特許第6874835号(P6874835)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社島津製作所の特許一覧

<>
  • 特許6874835-X線分光分析装置 図000005
  • 特許6874835-X線分光分析装置 図000006
  • 特許6874835-X線分光分析装置 図000007
  • 特許6874835-X線分光分析装置 図000008
  • 特許6874835-X線分光分析装置 図000009
  • 特許6874835-X線分光分析装置 図000010
  • 特許6874835-X線分光分析装置 図000011
  • 特許6874835-X線分光分析装置 図000012
  • 特許6874835-X線分光分析装置 図000013
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6874835
(24)【登録日】2021年4月26日
(45)【発行日】2021年5月19日
(54)【発明の名称】X線分光分析装置
(51)【国際特許分類】
   G01N 23/2209 20180101AFI20210510BHJP
   G01N 23/223 20060101ALI20210510BHJP
【FI】
   G01N23/2209
   G01N23/223
【請求項の数】8
【全頁数】16
(21)【出願番号】特願2019-518701(P2019-518701)
(86)(22)【出願日】2017年5月18日
(86)【国際出願番号】JP2017018701
(87)【国際公開番号】WO2018211664
(87)【国際公開日】20181122
【審査請求日】2019年5月31日
(73)【特許権者】
【識別番号】000001993
【氏名又は名称】株式会社島津製作所
(74)【代理人】
【識別番号】110001069
【氏名又は名称】特許業務法人京都国際特許事務所
(72)【発明者】
【氏名】佐藤 賢治
(72)【発明者】
【氏名】和泉 拓朗
【審査官】 立澤 正樹
(56)【参考文献】
【文献】 西独国特許出願公開第01472229(DE,A)
【文献】 特開平03−082943(JP,A)
【文献】 特開2002−189004(JP,A)
【文献】 特開2003−098126(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01N 23/00−23/2276
(57)【特許請求の範囲】
【請求項1】
料表面の所定の照射領域に、特性X線を発生させるための励起線を照射する励起源と、
記照射領域に面して設けられた回折部材と、
記照射領域と前記回折部材の間に設けられた、板状部材に該照射領域及び該回折部材の所定の面に平行な開口であるスリットを形成してなるスリット部材と、
記スリットの長手方向に垂直な方向に複数の検出素子が配列されてなる光入射面を有するX線リニアセンサと
記長手方向に垂直な面内で前記回折部材を移動させることにより、前記試料表面と前記所定の面の成す角度、又は/及び前記試料表面と前記所定の面の間の距離を変更する第1移動機構と、
記長手方向に垂直な面内で前記X線リニアセンサを移動させることにより、前記スリットを通過して前記所定の面で回折された特性X線の経路上に該X線リニアセンサを位置させる第2移動機構と
を備えることを特徴とするX線分光分析装置。
【請求項2】
料表面の所定の照射領域に、特性X線を発生させるための励起線を照射する励起源と、
記照射領域に面して設けられた回折部材と、
記照射領域と前記回折部材の間に設けられた、該照射領域及び該回折部材の所定の面に平行なスリットを有するスリット部材と、
記スリットの長手方向に垂直な方向に複数の検出素子が配列されてなる光入射面を有するX線リニアセンサと
記長手方向に垂直な面内で前記回折部材を移動させることにより、前記試料表面と前記所定の面の成す角度を変更して前記X線リニアセンサに入射するX線の波長範囲を変更する第1移動機構と、
記長手方向に垂直な面内で前記X線リニアセンサを移動させることにより、前記スリットを通過して前記所定の面で回折された特性X線の経路上に該X線リニアセンサを位置させる第2移動機構と
を備えることを特徴とするX線分光分析装置。
【請求項3】
前記第1移動機構が回転機構及び直動機構を備えることを特徴とする請求項1又は2に記載のX線分光分析装置。
【請求項4】
前記第2移動機構が回転機構及び直動機構を備えることを特徴とする請求項1又は2に記載のX線分光分析装置。
【請求項5】
前記回折部材が、切り換え可能に配置された、回折可能なX線の波長範囲が異なる複数の回折部材の中から選択されることを特徴とする請求項1又は2に記載のX線分光分析装置。
【請求項6】
前記X線リニアセンサが、切り換え可能に配置された、検出可能なX線の波長範囲が異なる複数のX線リニアセンサの中から選択されることを特徴とする請求項1又は2に記載のX線分光分析装置。
【請求項7】
前記X線リニアセンサが、検出素子が長手方向に垂直な方向と該方向に直交する方向に二次元的に配列されたものであって、前記直交する方向に配置された検出素子の出力信号が1つの出力信号として出力されるものであることを特徴とする請求項1又は2に記載のX線分光分析装置。
【請求項8】
さらに、
記照射領域から放出されるX線のうち、特定の方向に進むX線のみを通過させる平行光スリット部材と、
記平行光スリット部材を通過した、前記特定の方向に進むX線のうち、特定の波長を有する光を回折して集光する凹面回折部材と、
記所定の面に受光面が位置するように配置されたX線検出器と
を備えることを特徴とする請求項1又は2に記載のX線分光分析装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、1次X線や電子線等の励起線が照射された試料が発する特性X線を分光して波長毎の強度を検出するX線分光分析装置に関する。
【背景技術】
【0002】
1次X線や電子線等の励起線を試料に照射すると、該試料からは含有元素に特有の波長を有する特性X線が発せられる。従って、こうしたX線の強度を波長毎に測定することにより試料の元素分析を行うことができる。
【0003】
特許文献1及び2には、試料の表面の分析点に励起線を照射する励起源と、該励起線が照射された試料から放出されるX線を回折する分光結晶と、該分光結晶で回折されたX線を検出する検出器とを有するX線分光分析装置が記載されている。分析点に励起線を照射すると、該分析点から様々な方向に特性X線が放出される。ある1波長の特性X線に着目すると、特性X線の放出方向に分光結晶を置いた場合、該分光結晶では、該特性X線の波長と該分光結晶への入射角がブラッグ反射の条件を満たすときにのみ該特性X線を回折し反射する。従って、該分光結晶により様々な角度で反射されるX線の強度をX線リニアセンサで測定することにより、該特性X線のピークの波長を決定することができる。X線リニアセンサにより測定される特性X線の波長は、1つだけでなく複数の場合もある。X線分光分析装置において、このように波長毎の強度を測定して特性X線を検出する方式を「波長分散型」と呼ぶ。X線分光分析装置の検出方式には波長分散型の他に、特性X線のエネルギーを直接、該エネルギーの値毎に検出する「エネルギー分散型」があるが、波長分散型の方が分解能が高く精度の高い元素分析を行うことができる。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2013-096750号公報
【特許文献2】特開2002-189004号公報
【非特許文献】
【0005】
【非特許文献1】林久史著、「実験室用・1結晶型・高分解能X線分光器によるCrとFe化合物の化学状態分析」、X線分析の進歩、日本分析化学会・X線分析研究懇談会 編、アグネ技術センター発行、2015年3月31日、第46巻、第187-201頁
【非特許文献2】I. Zaharieva 他9名著、"Towards a comprehensive X-ray approach for studying the photosynthetic manganese complex - XANES, Kα/Kβ/Kβ-satellite emission lines, RIXS, and comparative computational approaches for selected model complexes"、Journal of Physics: Conference Series、(英国)、英国物理学会発行、2009年11月5日、第190巻、論文番号012142
【非特許文献3】Kenji Sakurai, Hiromi Eba著、"Chemical characterization using relative intensity of manganese Kβ' and Kβ5 X-ray fluorescence"、Nuclear Instruments and Methods in Physics Research Section B、(オランダ)、Elsevier B.V 発行、2003年1月、第199巻、第391-395頁
【発明の概要】
【発明が解決しようとする課題】
【0006】
液体や粉末のように組成が位置に依らずほぼ均一であるとみなすことができる試料を測定する場合には、分析対象領域を試料中の特定の位置(分析点)に絞る必要はなく、広い範囲に励起線を照射してより多量の特性X線を発生させた方が分析の感度が高くなる。しかし、広い範囲に励起線を照射すると、該範囲内の異なる位置で発生した、異なる波長のX線が分光結晶で同じ方向に反射されてしまうため分光測定を行うことができない。
【0007】
本発明が解決しようとする課題は、位置に依らず均一な組成を有する液体や粉末等の試料等の組成を、従来の装置よりも高感度で測定することができるX線分光分析装置を提供することである。
【課題を解決するための手段】
【0008】
上記課題を解決するために、本件出願人は、先の出願(特願2016-237078)において、
試料表面の所定の照射領域に、特性X線を発生させるための励起線を照射する励起源と、
前記照射領域に面して設けられた分光結晶と、
前記照射領域と前記分光結晶の間に設けられた、該照射領域及び該分光結晶の所定の結晶面に平行なスリットと、
前記スリットの長手方向に垂直な方向に複数の検出素子が並ぶように設けられたX線リニアセンサと
を備えたX線分光分析装置を提案した。
【0009】
上記のX線分光分析装置(以下、「先願のX線分光分析装置」とも呼ぶ。)では、試料表面の所定の照射領域に励起線を照射すると、該照射領域内の様々な位置から様々な方向に特性X線が放出され、そのうちスリットを通過したものだけが分光結晶に到達する。該照射領域をスリットの長手方向に平行な複数の線状部分に分割して考えると、該試料における特定の1波長(特定波長)の特性X線は、ある1つの線状部分から放出されたもののみがスリットを通過し、ブラッグ反射の条件を満たす入射角で分光結晶に入射し回折されてX線リニアセンサのある1つの検出素子に入射する。同じ線状部分から該特定波長以外の波長のX線が放出され、前記スリットを通過したとしても、そのX線はブラッグ反射の条件を満たさず、X線リニアセンサのいずれの検出素子にも入射しない。他の線状部分から放出されるX線についても同様である。従って、X線リニアセンサの検出信号から特性X線のピーク波長及び強度を求めることにより、試料の元素分析が可能となる。また、線状部分からの特性X線を検出するため、分析点からの特性X線を検出する従来の装置よりも多量の特性X線が測定され、分析感度が高くなる。
【0010】
しかし、先願のX線分光分析装置では、試料表面の(仮想的に分割された)複数の線状部分のそれぞれからブラッグ反射の条件を満たす角度で分光結晶に入射するX線の波長が決まっており、これを変更することができない。ある1つの線状部分に着目すると、当該線状部分からスリットを通過して分光結晶の所定の結晶面に入射する角度が決まっており、当該角度でブラッグ反射の条件を満たす波長(特定波長)のX線しか該結晶面で回折されない。つまり、照射領域の両端部に位置する線状部分にそれぞれ対応する特定波長によって測定可能な波長範囲の上限と下限が決まっているため、その範囲外の波長の特性X線を検出することができず、1つの装置で分析可能な元素の種類が制限されてしまう。また、分光結晶が見込むX線リニアセンサの範囲は限られているため、特定の線状部分から放出される特定波長の特性X線について分光結晶の位置及び向きを設定した場合、他の線状部分から放出される他の波長の特性X線がブラッグ反射条件を満たす角度で分光結晶に入射したとしても、その回折X線をX線リニアセンサで受光し検出することができない場合がある。さらに、微量元素を測定するために検出感度を高めたり、高精度の測定を行うために波長(エネルギー)分解能を高めたりすることもできない。つまり、先願のX線分光分析装置では予め決められた条件の測定しか行うことができないという問題があった。
【0011】
本発明は、先願のX線分光分析装置における上記の点を改善することによって測定の自由度を高めることを目的としてなされたものである。
【0012】
上記の目的を達成するために成された本発明に係るX線分光分析装置の第1の態様は、
a) 試料表面の所定の照射領域に、特性X線を発生させるための励起線を照射する励起源と、
b) 前記照射領域に面して設けられた回折部材と、
c) 前記照射領域と前記回折部材の間に設けられた、該照射領域及び該回折部材の所定の面に平行なスリットを有するスリット部材と、
d) 前記スリットの長手方向に垂直な方向に複数の検出素子が配列されてなる光入射面を有するX線リニアセンサと
e) 前記長手方向に垂直な面内で前記回折部材を移動させることにより、前記試料表面と前記所定の面の成す角度、又は/及び前記試料表面と前記所定の面の間の距離を変更する第1移動機構と、
f) 前記長手方向に垂直な面内で前記X線リニアセンサを移動させることにより、前記スリットを通過して前記所定の面で回折された特性X線の経路上に該X線リニアセンサを位置させる第2移動機構と
を備えることを特徴とする。
【0013】
前記回折部材は、例えば分光結晶や人工多層膜である。また、前記所定の面とは、分光結晶の結晶面や人工多層膜の界面である。
上記態様のX線分光分析装置では、先願のX線分光分析装置と同様に、液体や粉末のように、位置によらず組成が均一であると見なすことできる試料の測定に好適に用いることができる。上記態様のX線分光分析装置では、後述するように、試料表面の同じ位置から発せられる異なる波長のX線を検出することができ、また試料表面の異なる位置から発せられる同一波長のX線を検出することもできるため、位置によって組成が異なる試料も測定することができる。
【0014】
前記第1移動機構としては、例えば前記スリットの長手方向に平行な軸を中心に回折部材を回転させる回転機構や、該長手方向に垂直な面内で前記試料表面と前記所定の面の距離を変化させる直動機構、あるいはそれらの両方を備えたものを用いることができる。また、前記第2機構についても同様に、例えば前記スリットの長手方向に平行な軸を中心にX線リニアセンサを回転させる回転機構や、該長手方向に垂直な面内で前記所定の面と前記入射面の距離を変更する直動機構、あるいはそれら両方を備えたものを用いることができる。
【0015】
上記第1の態様のX線分光分析装置は、試料表面の所定の照射領域で発生しスリットを通過した特性X線が入射する回折部材を移動させる第1移動機構と、該回折部材の所定の面(分光結晶の結晶面等)で回折された特性X線を検出するX線リニアセンサを移動させる第2移動機構を備えている。
このX線分光分析装置において、例えば、第1移動機構により、試料表面に対して回折部材の所定の面が成す角度を変化させるとブラッグ反射の条件を満たす波長が変化する。従って、X線の測定波長範囲を適宜に変更して目的の元素から発せられる特性X線を測定することができる。
また、回折部材とX線リニアセンサの相対的な位置関係を固定したまま、第1移動機構により試料表面から回折部材の所定の面までの距離を変化させ、前記照射領域から放出された特性X線がX線リニアセンサに入射する光路長を変更すると、X線リニアセンサの入射面を構成する複数の検出素子にそれぞれ入射するX線の波長幅が変化する。これにより、測定の波長(エネルギー)分解能を変更することができる。
さらに、第2機構により回折部材の所定の面からX線リニアセンサの光入射面までの距離を変化させることによっても測定の波長(エネルギー)分解能を変更することができる。
このように、本発明の第1の態様に係るX線分光分析装置を用いることにより、従来に比べて測定の自由度を高めることができる。
【0016】
また、上記の目的を達成するために成された本発明に係るX線分光分析装置の第2の態様は、
a) 試料表面の所定の照射領域に、特性X線を発生させるための励起線を照射する励起源と、
b) 前記照射領域に面して設けられた回折部材と、
c) 前記照射領域と前記回折部材の間に設けられ、該照射領域及び該回折部材の所定の面に平行なスリットを有し、該スリットの開口幅を変更可能な可変スリット部材と
d) 前記スリットを通過し前記所定の面で回折される特性X線の経路上に配置された、前記スリットの長手方向に垂直な方向に複数の検出素子が配列されてなる光入射面を有するX線リニアセンサと
を備えることを特徴とする。
【0017】
上記第2の態様のX線分光分析装置では、試料表面の照射領域と回折部材の間に設けられた可変スリット部材のスリットの開口幅を変更することにより、該照射領域で発生した特性X線のうち、回折格子で回折されX線リニアセンサに入射する特性X線の光量を変化させることができる。即ち、スリットの開口幅を狭めることにより波長(エネルギー)分解能を高め、スリットの開口幅を広げることにより測定感度を高めることができる。従って、本発明の第2の態様に係るX線分光分析装置を用いることによっても、従来に比べて測定の自由度を高めることができる。なお、前記可変スリット部材としては、例えば、一辺が対向するように配置された2枚の矩形のスリット板を移動させることによりスリットの開口幅を変更するものや、開口幅が異なる複数のスリット板を切り換え可能に構成したものを用いることができる。
【発明の効果】
【0018】
本発明の第1の態様あるいは第2の態様に係るX線分光分析装置を用いることにより、位置に依らず均一な組成を有する液体や粉末等の試料等の組成を、従来の装置よりも高感度で測定することができる。また、先願のX線分光分析装置よりも測定の自由度を高めることができる。
【図面の簡単な説明】
【0019】
図1】先願のX線分光分析装置の概略構成図。
図2】先願のX線分光分析装置において、励起光の照射領域から放出される特性X線がX線リニアセンサで検出されるまでの経路を示す斜視図。
図3】本発明に係るX線分光分析装置の一実施例(実施例1)の概略構成図。
図4】本発明に係るX線分光分析装置の一実施例(実施例2)における測定光学系の配置を説明する図。
図5】実施例2のX線分光分析装置における分光結晶の中心位置とX線リニアセンサの中心位置を説明するグラフ。
図6】本発明に係るX線分光分析装置の一実施例(実施例3)において用いられるスリット部材の一構成例。
図7】本発明に係るX線分光分析装置の一実施例(実施例3)において用いられるスリット部材の別の構成例。
図8】実施例3のX線分光分析装置を用いて、スリットの開口幅を変化させて特性X線を測定した結果。
図9】変形例のX線分光分析装置の概略構成図。
【発明を実施するための形態】
【0020】
本発明に係るX線分光分析装置の実施例を説明する前に、先願のX線分光分析装置の概略構成を説明する。
【0021】
先願のX線分光分析装置110は、図1に示すように、試料Sを保持する試料ホルダ111と、励起源112と、スリット部材113と、分光結晶114と、X線リニアセンサ115を有する。試料Sは固体、液体、気体のいずれであってもよく、試料ホルダ111にはそれら試料の状態に対応したものを用いる。
【0022】
励起源112は、励起光(励起線)であるX線を試料Sに照射するX線源である。X線源の代わりに電子線源を用いてもよい。この励起源112により、励起光は、試料S上の面状の照射領域Aに照射される。ここでは照射領域Aに垂直に励起光を照射するが、照射領域Aに対して傾斜した角度で励起光を照射してもよい。
【0023】
スリット部材113は、照射領域Aと分光結晶114の間に配置される。分光結晶114には、ブラッグ反射を生じる結晶面の間隔が最小、すなわち回折角が最も小さい結晶面が、結晶の表面に平行になっているものを用いる。回折角が小さい範囲内でこの分光結晶114を使用することにより、結晶面間隔が最小の結晶面のみを特性X線の検出に用い、他の結晶面でブラッグ反射した特性X線が誤って検出されることを防止する。スリット部材113は、その開口の長手方向が、照射領域A及び特性X線の検出に用いる分光結晶114の結晶面(すなわち分光結晶114の表面)に対して平行に(図1では紙面に垂直に)配置される。以下の説明では、この結晶面を「所定の結晶面」と呼ぶ。
【0024】
X線リニアセンサ115は、スリットの長手方向に平行(図1の紙面に垂直)な方向の長さを有する線状の検出素子1151が複数、該スリットの長手方向に垂直な方向に並ぶように設けられたものである。個々の検出素子1151は、それに入射するX線の強度のみを検出すればよく、入射したX線の波長やエネルギーを検出する機能は不要である。
【0025】
図1及び図2を参照しつつ、先願のX線分光分析装置110の動作を説明する。
試料ホルダ111に試料Sを保持させたうえで、励起源112から試料Sの照射領域Aに励起光であるX線を照射する。これにより、照射領域Aの全体から、試料Sを構成する元素によって異なる波長を有する特性X線が放出される。
【0026】
照射領域Aから放出される特性X線は、該照射領域A中のスリットの長手方向に平行な線状部分内では、分光結晶114の表面及び該表面に平行な所定の結晶面に特定の1つの入射角(90-θ)°(θは特性X線が分光結晶114でブラッグ反射される場合の回折角)で入射する方向に放出された特性X線のみがスリットを通過する。位置が異なる線状部分同士では、スリットを通過して分光結晶114に入射する特性X線の入射角が異なる。例えば、図1及び図2に示した線状部分A1から放出される特性X線は1つの入射角(90-θ1)°で分光結晶114に入射し、別の線状部分A2から放出される特性X線は別の1つの入射角(90-θ2)°で分光結晶114に入射する。
【0027】
照射領域Aの各線状部分から分光結晶114に入射した特性X線は、ブラッグ反射の条件であるλ=(2d/n)sinθ(λは特性X線の波長、dは分光結晶114の結晶面間隔、nは次数)を満たす波長を有するときにのみ、回折角θで回折(反射)される。分光結晶114で回折(反射)された特性X線は、X線リニアセンサ115の検出素子1151の1つで検出される。前述のように分光結晶114には照射領域A内の線状部分によって異なる特定の1つの入射角(90-θ)°で分光結晶114に入射することから、線状部分毎に、異なる特定の1つの波長の特性X線のみがX線リニアセンサ115に入射し、且つ、異なる検出素子1151で検出される。例えば、図1及び図2に示した線状部分A1から放出される特性X線は、波長λ1=(2d/n)sinθ1を有するもののみがX線リニアセンサ115に入射して1つの検出素子1151aで検出され、線状部分A2から放出される特性X線は、λ1とは異なる波長λ2=(2d/n)sinθ2を有するもののみがX線リニアセンサ115に入射して検出素子1151aとは異なる検出素子1151bで検出される。従って、X線リニアセンサ115の検出素子1151毎に、入射するX線の強度を検出することにより、照射領域Aから放出される特性X線の波長スペクトルが得られる。この波長スペクトルに基づいて、試料Sの組成を分析することができる。
【0028】
しかし、先願のX線分光分析装置110では、照射領域の両端部に位置する線状部分Aから放出され分光結晶114の所定の結晶面で回折される波長(特定波長)によって測定可能な波長範囲の上限と下限が決まるため、その範囲外の波長の特性X線を検出することができない。そのため、1つの装置で分析可能な元素の種類が制限されてしまう。また、分光結晶114が見込むX線リニアセンサ115の範囲は限られているため、特定の線状部分A1から放出される特定波長の特性X線について分光結晶114の位置及び向きを設定した場合、他の線状部分A2から放出される他の波長の特性X線がブラッグ反射条件を満たす角度で分光結晶114に入射したとしても、その回折X線をX線リニアセンサ115で検出することができない場合がある。さらに、微量元素を測定するために検出感度を高めたり、高精度の測定を行うために波長(エネルギー)分解能を高めたりすることもできない。本発明者は、先願のX線分光分析装置110では予め決められた条件の測定しか行うことができないという課題を解決すべく、本発明に係るX線分光分析装置を構成した。以下、その実施例を説明する。なお、各実施例において、先願のX線分光分析装置110と共通の構成要素には類似の符号を付して適宜、説明を省略する。
【実施例1】
【0029】
実施例1のX線分光分析装置10は、図3に示すように、分光結晶14を回転させる第1回転機構212と、X線リニアセンサ15を回転させる第2回転機構312を備えている。第1回転機構212は、分光結晶14の所定の結晶面のなす角度を変更するものである。第2回転機構312は、第1回転機構212と共通の回転中心を持ち、X線リニアセンサ15を回転させるものであり、第1回転機構212による分光結晶14(の所定の結晶面)の角度θの回転に応じてX線リニアセンサ15を2θ回転させるものである。即ち、第1回転機構212と第2回転機構312は、いわゆるゴニオメータである。この実施例では、本発明に係る第1移動機構が第1回転機構212により構成され、第2移動機構が第2回転機構312により構成される。
【0030】
実施例1のX線分光分析装置10では、第1回転機構212により、試料ホルダ11上に載置された試料Sの表面に対して分光結晶14の所定の結晶面がなす角度を変更することができる。これにより、試料Sの照射領域内の各線状部分から放出されるX線のうち、該所定の結晶面でブラッグ反射の条件を満たすX線の波長を変更することができる。実施例1のX線分光分析装置10では、試料Sの照射領域内の同じ位置から発せられる異なる波長のX線を検出することができ、また試料表面の異なる位置から発せられる同一波長のX線を検出することもできる。従って、測定可能なX線の波長範囲を適宜に変更して測定可能な元素の種類を変更したり、試料Sの照射領域内の異なる位置から放出される、同一元素の特性X線の強度を測定したりすることができる。
【実施例2】
【0031】
実施例2のX線分光分析装置10Aも、実施例1と同様に試料Sの表面に対する分光結晶14の所定の結晶面のなす角度を変更することにより、測定可能な元素の種類を適宜に変更すること等が可能な構成であるが、第1移動機構21A及び第2移動機構31Aの構成が実施例1と異なる。実施例2のX線分光分析装置10Aでは、第1移動機構21Aは第1直動機構211Aと第1回転機構212Aにより、第2移動機構31Aは第2直動機構311Aと第2回転機構312Aにより、それぞれ構成される。
【0032】
実施例2のX線分光分析装置10Aは、以下のような考え方に基づき設計されたものである。ここではX線リニアセンサ15の仕様(1280ch、検出素子間の間隔0.05mm)が予め決まっているものとする。図4は、実施例2のX線分光分析装置10Aにおいて試料Sの照射領域Aから放出されたX線の光路を形成する各構成要素の配置を示したものである。図4では試料ホルダ11や照射部12の記載を省略している。
【0033】
まず、測定範囲の中心波長λMを決定する。この中心波長λMと所定の結晶面の面間隔dから、ブラッグ反射の条件に基づき、試料Sからスリットを通過して分光結晶14の中央部に入射するX線の入射角θMが確定する。そして、これにより分光結晶14の所定の結晶面の向き(試料Sの表面に対してなす角度)が決まる。
【0034】
次に、測定範囲の最小エネルギーEL(最長波長λL)を決め、この最長波長λLの光がX線リニアセンサ15の一方の端部DLに入射するように、スリットからX線リニアセンサ15までの光路長を決定する。この段階では、試料Sの表面に対して所定の結晶面がなす角度と、スリットからX線リニアセンサ15までの光路長のみが決まっている。つまり、この段階では、分光結晶14を図4における符号14aの位置に配置することもできる。分光結晶14からX線リニアセンサ15までの距離は、該分光結晶14の位置に応じて適宜に変更し、前記光路長が変化しないようにする。
【0035】
続いて、使用する分光結晶14の大きさを決める。これにより、分光結晶14の位置が決まる。そして、該分光結晶14の一方の端部(最長波長λLが入射する側と反対側の端部)においてブラッグ反射の条件を満たす波長λがこの配置における最短波長λH(最大エネルギーEH)となる。この時点で、スリット部材13、分光結晶14、及びX線リニアセンサ15(これらをまとめて「測定光学系」と呼ぶ。)の相対的な位置関係が確定する。
【0036】
最後に、試料S(試料ホルダ11)と、測定光学系の相対的な位置関係を決める。これにより、試料Sの表面における照射領域Aの位置及び大きさが確定する(図4における符号Sと符号S’を参照)。
【0037】
分光結晶14の所定の結晶面をLiF結晶の(200)面とし、それぞれ異なる対象元素を測定することを想定して設定した複数のエネルギー範囲(波長範囲)のそれぞれについて、上記の考え方に基づき測定光学系の位置を求めた結果を以下の表に示す。
【表1】
【0038】
ここでは、測定エネルギー範囲を6つに分類した。低エネルギー第1分類(低1)は、V, Cr, Mn, Nd〜Eu, Gdから放出される特性X線を測定することを想定した分類であり、測定範囲の最小エネルギーELは4.9keV、中心エネルギーEM(上記の中心波長λMのX線のエネルギー)は5.5keV、最大エネルギーEHは6.132keV、エネルギー分解能は0.937eVである。また、図3に示す座標系において試料Sの照射領域Aの中央を原点とする分光結晶14のX線入射面の中心の座標位置(以下では「分光結晶14の座標位置」と記載する。)はX=219mm, Y=139mm、X線リニアセンサ15のX線入射面の中心の座標位置(以下では「X線リニアセンサ15の座標位置」と記載する。)はX=184mm, Y=326mmである。
【0039】
低エネルギー第2分類(低2)は、Mn, Fe, Co, Ni, Cu, Gd, Td, Dy〜Hfから放出される特性X線を測定することを想定した分類であり、測定範囲の最小エネルギーELは5.98keV、中心エネルギーEMは7.0keV、最大エネルギーEHは8.058keV、エネルギー分解能は1.594eVである。また、図3に示す座標系において試料Sの照射領域Aの中央を原点とする分光結晶14の座標位置はX=187mm, Y=119mm、X線リニアセンサ15の座標位置はX=216mm, Y=347mmである。
【0040】
中エネルギー第1分類(中1)は、Ni〜As, Se, Ta, W〜Pt, Au, Hg〜Pb〜Atから放出される特性X線を測定することを想定した分類であり、測定範囲の最小エネルギーELは7.96keV、中心エネルギーEMは9.75keV、最大エネルギーEHは11.58keV、エネルギー分解能は2.797eVである。また、図3に示す座標系において試料Sの照射領域Aの中央を原点とする分光結晶14の座標位置はX=173mm, Y=110mm、X線リニアセンサ15の座標位置はX=262mm, Y=376mmである。
【0041】
中エネルギー第2分類(中2)は、As〜Zr, Pb〜U〜Pu, Am〜Esから放出される特性X線を測定することを想定した分類であり、測定範囲の最小エネルギーELは10.48keV、中心エネルギーEMは13.25keV、最大エネルギーEHは16.06keV、エネルギー分解能は4.328eVである。また、図3に示す座標系において試料Sの照射領域Aの中央を原点とする分光結晶14の座標位置はX=164mm, Y=104mm、X線リニアセンサ15の座標位置はX=322mm, Y=413mmである。
【0042】
高エネルギー第1分類(高1)は、Nd〜Cd, In, Sn, U〜Pu, Am〜Lrから放出される特性X線を測定することを想定した分類であり、測定範囲の最小エネルギーELは15.88keV、中心エネルギーEMは20.75keV、最大エネルギーEHは25.65keV、エネルギー分解能は7.609eVである。また、図3に示す座標系において試料Sの照射領域Aの中央を原点とする分光結晶14の座標位置はX=153mm, Y=98mm、X線リニアセンサ15の座標位置はX=486mm, Y=515mmである。
【0043】
高エネルギー第2分類(高2)は、Sb〜Nd〜Euから放出される特性X線を測定することを想定した分類であり、測定範囲の最小エネルギーELは25.42keV、中心エネルギーEMは34keV、最大エネルギーEHは42.60keV、エネルギー分解能は13.406eVである。また、図3に示す座標系において試料Sの照射領域Aの中央を原点とする分光結晶14の座標位置はX=150mm, Y=96mm、X線リニアセンサ15の座標位置はX=579mm, Y=572mmである。
【0044】
なお、上記の考え方により各部材を配置した場合、X線リニアセンサ15が有する1280個の検出素子の高エネルギー側の一部にはX線が入射しないため、測定エネルギー範囲を分解能で除した値はX線リニアセンサ15のチャンネル数(1280)と異なる。ここでは、最小エネルギーELから中心エネルギーEMまでの範囲をチャンネル数の半分の640で除した値を分解能ΔEとした。
【0045】
図5は、この結果を元に、分光結晶14の中心とX線リニアセンサ15の中心位置をプロットしたものであり、横軸は図4におけるX方向、縦軸は図4におけるY方向の座標である。このグラフを見ると、分光結晶14の中心位置の座標が直線上に位置していることが分かる。従って、第1直動機構211Aにより分光結晶14を上記座標位置に移動させ、第1回転機構212Aにより所定の(上記設計で求められた)角度に傾ければ良いことがわかる。また、X線リニアセンサ15の中心位置の座標も直線上に位置していることから、第2直動機構311Aにより分光結晶14を上記座標位置に移動させ、第2回転機構312Aにより所定の(上記設計で求められた)角度に傾ければ良いことがわかる。なお、図5のグラフから分かるように分光結晶14の中心位置は、エネルギー範囲が異なっていてもそれほど大きく移動させる必要がない。従って、コストを抑えるという観点で、第1移動機構21Aを第1回転機構212Aのみで構成しても良い。
【0046】
ブラッグ反射の条件式に基づき異なる波長範囲における回折角度を求めると、試料Sの照射領域からX線リニアセンサ15に至る光路長が一定である場合、測定するX線が短波長(高エネルギー)になるほど分解能が低下する。つまり、実施例1のように第1移動機構を第1回転機構212のみで、第2移動機構を第2回転機構312のみで構成した場合、上記光路長が変化しないため、測定する特性X線が高エネルギーになるほど波長(エネルギー)分解能が低下する。一方、実施例2では、図5に示すように、高エネルギー(短波長)になるほど原点から遠い位置にX線リニアセンサ15を移動させ、上記光路長を長くしているため、短波長(高エネルギー)領域において実施例1よりも高い分解能で測定を行うことができる。
【0047】
上記の実施例2では、5keV以上のエネルギーの特性X線を測定することを想定した例を説明したが、同様の考え方は5keV未満のエネルギーの特性X線を測定する際にも用いることができる。しかし、5keV以上のエネルギー領域と、5keV未満のエネルギー領域では、使用可能なX線リニアセンサ15の種類が異なる。5keV以上のエネルギー領域では、例えばX線リニアセンサ15としてシリコンストリップ検出器(SSD)が用いられるが、これをそのまま5keV未満のエネルギー領域で用いることはできない。5keV未満のエネルギー領域では、例えばX線リニアセンサ15としてCCD検出器等を用いる必要がある。また、このような低エネルギー領域において、例えばBのKα線(6775nm, 0.183keV)からTiのKβ線(251nm, 4.932keV)までを測定する場合、その波長範囲が広すぎて(最長波長と最短波長の比が約27倍)、単一の分光結晶のみでブラッグ反射の条件を満たすX線を全て検出しようとすると、CCD検出器を多数配列しなければならず、装置が高価になってしまう。従って、こうした場合には、分光結晶14には格子定数が異なる複数の分光結晶や人工多層膜を切り換えて用いることが好ましい。格子定数が異なる2種類の分光結晶を併用してBのKα線(6775nm, 0.183keV)からTiのKβ線(251nm, 4.932keV)までを測定する場合の測定光学系の配置例を下表に示す。
【表2】
【0048】
軽元素測定用の超低エネルギー第1分類(軽1)は、B〜Fから放出される特性X線を測定することを想定したエネルギー分類であり、測定範囲の最小エネルギーELは0.17keV、中心エネルギーEMは0.45keV、最大エネルギーEHは0.73keVである。また、図4に示す座標系において試料Sの照射領域Aの中央を原点とする分光結晶14の座標位置はX=76.4mm, Y=48.7mm、X線リニアセンサ15の座標位置はX=168.6mm, Y=122.9mmである。
【0049】
軽元素測定用の超低エネルギー第2分類(軽2)は、Na〜Vから放出される特性X線を測定することを想定したエネルギー分類であり、測定範囲の最小エネルギーELは1.0keV、中心エネルギーEMは3.0keV、最大エネルギーEHは5.0keVである。また、図4に示す座標系において試料Sの照射領域Aの中央を原点とする分光結晶14の座標位置はX=75.6mm, Y=48.2mm、X線リニアセンサ15の座標位置はX=181.3mm, Y=128.5mmである。
【0050】
図5を参照して説明した、5keV以上のエネルギー領域の測定時と同様に、測定するX線のエネルギー範囲が変化しても分光結晶14の位置は殆ど変わらない。従って、上記同様に、第1移動機構21Aを第1回転機構212Aのみで構成することができる。もちろん、第1移動機構21Aを第1直動機構211A及び第1回転機構212Aにより構成することもできる。
【実施例3】
【0051】
次に、実施例3のX線分光分析装置について説明する。実施例3はスリット部材13の構成に特徴を有している。具体的には、スリット部材13の開口幅が可変であるという点に特徴を有する。
【0052】
スリット部材13の開口幅を変化させると、波長(エネルギー)分解能は低下するものの、スリットを通って分光結晶14で回折されX線リニアセンサ15に入射するX線の光量が増加する。従って、例えば、微量元素を測定する場合にはスリット部材13の開口幅を広げた高感度測定を行い、精密分析を行う場合には、スリット部材13の開口幅を狭めて高分解能測定を行うことができる。これは、例えば、図6に示すように、1組のスリット板131、132の側辺をスリット部材13の本体のリニアガイド部133a、133bに収容し、該リニアガイド部133a、133bの延設方向に沿ってスリット板131、132を移動可能に構成したり、図7に示すように、開口幅が異なるスリットが形成された複数のスリット部材134a〜134dを回転軸Rを中心に配置し、これを回転軸Rを中心に回転させてスリット部材134a〜134dを切り換え可能に構成したりすることにより実施することができる。なお、前者の場合、いずれか一方のスリット板のみを他方に対して移動可能としても良いが、その場合スリットの中央の位置が変化するため、これが変化しないよう、1組のスリット板131、132を等分に移動してスリット部材13の開口幅を変更することが好ましい。
【0053】
図8に、実施例3のX線分光分析装置を用いた測定例として、スリット幅が異なる4種類の条件(0.1mm, 0.3mm, 0.8mm, 1.6mm)でMnのKα1線を測定した結果を示す。また、各条件で得られた測定結果を用いて、次式により検出下限値(LLD)を求めた。
【数1】

上式は標準試料1個から検出下限値を求める数式であり、Dは標準試料の濃度(%)、Ibはバックグラウンド強度(cps)、Ipは信号のネット強度(cps)、tは積算時間(s)である。
【0054】
図8(a)はスリット幅0.1mmでの測定結果であり、半値全幅(FWHM)は4.5eV、検出下限値(LLD: Lower Limit of Detection)は0.13%であった。図8(b)はスリット幅0.3mmでの測定結果であり、半値全幅(FWHM)は7.1eV、検出下限値は0.079%であった。図8(c)はスリット幅0.8mmでの測定結果であり、半値全幅(FWHM)は20eV、検出下限値は0.049%であった。図8(d)はスリット幅1.6mmでの測定結果であり、半値全幅(FWHM)は32eV、検出下限値は0.036%であった。これらの結果から分かるように、スリット部材13の開口幅を適宜に変更することにより測定の目的(高感度分析、高分解能分析)に応じた測定を行うことができる。なお、上記の測定はいずれも大気雰囲気で行った。真空雰囲気で同様の測定を行えば、検出下限値はより低くなる(即ち感度が向上する)と考えられる。
【変形例】
【0055】
変形例のX線分光分析装置10Cは、上記実施例1〜3に、特定の元素から放出される特性X線を測定する特定波長測定光学系40を追加したものである。変形例のX線分光分析装置10Cが有する特定波長測定光学系では、図9に示すように、試料Sの照射領域から様々な方向に放出されたX線をソーラースリット41に導入する。ソーラースリット41は、平板状の隔壁板を複数、平行に配列したものであり、該隔壁板の表面に平行な方向に進む光のみがソーラースリット41を通過するため、該平行な方向に進行する平行光が取り出される。そして、様々な波長のX線が混在した平行光を凹面回折格子42に入射させ、ブラッグ反射の条件を満たす波長のX線のみを回折するとともに、回折光を検出器43の受光面上の1点に集光する。
【0056】
変形例のX線分光分析装置10Cでは、実施例1〜3で説明した測定光学系のいずれかにより複数の目的元素から放出される特性X線を測定し、さらに、特定の1元素について、試料Sの照射領域全体から放出される特性X線の強度を測定して高精度の定量測定等を行うことができる。
【0057】
上記実施例は一例であって、本発明の主旨に沿って適宜に変更することができる。
例えば実施例2で説明した設計思想は一例であって、別の手順で各構成要素の配置を決定していくこともできる。例えば、実施例2では必ずしもX線リニアセンサ15の全検出素子を使用しない構成としたが、必ず全ての検出素子を使用するように測定光学系を設計することもできる。
また、実施例1〜3の構成を兼ね備えたX線分光分析装置を構成してもよい。
さらに、変形例で説明した特定波長測定光学系を複数備え、それぞれにより特定の元素から放出される特性X線を測定するようにしても良い。
その他、分光結晶とX線リニアセンサの相対的な位置関係を固定したまま、第1移動機構により試料表面から分光結晶の所定の結晶面までの距離を変化させ、試料の照射領域から放出された特性X線がX線リニアセンサに入射する光路長を変更して、X線リニアセンサの入射面を構成する複数の検出素子にそれぞれ入射するX線の波長幅が変化させることによって、測定の波長(エネルギー)分解能を変更する等、第1移動機構及び第2移動機構を適宜に用いて様々な測定のパラメータを変更し、測定の自由度を高めるでことができる。
【符号の説明】
【0058】
10、10A、10C…X線分光分析装置
11…試料ホルダ
12…照射部
13…スリット部材
131…スリット板
133a、133b…リニアガイド部
134a〜134d…スリット部材
14…分光結晶
15…X線リニアセンサ
21、21A…第1移動機構
211A…第1直動機構
212、212A…第1回転機構
31、31A…第2移動機構
311A…第2直動機構
312、312A…第2回転機構
40…特定波長測定光学系
41…ソーラースリット
42…凹面回折格子
43…X線検出器
図1
図2
図3
図4
図5
図6
図7
図8
図9