特許第6874987号(P6874987)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ NECソリューションイノベータ株式会社の特許一覧

特許6874987地物形状抽出装置、地物形状抽出方法、及びプログラム
<>
  • 特許6874987-地物形状抽出装置、地物形状抽出方法、及びプログラム 図000002
  • 特許6874987-地物形状抽出装置、地物形状抽出方法、及びプログラム 図000003
  • 特許6874987-地物形状抽出装置、地物形状抽出方法、及びプログラム 図000004
  • 特許6874987-地物形状抽出装置、地物形状抽出方法、及びプログラム 図000005
  • 特許6874987-地物形状抽出装置、地物形状抽出方法、及びプログラム 図000006
  • 特許6874987-地物形状抽出装置、地物形状抽出方法、及びプログラム 図000007
  • 特許6874987-地物形状抽出装置、地物形状抽出方法、及びプログラム 図000008
  • 特許6874987-地物形状抽出装置、地物形状抽出方法、及びプログラム 図000009
  • 特許6874987-地物形状抽出装置、地物形状抽出方法、及びプログラム 図000010
  • 特許6874987-地物形状抽出装置、地物形状抽出方法、及びプログラム 図000011
  • 特許6874987-地物形状抽出装置、地物形状抽出方法、及びプログラム 図000012
  • 特許6874987-地物形状抽出装置、地物形状抽出方法、及びプログラム 図000013
  • 特許6874987-地物形状抽出装置、地物形状抽出方法、及びプログラム 図000014
  • 特許6874987-地物形状抽出装置、地物形状抽出方法、及びプログラム 図000015
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6874987
(24)【登録日】2021年4月26日
(45)【発行日】2021年5月19日
(54)【発明の名称】地物形状抽出装置、地物形状抽出方法、及びプログラム
(51)【国際特許分類】
   G06T 17/05 20110101AFI20210510BHJP
   G01C 3/06 20060101ALI20210510BHJP
【FI】
   G06T17/05
   G01C3/06 140
【請求項の数】15
【全頁数】16
(21)【出願番号】特願2017-131517(P2017-131517)
(22)【出願日】2017年7月4日
(65)【公開番号】特開2019-16066(P2019-16066A)
(43)【公開日】2019年1月31日
【審査請求日】2020年6月8日
(73)【特許権者】
【識別番号】000232092
【氏名又は名称】NECソリューションイノベータ株式会社
(74)【代理人】
【識別番号】110002044
【氏名又は名称】特許業務法人ブライタス
(72)【発明者】
【氏名】山下 喜宏
(72)【発明者】
【氏名】桑野 和子
(72)【発明者】
【氏名】岡 史晃
【審査官】 板垣 有紀
(56)【参考文献】
【文献】 特開2003−296706(JP,A)
【文献】 特開2011−170599(JP,A)
【文献】 特開2014−186567(JP,A)
【文献】 特開2004−094427(JP,A)
【文献】 特開2008−060967(JP,A)
【文献】 特開2015−049776(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G06T 17/05
G01C 3/06
(57)【特許請求の範囲】
【請求項1】
対象領域における地物の位置座標及び高さを含む三次元点群データを取得する、データ取得部と、
前記三次元点群データから、高さの値が閾値未満のデータを除去して、フィルタリングを行なう、フィルタリング部と、
フィルタリング後の前記三次元点群データから、前記対象領域上の高さの値が閾値以上となる部分を検出し、検出した部分毎に、当該部分を囲む境界を設定する、境界設定部と、
設定された前記境界毎に、当該境界内の領域における高さの値に基づいてクラスタリングを行なって、複数のクラスタを生成し、生成した前記複数のクラスタのうち設定条件を満たすクラスタが地面を示していると判定する、クラスタリング部と、
設定された前記境界毎に、地面を示していると判定されたクラスタの平均高さに基づいて、基準高さを設定し、そして、設定した前記基準高さよりも平均高さが高いクラスタを特定し、特定したクラスタに基づいて、地物の外形を示す領域を抽出する、外形領域抽出部と、
を備えている、ことを特徴とする地物形状抽出装置。
【請求項2】
前記外形領域抽出部が、
ハフ変換処理によって、抽出した前記領域に対して、その外縁の2箇所と接するように、直交する2直線を設定し、
設定した前記2直線それぞれ毎に、当該直線に垂直に交わる直線を想定し、抽出した前記領域の外縁と想定した直線との重なり度合が高い程値が高くなるヒストグラムを作成し、生成した2つの前記ヒストグラムそれぞれの頂点の位置に基づいて、抽出した前記領域を分割し、分割結果に基づいて、前記地物の外形を確定する、
請求項1に記載の地物形状抽出装置。
【請求項3】
前記外形領域抽出部が、抽出した前記領域から、更に、前記領域内で仮想の円を転がすことによって得られる円転領域を抽出し、抽出した前記円転領域に対して、前記2直線を設定する、
請求項2に記載の地物形状抽出装置。
【請求項4】
前記外形領域抽出部が、設定された前記領域毎に、地面を示していると判定されたクラスタの平均高さと、平均高さが最も高いクラスタの平均高さとの平均値を求め、求めた平均値に基づいて、前記基準高さを設定する、
請求項1〜3のいずれかに記載の地物形状抽出装置。
【請求項5】
前記境界設定部が、検出した部分毎に、当該部分を囲むことが可能な最小の矩形の境界を設定する、
請求項1〜4のいずれかに記載の地物形状抽出装置。
【請求項6】
(a)対象領域における地物の位置座標及び高さを含む三次元点群データを取得する、ステップと、
(b)前記三次元点群データから、高さの値が閾値未満のデータを除去して、フィルタリングを行なう、ステップと、
(c)フィルタリング後の前記三次元点群データから、前記対象領域上の高さの値が閾値以上となる部分を検出し、検出した部分毎に、当該部分を囲む境界を設定する、ステップと、
(d)設定された前記境界毎に、当該境界内の領域における高さの値に基づいてクラスタリングを行なって、複数のクラスタを生成し、生成した前記複数のクラスタのうち設定条
件を満たすクラスタが地面を示していると判定する、ステップと、
(e)設定された前記境界毎に、地面を示していると判定されたクラスタの平均高さに基づいて、基準高さを設定し、そして、設定した前記基準高さよりも平均高さが高いクラスタを特定し、特定したクラスタに基づいて、地物の外形を示す領域を抽出する、ステップと、
を有する、ことを特徴とする地物形状抽出方法。
【請求項7】
前記(e)のステップにおいて、
ハフ変換処理によって、抽出した前記領域に対して、その外縁の2箇所と接するように、直交する2直線を設定し、
設定した前記2直線それぞれ毎に、当該直線に垂直に交わる直線を想定し、抽出した前記領域の外縁と想定した直線との重なり度合が高い程値が高くなるヒストグラムを作成し、生成した2つの前記ヒストグラムそれぞれの頂点の位置に基づいて、抽出した前記領域を分割し、分割結果に基づいて、前記地物の外形を確定する、
請求項6に記載の地物形状抽出方法。
【請求項8】
前記(e)のステップにおいて、抽出した前記領域から、更に、前記領域内で仮想の円を転がすことによって得られる円転領域を抽出し、抽出した前記円転領域に対して、前記2直線を設定する、
請求項7に記載の地物形状抽出方法。
【請求項9】
前記(e)のステップにおいて、設定された前記領域毎に、地面を示していると判定されたクラスタの平均高さと、平均高さが最も高いクラスタの平均高さとの平均値を求め、求めた平均値に基づいて、前記基準高さを設定する、
請求項6〜8のいずれかに記載の地物形状抽出方法。
【請求項10】
前記(c)のステップにおいて、検出した部分毎に、当該部分を囲むことが可能な最小の矩形の境界を設定する、
請求項6〜9のいずれかに記載の地物形状抽出方法。
【請求項11】
コンピュータに、
(a)対象領域における地物の位置座標及び高さを含む三次元点群データを取得する、ステップと、
(b)前記三次元点群データから、高さの値が閾値未満のデータを除去して、フィルタリングを行なう、ステップと、
(c)フィルタリング後の前記三次元点群データから、前記対象領域上の高さの値が閾値以上となる部分を検出し、検出した部分毎に、当該部分を囲む境界を設定する、ステップと、
(d)設定された前記境界毎に、当該境界内の領域における高さの値に基づいてクラスタリングを行なって、複数のクラスタを生成し、生成した前記複数のクラスタのうち設定条件を満たすクラスタが地面を示していると判定する、ステップと、
(e)設定された前記境界毎に、地面を示していると判定されたクラスタの平均高さに基づいて、基準高さを設定し、そして、設定した前記基準高さよりも平均高さが高いクラスタを特定し、特定したクラスタに基づいて、地物の外形を示す領域を抽出する、ステップと、
を実行させる、プログラム。
【請求項12】
前記(e)のステップにおいて、
ハフ変換処理によって、抽出した前記領域に対して、その外縁の2箇所と接するように、直交する2直線を設定し、
設定した前記2直線それぞれ毎に、当該直線に垂直に交わる直線を想定し、抽出した前記領域の外縁と想定した直線との重なり度合が高い程値が高くなるヒストグラムを作成し、生成した2つの前記ヒストグラムそれぞれの頂点の位置に基づいて、抽出した前記領域を分割し、分割結果に基づいて、前記地物の外形を確定する、
請求項11に記載のプログラム。
【請求項13】
前記(e)のステップにおいて、抽出した前記領域から、更に、前記領域内で仮想の円を転がすことによって得られる円転領域を抽出し、抽出した前記円転領域に対して、前記2直線を設定する、
請求項12に記載のプログラム。
【請求項14】
前記(e)のステップにおいて、設定された前記領域毎に、地面を示していると判定されたクラスタの平均高さと、平均高さが最も高いクラスタの平均高さとの平均値を求め、求めた平均値に基づいて、前記基準高さを設定する、
請求項11〜13のいずれかに記載のプログラム。
【請求項15】
前記(c)のステップにおいて、検出した部分毎に、当該部分を囲むことが可能な最小の矩形の境界を設定する、
請求項11〜14のいずれかに記載のプログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、三次元点群データから建物等の地物の形状を抽出するための、地物形状抽出装置、及び地物形状抽出方法に関し、更には、これらを実現するためのプログラムに関する。
【背景技術】
【0002】
近年、コンピュータ上で立体地図を作成する際の基礎データとして、地表面の地形、植生及び建築物を数値データで表現した数値表層モデル(DSM:Digital Surface Model)が利用されている(例えば、非特許文献1参照)。また、数値標高モデルから植生及び建築物を除いた地形だけのモデルは、特に、数値地形モデル(DTM:Digital Terrain Model)と呼ばれている。
【0003】
一般に、数値表層モデルは、航空写真の解析によって作成される。具体的には、写真測量と同様の原理により、連続して航空機から撮影された航空写真をステレオマッチング処理することにより、自動的に視差を求め、視差情報から算出された高さと、計測時の航空機の位置とが関連付けられた三次元点群データが生成され、この三次元点群データが数値表層モデルとなる。
【0004】
また、このような数値表層モデルは、地方自治体において、存在する建物を把握するために利用されている。更に、数値表層モデルにおいて、建物を把握するためには、まず、家屋形状図を作成する必要がある。通常、家屋形状図の作成は、図化機を用いて航空写真から作図するなど、人手によって建物の輪郭を抽出することによって行なわれている。
【0005】
但し、人手による航空写真からの建物の輪郭の抽出には、作業効率が悪いという問題点、作業者の技量によって抽出精度が変動するという問題点がある。このため、特許文献1は、自動的に建物の輪郭を抽出する装置を開示している。
【0006】
具体的には、特許文献1に開示された装置は、まず、地物を含まない地表の標高を表す数値地形モデルを用いて、対象領域の数値表層モデルを正規化する。これにより、対象領域の三次元点群データにおける地表の高さは一定となる。次に、特許文献1に開示された装置は、高層の建物を抽出するため、正規化された数値表層モデルに対して、閾値でフィルタリングを行ない、高さが閾値未満となっている部分のデータを除去する。
【0007】
これにより、対象領域の数値表層モデルにおいては、閾値以上の高さの部分のみが抽出される。よって、特許文献1に開示された装置は、高さが閾値未満となっている部分のデータが抽出された数値表層モデルから、植生部分を除去し、その後、高層の建物の輪郭を抽出する。具体的には、特許文献1に開示された装置は、対応するオルソ画像から得られる色情報又はテクスチャ情報を用いて、植生部分を除去した後、建物の輪郭を抽出する。
【0008】
続いて、特許文献1に開示された装置は、低層の建物を抽出するため、正規化された数値表層モデルにおいて、上述の閾値以上となったデータの高さをゼロにして、低層の建物のみの三次元点群データを補正する。そして、特許文献1に開示された装置は、対応するオルソ画像から得られる色情報又はテクスチャ情報を用いて、補正後の数値表層モデルから、低層の建物の輪郭を抽出する。
【先行技術文献】
【特許文献】
【0009】
【特許文献1】特許第488069号公報
【発明の概要】
【発明が解決しようとする課題】
【0010】
このように、上記特許文献1に開示された装置によれば、人手によることなく、自動的に、数値表層モデルから建物の輪郭を抽出することができる。しかしながら、上記特許文献1に開示された装置では、低層の建物の輪郭の抽出は、高層の建物のデータが除去された数値表層モデルに、オルソ画像から得られる色情報又はテクスチャ情報を適用することによって行なわれる。このため、建物の側に車輌等の物体が存在した場合、閾値未満の高さの植物が建物の一部又は全部を覆っている場合等において、建物の輪郭の抽出精度が大きく低下してしまう可能性がある。
【0011】
また、上記特許文献1に開示された装置では、数値表層モデルと数値地形モデルとがほぼ同時期の地表面及び地物を対象に作成されていなければ、地物又は地表面形状のうちどちらか一方の変化により、正規化処理における矛盾が発生してしまう。この場合、正確な建物の輪郭抽出が出来なくなる可能性がある。更に、上記特許文献1に開示された装置には、数値地形モデルを作成するためのコストも問題となる可能性がある。
【0012】
本発明の目的の一例は、上記問題を解消し、三次元点群データからの建物等の地物の形状の抽出精度を向上し得る、地物形状抽出装置、地物形状抽出方法、及びプログラムを提供することにある。
【課題を解決するための手段】
【0013】
上記目的を達成するため、本発明の一側面における地物形状抽出装置は、
対象領域における地物の位置座標及び高さを含む三次元点群データを取得する、データ取得部と、
前記三次元点群データから、高さの値が閾値未満のデータを除去して、フィルタリングを行なう、フィルタリング部と、
フィルタリング後の前記三次元点群データから、前記対象領域上の高さの値が閾値以上となる部分を検出し、検出した部分毎に、当該部分を囲む境界を設定する、境界設定部と、
設定された前記境界毎に、当該境界内の領域における高さの値に基づいてクラスタリングを行なって、複数のクラスタを生成し、生成した前記複数のクラスタのうち設定条件を満たすクラスタが地面を示していると判定する、クラスタリング部と、
設定された前記境界毎に、地面を示していると判定されたクラスタの平均高さに基づいて、基準高さを設定し、そして、設定した前記基準高さよりも平均高さが高いクラスタを特定し、特定したクラスタに基づいて、地物の外形を示す領域を抽出する、外形領域抽出部と、
を備えている、ことを特徴とする。
【0014】
また、上記目的を達成するため、本発明の一側面における地物形状抽出方法は、
(a)対象領域における地物の位置座標及び高さを含む三次元点群データを取得する、ステップと、
(b)前記三次元点群データから、高さの値が閾値未満のデータを除去して、フィルタリングを行なう、ステップと、
(c)フィルタリング後の前記三次元点群データから、前記対象領域上の高さの値が閾値以上となる部分を検出し、検出した部分毎に、当該部分を囲む境界を設定する、ステップと、
(d)設定された前記境界毎に、当該境界内の領域における高さの値に基づいてクラスタリングを行なって、複数のクラスタを生成し、生成した前記複数のクラスタのうち設定条
件を満たすクラスタが地面を示していると判定する、ステップと、
(e)設定された前記境界毎に、地面を示していると判定されたクラスタの平均高さに基づいて、基準高さを設定し、そして、設定した前記基準高さよりも平均高さが高いクラスタを特定し、特定したクラスタに基づいて、地物の外形を示す領域を抽出する、ステップと、
を有する、ことを特徴とする。
【0015】
更に、上記目的を達成するため、本発明の一側面におけるプログラムは、
コンピュータに、
(a)対象領域における地物の位置座標及び高さを含む三次元点群データを取得する、ステップと、
(b)前記三次元点群データから、高さの値が閾値未満のデータを除去して、フィルタリングを行なう、ステップと、
(c)フィルタリング後の前記三次元点群データから、前記対象領域上の高さの値が閾値以上となる部分を検出し、検出した部分毎に、当該部分を囲む境界を設定する、ステップと、
(d)設定された前記境界毎に、当該境界内の領域における高さの値に基づいてクラスタリングを行なって、複数のクラスタを生成し、生成した前記複数のクラスタのうち設定条件を満たすクラスタが地面を示していると判定する、ステップと、
(e)設定された前記境界毎に、地面を示していると判定されたクラスタの平均高さに基づいて、基準高さを設定し、そして、設定した前記基準高さよりも平均高さが高いクラスタを特定し、特定したクラスタに基づいて、地物の外形を示す領域を抽出する、ステップと、
を実行させることを特徴とする。
【発明の効果】
【0016】
以上のように、本発明によれば、三次元点群データからの建物等の地物の形状の抽出精度を向上することができる。
【図面の簡単な説明】
【0017】
図1図1は、本発明の実施の形態における地物形状抽出装置の構成を示すブロック図である。
図2図2は、本発明の実施の形態で用いられる三次元点群データの一例を示す図である。
図3図3は、図2に示す三次元点群データを用いて作成された地物の一例を示す図である。
図4図4は、本発明の実施の形態においてフィルタリングされた三次元点群データの一例を示す図である。
図5図5は、本発明の実施の形態において設定された境界の一例を示す図である。
図6図6は、本発明の実施の形態におけるクラスタリングによって生成された複数のクラスタの一例を示す図である。
図7図7は、本発明の実施の形態において特定された、基準高さよりも平均高さが高いクラスタの一例を示す図である。
図8図8は、図7に示したクラスタに基づいて抽出された領域の一例を示す図である。
図9図9は、図8に示した領域から抽出された円転領域の一例を示す図である。
図10図10は、本発明の実施の形態で行なわれるハフ変換処理の一例を示す図である。
図11図11は、本発明の実施の形態において作成されるヒストグラムの一例を示す図である。
図12図12は、本発明の実施の形態において抽出された地物の外形の一例を示す図である。
図13図13は、本発明の実施の形態における地物形状抽出装置の動作を示すフロー図である。
図14図14は、本発明の実施の形態における地物形状抽出装置を実現するコンピュータの一例を示すブロック図である。
【発明を実施するための形態】
【0018】
(実施の形態)
以下、本発明の実施の形態における、地物形状抽出装置、地物形状抽出方法、及びプログラムについて、図1図14を参照しながら説明する。
【0019】
[装置構成]
最初に、図1を用いて、本実施の形態における地物形状抽出装置の構成について説明する。図1は、本発明の実施の形態における地物形状抽出装置の構成を示すブロック図である。
【0020】
図1に示す本実施の形態における地物形状抽出装置10は、三次元点群データからの建物等の地物の形状、具体的には、上方から見た地物の輪郭を抽出する装置である。図1に示すように、地物形状抽出装置10は、データ取得部11と、フィルタリング部12と、境界設定部13と、クラスタリング部14と、外形領域抽出部15とを備えている。
【0021】
データ取得部11は、対象領域における地物の位置座標及び高さを含む三次元点群データ、具体的には、対象領域の数値表層モデル(DSM)を取得する。フィルタリング部12は、三次元点群データから、高さの値が閾値未満のデータを除去して、フィルタリングを実行する。
【0022】
境界設定部13は、フィルタリング後の三次元点群データから、対象領域上の高さの値が閾値以上となる部分を検出する。また、境界設定部13は、検出した部分毎に、その部分を囲む境界を設定する。
【0023】
クラスタリング部14は、設定された境界毎に、その境界内の領域における高さの値に基づいてクラスタリングを行なって、複数のクラスタを生成する。また、クラスタリング部14は、生成した複数のクラスタのうち設定条件を満たすクラスタが地面を示していると判定する。
【0024】
外形領域抽出部15は、設定された境界毎に、地面を示していると判定されたクラスタの平均高さに基づいて、基準高さを設定する。そして、外形領域抽出部15は、設定した基準高さよりも平均高さが高いクラスタを特定し、特定したクラスタに基づいて、地物の外形を示す領域を抽出する。
【0025】
このように、地物形状抽出装置10は、地面を示すクラスタを用いて、基準高さを設定し、それから、地物の外形を示す領域の抽出に適したクラスタを特定するため、建物の側に車輌等の物体が存在した場合に、車輌等の物体の形状を除去することができる。また、地物形状抽出装置10は、地物三次元点群データのみを用いて、地物の外形を示す領域を抽出することができる。このため、地物形状抽出装置10によれば、三次元点群データからの建物等の地物の形状の抽出精度を向上することができる。
【0026】
続いて、図2図13を用いて、本実施の形態における地物形状抽出装置10の各部の機能についてより具体的に説明する。図2は、本発明の実施の形態で用いられる三次元点
群データの一例を示す図である。図3は、図2に示す三次元点群データを用いて作成された地物の一例を示す図である。
【0027】
まず、本実施の形態において用いられる三次元点群データは、図2に示すように、位置座標(x、y)と高さzとを含んでいる。位置座標としては、緯度及び経度、または世界測地系などが挙げられ、高さとしては標高などが挙げられる。また、図2に示す三次元点群データにおいて、位置座標(x、y)毎に、高さzの値に応じた画素値を設定して、二次元のグレースケール画像を生成することで、図3に示すように地物が表現される。
【0028】
フィルタリング部12は、本実施の形態では、適応的閾値処理(Adaptive Thresholding)を行なって、高さの値の閾値を適宜設定しながら、周辺より高さが高くなっている部分を特定し、三次元点群データから、特定されなかった部分のデータを除去する。図4は、本発明の実施の形態においてフィルタリングされた三次元点群データの一例を示す図である。図4の例では、フィルタリングによって抽出された部分が白色で表現されている。
【0029】
また、本実施の形態では、フィルタリング部12は、建物が傾斜しているところに建築されている場合を考慮し、周辺の高さが一定でない場合は、周辺の高さの平均値を求め、求めた平均値を基準として、周辺より高さが高くなっている部分を特定する。
【0030】
境界設定部13は、本実施の形態では、まず、フィルタリング部12によってフィルタリングされた三次元点群データに対して、ノイズ除去処理、小領域の削減処理等を実行することができる。続いて、境界設定部13は、フィルタリング部12による適応的閾値処理で抽出された部分を囲む境界20を設定する。
【0031】
具体的には、境界設定部13は、例えば、図5に示すように、抽出された部分を囲むことが可能な最小の矩形の境界20を設定する。境界の形状は、特に限定されず、抽出された領域に沿った形状に設定されていても良い。また、このようにして設定された各境界20内には、1つの建物が存在していると推定される。図5は、本発明の実施の形態において設定された境界の一例を示す図である。また、図5において、境界20は、白色の矩形で示されている。
【0032】
クラスタリング部14は、図6に示すように、境界20毎に、その境界20内の領域における高さの値に基づいてクラスタリングを行なって、複数のクラスタを生成する。図6は、本発明の実施の形態におけるクラスタリングによって生成された複数のクラスタの一例を示す図である。図6の例では、特定の境界20で囲まれた領域内に形成された複数のクラスタが示されている。
【0033】
また、本実施の形態では、クラスタリング部14は、まず、複数のクラスタを、平均高さが低い順にソートする。そして、クラスタリング部14は、クラスタの占める面積が一定以上であり、且つ、クラスタの中で高さの平均が最も低いことを、設定条件として、設定条件を満たすクラスタを特定し、特定したクラスタは地面を示していると判定する。
【0034】
外形領域抽出部15は、本実施の形態では、境界設定部13が設定した境界20毎に、平均高さが最も高いクラスタを特定し、その特定したクラスタの平均高さを地物の高さとする。そして、外形領域抽出部15は、地面を示していると判定されたクラスタの平均高さと、平均高さが最も高いクラスタの平均高さとの平均値を求め、求めた平均値に基づいて、基準高さを設定する。
【0035】
また、上記の場合において、外形領域抽出部15は、クラスタの占める面積が一定以上であることを条件に追加して、平均高さが高いクラスを特定しても良い。また、本実施の
形態では、基準高さは、予め実験等によって設定されていても良いし、機械学習によって設定されていても良い。
【0036】
基準高さの設定後、外形領域抽出部15は、基準高さよりも平均高さが高いクラスタを特定する。図7は、本発明の実施の形態において特定された、基準高さよりも平均高さが高いクラスタの一例を示す図である。図7においては、特定されたクラスタは、白色で示されている。
【0037】
また、本実施の形態では、外形領域抽出部15は、2m、3m、4m、5m、6m、7mといったように基準高さの候補を設定し、候補毎に、それよりも平均高さが高いクラスタを特定し、特定した候補毎のクラスタの中から、いずれかの候補のクラスタを選択しても良い。
【0038】
続いて、外形領域抽出部15は、図8に示すように、図7に示したクラスタに基づいて、地物の外形を示す領域を抽出する。図8は、図7に示したクラスタに基づいて抽出された領域の一例を示す図である。図8においては、抽出された領域は白色で示されている。図8の例では、外形領域抽出部15は、例えば、抽出した領域に対して、緑領域(植え込み等の建物周辺の植物が生えている領域)の除去、オクルージョンとなっているなどの理由で高さデータが欠落している領域やノイズ領域の除去等を行なっている。
【0039】
また、緑領域の除去は、例えば、処理対象となっている領域のオルソ画像を取得し、取得したオルソ画像から緑領域を特定し、そして、処理対象となっている領域から、特定した緑領域に対応する部分を除去することによって行なわれる。
【0040】
また、外形領域抽出部15は、図9に示すように、抽出した領域から、この領域内で仮想の円を転がすことによって得られる円転領域30を抽出することができる。図9は、図8に示した領域から抽出された円転領域の一例を示す図である。図9の例では、円転領域30の外縁が破線で示されている。
【0041】
この場合、外形領域抽出部15は、図10に示すように、抽出した円転領域30に対して、ハフ変換処理によって、その外縁の2箇所と接するように、直交する2直線を設定する。図10は、本発明の実施の形態で行なわれるハフ変換処理の一例を示す図である。なお、図10の例では、図9に示した上側の円転領域30に2直線が設定される場合が示されている。
【0042】
具体的には、図10に示すように、外形領域抽出部15は、円転領域30のエッジ部分を特定し、特定したエッジ部分毎に、ハフ変換を実行し、強い反応があった上位一定数の線を抽出する。そして、外形領域抽出部15は、抽出した線を用いて2直線の組を設定し、組毎に2直線が交わる角度を算出する。続いて、外形領域抽出部15は、角度の算出結果に基づいて、各組の中から直交する2本の直線の組合せを特定する。なお、ここでいう直交には、2本の直線のなす角度が90度丁度である場合だけでなく、本発明の目的が達成できる範囲で、90度前後である場合も含まれる。
【0043】
また、外形領域抽出部15は、特定した組合せのうち、反応の強い直線の組合せを最終的に選択する。例えば、外形領域抽出部15は、予め、ハフ変換時の反応の強さ毎に、各直線に順位を設定し、そして、2本の直線の組毎に、順位の和を求め、求めた和が最も小さい組を選択する。例えば、5位と10位との組では和は15となり、6位と7位との組では和は13となる。この場合、外形領域抽出部13は、6位と7位との組を選択する。なお、組の選択のための値の計算は、上述した足し算に限定されるものではなく、適切な数式が用いられれば良い。
【0044】
続いて、外形領域抽出部15は、図11に示すように、直交する2直線を設定すると、設定した直線毎に、その直線に垂直に交わる直線を想定し、円転領域30の外縁と想定した直線との重なり度合が高い程値が高くなるヒストグラム31及び32を作成する。図11は、本発明の実施の形態において作成されるヒストグラムの一例を示す図である。
【0045】
また、外形領域抽出部15は、ヒストグラム31及び32の作成の際、ヒストグラム31及び32の外周に小さな凹凸が発生しないようにするため、ヒストグラム31及び32の外周の各点の値に、その点の左右の点の値を加算して平均値を算出し、その点の値を平均値で補正することもできる。更に、外形領域抽出部15は、ヒストグラム31及び32の外周に対して、直線近似処理を施すこともできる。
【0046】
続いて、外形領域抽出部15は、図11に示すように、生成した2つのヒストグラム31及び32それぞれの頂点の位置に基づいて、円転領域を分割し、分割結果に基づいて、地物の外形を確定する。
【0047】
具体的には、外形領域抽出部15は、分割によって得られた矩形の区画毎に、その区画において円転領域30が占める割合を算出し、算出した割合が閾値(例えば50%)以上である場合は、その区画は有効であると判定する。その後、外形領域抽出部15は、有効であると判定した区画をつなぎ合わせて1つの領域33とし、この領域33の外形を地物の外形とする。
【0048】
図12は、本発明の実施の形態において抽出された地物の外形の一例を示す図である。図12の例では、地物の外形は、建物のオルソ画像上に示されている。
【0049】
[装置動作]
次に、本発明の実施の形態における地物形状抽出装置10の動作について図13を用いて説明する。図13は、本発明の実施の形態における地物形状抽出装置の動作を示すフロー図である。以下の説明においては、適宜図1図12を参酌する。また、本実施の形態では、地物形状抽出装置を動作させることによって、地物形状抽出方法が実施される。よって、本実施の形態における地物形状抽出方法の説明は、以下の地物形状抽出装置10の動作説明に代える。
【0050】
最初に、図13に示すように、データ取得部11は、対象領域における地物の位置座標及び高さを含む三次元点群データを取得する(ステップA1)。
【0051】
次に、フィルタリング部12は、三次元点群データから、高さの値が閾値未満のデータを除去して、フィルタリングを実行する(ステップA2)。
【0052】
次に、境界設定部13は、フィルタリング後の三次元点群データから、対象領域上の高さの値が閾値以上となる部分を検出し、検出した部分毎に、その部分を囲む境界20を設定する(ステップA3)。
【0053】
次に、クラスタリング部14は、ステップA3で設定された境界20毎に、その境界内の領域における高さの値に基づいてクラスタリングを行なって、複数のクラスタを生成する(ステップA4)。また、ステップA4では、クラスタリング部14は、クラスタの占める面積が一定以上であり、且つ、クラスタの中で高さの平均が最も低いことを、設定条件として、設定条件を満たすクラスタを特定し、特定したクラスタは地面を示していると判定する。
【0054】
次に、外形領域抽出部15は、ステップA3で設定された境界20毎に、地面を示していると判定されたクラスタの平均高さに基づいて、基準高さを設定し、設定した基準高さよりも平均高さが高いクラスタを特定する(ステップA5)。
【0055】
次に、外形領域抽出部15は、ステップA5で特定したクラスタに基づいて、地物の外形を示す領域を抽出し、更に、抽出した領域から、この領域内で仮想の円を転がすことによって得られる円転領域30を抽出する(ステップA6)。
【0056】
次に、外形領域抽出部15は、ステップA6で抽出した円転領域30に対して、ハフ変換処理によって、その外縁の2箇所と接するように、直交する2直線を設定する(ステップA7)。
【0057】
次に、外形領域抽出部15は、ステップA7で設定した直線毎に、その直線に垂直に交わる直線を想定し、円転領域30の外縁と想定した直線との重なり度合が高い程値が高くなるヒストグラムを作成する(ステップA8)。
【0058】
次に、外形領域抽出部15は、ステップA8で作成した2つのヒストグラムそれぞれの頂点の位置に基づいて、円転領域30を分割し、分割結果に基づいて、地物の外形を確定する(ステップA9)。
【0059】
[実施の形態における効果]
以上のように本実施の形態によれば、オルソ画像から建物の形状を抽出する必要がなく、加えて、数値表層モデルと数値地形モデルとの両方を用いる必要もないため、三次元点群データからの建物等の地物の形状の抽出精度を向上することができる。
【0060】
また、本実施の形態では、上記ステップA3において、境界20が設定され、境界20毎に、クラスタリング、円転領域30の抽出、2直線の設定、ヒストグラムの作成、地物の外形の確定が行なわれる。また、各境界20内には、1つの建物が存在していると推定される。これらの点から、本実施の形態では、隣接する別の建物の影響による地物形状の抽出精度の低下が抑制される。更に、本実施の形態では、境界20毎に、基準高さを設定してから、クラスタリングが行なわれるので、建物の高さ及び形状に依存することなく、地物形状の抽出が可能となる。
【0061】
更に、本実施の形態では、ハフ変換によって直交する2直線が設定され、それから得られたヒストグラムを用いて、地物の形状が確定されるので、直線が多い建物の形状をより正確に抽出することが可能となる。
【0062】
[プログラム]
本実施の形態におけるプログラムは、コンピュータに、図13に示すステップA1〜A9を実行させるプログラムであれば良い。このプログラムをコンピュータにインストールし、実行することによって、本実施の形態における地物形状抽出装置10と地物形状抽出方法とを実現することができる。この場合、コンピュータのCPU(Central Processing
Unit)は、データ取得部11、フィルタリング部12、境界設定部13、クラスタリング部14、及び外形領域抽出部15として機能し、処理を行なう。
【0063】
また、本実施の形態におけるプログラムは、複数のコンピュータによって構築されたコンピュータシステムによって実行されても良い。この場合は、例えば、各コンピュータが、それぞれ、データ取得部11、フィルタリング部12、境界設定部13、クラスタリング部14、及び外形領域抽出部15のいずれかとして機能しても良い。
【0064】
ここで、本実施の形態におけるプログラムを実行することによって、地物形状抽出装置10を実現するコンピュータについて図14を用いて説明する。図14は、本発明の実施の形態における地物形状抽出装置を実現するコンピュータの一例を示すブロック図である。
【0065】
図14に示すように、コンピュータ110は、CPU111と、メインメモリ112と、記憶装置113と、入力インターフェイス114と、表示コントローラ115と、データリーダ/ライタ116と、通信インターフェイス117とを備える。これらの各部は、バス121を介して、互いにデータ通信可能に接続される。
【0066】
CPU111は、記憶装置113に格納された、本実施の形態におけるプログラム(コード)をメインメモリ112に展開し、これらを所定順序で実行することにより、各種の演算を実施する。メインメモリ112は、典型的には、DRAM(Dynamic Random Access Memory)等の揮発性の記憶装置である。また、本実施の形態におけるプログラムは、コンピュータ読み取り可能な記録媒体120に格納された状態で提供される。なお、本実施の形態におけるプログラムは、通信インターフェイス117を介して接続されたインターネット上で流通するものであっても良い。
【0067】
また、記憶装置113の具体例としては、ハードディスクドライブの他、フラッシュメモリ等の半導体記憶装置が挙げられる。入力インターフェイス114は、CPU111と、キーボード及びマウスといった入力機器118との間のデータ伝送を仲介する。表示コントローラ115は、ディスプレイ装置119と接続され、ディスプレイ装置119での表示を制御する。
【0068】
データリーダ/ライタ116は、CPU111と記録媒体120との間のデータ伝送を仲介し、記録媒体120からのプログラムの読み出し、及びコンピュータ110における処理結果の記録媒体120への書き込みを実行する。通信インターフェイス117は、CPU111と、他のコンピュータとの間のデータ伝送を仲介する。
【0069】
また、記録媒体120の具体例としては、CF(Compact Flash(登録商標))及びSD(Secure Digital)等の汎用的な半導体記憶デバイス、フレキシブルディスク(Flexible Disk)等の磁気記録媒体、又はCD−ROM(Compact Disk Read Only Memory)などの光学記録媒体が挙げられる。
【0070】
なお、本実施の形態における地物形状抽出装置10は、プログラムがインストールされたコンピュータではなく、各部に対応したハードウェアを用いることによっても実現可能である。更に、地物形状抽出装置10は、一部がプログラムで実現され、残りの部分がハードウェアで実現されていてもよい。
【産業上の利用可能性】
【0071】
以上のように、本発明によれば、三次元点群データからの建物等の地物の形状の抽出精度を向上することができる。本発明は、上空からの画像に基づいて、地物の形状を抽出することが必要な分野に有用である。
【符号の説明】
【0072】
10 地物形状抽出装置
11 データ取得部
12 フィルタリング部
13 境界設定部
14 クラスタリング部
15 外形領域抽出部
20 境界
30 円転領域
31 ヒストグラム
32 ヒストグラム
33 円転領域から求められた領域
110 コンピュータ
111 CPU
112 メインメモリ
113 記憶装置
114 入力インターフェイス
115 表示コントローラ
116 データリーダ/ライタ
117 通信インターフェイス
118 入力機器
119 ディスプレイ装置
120 記録媒体
121 バス
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14