(58)【調査した分野】(Int.Cl.,DB名)
360度を前記クラッド母材の中心軸の周りに形成される前記コアロッド挿入孔の数で割った大きさと前記最大角の大きさとの差に基づいて、前記マーカロッド挿入孔の内周面と前記マーカロッドの外周面との隙間の大きさを定める
ことを特徴とする請求項1から3のいずれか1項に記載のマルチコア光ファイバ母材の製造方法。
【発明の概要】
【発明が解決しようとする課題】
【0007】
上記特許文献1に開示されている方法によれば、コアロッドを挿入するための孔の内周面とコアロッドの外周面との間の隙間の大きさによる各コアの配置精度の悪化が抑制される。また、コアロッドを挿入するための孔が形成される位置の精度による各コアの配置精度の悪化は、当該孔を開けた後に当該孔の位置を測定して当該孔の形成位置の精度が高い母材を選択することによって抑制され得る。
【0008】
しかし、上記特許文献2に開示されているようなマーカを配置する場合、クラッド母材、コアロッド、及びマーカとなるマーカロッドを一体化するときにコアロッドの位置がずれる場合がある。このようにコアロッドの位置がずれると、マルチコア光ファイバ母材において、コアロッドからなるコア部の位置が所望の位置からずれる傾向がある。その結果、このマルチコア光ファイバ母材を用いてマルチコア光ファイバを製造すると、マルチコア光ファイバのコアの位置が所望の位置からずれる傾向がある。
【0009】
そこで、本発明は、マルチコア光ファイバのそれぞれのコアの配置精度が向上され得るマルチコア光ファイバ母材の製造方法、及び、マルチコア光ファイバの製造方法を提供することを目的とする。
【課題を解決するための手段】
【0010】
上記課題を解決するための本発明のマルチコア光ファイバ母材の製造方法は、クラッドとなるクラッド母材の中心軸の周りに、コアとなるコアロッドを挿入するためのコアロッド挿入孔を複数形成する第1穿孔工程と、前記クラッド母材の長手方向に垂直な断面において、前記クラッド母材の中心から延びてそれぞれの前記コアロッド挿入孔の中心を通る半直線を引く場合に、互いに隣り合う前記半直線によって形成される角のうち最大角を形成する2つの前記半直線によって挟まれる領域に、マーカとなるマーカロッドを挿入するためのマーカロッド挿入孔を形成する第2穿孔工程と、前記コアロッド挿入孔に前記コアロッドを挿入し、前記マーカロッド挿入孔に前記マーカロッドを挿入するロッド挿入工程と、前記クラッド母材、前記コアロッド、及び前記マーカロッドを一体化させる一体化工程と、を備えることを特徴とする。
【0011】
マルチコア光ファイバにおいて、それぞれのコア間のクロストークを抑制する等の観点から、マルチコア光ファイバの中心軸周りに配置されるコアは、n回回転対称となる位置に配置されることが好ましい。なお、nは、マルチコア光ファイバの中心軸周りに配置されるコアの数である。よって、クラッド母材に形成されるコアロッド挿入孔は、n回回転対称となる位置に形成されることが好ましい。このように形成されたコアロッド挿入孔にコアロッドを挿入してクラッド母材とコアロッドとを一体化させる際、コアロッド挿入孔の内周面とコアロッドの外周面との隙間が埋められるようにクラッド母材が収縮する。このクラッド母材の収縮に伴って、コアロッドが移動する。複数のコアロッド挿入孔が正確にn回回転対称となる位置に形成されると共にそれぞれのコアロッド挿入孔の内周面とコアロッドの外周面との隙間の大きさが一定である場合には、上記のようにコアロッドが移動した後にもコアロッドは等間隔に配置され得る。しかし、以下に説明するようにクラッド内にマーカを配置する場合は、コアロッドの位置がずれ易い傾向にある。クラッド母材にマーカロッド挿入孔が形成されて当該マーカロッド挿入孔にマーカロッドが挿入される場合、一体化工程では、マーカロッド挿入孔の内周面とマーカロッドの外周面との隙間が埋められるようにクラッド母材が収縮する。このとき、マーカロッド挿入孔を挟むように配置されるコアロッドは、それぞれマーカロッド挿入孔側に移動し易くなる。そのため、マーカロッド挿入孔を挟むように配置されるコアロッド同士の間隔が狭くなる。上記本発明のマルチコア光ファイバ母材の製造方法では、マーカロッド挿入孔は、上記最大角を形成する2つの半直線によって挟まれる領域に形成される。すなわち、マーカロッド挿入孔は、クラッド母材の中心軸の周りに形成される互いに隣り合うコアロッド挿入孔のうち互いに最も離れたコアロッド挿入孔同士の間に形成される。よって、一体化工程では、クラッド母材の中心軸の周りに配置される互いに隣り合うコアロッドのうち互いに最も離れた位置に配置されるコアロッド同士の間隔が狭くなる。そのため、クラッド母材の中心軸の周りに配置される複数のコアロッドの間隔が等間隔に近付き得る。このようにしてマルチコア光ファイバ母材を得る際にコアロッドの位置が修正され得るため、当該マルチコア光ファイバ母材から得られるマルチコア光ファイバのそれぞれのコアの配置精度が向上され得る。
【0012】
また、前記第2穿孔工程より前に、それぞれの前記コアロッド挿入孔の位置を測定する測定工程を備えることが好ましい。
【0013】
第2穿孔工程より前にコアロッド挿入孔の位置を測定することによって、第2穿孔工程においてマーカロッド挿入孔を形成すべき位置をより正確に把握し得る。
【0014】
また、前記クラッド母材の中心軸の周りに少なくとも3つの前記コアロッド挿入孔が形成され、前記最大角を形成する2つの前記半直線のうち一方を第1半直線とすると共に他方を第2半直線とし、前記第1半直線と、前記第1半直線の前記第2半直線側とは反対側で前記第1半直線と互いに隣り合う他の前記半直線と、が成す角を第1角とし、前記第2半直線と、前記第2半直線の前記第1半直線側とは反対側で前記第2半直線と互いに隣り合う他の前記半直線と、が成す角を第2角とするとき、前記マーカロッド挿入孔は、前記最大角の二等分線よりも前記第1角及び前記第2角のうち小さい方に中心軸を寄せて形成されることが好ましい。
【0015】
上記最大角の二等分線よりも第1角及び第2角のうち一方に寄せてマーカロッド挿入孔が形成される場合、マーカロッド挿入孔を挟む位置に配置されるコアロッドのうちマーカロッド挿入孔に近いコアロッドの方が、一体化工程においてマーカロッド挿入孔側に大きく移動し易い。このため、第1角及び第2角のうち小さい方に寄せてマーカロッド挿入孔が形成されることによって、第1角及び第2角のうち小さい方が、一体化工程において相対的に大きくなり得る。よって、クラッド母材の中心軸の周りに配置される複数のコアロッドの間隔がより等間隔に近付き得る。そのため、このようにしてマルチコア光ファイバ母材を得る際にコアロッドの位置がより適切に修正され易くなり、当該マルチコア光ファイバ母材から得られるマルチコア光ファイバのそれぞれのコアの配置精度がより向上され得る。
【0016】
また、360度を前記クラッド母材の中心軸の周りに形成される前記コアロッド挿入孔の数で割った大きさと前記最大角の大きさとの差に基づいて、前記マーカロッド挿入孔の内周面と前記マーカロッドの外周面との隙間の大きさを定めることが好ましい。
【0017】
360度をクラッド母材の中心軸の周りに形成されるコアロッド挿入孔の数で割った大きさと最大角の大きさとの差が大きい程、マーカロッド挿入孔を挟んで形成されるコアロッド挿入孔同士が離れていることを意味する。ところで、マーカロッド挿入孔の内周面とマーカロッドの外周面との隙間が大きい程、一体化工程においてその隙間を埋めるためにクラッド母材が大きく収縮するため、マーカロッド挿入孔を挟んで配置されるコアロッドは一体化工程において互いに近付き易くなる。よって、上記差が大きい程、マーカロッド挿入孔の内周面とマーカロッドの外周面との隙間が大きくされることによって、クラッド母材の中心軸の周りに配置される複数のコアロッドの間隔がより等間隔に近付き得る。そのため、このようにしてマルチコア光ファイバ母材を得る際にコアロッドの位置がより適切に修正され易くなり、当該マルチコア光ファイバ母材から得られるマルチコア光ファイバのそれぞれのコアの配置精度がより向上され得る。
【0018】
また、前記マーカロッドの外径の大きさを調整することによって前記マーカロッド挿入孔の内周面と前記マーカロッドの外周面との隙間の大きさを調整することが好ましい。
【0019】
マーカロッドの外径の大きさが調整されることによって、マーカロッド挿入孔の内周面とマーカロッドの外周面との隙間の大きさが調整され得る。
【0020】
また、前記マーカロッド挿入孔の内径の大きさを調整することによって前記マーカロッド挿入孔の内周面と前記マーカロッドの外周面との隙間の大きさを調整することも好ましい。
【0021】
マーカロッド挿入孔の内径の大きさが調整されることによっても、マーカロッド挿入孔の内周面とマーカロッドの外周面との隙間の大きさが調整され得る。
【0022】
また、上記課題を解決するための本発明のマルチコア光ファイバの製造方法は、上記本発明のマルチコア光ファイバ母材の製造方法により製造されるマルチコア光ファイバ母材を線引きする線引工程を備えることを特徴とする。
【0023】
上記のように、上記本発明のマルチコア光ファイバ母材の製造方法によれば、一体化工程においてコアロッドの配置が修正され得る。よって、当該マルチコア光ファイバ母材を線引きすることによって、マルチコア光ファイバのそれぞれのコアの配置精度が向上され得る。
【0024】
また、上記課題を解決するための本発明のマルチコア光ファイバの製造方法は、クラッドとなるクラッド母材の中心軸の周りに、コアとなるコアロッドを挿入するためのコアロッド挿入孔を複数形成する第1穿孔工程と、前記クラッド母材の長手方向に垂直な断面において、前記クラッド母材の中心から延びてそれぞれの前記コアロッド挿入孔の中心を通る半直線を引く場合に、互いに隣り合う前記半直線によって形成される角のうち最大角を形成する2つの前記半直線によって挟まれる領域に、マーカとなるマーカロッドを挿入するためのマーカロッド挿入孔を形成する第2穿孔工程と、前記コアロッド挿入孔に前記コアロッドを挿入し、前記マーカロッド挿入孔に前記マーカロッドを挿入するロッド挿入工程と、前記クラッド母材、前記コアロッド、及び前記マーカロッドを一体化させつつ線引きする線引工程と、を備えることを特徴とする。
【0025】
クラッド内にマーカを配置する場合、上記のようにマーカロッド挿入孔を挟むように配置されるコアロッド同士の間隔が狭くなり、コアロッドの位置がずれ易い傾向にある。上記本発明のマルチコア光ファイバの製造方法では、マーカロッド挿入孔は、クラッド母材の中心軸の周りに形成される互いに隣り合うコアロッド挿入孔のうち互いに最も離れたコアロッド挿入孔同士の間に形成される。よって、クラッド母材、コアロッド、及びマーカロッドを一体化させつつ線引きする線引工程では、クラッド母材の中心軸の周りに配置される互いに隣り合うコアロッドのうち互いに最も離れた位置に配置されるコアロッド同士の間隔が狭くなる。そのため、クラッド母材の中心軸の周りに配置される複数のコアロッドの間隔が等間隔に近付き得る。このようにしてマルチコア光ファイバを得る際にコアロッドの位置が修正され得るため、それぞれのコアの配置精度が向上され得る。
【発明の効果】
【0026】
以上のように、本発明によれば、マルチコア光ファイバのそれぞれのコアの配置精度が向上され得るマルチコア光ファイバ母材の製造方法、及び、マルチコア光ファイバの製造方法が提供される。
【発明を実施するための形態】
【0028】
以下、本発明に係るマルチコア光ファイバ母材の製造方法、及び、マルチコア光ファイバの製造方法の好適な実施形態について図面を参照しながら詳細に説明する。
【0029】
図1は、本発明の実施形態に係るマルチコア光ファイバの長手方向に垂直な断面を示す図である。本実施形態のマルチコア光ファイバ1は、4つのコア10、マーカ15、4つのコア10及びマーカ15の外周面を隙間なく囲むクラッド20、クラッド20の外周面を被覆する内側被覆層31、内側被覆層31の外周面を被覆する外側被覆層32を備える。
【0030】
本実施形態のマルチコア光ファイバ1では、1つのコア10はマルチコア光ファイバ1の中心軸に沿って配置され、残り3つのコア10はマルチコア光ファイバ1の中心軸の周りに配置される。それぞれのコア10は所定の間隔を有して配置されている。本実施形態のマルチコア光ファイバ1では、マルチコア光ファイバ1の中心軸の周りに配置される3つのコア10は、マルチコア光ファイバ1の長手方向に垂直な断面において、マルチコア光ファイバ1の中心を中心として概ね3回回転対称となるように配置されている。すなわち、マルチコア光ファイバ1の長手方向に垂直な断面において、マルチコア光ファイバ1の中心の周りに配置される3つのコア10は、当該中心から概ね互いに等距離に配置される。換言すれば、マルチコア光ファイバ1の長手方向に垂直な断面において、マルチコア光ファイバ1の中心の周りに配置される3つのコア10は、当該中心を重心とする正三角形の各頂点と概ね重なる位置に配置される。また、マルチコア光ファイバ1の長手方向に垂直な断面において、マルチコア光ファイバ1の中心から当該中心の周りに配置される3つのコア10の中心を通る3本の半直線を引くと、これらの半直線のうち互いに隣り合う半直線が成す角は、それぞれ概ね120度となる。このようなコア10の直径は、例えば4μm以上10μm以下とされる。
【0031】
マーカ15は、後述するように所定の2つのコア10の間に配置される。また、クラッド20は、マルチコア光ファイバ1に備えられる全てのコア10及びマーカ15の外周面を隙間なく囲む。クラッド20の直径は、例えば、125μm以上230μm以下とされる。
【0032】
それぞれのコア10の屈折率はクラッド20の屈折率よりも高く、それぞれのコア10のクラッド20に対する比屈折率差は、例えば0.2%以上2.0%以下とされる。このようなコア10は、例えば、ゲルマニウム等の屈折率が高くなるドーパントが添加されたシリカガラスから成り、クラッド20は、例えば、ドーパントが添加されていないシリカガラスから成る。また、コア10が何らドーパントが添加されていないシリカガラスから成り、クラッド20がフッ素等の屈折率が低くなるドーパントが添加されたシリカガラスから成る構成とされてもよい。マーカ15は、クラッド20とは屈折率が異なるシリカガラスによって構成される。マーカ15の屈折率は、クラッド20の屈折率より高くてもよく低くてもよい。
【0033】
内側被覆層31及び外側被覆層32はそれぞれ紫外線硬化性樹脂等の樹脂から成り、内側被覆層31及び外側被覆層32は互いに異なる樹脂から成る。
【0034】
図2は、
図1に示すマルチコア光ファイバ1の製造に用いられるマルチコア光ファイバ母材の長手方向に垂直な断面の様子を示す図である。
図2に示すマルチコア光ファイバ母材1Pは略円柱状の形状をしている。また、マルチコア光ファイバ母材1Pは、それぞれのコア10となるコア部10P、マーカ15となるマーカ部15P、及び、クラッド20となるクラッド部20Pを備える。コア部10Pはコア10と同じ材料から構成され、マーカ部15Pはマーカ15と同じ材料から構成され、クラッド部20Pはクラッド20と同じ材料から構成される。また、マルチコア光ファイバ母材1Pの長手方向に垂直な断面の形状は、内側被覆層31及び外側被覆層32を除くマルチコア光ファイバ1の長手方向に垂直な断面の形状に対して概ね相似形とされる。このようなマルチコア光ファイバ母材1Pが後述するように線引きされ、線引きされた光ファイバ素線の外周面に内側被覆層31及び外側被覆層32が被覆され、
図1に示すマルチコア光ファイバ1が得られる。
【0035】
次に、
図2に示すマルチコア光ファイバ母材1Pの製造方法、及び、該マルチコア光ファイバ母材1Pを用いた
図1に示すマルチコア光ファイバ1の製造方法について説明する。
【0036】
図3は、マルチコア光ファイバ母材1Pの製造方法、及び、マルチコア光ファイバ1の製造方法の工程を示すフローチャートである。
図3に示すように、マルチコア光ファイバ母材1Pの製造方法は、第1穿孔工程P1、測定工程P2、第2穿孔工程P3、ロッド挿入工程P4、及び一体化工程P5を備える。そして、マルチコア光ファイバ1の製造方法は、上記のそれぞれの工程を経て製造されるマルチコア光ファイバ母材1Pを線引きする線引工程P6を更に備える。以下、これらの各工程について詳細に説明する。
【0037】
<第1穿孔工程P1>
図4は、本工程後のクラッド母材の長手方向に垂直な断面を示す図である。本工程は、クラッド20となるクラッド母材20Rを準備し、コア10となるコアロッドを後述するロッド挿入工程P4で挿入するためのコアロッド挿入孔10Hを複数形成する工程である。クラッド母材20Rは円柱状のガラスロッドである。本実施形態では、クラッド母材20Rの中心軸に沿って1つのコアロッド挿入孔10Hが形成され、クラッド母材20Rの中心軸の周りに3つのコアロッド挿入孔10Hが形成さる。それぞれのコアロッド挿入孔10Hはクラッド母材20Rを長手方向に貫通する貫通孔とされ、それぞれコアロッド挿入孔10Hの直径は、そこに挿入されるコアロッドの外径より大きくされる。
【0038】
それぞれのコアロッド挿入孔10Hを形成する方法としては、特に限定されないが、例えばドリルを使った機械加工が挙げられる。なお、コアロッド挿入孔10Hの内周面はコアロッドの外周面と接する部分であり、平滑化されていることが好ましい。コアロッド挿入孔10Hの内周面が平滑化されることによって、後述するロッド挿入工程P4において、コアロッドの外周面に傷がつくことや、後述する一体化工程P5においてコアロッドの外周面とコアロッド挿入孔10Hの内周面との間に不要な空間が形成されること等が抑制され得る。上記のようにコアロッド挿入孔10Hの内周面を平滑化する観点からは、例えば、機械加工によってコアロッド挿入孔10Hを穿孔した後にコアロッド挿入孔10Hの内周面をエッチング加工によって平滑化してもよい。
【0039】
上記エッチング加工としては、気相による方法が挙げられる。気相でエッチング加工する場合、例えばSF
6を用いることができる。エッチングガスとして知られているSF
6は、それ自体ではエッチング作用を示さず、熱分解、プラズマ等によってエッチング作用を持つ活性ガス種とされることによって、エッチングに用いられる。すわなち、コアロッド挿入孔10HにSF
6を流通させて加熱を行う等してSF
6を活性化させることによって、エッチング加工が施される。このようなエッチング加工により、コアロッド挿入孔10Hの内周面の小さな凹凸を除去したり、コアロッド挿入孔10Hの内周面から水酸基等の不純物を除去したりすることができる。上記エッチング加工に用いるエッチングガスとしては、例えば、SF
6の他にCF
4、C
2F
6、SiF
4などのフッ化物ガスなどが挙げられる。
【0040】
<測定工程P2>
本工程は、上記第1穿孔工程P1の後、後述する第2穿孔工程P3より前に、それぞれのコアロッド挿入孔10Hの位置を測定する工程である。コアロッド挿入孔10Hの位置は、例えば、3次元測定器等によって測定され得る。第1穿孔工程P1において設計通りにコアロッド挿入孔10Hが形成されていない場合であっても、測定工程P2によってコアロッド挿入孔10Hの形成位置を把握し得る。
【0041】
<第2穿孔工程P3>
本工程は、マーカ15となるマーカロッドを後述するロッド挿入工程P4において挿入するためのマーカロッド挿入孔を形成する工程である。
図5は、第2穿孔工程P3後のクラッド母材20Rの長手方向に垂直な断面を示す図である。マーカロッド挿入孔15Hの形成位置は、以下のようにして決められる。まず、クラッド母材20Rの長手方向に垂直な断面において、クラッド母材20Rの中心から延びてそれぞれのコアロッド挿入孔10Hの中心を通る半直線L1,L2,L3を引く。そして、互いに隣り合う半直線L1,L2,L3によって形成される角のうち最大角θ
maxを形成する2つの半直線L1,L2を決める。そして、これら2つの半直線L1,L2によって挟まれる領域に、マーカロッド挿入孔15Hを形成する。本実施形態では、上記のように測定工程P2においてコアロッド挿入孔10Hの位置が測定されるため、最大角θ
maxを容易に求めることができる。なお、それぞれの半直線L1,L2,L3は仮想線であっても良い。
【0042】
また、本実施形態のようにクラッド母材20Rの中心軸の周りに少なくとも3つのコアロッド挿入孔10Hが形成される場合、最大角θ
maxを形成する2つの半直線L1,L2のうち一方の半直線L1を第1半直線とすると共に他方を半直線L2を第2半直線とする。また、第1半直線である半直線L1と、半直線L1の第2半直線である半直線L2側とは反対側で半直線L1と互いに隣り合う他の半直線L3と、が成す角を第1角θ
1とする。また、第2半直線である半直線L2と、半直線L2の第1半直線である半直線L1側とは反対側で半直線L2と互いに隣り合う他の半直線L3と、が成す角を第2角θ
2とする。このとき、マーカロッド挿入孔15Hは、最大角θ
maxの二等分線LBよりも第1角θ
1及び第2角θ
2のうち小さい方に中心軸を寄せて形成される。本実施形態の第2穿孔工程P3では、第1角θ
1が第2角θ
2より小さいため、マーカロッド挿入孔15Hは二等分線LBよりも第1角θ
1側に形成される。
【0043】
<ロッド挿入工程P4>
図6は、ロッド挿入工程P4後のクラッド母材20Rの長手方向に垂直な断面を示す図である。本工程は、コアロッド挿入孔10Hにコアロッド10Rを挿入し、マーカロッド挿入孔15Hにマーカロッド15Rを挿入する工程である。本工程では、まず、コアロッド10R及びマーカロッド15Rを準備する。コアロッド10Rは、円柱状のガラス体であり、上記コア10を構成する材料からなる。ただし、コアロッド10Rの外周面には、クラッド20と同じ材料からなる不図示の被覆層が形成されていてもよい。また、マーカロッド15Rは、円柱状のガラス体であり、上記マーカ15を構成する材料からなる。ただし、マーカロッド15Rの外周面には、クラッド20と同じ材料からなる不図示の被覆層が形成されていてもよい。なお、コアロッド10R及びマーカロッド15Rは本工程までに準備されていれば良く、例えば第1穿孔工程P1や第2穿孔工程P3より前に準備されていてもよい。
【0044】
また、マーカロッド挿入孔15Hの内周面とマーカロッド15Rの外周面との隙間の大きさは、360度をクラッド母材20Rの中心軸の周りに形成されるコアロッド挿入孔10Hの数で割った大きさと最大角θ
maxの大きさとの差に基づいて定められる。すなわち、本実施形態では、マーカロッド挿入孔15Hの内周面とマーカロッド15Rの外周面との隙間の大きさは、120度と最大角θ
maxの大きさとの差に基づいて定められる。当該差が大きい程、マーカロッド挿入孔15Hの内周面とマーカロッド15Rの外周面との隙間が大きくされ、当該差が小さい程、マーカロッド挿入孔15Hの内周面とマーカロッド15Rの外周面との隙間が小さくされる。
【0045】
マーカロッド挿入孔15Hの内周面とマーカロッド15Rの外周面との隙間の大きさは、マーカロッド15Rの外径の大きさを調整することによって調整されてもよく、マーカロッド挿入孔15Hの内径の大きさを調整することによって調整されてもよい。ただし、一般的にはマーカロッド15Rの外径の大きさを調整する方がマーカロッド挿入孔15Hの内径の大きさを調整するよりも容易である。マーカロッド15Rの外径の大きさやマーカロッド挿入孔15Hの内径の大きさは、例えば機械加工やエッチング加工によって調整することができる。
【0046】
<一体化工程P5>
本工程は、クラッド母材20R、コアロッド10R、及びマーカロッド15Rを一体化させる工程である。
【0047】
本工程では、まず、コアロッド挿入孔10H及びマーカロッド挿入孔15Hの一方の開口部を封止する。封止する方法としては、例えば、クラッド母材20Rのうち一方の底面に板状の封止材を溶着し、当該封止材によって全てのコアロッド挿入孔10H及びマーカロッド挿入孔15Hの一方の開口部を覆う方法が挙げられる。この封止材には、例えば、ガラス板を用いることができる。
【0048】
次に、それぞれのコアロッド挿入孔10Hの内周面とそれぞれのコアロッド挿入孔10Hに挿入されたコアロッド10Rの外周面とを一体化させると共に、マーカロッド挿入孔15Hの内周面とマーカロッド挿入孔15Hに挿入されたマーカロッド15Rの外周面とを一体化させる。例えば、コアロッド10R及びマーカロッド15Rが挿入されたクラッド母材20Rを横型旋盤に設置し、クラッド母材20Rを回転させながら加熱することによって、クラッド母材20R、コアロッド10R、及びマーカロッド15Rを一体化させる。
図7は、一体化工程P5の一部の様子を示す図であり、コアロッド10R及びマーカロッド15Rが挿入されたクラッド母材20Rがセットされた状態の横型旋盤を示す図である。
図7に示すように、横型旋盤50は、クラッド母材20Rの両端部をチャッキング可能な一対のチャッキング部55a、55bと、コアロッド挿入孔10H及びマーカロッド挿入孔15H内を真空引き可能な真空ポンプ51と、クラッド母材20Rの長手方向に移動可能とされてクラッド母材20Rの外周面を加熱可能なバーナ58と、を主な構成として備える。
【0049】
本実施形態において、チャッキング部55aは、クラッド母材20Rの一方の端部をチャッキングし、チャッキング部55bは、クラッド母材20Rの他方の端部をチャッキングし、チャッキング部55a,55bにより、クラッド母材20Rが支持される。バーナ58は、例えば、酸水素バーナとされ、上述のようにクラッド母材20Rの長手方向に沿って移動可能に構成される。
【0050】
本工程において、バーナ58またはクラッド母材20Rをクラッド母材20Rの長手方向に沿って往復移動させることにより、クラッド母材20Rを加熱する。この加熱により、クラッド母材20Rに形成されたコアロッド挿入孔10H及びマーカロッド挿入孔15Hが縮径され、それぞれのコアロッド挿入孔10Hの内周面とそれぞれのコアロッド10Rの外周面とが一体化されると共に、マーカロッド挿入孔15Hの内周面とマーカロッド15Rの外周面とが一体化される。このようにそれぞれのコアロッド10R及びマーカロッド15Rがクラッド母材20Rと一体化されることによって、それぞれのコアロッド10Rの外周面とコアロッド挿入孔10Hの内周面との間、及び、マーカロッド15Rの外周面とマーカロッド挿入孔15Hの内周面との間に不要な空間が形成されることが抑制され得る。そして、このとき、コアロッド10R及びマーカロッド15Rが上記被覆層を有する場合は、これらの被覆層はクラッド部20Pの一部とされる。こうして、
図2に示すマルチコア光ファイバ母材1Pが得られる。
【0051】
また、本工程では上記加熱と同時に真空ポンプ51によってコアロッド挿入孔10H及びマーカロッド挿入孔15H内を真空引きすることが好ましい。真空ポンプ51はコアロッド挿入孔10H及びマーカロッド挿入孔15H内を真空引き可能なポンプであれば特に限定されない。真空ポンプ51による真空引きに先立って、クラッド母材20Rのうち上記封止材が溶着された側とは反対側の端部において、コアロッド挿入孔10H及びマーカロッド挿入孔15Hの開口部にガラス管54が取り付けられる。このガラス管54を介して真空ポンプ51によって、それぞれのコアロッド10Rの外周面とコアロッド挿入孔10Hの内周面との間、及び、マーカロッド15Rの外周面とマーカロッド挿入孔15Hの内周面との間の空間を真空引きする。このように真空引きすることによって、それぞれのコアロッド10Rの外周面とコアロッド挿入孔10Hの内周面との間、及び、マーカロッド15Rの外周面とマーカロッド挿入孔15Hの内周面との間に空気が残留することが抑制され得る。なお、
図7では簡略化して示しているが、ガラス管54は全てのコアロッド挿入孔10H及びマーカロッド挿入孔15Hの開口部に取り付けられ、全てのコアロッド挿入孔10H及びマーカロッド挿入孔15Hがガラス管54を介して真空ポンプ51によって真空引きされる。
【0052】
<線引工程P6>
図8は、線引工程P6の様子を示す図である。本工程では、まず、マルチコア光ファイバ母材1Pを紡糸炉110に設置する。そして、紡糸炉110の加熱部111を発熱させて、マルチコア光ファイバ母材1Pを加熱する。このときマルチコア光ファイバ母材1Pの下端は、例えば2000℃に加熱され溶融状態となる。そして、マルチコア光ファイバ母材1Pからガラスが溶融して、ガラスが線引きされる。そして、線引きされた溶融状態のガラスは、紡糸炉110から出ると、すぐに固化して、それぞれのコア部10Pがそれぞれのコア10となり、マーカ部15Pがマーカ15となり、クラッド部20Pがクラッド20となる。このようにして、複数のコア10、マーカ15、及びクラッド20によって構成されるマルチコア光ファイバの素線が得られる。その後、このマルチコア光ファイバの素線は、冷却装置120を通過して、適切な温度まで冷却される。冷却装置120に入る際、マルチコア光ファイバの素線の温度は、例えば1300℃程度であるが、冷却装置120を出る際には、例えば40℃〜50℃となる。
【0053】
次に、上記マルチコア光ファイバの素線は、内側被覆層31となる紫外線硬化性樹脂が入ったコーティング装置131を通過し、当該マルチコア光ファイバの素線の外周面が紫外線硬化性樹脂で被覆される。更に紫外線照射装置132において当該紫外線硬化性樹脂に紫外線が照射されることで当該紫外線硬化性樹脂が硬化し、内側被覆層31が形成される。次に、内側被覆層31で被覆されたマルチコア光ファイバの素線が外側被覆層32となる紫外線硬化性樹脂が入ったコーティング装置133を通過し、内側被覆層31の外周面が紫外線硬化性樹脂で被覆される。更に紫外線照射装置134において当該紫外線硬化性樹脂に紫外線が照射されることで当該紫外線硬化性樹脂が硬化し、外側被覆層32が形成される。このようにして、
図1に示すマルチコア光ファイバ1が製造される。
【0054】
そして、マルチコア光ファイバ1は、ターンプーリー141により方向が変換され、リール142により巻取られる。
【0055】
こうして製造されるマルチコア光ファイバ1において、それぞれのコア10間のクロストークを抑制する等の観点から、マルチコア光ファイバ1の中心軸周りに配置されるコア10は、3回回転対称となる位置に配置されることが好ましい。よって、第1穿孔工程P1においてクラッド母材20Rに形成されるコアロッド挿入孔10Hは、3回回転対称となる位置に形成されることが好ましい。このようにクラッド母材20Rに形成された複数のコアロッド挿入孔10Hのそれぞれにコアロッド10Rを挿入して一体化工程P5を行うと、コアロッド挿入孔10Hの内周面とコアロッド10Rの外周面との隙間が埋められるようにクラッド母材20Rが収縮する。クラッド母材20Rに収縮に伴ってコアロッド10Rが移動する。クラッド母材20Rの中心軸の周りに形成される3つのコアロッド挿入孔10Hが正確に3回回転対称となる位置に形成されると共にそれぞれのコアロッド挿入孔10Hの内周面とコアロッド10Rの外周面との隙間の大きさが一定である場合は、上記のようにコアロッド10Rが移動した後にもコアロッド10Rが等間隔に配置され得る。
【0056】
しかし、第1穿孔工程P1において複数のコアロッド挿入孔10Hを正確に3回回転対称となる位置に形成しようとしてもコアロッド挿入孔10Hの位置が僅かにずれる場合がある。また、以下に説明するように、クラッド20内にマーカ15を配置する場合は、コアロッド10Rの位置がずれ易い傾向にある。クラッド母材20Rにマーカロッド挿入孔15Hが形成されてマーカロッド挿入孔15Hにマーカロッド15Rが挿入される場合、一体化工程P5では、マーカロッド挿入孔15Hの内周面とマーカロッド15Rの外周面との隙間が埋められるようにクラッド母材20Rが収縮する。このとき、マーカロッド挿入孔15Hを挟むように配置されるコアロッド10Rは、それぞれマーカロッド挿入孔15H側に移動し易くなる。そのため、マーカロッド挿入孔15Hを挟むように配置されるコアロッド10R同士の間隔が狭くなる。
【0057】
上記本実施形態のマルチコア光ファイバ母材1Pの製造方法では、マーカロッド挿入孔15Hは、最大角θ
maxを形成する第1半直線である半直線L1及び第2半直線である半直線L2によって挟まれる領域に形成される。すなわち、マーカロッド挿入孔15Hは、クラッド母材20Rの中心軸の周りに形成される互いに隣り合うコアロッド挿入孔10Hのうち互いに最も離れたコアロッド挿入孔10H同士の間に形成される。よって、一体化工程P5では、クラッド母材20Rの中心軸の周りに配置される互いに隣り合うコアロッド10Rのうち互いに最も離れた位置に配置されるコアロッド10R同士の間隔が狭くなる。そのため、クラッド母材20Rの中心軸の周りに配置される複数のコアロッド10Rの間隔が等間隔に近付き得る。このようにしてマルチコア光ファイバ母材1Pを得る際にコアロッド10Rの位置が修正され得るため、マルチコア光ファイバ母材1Pから得られるマルチコア光ファイバ1のそれぞれのコア10の配置精度が向上され得る。
【0058】
また、本実施形態のマルチコア光ファイバ母材1Pの製造方法では、マーカロッド挿入孔15Hは、最大角θ
maxの二等分線LBよりも第1角θ
1及び第2角θ
2のうち小さい方に中心軸を寄せて形成される。最大角θ
maxの二等分線LBよりも第1角θ
1及び第2角θ
2のうち一方に寄せてマーカロッド挿入孔15Hが形成される場合、マーカロッド挿入孔15Hを挟む位置に配置されるコアロッド10Rのうちマーカロッド挿入孔15Hに近いコアロッド10Rの方が、一体化工程P5においてマーカロッド挿入孔15H側に大きく移動し易い。このため、第1角θ
1及び第2角θ
2のうち小さい方に寄せてマーカロッド挿入孔15Hが形成されることによって、第1角θ
1及び第2角θ
2のうち小さい方が、一体化工程P5において相対的に大きくなり得る。よって、クラッド母材20Rの中心軸の周りに配置される複数のコアロッド10Rの間隔がより等間隔に近付き得る。そのため、このようにしてマルチコア光ファイバ母材1Pを得る際にコアロッド10Rの位置がより適切に修正され易くなり、マルチコア光ファイバ母材1Pから得られるマルチコア光ファイバ1のそれぞれのコアの配置精度がより向上され得る。
【0059】
また、本実施形態のマルチコア光ファイバ母材1Pの製造方法では、360度をクラッド母材20Rの中心軸の周りに形成されるコアロッド挿入孔10Hの数で割った大きさと最大角θ
maxの大きさとの差に基づいて、マーカロッド挿入孔15Hの内周面とマーカロッド15Rの外周面との隙間の大きさが定められる。360度をクラッド母材20Rの中心軸の周りに形成されるコアロッド挿入孔10Hの数で割った大きさと最大角θ
maxの大きさとの差が大きい程、マーカロッド挿入孔15Hを挟んで形成されるコアロッド挿入孔10H同士が離れていることを意味する。ところで、マーカロッド挿入孔15Hの内周面とマーカロッド15Rの外周面との隙間が大きい程、一体化工程P5においてその隙間を埋めるためにクラッド母材20Rが大きく収縮するため、マーカロッド挿入孔15Hを挟んで配置されるコアロッド10Rは一体化工程P5において互いに近付き易くなる。よって、上記差が大きい程、マーカロッド挿入孔15Hの内周面とマーカロッド15Rの外周面との隙間が大きくされることによって、クラッド母材20Rの中心軸の周りに配置される複数のコアロッド10Rの間隔がより等間隔に近付き得る。そのため、このようにしてマルチコア光ファイバ母材1Pを得る際にコアロッド10Rの位置がより適切に修正され易くなり、マルチコア光ファイバ母材1Pから得られるマルチコア光ファイバ1のそれぞれのコア10の配置精度がより向上され得る。
【0060】
以上のように、本実施形態のマルチコア光ファイバ母材1Pの製造方法によれば、一体化工程P5においてコアロッド10Rの配置が修正され得る。よって、マルチコア光ファイバ母材1Pを用いる本実施形態のマルチコア光ファイバ1の製造方法によれば、マルチコア光ファイバ1のそれぞれのコア10の配置精度が向上され得る。
【0061】
以上、本発明について、上記実施形態を例に説明したが、本発明はこれに限定されるものではない。例えば、クラッド20の中心軸に沿って配置されるコア10は必須ではない。また、上記実施形態では、クラッド20の中心軸の周りに3つのコア10が配置される形態を例示して説明したが、クラッド20の中心軸の周りに配置されるコア10の数は複数であれば特に限定されない。例えば、クラッド20の中心軸の周りに配置されるコア10の数は2つでもよく、4つ以上でもよい。
【0062】
図9は、本発明の変形例に係るマルチコア光ファイバの長手方向に垂直な断面を示す図であり、
図10は、本変形例に係るマルチコア光ファイバの製造方法における第2穿孔工程P3後のクラッド母材の長手方向に垂直な断面を示す図である。
図9及び
図10において、上記実施形態と同様の構成には同じ符号を付して詳細な説明は省略する。
図9に示すように、本変形例にかかるマルチコア光ファイバ2では、クラッド20の中心軸の周りに6つのコア10が配置される。このようにクラッド20の中心軸の周りに配置されるコア10の数が6つとされる場合、
図10に示すようにクラッド母材20Rにコアロッド挿入孔10Hが6つ形成される。さらに、マーカロッド挿入孔15Hは、最大角θ
maxを形成する第1半直線である半直線L1と第2半直線である半直線L2との間に形成される。また、本変形例では、半直線L1と、半直線L1の半直線L2側とは反対側で半直線L1と互いに隣り合う他の半直線L3と、が成す第1角θ
1、及び、半直線L2と、半直線L2の半直線L1側とは反対側で半直線L2と互いに隣り合う他の半直線L4と、が成す第2角θ
2のうち、第1角θ
1の方が小さい。マーカロッド挿入孔15Hは、最大角θ
maxの二等分線LBよりも第1角θ
1及び第2角θ
2のうち小さい第1角θ
1に中心軸を寄せて形成される。このようにクラッド母材20Rの中心軸の周りに少なくとも3つのコアロッド挿入孔10Hが形成される場合は、最大角θ
maxの二等分線LBよりも第1角θ
1及び第2角θ
2のうち小さい方に中心軸を寄せて形成されることが好ましい。
【0063】
また、上記実施形態では、横型旋盤を用いて一体化工程P5を行う例を挙げて説明したが、本発明はこれに限定されない。
図11は、本発明の他の変形例に係る一体化工程P5の一部の様子を示す断面図である。
図11において、上記実施形態と同様の構成には同じ符号を付して詳細な説明は省略する。
【0064】
本変形例にかかる一体化工程P5では、まず、クラッド母材20Rのうち一方の底面に板状の封止材60を溶着する。封止材60は、全てのコアロッド挿入孔10H及びマーカロッド挿入孔15Hの一方の開口部を覆うようにクラッド母材20Rに溶着され、コアロッド挿入孔10H及びマーカロッド挿入孔15Hの一方の開口部が封止材60に封止される。この封止材60には、例えば、ガラス板を用いることができる。次に、封止材60のクラッド母材20R側とは反対側の面に棒状のガラスからなる下部ダミーロッド61を溶着する。
【0065】
また、クラッド母材20Rの上記封止材60が溶着される側と反対側の底面に上部ダミー管62を溶着する。上部ダミー管62は、上部ダミー管62の内周面が全てのコアロッド挿入孔10H及びマーカロッド挿入孔15Hを囲い、上部ダミー管62の貫通孔とクラッド母材20Rのコアロッド挿入孔10H及びマーカロッド挿入孔15Hとが連通するように溶着される。更に、上部ダミー管62の上部に蓋体66を溶着する。蓋体66には、孔が形成されている。
【0066】
次に、一方のチャッキング部63によって下部ダミーロッド61をチャッキングし、他方のチャッキング部64によって上部ダミー管62をチャッキングすることにより、クラッド母材20Rを支持する。このとき、蓋体66に形成された孔に管67を接続して、管67から真空ポンプ51により空気を抜くようにされる。
【0067】
このように支持されたクラッド母材20Rを長手方向が鉛直方向となるようにして加熱炉65に通す。本工程では、クラッド母材20Rを下端側から加熱炉65に通してクラッド母材20Rを下方に移動させることにより、加熱炉65によってクラッド母材20Rの全体を加熱する。このとき、真空ポンプ51によってコアロッド挿入孔10H及びマーカロッド挿入孔15H内を真空引きする。この加熱及び真空引きにより、クラッド母材20Rに形成されたコアロッド挿入孔10H及びマーカロッド挿入孔15Hが縮径され、それぞれのコアロッド挿入孔10Hの内周面とそれぞれのコアロッド10Rの外周面とが一体化されると共に、マーカロッド挿入孔15Hの内周面とマーカロッド15Rの外周面とが一体化される。また、このときそれぞれのチャッキング部63,64の相対的な距離を大きくすることで、クラッド母材20R、それぞれのコアロッド10R、及びマーカロッド15Rは長手方向に引き延ばされながら一体化される。このようにそれぞれのコアロッド10R及びマーカロッド15Rがクラッド母材20Rと一体化されることによって、それぞれのコアロッド10Rの外周面とコアロッド挿入孔10Hの内周面との間、及び、マーカロッド15Rの外周面とマーカロッド挿入孔15Hの内周面との間に不要な空間が形成されることが抑制され得る。
【0068】
また、上記実施形態では、一体化工程P5を経てマルチコア光ファイバ母材1Pを作製した後に線引工程P6が行われる例を挙げて説明したが、本発明はこれに限定されない。
図12は、本発明の更なる他の変形例に係る線引工程の様子を示す図である。
図12では、理解を容易にするため、
図11と同様に、コアロッド10R、マーカロッド15R及びクラッド母材20Rは、長手方向に平行な断面で示されている。本変形例の説明において、上記実施形態及び変形例と同等の構成要素については、特に説明する場合を除き、同一の参照符号を付して重複する説明は省略する。本変形例では、上記実施形態と同様に第1穿孔工程P1、測定工程P2、第2穿孔工程P3、及びロッド挿入工程P4を行った後、線引工程P6において、クラッド母材20R、コアロッド10R、及びマーカロッド15Rを一体化させつつ線引きする。すなわち、本変形例の線引工程P6は、上記実施形態の一体化工程P5を兼ねている。なお、本変形例では、線引工程P6に先立って、クラッド母材20Rの上部に上部ダミー管62を溶着し、上部ダミー管62のうちクラッド母材20Rとは反対側の端部には孔が形成された蓋体66を溶着する。本変形例の線引工程P6では、蓋体66の孔に接続された管67を介して真空ポンプ51により空気を抜きながら、以下のように線引工程P6を行う。本変形例の線引工程P6では、
図12に示すように、クラッド母材20Rと、クラッド母材20Rに挿入されたそれぞれのコアロッド10R及びマーカロッド15Rとを長手方向が垂直となるように立てて紡糸炉110内に設置する。次に、クラッド母材20R、それぞれのコアロッド10R、及びマーカロッド15Rの下端部を加熱部111で加熱して一体化させながら線引きする。この一体化が行われる際に、それぞれのコアロッド10Rの外周面とコアロッド挿入孔10Hの内周面との間、及び、マーカロッド15Rの外周面とマーカロッド挿入孔15Hの内周面との間の空間が潰される。
【0069】
また、これまでの説明では、測定工程P2を備える例を挙げて説明したが、測定工程P2は必須の工程ではない。例えば、第1穿孔工程P1において意図的に複数のコアロッド挿入孔10Hの間隔が不均一となるように形成し、最大角θ
maxが形成される場所を把握し得るときは、測定工程P2は必須ではない。
【0070】
また、上記実施形態では、マーカロッド挿入孔15Hが最大角θ
maxの二等分線LBよりも第1角θ
1及び第2角θ
2のうち小さい方に中心軸を寄せて形成される例を挙げて説明したが、本発明は係る形態に限定されない。マーカロッド挿入孔15Hは、少なくとも最大角θ
maxを形成する2つの半直線によって挟まれる領域に形成されればよい。
【0071】
また、上記実施形態では、360度をクラッド母材20Rの中心軸の周りに形成されるコアロッド挿入孔10Hの数で割った大きさと最大角θ
maxの大きさとの差に基づいて、マーカロッド挿入孔15Hの内周面とマーカロッド15Rの外周面との間隔の大きさを定める場合を例示して説明した。しかし、マーカロッド挿入孔15Hの内周面とマーカロッド15Rの外周面との間隔の大きさはこれに限定されない。
【実施例】
【0072】
以下、実施例及び比較例を挙げて本発明の内容をより具体的に説明するが、本発明はこれに限定されるものでは無い。
【0073】
(実施例1)
偏心量が10μm以下であるコアロッド10Rを4本準備した。その後、クラッド母材20Rに孔開機を用いてコアロッド挿入孔10Hを4つ形成した。1つのコアロッド挿入孔10Hはクラッド母材20Rの中心軸に沿うように形成し、他の3つのコアロッド挿入孔10Hはクラッド母材20Rの中心軸から一定の距離離れた位置において3回回転対称となる位置に形成されることを狙って形成した。その後、それぞれのコアロッド挿入孔10Hの位置を3次元測定器によって測定した。その測定結果を「母材での測定結果」として下記表1に示す。クラッド母材20Rの中心軸の周りに形成される3つのコアロッド挿入孔10Hは、上記のように3回回転対称となる位置に形成されることを狙って形成したが、表1に示すように若干ずれた位置に形成されていた。次に、最大角θ
maxを形成する半直線L1,L2の間の領域にマーカロッド挿入孔15Hを形成した。
【0074】
次に、上記のように形成されたコアロッド挿入孔10Hにコアロッド10Rを挿入すると共にマーカロッド挿入孔15Hにマーカロッド15Rを挿入し、クラッド母材20R、コアロッド10R、及びマーカロッド15Rを一体化してマルチコア光ファイバ母材1Pを得た。さらに、このマルチコア光ファイバ母材1Pを線引きしてマルチコア光ファイバ1を得た。その後、それぞれのコア10の位置を3次元測定器によって測定し、その測定結果を「ファイバでの測定結果」として下記表1に示す。「ファイバでの測定結果」におけるθ
max,θ
1,θ
2は、それぞれ「母材での測定結果」におけるθ
max,θ
1,θ
2に対応する位置の角である。それぞれのコアロッド10Rの位置は一体化工程P5において移動するため、「母材での測定結果」では、θ
maxはθ
max,θ
1,θ
2の中で最大の角とはなっていない。また、表1に示す「測定結果の差」におけるΔθ
max,Δθ
1,Δθ
2は、θ
max,θ
1,θ
2についてファイバでの測定結果の値から母材での測定結果の値を引いた値である。
【0075】
(実施例2〜8)
上記実施例1と同様に実施例2〜8に係る7つのマルチコア光ファイバを製造し、実施例1と同様に評価した結果を表1に示す。
【0076】
(比較例1)
母材での測定結果においてθ
max,θ
1,θ
2のうち最も小さい角θ
1を形成する2つの半直線で挟まれる領域にマーカロッド挿入孔15Hを形成した以外は実施例1と同様にして比較例1に係るマルチコア光ファイバを製造し、実施例1と同様に評価した。その結果を表1に示す。
【0077】
【表1】
【0078】
表1に示すように、実施例1〜8に係るマルチコア光ファイバでは、母材での測定結果におけるθ
maxがファイバでの測定結果では小さくなり、それぞれのコアの配置間隔が等間隔に近付いたことがわかる。一方、比較例1に係るマルチコア光ファイバでは、母材での測定結果においてθ
max,θ
1,θ
2のうち一番小さかったθ
1がファイバでの測定結果において更に小さくなり、それぞれのコアの配置間隔が不均一となっていることがわかる。
【0079】
(実施例9〜13)
母材での測定結果におけるθ
maxの大きさに応じてマーカロッド15Rの外径の大きさを変更した以外は実施例1と同様にして、実施例9〜13に係るマルチコア光ファイバを製造した。より具体的には、母材での測定結果におけるθ
maxが小さいものから順に実施例9〜13に係るマルチコア光ファイバ母材とした。また、母材での測定結果におけるθ
maxから120度を引いた値が大きい程、マーカロッド15Rの外径を小さくした。すなわち、母材での測定結果におけるθ
maxが大きい程、マーカロッド挿入孔15Hの内径とマーカロッド15Rの外径との隙間を大きくした。なお、「120度」は、360度をクラッド母材の中心軸の周りに配置されるコアの数である3で割った値である。
【0080】
このようにして製造した実施例9〜13に係るマルチコア光ファイバを実施例1と同様に評価した結果を表2に示す。表2において、「クリアランス」は、マーカロッド挿入孔15Hの直径からマーカロッド15Rの直径を引いた値である。
【0081】
【表2】
【0082】
表2に示すように、360度をクラッド母材の中心軸の周りに形成されるコアロッド挿入孔の数で割った大きさと最大角の大きさとの差に基づいて、マーカロッド挿入孔の内周面とマーカロッドの外周面との隙間の大きさを定めることによって、それぞれのコアの配置間隔が等間隔に近付いたことがわかる。