出力電流をIR-rat、定電流係数をαL、出力電圧の初期値をvo(0)とすると、指令電圧VREF=VL、キャパシタンス電流の指令電流IC-REF=−αL・IR-rat、出力電圧の初期値vo(0)=VHとなる。
【0203】
Lowレベルの出力電圧voを目標電圧のVLを超えてアンダーシュートさせないためには、図10のQ1〜Q3、及びD1〜D3がすべてオフ状態での入力電圧Vinへの回生が終了するまでの時間、換言すると、キャパシタンス電流icがIC-REFからゼロ電流になるまで時間tusは、この時間tusの時間内において式(29)のvo(n)から始まりVREF=VLで終了させる必要がある。無負荷状態でのエネルギーの関係式から、以下の式(35)で表される関係を満たす必要がある。
【数38】
【0204】
この関係式を、式(29)の出力電圧vo(n)を用いて書き換えると、出力電圧vo(n)をLowレベルの指令電圧VLを越えてアンダーシュートさせないサンプリング回数nに係わる式(36)が得られる
【数39】
【0205】
ここで、Nはnの整数部分の値を表す。サンプリング回数がN回以下であれば、出力電圧vo(N)はLowレベルの指令電圧VLを越えてアンダーシュートしない。
【0206】
mode1からmode2に移行させるための移行電圧をVtransとすれば、上記式(36)の条件を満たすサンプリング回数Nにおいて、式(29)で示される出力電圧vo(n)は以下の関係を満足する。なお、VLは、High/Low制御において出力電圧の初期電圧vo(0)である。
【数40】
【0207】
ここで、上記の関係式の上下の値の平均値を用いて移行電圧Vtransを選択すると以下の式(38)で表される。
【数41】
【0208】
出力電圧vo(n)が、式(38)を満足する移行電圧Vtrans以下のVc1となった時点でmode2に移行する。したがって、Lowレベルのパルス制御時のmode1における切り替え電圧Vc1は以下の式(39)で表される。
【数42】
【0209】
・切り替え電圧Vc2の導出
次に、切り替え電圧Vc2の導出について説明する。
【0210】
mode2はキャパシタンス電流の第2段目の定電流制御を実行する。この第2段目のmode2の定電流制御は、mode1の定電流制御とmode3の定電流制御とを繋ぐモードである。
【0211】
ステップ応答の全期間をインダクタンス電流の定電流制御によって実行すると、出力電圧vo(k)は式(13)に示す指数関数の動作となり、以下の式(40)で表される。なお、ここでは、キャパシタンス電流ic(t)中のβをmode3のインダクタンス電流による定電流制御のβ3を用いてβ=β3としている。
【数43】
【0212】
mode2の最終値の時点はmode3の初期時点と同一の時点であり、この時点をt=t2とすると、出力電圧vo及びキャパシタンス電流icはそれぞれ以下の式(41)で表される。
【数44】
【0213】
Vc2,及びic2はmode2の最終値であると共にmode3の初期値である。mode2の切り替え電圧Vc2は、式(41)のic2を用いて以下の式(42)で表される。
【数45】
ここで、VREF=VH又はVREF=VLである。
【0214】
(係数β2,β3の導出)
次に、係数β2,及びβ3の導出について説明する。
【0215】
・係数β2の導出:
mode2はmode1からmode3へ乱調を極力生じさせることなく転送するための移行モード(Transfer mode)であり、mode2において、初期値はVc1及びic1=IC-REFであり、最終値はVc2及びic2である。
【0216】
そこで、mode2では、mode2の最終値が式(41)の値に達するように制御すると共に、β=β2に設定してキャパシタンス電流を定電流β2・IC-REFで制御する。β2は、mode2においてキャパシタンス電流の指令電流IC-REFを調整する係数である。
【0217】
すなわち、(k+1)の時点で式(41)式の値に達するためのキャパシタンス電流ic(k+1)は、以下の式(43)で表される。
【数46】
【0218】
係数β2は、式(41)を式(43)に代入することで得られる。
【数47】
【0219】
係数β2を式(44)によって設定することによって、キャパシタンス電流icをmode2の切り替え時のic2とすることができる。
【0220】
・係数β3の導出:
次に、mode3の制御におけるβ3の導出について説明する。β3はキャパシタンス電流icの係数であり、インダクタンス電流iL(t)の定電流制御において、直流指令電圧VREFに追従した制御応答が得られるように選定される。
【0221】
係数β3は、式(12)で表されるインダクタンス電流iLの定電流制御において、指令電圧VREFに追従する制御応答が得られるように選定される。この係数β3の選定はmode3の自動制御系における安定判別によって行われる。以下、係数β3の選定について説明する。
【0222】
(定電圧制御の閉ループ一次系伝達関数)
はじめに、定電圧制御の閉ループ一次系伝達関数について示す。式(12)で表されるインダクタンス電流iL(t)において、β=β3としてs関数で表現すると以下の式(45)で表される。
【数48】
【0223】
図13は、上記した式(45)で表される閉ループ伝達関数の回路ブロックを示し、定電圧制御の一次系伝達関数による回路状態を示している。図13に示す閉ループ伝達関数の回路ブロックにおいて、制御応答周波数ωcは一巡伝達関数のゲインが"1"に達する点である。図13の一巡伝達関数のゲインが1になるωcは式(27)のAvを代入して以下の式(46)で得られる。
【数49】
【0224】
上記式(46)は、制御応答周波数ωcがβ3で選定されることを示しているが、ゲインが"1"となる制御応答周波数ωcは、β3の他、パラメータωn及びTの影響を受けるため、β3の選定には制限が生じる。そこで、β3の値を選定範囲によって定める。
【0225】
(閉ループ二次系伝達関数とβ3の選定範囲)
次に 閉ループ二次系伝達関数とβ3の選定範囲について示す。
【0226】
mode3のパルス幅ΔT(k)に関する式(28)を変形して、連続関数で表現すると以下の式(47)が得られる。
【数50】
【0227】
上記式(47)の左辺のVin(t)ΔT(t)/Tは出力電圧vo(t)の平均値を示している。すなわち、図10の回路において、D1〜D3の両端電圧の平均値電圧に相当する。
【0228】
よってvo(t)をs関数で表現したvo(s)は、図19の回路構成を用いて、U=Vin(s)ΔT(s)/Tとすれば、
【数51】
となる。
【0229】
したがって、二次系伝達関数vo(s)/VREF(s)は図13及び図14で表現される。図14は、定電圧制御の二次系伝達関数の回路状態を示している。図14のvo(s)の一巡伝達関数は、以下の式(49)で表される。
【数52】
【0230】
この伝達関数は正帰還となっているため、発振させないためには制御応答におけるゲインは"1"以下に選定しなければならない。このゲインの制限から以下の条件式(50)が得られる。
【数53】
【0231】
この条件式(50)において、ファイナルシグマで表される係数を0として、安定条件が最悪となる場合を検討する。この条件式に式(46)式を代入すると以下の式(51)が得られる。
【数54】
【0232】
安定判別において、制御応答周波数ωcは上記の条件式で制限される他、更にスイッチング時間Tのむだ時間における影響について考慮する。
【0233】
むだ時間はexp(−jωcT)=cos(ωcT)−jcos(ωcT)で表される。よって、図13に示すvo(s)の一巡伝達関数の位相余裕を0[deg]、すなわちωcT=π/2まで許容するωcの範囲はωc<π/(2T)である。
【0234】
式(46)式を用いることによって、(1−β3)の範囲は以下の式(52)で表される。
【数55】
【0235】
式(51)を含めた(1−β3)の範囲は以下の式(53)で表され、これによって係数β3を選定することができる。
【数56】
【0236】
インダクタンス電流iL(t)の定電流制御において、係数β3を上記範囲から選定することによって、ゲインを"1"以下に抑制し、制御応答を直流指令電圧VREFに安定して追従させることができる。
【0237】
(出力電圧vo(t)の検出)
次に、出力電圧vo(t)の高速検出について説明する。
【0238】
高いスイッチング周波数で制御するためには、出力電圧vo(t)とキャパシタンス電流ic(t)を高速で検出する必要がある。High/Lowの2レベルを含むパルス制御において、特に、キャパシタンス電流の定電流制御を行うmode1及びmode2の定電流制御において、出力電圧vo(t)とキャパシタンス電流ic(t)を検出する検出器は高速で測定されることが要求される。
【0239】
出力電圧vo(t)を高速検出するために、汎用品センサの比較的遅い応答特性の検出手段で検出した検出信号Vo-slowを初期値vo(0)として用い、初期値vo(0)とキャパシタンス電流ic(t)を高速離散時間処理して出力電圧vo(t)を得る。出力電圧vo(t)の取得において、比較的遅い応答特性の検出手段で検出した検出信号Vo-slowを初期値vo(0)としているが、この検出は初期値vo(0)のみであり、各時点の出力電圧vo(t)の算出は応答速度が遅い検出手段を用いることなく行うことができるため、高速検出が可能である。
【0240】
mode3は、各時点tでの出力電圧vo(t)をフィードバック信号として使用すること無く得ることができるため、vo-slowによる外乱の影響を受けず、mode3の整定区間ではvo-slowを整定している。各サンプリング周期で行うmode1〜mode3の定電流制御において、前サンプリング周期でのmode3の最終値のvo-slowは、次のサンプリング周期のmode1とmode2で使用するvo(t)を得るための初期値vo(0)として使用する。
【0241】
図1に示す3相インターリーブ方式の降圧チョッパ回路の回路例において、サンプリング時間TをT=1/Fsとする。ここで、Fsはスイッチング周波数である。
【0242】
出力電圧vo(t)を高速検出するために、Th<0.1・(T/3)を満足するサンプリング時間Tより充分に短いサンプリング時間Thを設定する。
【0243】
このサンプリング時間Thにおいて、高速検出が容易な交流変流器によってキャパシタンス電流ic(t)を検出し、以下の離散時間処理を行う。ここで、Th=tm−tm-1としている。
【数57】
【0244】
High/Lowの2レベルパルス動作を広帯域(1Hz〜50Hz)で行う2レベルパルス制御において、Low(High)レベルを整定した後、次の出力電圧を次のHigh/Lowの2レベルパルス動作のHigh(Low)の初期値電圧として用いる。
【0245】
LOWレベルパルス動作の整定後、出力電圧がVLからHighレベルパルス動作を開始し、整定後に出力電圧がVHに達する場合は、以下の式(55)となる。
【数58】
【0246】
上記式(55)においてVLに相当する初期値vo(0)は、応答が比較的遅い汎用品センサの検出手段で検出した検出信号vo-slowを用いることが可能になる。
【0247】
出力電圧vo(km)が整定電圧VH-setに到達した後もmode3の制御を継続する。VH-setに達する時間をTsetとすると、mode1及びmode2におけるサンプリング回数kmとTsetとの間には以下の関係がある。
km・Th>Tset
km>Tset/Th
【0248】
実用例では、Tset=8μs、Th=1/60MHzの場合には、km>8μs×60MHz=480となる。この例では、分解能は480以上が得られ、検出スピードはTh=1/60MHz=0.0167μsである。
【0249】
同様にして、Highレベルパルス動作の整定後の電圧VHからLowレベルパルス動作を開始し、整定後に電圧VLに達する場合は、VHに相当するvo(0)は応答が比較的遅い汎用品センサで検出して得られる検出信号vo-slowを用いることが可能になる。vo(km)が整定電圧VL-setに到達した後もmode3の制御を継続する。
【0250】
本発明の電源装置は、メインループを電源装置の指令信号に従う制御とし、マイナーループを多相インターリーブ方式の双方向降圧チョッパ回路のHigh/Lowの直流指令電圧に従う2レベルデッドビート制御とする二重制御系に適用することができ、直流電源装置、UPS等の交流電源装置、RFジェネレータ等に適用することができる。
【0251】
以下、図15を用いて本発明の電源装置をRFジェネレータに適用した例を説明し、図16のフローチャートを用いて、本発明の電源装置をRFジェネレータに適用した場合の動作例を説明し、High/Lowの制御例を図17のフローチャートを用いて説明する。また、図18を用いて本発明の電源装置を直流電源装置、交流電源装置に適用した例を説明する。
【0252】
(RFジェネレータの適用例)
図15は、RFジェネレータの適用例の制御系を説明するための制御ブロック図である。制御系は、メインループ制御系を構成するPI制御と、マイナーループ制御系を構成するデビット制御とを備える。マイナーループ制御系を構成するデビット制御に、本発明の電源装置の、多相インターリーブ方式の双方向降圧チョッパ回路のHigh/Lowの直流指令電圧に従う2レベルデッドビート制御系を適用する。
【0253】
HighレベルとLowレベルの2レベル制御を行う場合には、メインループにおいて、Highレベルの指令信号として、Highレベル進行波電力指令PH-Forward、あるいはHighレベルロード電力指令PH-Loadを用い、Lowレベルの指令信号として、Lowレベル進行波電力指令PL-Forward、あるいはLowレベルロード電力指令PL-Loadを用い、負荷側から取得したHighレベル進行波電力あるいはLowレベル進行波電力、又は、Highレベルロード電力あるいはLowレベルロード電力をフィードバックしてPI制御を行う。なお、定格値として定格直流電圧Vo-rat,定格直流電流Io-rat,及び定格進行波電力Ph-ratを入力する。
【0254】
一方、マイナーループでは、PI制御で得られたHighレベル指令電圧VH及びLowレベル指令電圧VLを指令値とし、出力電圧voあるいはキャパシタンス電流icをフィードバックしてデッドビート制御を行う。
【0255】
図16のフローチャートは、RFジェネレータによってプラズマ負荷においてプラズマを着火させる起動モードを示している。図16,17のフローチャートでは各工程をS1〜S10,S11,S12の符号を付して示している。
【0256】
RFジェネレータの定格値、及びRFジェネレータを駆動する指令値を設定する。定格値として、定格直流電圧Vo-rat,定格直流電流Io-rat,及び定格進行波電力PH-ratを入力して定格値を設定する。また、Highレベルの電力指令PHとして、Highレベル進行波電力指令PH-Forward、あるいはHighレベルロード電力指令PH-Loadを入力し、Lowレベルの電力指令PLとして、Lowレベル進行波電力指令PL-Forward、あるいはLowレベルロード電力指令PL-Loadを設定する(S1)。
【0257】
はじめに、連続モードでHighレベル電力指令PHまで、例えば20msで上昇動作(Ramp Up(PH-rat/20ms))を行う(S2)。
【0258】
連続モードによる電圧上昇によってプラズマが着火しない場合(S3)は、プリパルス制御によって着火動作を行う。なお、プリパルス制御は、プラズマ着火を誘起させるメインパルスの前段階として、メインパルスよりもパルス幅が狭い複数のプリパルスを印加して、プラズマ着火の雰囲気を形成する制御であり、このプリパルス制御については特許文献4に開示されている。
【0259】
プリパルス制御では、例えば5kHzのデューティー制御により平均反射電力PREF-aveを所定値に維持した状態で供給電力をPHまで上昇させる。平均反射電力PREF-aveの所定値は、例えば、Highレベル定格電力PH-ratに所定の係数を掛けることで定める。所定係数は、例えば0.1を設定することができる。このプリパルスモードの平均反射電力PREF-aveはデューティー比10%でオン/オフ制御するパルスを用いることができる。
【0260】
プリパルスモードのパターン運転を繰り返し、繰り返し動作の回数が規定回数に達した場合には、着火(イグニッション)失敗を表示して停止する(S4)。
【0261】
プラズマが着火した場合(S3)は、Highレベルで設定されたHighレベル電力指令PHからスタートし、Highレベル電力指令PHで整定した後のHighレベルの電圧値VHを確保する(S5)。
【0262】
その後、下降動作(Ramp Down(PH-rat /20ms))によってHighレベル電力指令PH からLowレベル電力指令PLへ下降させ(S6)、Lowレベル電力指令PL に整定した後のLowレベルの電圧値VLを確保する(S7)。これによって、VREF(High)=VHとして、Highレベルの指令電圧VREF(High)を整定後のHighレベルの指令電圧VHで設定することができ、VREF(Low)=VLとして、Lowレベルの指令電圧VREF(Low)を整定後のLowレベルの指令電圧VLで設定することができる。
【0263】
その後、アークが発生した場合にはアーク遮断制御によって電力供給を停止した後、S2〜S7の着火動作を行い(S8)、アーク遮断制御を行わない場合には、High/Lowの2レベル制御(S10)を行う。
【0264】
(High/Lowレベル制御)
次に、図17のフローチャートを用いて、High/Lowレベル制御例を説明する。図17のフローチャートにおいて、High/Lowレベル制御は、出力電力を、進行波電力のPH (Forward)/PL (Forward)、の電力指令、又はロード電力のPH (Load)/PL (Load)の電力指令に追従させるメインループ(S11)によるPI制御と、出力電圧をHigh/Lowの2レベルの指令電圧に追従させるマイナーループ(S12)にるデッドビート制御とを含む。
【0265】
S11のメインループによるPH及びPLのPI制御では、マイナーループのデッドビート制御で行うサンプリング周期Tよりも遅いサンプリング周期Tcで処理を行う(S11A)。例えば、サンプリング周期Tcは50μsとし、H/Lパルス周期は1Hz〜50kHzとすることができる。
【0266】
S11AのPI制御の制御工程中に行うマイナーループ制御(S12)において、例えば3相インターリーブによる場合には、式(55)中に示される以下の式(56)
vo(km)=(ic(km-1)/C)・Th+vo(km-1) …(56)
によって、サンプリング周期Thを用いた出力電圧vo(km)を演算する。3相インターリーブの各相について、サンプリング周期Tの1/3であるT/3毎に得られるvo(km)を出力電圧vo(k)として検出する。
【0267】
kmは分解能であり、例えば、Tset=8μs、Th=1/60MHzの場合には、km>Tset/Th=μs×60MHz=480となる。この例では、分解能は480以上が得られる(S12A)。
【0268】
Highレベルの指令電圧VH、及びLowレベルの指令電圧VLを取得し(S12B)、整定後のk時点のvo(km)をそれぞれHighレベル、及びLowレベルの出力電圧vo(k)として取得する(S12C)。
【0269】
Highレベルのパルス幅ΔT(k)を求め(S12D)、得られたパルス幅ΔT(k)を用いて出力電圧voをHighレベルの指令電圧VHに追従させる制御を行い、次に、Lowレベルのパルス幅ΔT(k)を求め(S12E)、得られたパルス幅ΔT(k)を用いて出力電圧voをLowレベルの指令電圧VLに追従させる制御を行う。
【0270】
Highレベル電力指令PHへ追従させる制御からスタートし、次にLowレベルの電力指令PLへ追従させる制御を行い、このHighレベルPH制御とLowレベルPL制御とを繰り返してHigh/Lowパルス電力制御の運転を続行する。
【0271】
各High/Lowパルス電力制御が終了する毎に、Highレベルの終了電力PH-end及びLowレベルの終了電力PL-endと、Highレベルの終了電圧VH-end及びLowレベルの終了電圧VL-endのデータをピークホールドする。
【0272】
このHighレベルの終了電圧VH-end及びLowレベルの終了電圧VL-end は、High/Lowレベルに対応する式(12)の指令電圧VREFを指令電圧VH及びVLとして保持する。また、Highレベルの終了電力PH-end及びLowレベルの終了電力PL-endはHigh/Lowパルスのフィードバック信号として使用する。
【0273】
(直流電源装置、交流電源装置の適用例)
次に、図18を用いて本発明の電源装置を直流電源装置、交流電源装置に適用した例を説明する。
【0274】
図18は、本発明の電源装置を直流電源装置、交流電源装置への適用例の制御系を説明するための制御ブロック図である。制御系は、メインループ制御系を構成するPI制御と、マイナーループ制御系を構成するデビット制御とを備える。マイナーループ制御系を構成するデビット制御に、本発明の電源装置の、多相インターリーブ方式の双方向降圧チョッパ回路のHigh/Lowの直流指令電圧に従う2レベルデッドビート制御系を適用する。
【0275】
HighレベルとLowレベルの2レベル制御を行う場合には、メインループにおいて、指令信号として、Highレベル電力指令PH又は電圧指令VrefH、Lowレベル電力指令PL又は電圧指令VrefLを用い、負荷側から取得した電力又は電圧をフィードバックしてPI制御を行う。なお、定格値として定格直流電圧Vo-rat,定格直流電流Io-rat,及び定格進行波電力PH-ratを入力する。
【0276】
一方、マイナーループでは、PI制御で得られたHighレベル指令電圧VH及びLowレベル指令電圧VLを指令値とし、出力電圧voあるいはキャパシタンス電流icをフィードバックしてデッドビート制御を行う。
【0277】
なお、上記実施の形態及び変形例における記述は、本発明に係る電源装置の一例であり、本発明は各実施の形態に限定されるものではなく、本発明の趣旨に基づいて種々変形することが可能であり、これらを本発明の範囲から排除するものではない。
【産業上の利用可能性】
【0278】
本発明の電源装置は、半導体や液晶パネル等の製造装置、真空蒸着装置、加熱・溶融装置等の高周波を使用する装置に対する高周波電力の供給に適用することができる。
【符号の説明】
【0279】
1 電源装置
2 チョッパ回路
3 スイッチング回路
4 LC回路
5 スイッチング信号生成部
6 制御部
7 負荷
Av、β 係数
C キャパシタンス
D1-D3 ダイオード
F 変換行列
G 変換行列
IC-REF キャパシタンス電流の指令電流
IR-rat 定格出力電流
Io-rat, 定格直流電流
ic キャパシタンス電流
iL インダクタンス電流
iL1-iLn インダクタンス電流
iR 負荷電流
L インダクタンス
N サンプリング回数
PH Highレベル電力指令
PH-Forward Highレベル進行波電力指令
PH-Load Highレベルロード電力指令
PH-end Highレベル終了電力
PH-rat Highレベル定格電力
PL Lowレベル電力指令
PL-Forward ローレベル進行波電力指令
PL-Load ローレベルロード電力指令
PL-end Lowレベル終了電力
PREF-ave 平均反射電力
Q1-Q3 スイッチング素子
R 負荷抵抗
T サンプリング周期
Th サンプリング時間
Tc サンプリング周期
V 入力電圧
Vc1 切り替え電圧
Vc2 切り替え電圧
VH Highレベル指令電圧
VH-end Highレベル終了電圧
VH-set Highレベル整定電圧
VL Lowレベル指令電圧
VL-end Lowレベル終了電圧
VREF 指令電圧
Vin 入力電圧
Vl 整定電圧
vo 出力電圧
Vo-rat 定格直流電圧
Vo-slow 検出信号
Vtrans 移行電圧
km サンプリング回数
vo 出力電圧
ΔT(k) パルス幅
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19