(58)【調査した分野】(Int.Cl.,DB名)
【背景技術】
【0002】
複数の工作機械など、各種作業機が並べられた加工機械ラインには、加工工程に従ってワークを各作業機へと順番に搬送するためのワーク自動搬送機が設けられている。ワーク自動搬送機は、作業機の間を移動可能な走行装置に対し、ワークの受渡しを行うチャックを備えた搬送ロボットを搭載させるなどの構成を有している。そして、各作業機の主軸チャックなどに対して、搬送ロボットのチャックがワークのクランプ・アンクランプを行うことにより、そのワークの受渡しが行われる。例えば、下記特許文献1には、主軸チャックと搬送ロボットに補助チャックを加えたワーク搬送方法が開示されている。
【0003】
同文献に記載の従来例では、2台の旋盤にそれぞれ第1主軸チャックおよび第2主軸チャックと、第1補助チャックおよび第2補助チャックが設けられ、それぞれのチャックに対して搬送チャックがワークの受渡しを
行うための制御が行われるようになっている。具体的には、2つの制御態様があり、第1制御では、主軸チャックからワークを補助チャックが受取り、空いた主軸チャックへ搬送ロボットがワークを渡した後、搬送ロボットが補助チャックからワークを受け取る。また、第2制御では、搬送ロボットが補助チャックにワークを渡し、搬送ロボットが主軸チャックからワークを受け取った後、補助チャックが主軸チャックへワークを渡す。
【発明を実施するための形態】
【0011】
次に、本発明に係るワーク搬送方法および工作機械の一実施形態について、図面を参照しながら以下に説明する。本実施形態では、複数の工作機械などからなる加工機械ラインのワーク搬送方法および、その加工機械ラインを構成する工作機械について説明する。
図1は、加工機械ラインの一例を示した斜視図である。この加工機械ライン1は、工作機械などの作業機がモジュール化されたものであり、本実施形態では6台の加工モジュール5によってワークを段階的に加工する一つの加工ラインが構成されている。
【0012】
加工モジュール5は、2台ずつがベース2の上に搭載され、工作機械などの作業機がそれぞれ機体カバー6によって覆われている。6台の加工モジュール5は、幅方向に並べられ、互いが極めて近接した状態で配置されている。全てのモジュール5は、車輪を備えた可動ベッド上に組み付けられ、ベース2上に設けられたレールに沿って機体前後方向の移動が可能となっている。そのため、加工機械ライン1の全体をコンパクトすることができる一方で、機体前後方向の移動が可能な加工モジュール5に関し、それぞれメンテナンスや部品交換などの作業が容易となっている。
【0013】
加工機械ライン1は、各々の加工モジュール5に対して順番にワークを搬送するワーク自動搬送機が設けられ、ワークを搬送するための空間が前面部に構成されている。すなわち、加工モジュール5には作業機本体を覆う機体カバー6の前に、閉可能な前カバー7が各々に設けられている。その前カバー7は、加工モジュール5毎に設けられているが、隣との間に仕切は無いためライン全体に搬送空間30が広がり(
図2参照)、その中に搬送ロボットからなるワーク自動搬送機が構成されている。
【0014】
次に、加工機械ライン1を構成する加工モジュール5の一つである工作機械について説明する。
図2は、その工作機械10の内部構造を示した側面図である。この工作機械10は、前述したように車輪を備えた可動ベッド11の上に組み付けられ、ベース2の上に敷設されたレール201に沿った移動が可能になっている。工作機械10は、エンドミルやドリルなどの回転工具、或いはバイトなどの切削工具を備える工具台13を有し、その工具台13の旋回割出しが可能なタレット装置15が設けられている。工作機械10には、そのタレット装置15を加工軸方向に移動させる駆動装置が構成されている。
【0015】
工作機械10は、ワークを回転させる主軸装置12の回転軸(主軸)が、機体前後方向であって且つ水平になるように構成されている。その主軸装置12の主軸と平行な水平軸をZ軸とする。そして、Z軸に対して直交する機体上下方向であり、タレット装置15の工具をZ軸に対して進退させる移動軸をX軸とする。工作機械10は、主軸チャック16に把持されたワークに対して、タレット装置15の工具をZ軸方向とX軸方向とに移動させる2軸旋盤である。本実施形態の工作機械10では、機体幅方向(Y軸方向)の寸法が小さくなるように設計されている。
【0016】
主軸装置12は、回転自在に支持された主軸に対して主軸チャック16と従動プーリとが一体に形成され、スピンドルモータ21の回転がタイミングベルトを介して伝達されるよう構成されている。タレット装置15は、Z軸駆動装置17のZ軸スライド23に対して一体的に構成され、そのZ軸スライド23とともにX軸駆動装置18のX軸スライド26に搭載されている。X軸スライド26にはZ軸ガイド24が固定され、Z軸スライド23がそのZ軸ガイド24に対して摺動自在に取り付けられている。
【0017】
Z軸駆動装置17は、Z軸ガイド24に固定された支持フレームにネジ軸が軸受を介して取り付けられ、そのネジ軸がZ軸スライド23内の非回転の送りナットに螺合してボールネジ機構が構成されている。ネジ軸にはZ軸用サーボモータ22の回転が伝達され、送りナットを介してZ軸スライド23の直進運動が行われるようになっている。そのZ軸駆動装置17やタレット装置15を支持するX軸駆動装置18は、主軸装置12の横に設置されたコラム25に組み付けられている。特に、工作機械10の機体幅寸法を抑えるため、X軸駆動装置18は、主軸装置12の上方でZ軸駆動装置17を昇降させるよう構成されている。
【0018】
X軸駆動装置18は、コラム25に形成されたガイドを介して、X軸スライド26が鉛直方向に摺動自在に取り付けられている。コラム25には鉛直方向に配置されたネジ軸が回転可能に支持され、そのネジ軸がX軸スライド26内の非回転の送りナットに螺合してボールネジ機構が構成されている。ネジ軸にはX軸用サーボモータ29の回転が伝達され、送りナットを介してX軸スライド26の昇降が行われるようになっている。よって、本実施形態の工作機械10は、主軸チャック16に保持されたワークが回転し、Z軸駆動装置17およびX軸駆動装置18の駆動によりタレット装置15が移動し、ワークに対して工具が当てられて切削など所定の加工が行われるようになっている。
【0019】
工作機械10は、全体が機体カバー6によって覆われ、その内部には、主軸チャック16に把持されたワークに対して加工を行う加工室20が構成されている。加工室20の下には、切屑を回収する貯留槽27が設けられ、スクリューコンベアからなる不図示の排出装置が構成されている。そのため、回転するスクリューによって貯留槽27内の切屑が機体後方へと掻き出され、外部における切屑の回収が可能になっている。また、貯留槽27には使用済のクーラントが溜められ、フィルタを通して異物が除かれた状態でクーラントタンク28へと送られ、再生されたクーラントがポンプ29によって加工室20内の洗浄や加工点などへ噴射されるよう構成されている。
【0020】
加工機械ライン1では、開閉カバー7によって覆われた搬送空間30内を搬送ロボットが移動し、工作機械10の前で停止して、加工室20の壁面に形成された開口部を通してワークの受渡しが行われる。その開口部には上下に移動する自動開閉扉31が設けられている。そのため、自動開閉扉31が閉じることにより加工室20内での加工が可能になり、自動開閉扉31が開くことにより、搬送空間30を移動する搬送ロボットが加工室20内に侵入し、
図3に示すようにワークの受渡しが可能になっている。
【0021】
図3は、ワーク自動搬送機を簡略化して
示した側面図であり、図(A)にはワークの搬送状態が示され、図(B)にはワークの受渡し状態が示されている。このワーク自動搬送機3は、搬送ロボット33が走行台34に搭載され、ベース2に対して走行台34を走行させるための走行構造35が設けられている。走行構造35は、ベース2の前面部に水平に延びたラックやレールが固定され、走行台34には、そのレールを掴んで摺動する走行スライドや、ラックに噛合するピニオンを備えた走行用モータ36が一体になって構成されている。そして、走行台34には旋回テーブルを介して取り付けられた支持台333が取り付けられ、その上に搬送ロボット33が組み付けられている。
【0022】
搬送ロボット33は、上腕部材331と前腕部材332が関節機構を介して連結されたアームロボットであり、先端部にはワークWを把持するロボットハンド37が設けられている。ロボットハンド37は、表裏一対のチャック機構を備え、前腕部材332に対して軸支され、ワークWを把持するチャック面の角度調整が可能になっている。こうした搬送ロボット33は、
図3(A)に示すように、上腕部材331に前腕部材332が折り畳まれてコンパクトな状態になることで搬送空間30内の移動が可能になっている。一方で、搬送ロボット33は、
図3(B)に示すように、上腕部材331と前腕部材332との傾きを変化させた伸縮作動によって、ロボットハンド37による離れた位置でのワークWの受渡しが可能になっている。
【0023】
搬送ロボット33は、加工機械ライン1を構成する6台の加工モジュール5に対して移動し、前述したように伸縮作動によってロボットハンド37を移動させ、ワークWの受渡しが行われる。その際、主軸チャック16によっては、ワークWの受渡し位置に高い精度が要求される。そのため、ロボットハンド37で保持したワークを主軸チャック16へ位置合わせすることが非常に困難である。ワーク自動搬送機3では、走行台34の停止位置、搬送ロボット33の受渡し時の姿勢、そしてロボットハンド37の角度など、高度な位置決め制御が必要となるからである。
【0024】
そこで、本実施形態では、主軸チャック16と搬送ロボット33との間のワークWの受渡しを可能にするため、工作機械10内でワークWの中継を行うワーク搬送方法が採用されている。そして、工作機械10の場合には、タレット装置15がワークWを中継する中継装置として構成され、Z軸駆動装置17およびX軸駆動装置18が中継用駆動装置として構成されている。
図4は、そうしたワーク搬送方法の一実施形態を簡略化して示し側面図であり、
図5は、ワーク搬送方法を実行する主要な構成を示した図である。また、
図6は、タレット装置15を下側から見た図面である。
【0025】
工作機械10のタレット装置15は、工具台13にエンドミルやドリル、或いはバイトなどの工具42が着脱可能に取り付けられたものである。すなわち、ワークWを加工するための工具を保持するものである。本実施形態では、こうしたタレット装置15を中継装置として機能させるため、工具台13には複数の工具42とともに中継チャック41が組み付けられている。この中継チャック41は、単動の油圧シリンダを使用したコレットチャックであり、油圧によってチャックが閉じたクランプ状態となり、油圧解放時には内蔵されたスプリングによってチャックが開いたアンクランプ状態になるものである。中継チャック41は、油圧以外にもエアーによってチャックの開閉を行う別の構成のものであってもよい。
【0026】
また、本実施形態では、主軸チャック16は開き代が0.1mmのコレットチャックであるのに対し、中継チャック41の開き代は、0.7mmであり、ロボットハンド37のチャックの開き代は25mmである。つまり、中継チャック41は、主軸チャック16に比べてアンクランプ時の開きが大きく、それだけ搬送ロボット33によるワーク受渡し時の位置決めに余裕が生じることとなる。
【0027】
そして、工作機械10は、中継チャック41を搭載したタレット装置15が加工室20内を精度よく移動することが可能な構成を有している。つまり、タレット装置15を移動させるZ軸駆動装置17やX軸駆動装置18は当該精度の位置決めが可能な構成を有している。工作機械10によるワークWの加工は、ミクロン単位の精度が要求されるため、工具を搭載したタレット装置15には極めて正確な移動および位置決め精度が必要だからである。そこで、工作機械10は、タレット装置15を中継装置とすることで、本実施形態のワーク搬送方法を実行するよう構成されている。
【0028】
次に、
図7は、加工機械ライン1における加工モジュール5やワーク自動搬送機3の関係を簡略化して示した図である。加工機械ライン1では、1つのベース2に対して2台の加工モジュール5が搭載されている。そのベース2ごとにハブ(HUB)46が設けられ、ハブ46介して全ての加工モジュール5の制御装置45(工作機械10では制御装置19)が接続されている。更に、加工機械ライン1を構成するワーク自動搬送機3も搬送制御装置47を有し、その搬送制御装置47がハブ46を介して全ての加工モジュール5の加工制御装置15に接続されている。加工機械ライン1には、こうして各制御装置がケーブルを介して接続された通信システムが構築されている。
【0029】
工作機械10の制御装置19は、各種加工に関する加工プログラムやワークの種類、工具や治具に関するワーク加工情報などが格納され、本実施形態では更に、タレット装置15を中継装置としてワークWの搬送を行う中継搬送プログラムが格納されている。よって、工作機械10では、この中継搬送プログラムに従い、搬送ロボット33との間で
図4に示すようなワークWの受渡しが行われる。このとき工作機械10および
ワーク自動搬送機3は、中継装置(タレット装置15)を使用した搬送情報が共有されている。
【0030】
工作機械10では、タレット装置15が加工室20内の前部に移動し、旋回割出しによって中継チャック41が機体前方側に位置した状態で待機している。そして、開閉扉31が開くことにより、搬送ロボット33の動作によってロボットハンド37が加工室20内に侵入し、ワークWの受渡しが行われる。すなわち、
図5に示すように、ハンドチャック43から中継チャック41へとワークWの掴み替えが行われる。中継チャック41によりワークWがクランプされると、タレット装置15では工具台13が180°旋回し、ワークWが機体後方側つまり主軸チャック16側に向けられる。
【0031】
ワークWは、タレット装置15の移動により加工室20内をX軸方向およびZ軸方向に移動し、主軸チャック16へと運ばれる。X軸駆動装置18では、X軸用サーボモータ29の回転がボールネジ機構を介して直進運動に変換され、コラム25に形成されたガイドに沿ってX軸スライド26が上下方向に摺動する。高さ方向に位置決めされたワークWは、次にZ軸駆動装置17によって主軸チャック16へと嵌め合わされる。そのZ軸方向の移動は、Z軸用サーボモータ22の回転がボールネジ機構を介してZ軸スライド23の直進運動に変換されることによる。そして、位置決めされたワークWは、中継チャック41と主軸チャック16との間で受渡しが行われる。
【0032】
よって、本実施形態によれば、
ワーク自動搬送機3から受け取ったワークWを中継して主軸チャック16へと搬送させるようにしたため、主軸チャック16の開き代が微小であってもワークWの受渡しを適切に行うことができる。そして、本実施形態では、主軸チャック16に合わせて
ワーク自動搬送機3の精度を高める必要がなくなり、また中継装置を新たに設けることなくタレット装置15を利用しているため、コストをかけることなく開き代が微小なチャックへのワークWの搬送が可能になっている。
【0033】
工作機械10は、X軸方向の回転軸を中心に旋回するタレット装置15をX軸方向とZ軸方向の移動
を可能にした2軸旋盤であるため、機体の幅寸法が小さくなるように設計されたものである。そうしたタレット装置5を中継装置とし、またZ軸駆動装置17およびX軸駆動装置18を中継駆動装置として構成されているため、特にこの工作機械10では加工室20内でのワークWの移動距離が短く、搬送時間も短くすることができる。更に、
ワーク自動搬送機3は、工作機械10においてワークWの受渡しに要する時間を短縮することができる。
【0034】
以上、本発明の一実施形態について説明したが、本発明はこれらに限定されるものではなく、その趣旨を逸脱しない範囲で様々な変更が可能である。
例えば、前記実施形態では、工具台13に1台の中継チャック41を搭載した例を示したが、180°の対称的な位置2台の中継チャック41を設けるようにしてもよい。
また、例えば、前記実施形態では2軸旋盤の
工作機械10を例に挙げて説明したが、3軸加工の旋盤など他の構成の工作機械であってもよい。