(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0019】
以下、図面を参照しながら、本発明の実施の形態に係る蓄電素子について説明する。なお、以下で説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、製造工程、製造工程の順序などは、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、より好ましい形態を構成する任意の構成要素として説明される。また、各図において、寸法等は厳密には一致しない。
【0020】
(実施の形態)
まず、蓄電素子10の構成について、説明する。
【0021】
図1は、本発明の実施の形態に係る蓄電素子10の外観を模式的に示す斜視図である。また、
図2は、本発明の実施の形態に係る蓄電素子10の容器内方に配置されている構成要素を示す斜視図である。具体的には、
図2は、蓄電素子10から容器100の本体111を分離した状態での構成を示す斜視図である。また、
図3は、本発明の実施の形態に係る電極体400の構成を示す斜視図である。なお、
図3は、
図2に示した電極体400の巻回状態を一部展開した図である。
【0022】
蓄電素子10は、電気を充電し、また、電気を放電することのできる二次電池であり、より具体的には、リチウムイオン二次電池などの非水電解質二次電池である。例えば、蓄電素子10は、電気自動車(EV)、ハイブリッド電気自動車(HEV)、またはプラグインハイブリッド電気自動車(PHEV)に適用される。なお、蓄電素子10は、非水電解質二次電池には限定されず、非水電解質二次電池以外の二次電池であってもよいし、キャパシタであってもよい。
【0023】
図1に示すように、蓄電素子10は、容器100と、正極端子200と、負極端子300とを備えている。また、
図2に示すように、容器100内方には、正極集電体120と、負極集電体130と、電極体400とが収容されている。
【0024】
なお、上記の構成要素の他、正極集電体120及び負極集電体130の側方に配置されるスペーサ、容器100内の圧力が上昇したときに当該圧力を開放するための安全弁、または、電極体400等を包み込む絶縁フィルムなどが配置されていてもよい。また、蓄電素子10の容器100の内部には電解液(非水電解質)などの液体が封入されているが、当該液体の図示は省略する。なお、容器100に封入される電解液としては、蓄電素子10の性能を損なうものでなければその種類に特に制限はなく、様々なものを選択することができる。
【0025】
容器100は、矩形筒状で底を備える本体111と、本体111の開口を閉塞する板状部材である蓋体110とで構成されている。また、容器100は、電極体400等を内部に収容後、蓋体110と本体111とが溶接等されることにより、内部を密封することができるものとなっている。なお、蓋体110及び本体111の材質は、特に限定されないが、例えばステンレス鋼、アルミニウム、アルミニウム合金など溶接可能な金属であるのが好ましい。
【0026】
電極体400は、正極と負極とセパレータとを備え、電気を蓄えることができる部材である。正極は、アルミニウムやアルミニウム合金などからなる長尺帯状の正極基材層上に正極活物質層が形成されたものである。負極は、銅や銅合金などからなる長尺帯状の負極基材層上に負極活物質層が形成されたものである。セパレータは、樹脂からなる微多孔性のシートである。電極体400の詳細な構成については、後述する。
【0027】
そして、
図3に示すように、電極体400は、正極と負極との間にセパレータが挟み込まれるように層状に配置されたものが巻回されて形成されている。なお、同図では、電極体400の形状としては長円形状を示したが、円形状または楕円形状でもよい。
【0028】
図2に戻り、正極端子200は、電極体400の正極に電気的に接続された電極端子であり、負極端子300は、電極体400の負極に電気的に接続された電極端子である。つまり、正極端子200及び負極端子300は、電極体400に蓄えられている電気を蓄電素子10の外部空間に導出し、また、電極体400に電気を蓄えるために蓄電素子10の内部空間に電気を導入するための金属製の電極端子である。また、正極端子200及び負極端子300は、電極体400の上方に配置された蓋体110に取り付けられている。
【0029】
正極集電体120は、電極体400の正極と容器100の本体111の壁面との間に配置され、正極端子200と電極体400の正極とに電気的に接続される導電性と剛性とを備えた部材である。なお、正極集電体120は、電極体400の正極基材層と同様、アルミニウムまたはアルミニウム合金などで形成されている。
【0030】
負極集電体130は、電極体400の負極と容器100の本体111の壁面との間に配置され、負極端子300と電極体400の負極とに電気的に接続される導電性と剛性とを備えた部材である。なお、負極集電体130は、電極体400の負極基材層と同様、銅または銅合金などで形成されている。
【0031】
具体的には、正極集電体120及び負極集電体130は、本体111の壁面から蓋体110に亘って当該壁面及び蓋体110に沿って屈曲状態で配置される金属製の板状部材である。また、正極集電体120及び負極集電体130は、蓋体110に固定的に接続されており、電極体400の正極及び負極にそれぞれ溶接などによって固定的に接続されている。これにより、電極体400は、容器100の内部において、正極集電体120及び負極集電体130により、蓋体110から吊り下げられた状態で保持される。
【0032】
次に、電極体400の構成について、詳細に説明する。
【0033】
図4は、本発明の実施の形態に係る電極体400の構成を示す断面図である。具体的には、同図は、
図3に示された電極体400の巻回状態が展開された部分をA−A’断面で切断した場合の断面を示す図である。
【0034】
なお、
図4では、巻回されることにより繰り返し積層された、複数組の正極410、負極420及びセパレータ430のうち1組のみを図示し、他の組についての図示は省略している。
【0035】
図3及び
図4に示すように、電極体400は、正極410と負極420と2つのセパレータ430とが積層されて形成されている。具体的には、電極体400は、セパレータ430、負極420、セパレータ430及び正極410の順に配置されるようにして、巻回されて形成されている。
【0036】
正極410は、アルミニウムまたはアルミニウム合金からなる長尺帯状の導電性の正極集電箔の表面に、正極活物質層が形成された電極板である。具体的には、
図4に示すように、正極410は、正極基材層411と、正極活物質層412及び413とを有する。
【0037】
正極基材層411は、重合圧延によって形成された金属箔であり、例えば、アルミニウムまたはアルミニウム合金などからなる長尺帯状の導電性の集電箔である。
【0038】
正極活物質層412及び413は、正極基材層411上に形成された活物質層である。
【0039】
具体的には、正極活物質層412は、正極基材層411の内周側(
図4のY軸方向プラス側)に配置される活物質層であり、正極活物質層413は、正極基材層411の外周側(
図4のY軸方向マイナス側)に配置される活物質層である。
【0040】
ここで、正極活物質層412及び413は、正極活物質とバインダとを含有する。正極活物質層412及び413に用いられる正極活物質としては、リチウムイオンを吸蔵放出可能な正極活物質であれば、適宜公知の材料を使用できる。例えば、Li
xMO
y(Mは少なくとも一種の遷移金属を表す)で表される複合酸化物(Li
xCoO
2、Li
xNiO
2、Li
xMn
2O
4、Li
xMnO
3、Li
xNi
yCo
(1−y)O
2、Li
xNi
yMn
zCo
(1−y−z)O
2、Li
xNi
yMn
(2−y)O
4など)、あるいは、Li
wMe
x(XO
y)
z(Meは少なくとも一種の遷移金属を表し、Xは例えばP、Si、B、V)で表されるポリアニオン化合物(LiFePO
4、LiMnPO
4、LiNiPO
4、LiCoPO
4、Li
3V
2(PO
4)
3、Li
2MnSiO
4、Li
2CoPO
4Fなど)から選択することができる。また、これらの化合物中の元素またはポリアニオンは一部他の元素またはアニオン種で置換されていてもよく、表面にZrO
2、MgO、Al
2O
3などの金属酸化物や炭素を被覆されていてもよい。さらに、ジスルフィド、ポリピロール、ポリアニリン、ポリパラスチレン、ポリアセチレン、ポリアセン系材料などの導電性高分子化合物、擬グラファイト構造炭素質材料などが挙げられるが、これらに限定されるものではない。また、これらの化合物は単独で用いてもよく、2種以上を混合して用いてもよい。
【0041】
また、正極410は、正極集電体120と接続される部分であるX軸方向マイナス側の端部(正極活物質層412及び413が形成されていない正極基材層411の端部)が、セパレータ430から突出して配置され、当該突出している部分で正極集電体120と電気的及び機械的に接続されている。つまり、電極体400は、最外周に位置する正極基材層411の外周側の面で正極集電体120に当接される。
【0042】
負極420は、銅または銅合金からなる長尺帯状の導電性の負極集電箔の表面に、負極活物質層が形成された電極板である。具体的には、
図4に示すように、負極420は、負極基材層421と、負極活物質層422及び423とを有する。
【0043】
負極基材層421は、電解析出によって形成された金属箔であり、例えば、銅または銅合金などからなる長尺帯状の導電性の集電箔である。
【0044】
負極活物質層422及び423は、負極基材層421上に形成された活物質層である。具体的には、負極活物質層422は、負極基材層421の内周側(
図4のY軸方向プラス側)に配置される活物質層であり、負極活物質層423は、負極基材層421の外周側(
図4のY軸方向マイナス側)に配置される活物質層である。
【0045】
ここで、負極活物質層422及び423は、負極活物質とバインダとを含有する。負極活物質層422及び423に用いられる負極活物質としては、リチウムイオンを吸蔵放出可能な負極活物質であれば、適宜公知の材料を使用できる。例えば、リチウム金属、リチウム合金(リチウム−アルミニウム、リチウム−鉛、リチウム−錫、リチウム−アルミニウム−錫、リチウム−ガリウム、及びウッド合金などのリチウム金属含有合金)の他、リチウムを吸蔵・放出可能な合金、炭素材料(例えば黒鉛、難黒鉛化炭素、易黒鉛化炭素、低温焼成炭素、非晶質カーボンなど)、金属酸化物、リチウム金属酸化物(Li
4Ti
5O
12など)、ポリリン酸化合物などが挙げられる。
【0046】
セパレータ430は、樹脂からなる微多孔性のシートであり、有機溶媒と電解質塩とを含む電解液が含浸されている。ここで、セパレータ430としては、有機溶剤に不溶な織布、不織布、ポリエチレンなどのポリオレフィン樹脂からなる合成樹脂微多孔膜が用いられ、材料、重量平均分子量や空孔率の異なる複数の微多孔膜が積層してなるものや、これらの微多孔膜に各種の可塑剤、酸化防止剤、難燃剤などの添加剤を適量含有しているものや片面及び両面にシリカなどの無機酸化物を塗布したものであってもよい。特に、合成樹脂微多孔膜を好適に用いることができる。中でもポリエチレン及びポリプロピレン製微多孔膜、アラミドやポリイミドと複合化させたポリエチレン及びポリプロピレン製微多孔膜、または、これらを複合した微多孔膜などのポリオレフィン系微多孔膜が、厚さ、膜強度、膜抵抗などの面で好適に用いられる。
【0047】
また、負極420は、負極集電体130と接続される部分であるX軸方向プラス側の端部(負極活物質層422及び423が形成されていない負極基材層421の端部)が、セパレータ430から突出して配置され、当該突出している部分で負極集電体130と電気的及び機械的に接続されている。つまり、電極体400は、最外周に位置する負極基材層421の外周側の面で負極集電体130に当接される。
【0048】
セパレータ430は、正極410と負極420との間に配置される長尺帯状のセパレータであり、具体的には、樹脂からなる微多孔性のシートであり、有機溶媒と電解質塩とを含む電解液が含浸されている。ここで、セパレータ430としては、有機溶剤に不溶な織布、不織布、ポリエチレンなどのポリオレフィン樹脂からなる合成樹脂微多孔膜が用いられ、材料、重量平均分子量や空孔率の異なる複数の微多孔膜が積層してなるものや、これらの微多孔膜に各種の可塑剤、酸化防止剤、難燃剤などの添加剤を適量含有しているものや片面及び両面にシリカなどの無機酸化物を塗布したものであってもよい。特に、合成樹脂微多孔膜を好適に用いることができる。中でもポリエチレン及びポリプロピレン製微多孔膜、アラミドやポリイミドと複合化させたポリエチレン及びポリプロピレン製微多孔膜、または、これらを複合した微多孔膜などのポリオレフィン系微多孔膜が、厚さ、膜強度、膜抵抗などの面で好適に用いられる。
【0049】
このセパレータ430は、
図3に示すように、巻回方向の端部が、正極410及び負極420の当該巻回方向の端部から突出して配置されている。
【0050】
このように、電極体400は、正極410と負極420とが巻回されることにより形成されている。
【0051】
ここで、近年、蓄電素子10に対して、さらなる高エネルギー密度化が要求されている。そのため、上述した正極410の正極基材層411及び負極420の負極基材層421の薄肉化が求められている。
【0052】
そこで、本実施の形態では、正極基材層411として、重合圧延によって形成された金属箔を用いることで、当該正極基材層411の薄肉化を実現している。また、負極基材層421として、電解析出によって形成された金属箔を用いることで、当該負極基材層421の薄肉化を実現している。
【0053】
重合圧延とは、複数枚(例えば、2枚)の金属箔を重ねた状態で圧延ロール間を通すことにより、1枚の金属箔を当該圧延ロール間に通した場合よりも厚みの小さい(薄肉)金属箔を製造する方法である。
【0054】
このとき、製造された金属箔は、圧延ロール間を通る際に圧延ロールに当接した面が比較的平坦に形成されるのに対し、当該面の反対側の面であって他の金属箔に当接した面が比較的凹凸形状に形成される。よって、正極410の正極基材層411は、平滑面と、当該平滑面よりも表面粗さの大きな粗面とを有する。このため、一方の面と他方の面とで、表面粗さの異なる金属箔を容易に得ることができる。
【0055】
重合圧延によって金属箔を製造することによって、後述する電解析出で形成する場合よりも、結晶サイズが大きく且つ屈曲性に優れる金属箔を得ることができる。また、1枚の金属箔を圧延する場合よりも、少ない圧延回数で薄い金属箔を得ることができる。少ない圧延回数とすることができることによって、通常の圧延方法によって製造された同じ厚みの金属箔と比較して、破れにくい金属箔を得ることができる。これは、金属箔をプレスロールに通す回数が減ることによって、金属の加工硬化が抑制されるためと考えられる。
【0056】
また、電解析出とは、回転する電解ロールに金属を電着させることにより、1枚の金属箔を当該圧延ロール間に通した場合よりも厚みの小さい(薄肉の)金属箔を製造する方法である。
【0057】
このとき、製造された金属箔は、電解ロールに当接した面が比較的平坦に形成されるのに対し、当該面の反対側の面であって電解ロールに当接しない面が比較的凹凸形状に形成される。よって、負極420の負極基材層421は、正極基材層411と同様に、平滑面と、当該平滑面よりも表面粗さの大きな粗面とを有する。このため、一方の面と他方の面とで、表面粗さの異なる金属箔を容易に得ることができる。
【0058】
電解析出によって金属箔を製造することによって、重合圧延で形成する場合よりも、少ない工数及び精度の高い厚み精度の金属箔を得ることができる。これは、電解析出時に印加する電気量を調整することによって電解ロールに電着させる金属量を変化させることができるためである。
【0059】
なお、本実施の形態において、正極基材層411及び負極基材層421の各々が有する平滑面は、特許請求の範囲に記載の「第一面」に相当し、正極基材層411及び負極基材層421の各々が有する粗面は特許請求の範囲に記載の「第二面」に相当する。また、本実施の形態では、粗面は、その全体において平滑面よりも表面粗さが大きいとして説明しているが、少なくとも後述する屈曲部において、平滑面よりも表面粗さが大きければよい。例えば、屈曲部以外の部分において、粗面の表面粗さが、平滑面の表面粗さと同等であってもかまわないし、平滑面の表面粗さより小さくてもかまわない。
【0060】
また、表面粗さは、中心線平均粗さ(Ra)によって規定され、JIS B 0601−1994に準拠してレーザ顕微鏡にて測定することができる。具体的には、正極410及び負極420のそれぞれについて、超音波洗浄することによって、活物質を除去する。その後、正極基材層411及び負極基材層421のそれぞれについて、JIS B 0601−1994に準拠したレーザ顕微鏡により、正極410及び負極420のそれぞれの第一面及び第二面の中心線平均粗さ(Ra)を測定することができる。
【0061】
本実施の形態において、正極基材層411が有する平滑面の中心平均粗さ(Ra)は、0.01〜0.1μmであることが好ましく、正極基材層411が有する粗面の中心平均粗さ(Ra)は、0.1〜2μmが好ましい。また、本実施の形態において、負極基材層421が有する平滑面の中心平均粗さ(Ra)は、0.01〜0.2μmであることが好ましく、負極基材層421が有する粗面の中心平均粗さ(Ra)は、0.2〜2μmであることが好ましい。
【0062】
本実施の形態において、電極体400は、正極基材層411及び負極基材層421の粗面が内周側になるように、正極410と負極420とが巻回されることにより形成されている。言い換えると、正極基材層411及び負極基材層421の粗面は、正極410と負極420とが巻回されることで屈曲された部分において、内側に配置されている。この構成により、本実施の形態に係る蓄電素子10は、電池性能の性能低下を低減することができる。
【0063】
この理由について、以下、負極420の詳細な構成について説明しながら、併せて述べえる。
【0064】
なお、本実施の形態では、負極420と正極410とは、材質及びサイズが異なるものの、基材層(集電箔)の粗面が内周側になるように巻回されるという点では同じである。そのため、以下では、主として、負極420に関する事項について説明し、正極410に関する事項についてはその説明を適宜省略する。また、負極活物質層422は、上述したように負極活物質とバインダとを含有するが、以降の図では、負極活物質以外のバインダ等の図示については省略する。
【0065】
図5は、本発明の実施の形態に係る負極420の巻回前の状態を示す断面図、及び、その一部拡大図である。具体的には、同図の(a)は、巻回前の状態における負極420を厚さ方向(Y軸方向)に切断した場合の断面を示す図であり、同図の(b)は、同図の(a)の負極基材層421と負極活物質層423との境界付近を拡大して示す図であり、同図の(c)は、同図の(a)の負極基材層421と負極活物質層422との境界付近を拡大して示す図である。
【0066】
また、
図6は、本発明の実施の形態に係る電極体400の屈曲部400aにおける負極420の状態を示す断面図である。具体的には、同図の(a)は、電極体400を当該電極体400の巻回軸に垂直な面(YZ平面)で切断した場合の模式図であり、同図の(b)は、同図の(a)の一部拡大図である。なお、電極体400の屈曲部400aとは、電極体400のうち正極410と負極420とが屈曲された部分を指す。
【0067】
図5に示すように、負極基材層421は、粗面421a及び平滑面421bを有し、負極活物質層422及び423が当該粗面421a上及び当該平滑面421b上に、例えば塗布されることにより配置される。
【0068】
ここで、負極活物質層422及び423の各々と負極基材層421との間には、空隙422a及び423aが形成される。空隙422aは、具体的には、負極基材層421の粗面421aと負極活物質層422との間に形成され、より具体的には、当該粗面421aと負極活物質層422に含有される負極活物質501及びバインダ等とによって形成される。また、空隙423aは、具体的には、負極基材層421の平滑面421bと負極活物質層423との間に形成され、より具体的には、当該平滑面421bと負極活物質層423に含有される負極活物質501及びバインダ等とによって形成される。
【0069】
これら空隙422a及び423aの大きさを比較すると、空隙422aは空隙423aより大きくなっている。これは、空隙422aが粗面421aをなす複数の局所的な凸部と負極活物質層422とで形成されるのに対し、空隙422bは実質的に平坦な面と負極活物質層423とで形成されることによる。
【0070】
ここで、空隙422a及び422bの大きさは、つぎの通りに測定することができる。具体的には、負極420又は正極410をクロスセクションポリッシャ(CP)加工し、厚み方向に切断した断面をSEM観察する。SEM観察像において観察される基材層と粗面との間の空隙のうち、ランダムに選択した少なくとも100個の空隙の面積をそれぞれ測定する。測定した空隙の面積の平均値を算出することによって、空隙422aの大きさを測定することができる。また、SEM観察像において観察される基材層と平滑面との間の空隙のうち、ランダムに選択した少なくとも100個の空隙の面積をそれぞれ測定する。測定した空隙の面積の平均値を算出することによって、空隙422bの大きさを測定することができる。
【0071】
このように構成された負極420は、負極基材層421の粗面421aが内周側になるように巻回されることにより、
図6の(b)に示すように、電極体400の屈曲部400aにおいて、負極基材層421の粗面421aが内側に配置される。
【0072】
このとき、屈曲部400aの内側では、負極基材層421と負極活物質層422との間の空隙が、負極420が屈曲されることにより屈曲前よりも小さくなる。よって、負極基材層421の両面が共に平滑面421bで構成されている場合には、次のような問題が生じる虞がある。
【0073】
蓄電素子10の電解液は、正極410及び負極420内の空隙を通って拡散することにより、電極体400の内部へ浸透する。よって、空隙が小さくなる屈曲部400aの内側では、電解液が浸透しにくくなるという問題がある。
【0074】
また、特に、負極活物質層422が、蓄電素子10の充放電により体積が変化するような負極活物質501等を含むと、充放電サイクルに応じて当該空隙が一層小さくなる場合がある。また、この場合、電解液は、当該蓄電素子10の充放電サイクルに応じて、次のような移動を繰り返す。具体的には、当該電解液は、負極活物質501が膨張する場合に電極体400の内部から外部に押し出され、負極活物質501が収縮する場合に、当該外部から内部に浸透して戻る。
【0075】
よって、負極基材層421の両面が共に平滑面421bで構成されている場合には、空隙が小さくなる屈曲部400aの内側において、蓄電素子10の充放電の進行に対して、正極410及び負極420における反応が追いつかない場合がある。つまり、電極体400の反応が不均一になる場合があり、この場合、例えば容量低下または抵抗上昇等の局所的な劣化が生じる虞が大きくなる。
【0076】
この傾向は、特に、蓄電素子10の大型化に伴い顕著になる。すなわち、高エネルギー密度化の要求により正極410及び負極420内の空隙が小さくなるように構成されたり、電極体400の外部に配置された電解液である余剰電解液の浸透経路が長かったりするような、例えば、中大型の車載用リチウムイオン二次電池等で顕著となる。
【0077】
この理由は、電極体400外部に押し出された電解液が電極体400中央に戻るまでの浸透距離が長くなることで、不均一反応が起こりやすくなるためである。不均一反応がおこった場合、電気化学反応に寄与しない又は寄与しにくい活物質が存在することとなる。そのような活物質が存在により、蓄電素子10の容量低下または抵抗上昇等、蓄電素子10の性能低下が生じる虞がある。
【0078】
このように、負極基材層421の両面が共に平滑面421bで構成されている場合には、屈曲部400aにおいて、負極基材層421と内側の負極活物質層422とで形成される空隙が、負極基材層421と外側の負極活物質層423とで形成される空隙よりも小さくなる。そのため、電極体400の反応が不均一になるといった、電池性能の局所的な劣化が生じるという問題がある。
【0079】
これに対して、本実施の形態では、負極基材層421が平滑面421bと粗面421aとを有し、屈曲部400aにおいて、粗面421aが内側に配置されている。つまり、電極体400は、粗面421aが内周側になるように形成されている。
【0080】
これにより、本実施の形態では、
図5に示す屈曲前の状態において、内周側の空隙422aを外周側の空隙423aよりも大きくできる。よって、
図6に示す屈曲後の状態でも、内周側の空隙422bを外周側の空隙423bと、例えば同等以上に維持することができる。つまり、屈曲部400aにおいて、負極基材層421と粗面421a側の負極活物質層422とで形成される空隙422bは、負極基材層421と平滑面421b側の負極活物質層423とで形成される空隙423b以上の大きさである。
【0081】
なお、上記説明では、屈曲部400aにおいて、空隙422bは空隙423b以上の大きさであるとしたが、これに限らず、空隙422bが空隙423bより小さくてもよい。
【0082】
つまり、空隙422bと空隙423bとの大小関係は、屈曲前の状態における空隙422aと空隙423aとの大きさの差、及び、屈曲部400aにおける曲率等の種々の要因によって規定される。そのため、屈曲前に、空隙422aが空隙423aよりも大きい場合であっても、屈曲後に、空隙422bが空隙423bより小さくなる場合がある。
【0083】
この場合、本実施の形態より多少劣るものの、本実施の形態と同様に、屈曲部400aの内側において、負極基材層421と負極活物質層422との間の空隙を通って電解液が電極体内部に浸透できるので、蓄電素子10の性能低下を低減することができる。
【0084】
以上のように、本発明の実施の形態に係る蓄電素子10によれば、正極基材層411及び負極基材層421の少なくとも一方(本実施の形態では両方)が平滑面と粗面とを有し、粗面は、正極410と負極420の当該少なくとも一方が屈曲された部分(屈曲部400a)において、内側に配置されている。
【0085】
ここで、屈曲部400aの内側では、屈曲によって活物質層が圧縮されるため、活物質層中の空隙が小さくなる場合がある。この場合、このような空隙を通って電極体400内部へ浸透する蓄電素子10の電解液の浸透性が低下する虞がある。そこで、当該屈曲部400aにおいて、比較的表面粗さの大きな粗面が内側になるように正極基材層411及び負極基材層421を配置することにより、正極基材層411と正極活物質層412との間の空隙、及び、負極基材層421と負極活物質層422との間の空隙を確保することができる。これにより、当該屈曲部400aの内側において、正極基材層411と正極活物質層412との間の空隙、及び、負極基材層421と負極活物質層422との間の空隙を通って、電解液が電極体400内部に浸透できるので、蓄電素子10の性能低下を低減することができる。
【0086】
また、屈曲部400aでは、屈曲によって内側の活物質層(正極活物質層412及び負極活物質層422)ほど圧縮されるために、内側の活物質層と外側の活物質層(正極活物質層413及び負極活物質層423)とで空隙の大きさが異なる場合がある。この場合、内側の活物質層と外側の活物質層とで電解液の浸透性が異なるために、電極体400の反応が不均一となって局所的な劣化が生じる虞がある。そこで、屈曲部400aにおいて、比較的表面粗さの大きな粗面が内側になるように正極基材層411及び負極基材層421を配置することにより、内側の活物質層と外側の活物質層との電解液の浸透性を均一化することができるので、蓄電素子10の局所的な劣化を抑制することができる。
【0087】
また、屈曲部400aにおいて、負極基材層421と粗面421a側の負極活物質層422とで形成される空隙422bは、負極基材層421と平滑面421b側の負極活物質層423とで形成される空隙423b以上の大きさである。
【0088】
これにより、屈曲部400aの内側において、電解液の浸透性を一層向上させることができる。ここで、充放電により体積が変化するような電極体400では、膨張時において電解液が電極体400の外へ押し出され、収縮時において電解液が電極体400の外から内部へ浸透して戻る。よって、特にこのような電極体400では、当該屈曲部400aの内側において電解液の浸透性が低い場合に、蓄電素子10の性能低下が顕著となる。よって、正極基材層411及び負極基材層421と粗面側の活物質層(正極活物質層412及び負極活物質層422)とで形成される空隙の大きさを、正極基材層411及び負極基材層421と平滑面側の活物質層(正極活物質層413及び負極活物質層423)とで形成される空隙の大きさ以上にすることにより、充放電により体積が変化するような電極体400において、蓄電素子10の性能低下を一段と抑制することができる。
【0089】
また、電極体400は、正極基材層411及び負極基材層421の粗面が内周側になるように、正極410と負極420とが巻回されることにより形成されている。
【0090】
これにより、正極基材層411及び負極基材層421の各々として、正極410及び負極420の巻回前(屈曲前)の長尺帯状の状態において、一方の面が一様に平滑面で形成され、他方の面が一様に粗面で形成された箔を用いることができる。このような正極基材層411又は負極基材層421を用いることにより、屈曲される部分を特定した後に粗さを調整する必要が無くなるため、蓄電素子のコスト削減を図ることができる。
【0091】
また、正極410及び負極420の電極体400の外方に露出する面を、常に、比較的表面粗さの小さい平滑面421bとすることができる。よって、正極集電体120及び負極集電体130を電極体400の外方から当該電極体400に接続することで、これら正極集電体120及び負極集電体130と電極体400とが平滑面で接続される。したがって、正極集電体120及び負極集電体130と電極体400との電気的な接続及び機械的な接続を容易に確保することができる。
【0092】
また、正極基材層411及び負極基材層421の少なくとも一方(本実施の形態では、負極基材層421)は、電解析出によって形成された金属箔である。
【0093】
これにより、重合圧延で形成する場合よりも、少ない工数及び精度の高い厚み精度で、平滑面421bと粗面421aとを有する金属箔を製造することができる。
【0094】
また、本実施の形態では、正極基材層411及び負極基材層421の少なくとも一方(本実施の形態では、正極基材層411)は、重合圧延によって形成された金属箔である。
【0095】
これにより、電解析出で形成する場合よりも、結晶サイズが大きく且つ屈曲性に優れるとともに、平滑面421bと粗面421aとを有する金属箔を製造することができる。ここで、当該要件とは、正極基材層411の場合、例えば、蓄電素子10において溶解せずに安定的に存在し、かつ、高い電気伝導性を有することである。また、負極基材層421の場合、例えば、リチウム金属と合金を形成せず、かつ、高い電気伝導性を有することである。
【0096】
(変形例1)
次に、本実施の形態の変形例1について説明する。
図7は、本発明の実施の形態の変形例1に係る電極体400Aの構成を示す図である。具体的には、同図の(a)は、本変形例に係る電極体400Aを示す斜視図であり、同図の(b)は、本変形例に係る電極体400Aの屈曲部400bにおける負極の状態を示す断面図である。なお、同図の(b)は、屈曲部400bを電極体400Aの巻回軸に垂直な面(YZ平面)で切断した場合の断面が示されている。
【0097】
同図に示す本変形例に係る電極体400Aは、上記実施の形態に係る電極体400と比較して、以下の点で異なる。すなわち、上記実施の形態では、電極体400は、正極410と負極420とが巻回されることにより形成されていた。これに対し、本変形例では、電極体400Aは、正極410と負極420とが山折りと谷折りとの繰り返しにより蛇腹状に積層されることにより形成されている。
【0098】
このような電極体400Aにおいても、正極410と負極420とが屈曲された部分である屈曲部400bにおいて、基材層の粗面が内側になるように形成されている。具体的には、
図7の(b)に示すように、負極420では、屈曲部400bにおいて、負極基材層421の粗面421aが内側に配置されている。
【0099】
これにより、
図7の(b)に示すように、屈曲部400bの内側の空隙422cを、当該屈曲部400bの外側の空隙423cと、例えば同等以上に維持することができる。なお、正極410においても同様である。
【0100】
以上のように、本変形例に係る電極体400Aを備える蓄電素子によれば、上記実施の形態と同様の効果を奏することができる。すなわち、屈曲部400bの内側において、正極基材層411と正極活物質層412との間の空隙、及び、負極基材層421と負極活物質層422との間の空隙を通って、電解液が電極体400A内部に浸透できるので、蓄電素子の性能低下を低減することができる。
【0101】
(変形例2)
次に、本実施の形態の変形例2について説明する。上記実施の形態及びその変形例1では、正極410及び負極420の各々が平滑面と粗面とを有するとした。これに対し、本変形例では、空孔率の小さい活物質層(正極活物質層412及び413、または、負極活物質層422及び423)を有する正極410または負極420における基材層(正極基材層411または負極基材層421)が、平滑面と粗面とを有する。
【0102】
図8は、本発明の実施の形態の変形例2に係る電極体の構成を示す拡大断面図である。具体的には、同図の(a)は、本変形例に係る電極体における、正極410の正極基材層411と内周側(Y軸方向プラス側)の正極活物質層412との境界付近、及び、負極420の負極基材層421と内周側(Y軸方向プラス側)の負極活物質層422との境界付近を拡大して示す図である。また、同図の(b)及び(c)は、同図の(a)の一部拡大図である。
【0103】
本変形例において、負極420が有する負極活物質層422の空孔率は、正極410が有する正極活物質層412の空孔率よりも小さい。ここで、「活物質層の空孔率」とは、活物質層中に位置する空隙の体積を、空隙を含めた活物質層の体積で除したものである。具体的に、活物質層の空孔率は、水銀圧入法によって測定する。負極活物質層422及び正極活物質層412における空孔率を測定する場合、負極電位が1.0V以上になるように電池を放電した後、当該電池を乾燥雰囲気下で解体する。ついで、負極420及び正極410をジメチルカーボネートで洗浄した後、2時間以上真空乾燥する。その後、水銀圧入法による測定を実施して負極活物質層422及び正極活物質層412の空孔率を求めることができる。
【0104】
このような空孔率の差は、例えば、正極活物質層412に含有される正極活物質502等の粒径と、負極活物質層422に含有される負極活物質501等の粒径との差、又は正極活物質層412を製造する際に加えるプレス圧と、負極活物質層422を製造する際に加えるプレス圧との差、によって生じる。具体的には、正極活物質502の粒径をd2、負極活物質501の粒径をd1とすると、d2>d1とすることによって、負極活物質層422の空孔率を小さくしやすい。また、正極活物質層412を製造する際に加えるプレス圧をP1、負極活物質層422を製造する際に加えるプレス圧をP2とすると、P1>P2とすることによって、負極活物質層422の空孔率を小さくしやすい。
【0105】
ここで、正極基材層411の正極活物質層412側の面(内周側の面:Y軸方向プラス側の面)の表面粗さと、負極基材層421の負極活物質層422側の面(内周側の面:Y軸方向プラス側の面)の表面粗さとが同等である場合、次のような問題が生じる。
【0106】
すなわち、負極活物質層422が有する空隙422sが、正極活物質層412が有する空隙412sよりも小さいことにより、当該場合、負極基材層421と負極活物質層422との間に形成される空隙は、正極基材層411と正極活物質層412との間に形成される空隙よりも小さくなる。
【0107】
したがって、当該場合、負極基材層421と負極活物質層422との間において、実施の形態で説明したような電池性能の局所的な劣化が生じやすい。
【0108】
そこで、本変形例では、正極410及び負極420のうち、空孔率が小さい活物質層である負極活物質層422を有する負極420の負極基材層421が、平滑面421b(
図5及び
図6参照)と粗面421aとを有する。また、上記実施の形態及び変形例1と同様に、当該粗面421aは、正極410と負極420とが屈曲された部分において、内側に配置されている。
【0109】
以上のように、本変形例に係る蓄電素子によれば、正極410及び負極420のいずれか一方(本変形例では負極420)が有する基材層(本変形例では負極基材層421)が、平滑面421b(
図5及び
図6参照)と粗面421aとを有する。ここで、当該一方が有する活物質層(本変形例では負極活物質層422)の空孔率は、他方が有する活物質層(本変形例では正極活物質層412)の空孔率よりも小さい。
【0110】
ここで、電解液は、活物質層中の空孔率が小さいほど、浸透性が低下する。よって、正極410と負極420とが屈曲された部分(
図6の屈曲部400a参照)であって、特に空孔率が小さい活物質層が位置する部分において、上述した電解液の浸透性の低下が生じやすい。そこで、空孔率の小さい活物質層(本変形例では負極活物質層422)が内側に配置された基材層(本変形例では負極基材層421)において、比較的表面粗さの大きな粗面421aを内側に配置することにより、電解液の浸透性の低下が生じやすい箇所における当該低下を低減することができる。つまり、蓄電素子の劣化が生じやすい箇所における当該劣化を抑制することができる。
【0111】
なお、本変形例では、負極活物質層422の空孔率が正極活物質層412の空孔率よりも小さく、負極基材層421が平滑面421b(
図5及び
図6参照)と粗面421aとを有するとした。しかし、正極活物質層412の空孔率が負極活物質層422の空孔率よりも小さく、正極基材層411が平滑面と粗面とを有してもよい。これによっても、本変形例と同様に、蓄電素子の劣化が生じやすい箇所における当該劣化を抑制することができる。
【0112】
(その他の変形例)
以上、本発明の実施の形態及びその変形例に係る蓄電素子について説明したが、本発明は、この実施の形態及びその変形例に限定されるものではない。
【0113】
つまり、今回開示された実施の形態及びその変形例は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
【0114】
例えば、上記実施の形態及びその変形例では、平滑面は実質的に平坦な面であるとした。しかし、平滑面は、粗面よりも表面粗さが小さければよく、例えば、粗面に形成された凹凸よりも小さい凹凸を有していてもよい。
【0115】
また、上記変形例2では、正極410及び負極420のうち、空孔率が小さい活物質層である負極活物質層422を有する負極420の負極基材層421が、平滑面421b(
図5〜
図7参照)と粗面421aとを有するとした。しかし、正極410及び負極420のうち、空孔率が大きい活物質層である正極活物質層412を有する正極410の正極基材層411が、平滑面と粗面とを有してもかまわない。
【0116】
これによっても、正極410と負極420とが屈曲された部分において粗面が内側に配置されていることにより、蓄電素子の性能低下を低減することができる。
【0117】
また、上記実施の形態では、電極体400は、粗面421aが内周側になるように、正極410と負極420とが巻回されることにより形成されているとした。しかし、少なくとも屈曲部400aにおいて粗面421aが内側に配置されていればよく、当該屈曲部400a以外の正極410と負極420とが平坦形状に形成されている部分において、粗面421aが外側に配置されていてもかまわない。また、当該平坦形状に形成されている部分において、内側及び外側のいずれにも平滑面421bが配置されていてもかまわない。
【0118】
これによっても、正極410と負極420とが屈曲された部分において粗面が内側に配置されていることにより、上記実施の形態及びその変形例と同様に、蓄電素子の性能低下を低減することができる。このような構成は、例えば、内側及び外側のいずれにも一様に平滑面421bが配置された基材層を準備した後、当該基材層のうち屈曲部400aとなる予定箇所の内側を粗面化処理することによって実現できる。粗面化処理の具体例として、研磨、サンドブラスト、溝又は切り欠き等の形成による表面の凹凸加工、等が挙げられる。
【0119】
また、上記実施の形態及びその変形例では、正極集電体120及び負極集電体130と電極体400とは平滑面で接続されるとした。しかし、正極集電体120及び負極集電体130と電極体400とは粗面で接続されてもかまわない。
【0120】
この場合、正極集電体120及び負極集電体130と電極体400との電気的な接続及び機械的な接続の確保が多少困難になる可能性があるものの、上記実施の形態及びその変形例と同様に、蓄電素子の性能低下を低減することができる。
【0121】
また、上記実施の形態及びその変形例では、負極基材層421は、電解析出によって形成された金属箔であるとし、正極基材層411は、重合圧延によって形成された金属箔であるとした。しかし、正極基材層411が電解析出によって形成され、負極基材層421が重合圧延によって形成されていてもかまわない。
【0122】
これによっても、正極410と負極420とが屈曲された部分において粗面が内側に配置されていることにより、上記実施の形態及びその変形例と同様に、蓄電素子の性能低下を低減することができる。
【0123】
また、上記実施の形態及びその変形例では、正極基材層411はアルミニウムまたはアルミニウム合金などからなる金属箔とし、負極基材層421は銅または銅合金などからなる金属箔とした。しかし、正極基材層411及び負極基材層421は、ニッケル、鉄、ステンレス鋼、チタン、Al−Cd合金など、適宜公知の金属材料を用いた金属箔であってもかまわない。また、正極基材層411及び負極基材層421は、焼成炭素、導電性高分子、導電性ガラスなど、金属材料以外の適宜公知の材料を用いた箔であってもかまわない。
【0124】
これによっても、正極410と負極420とが屈曲された部分において粗面が内側に配置されていることにより、上記実施の形態及びその変形例と同様に蓄電素子の性能低下を低減することができる。
【0125】
また、上記実施の形態及びその変形例では、正極410及び負極420の各々は、基材層の両面に活物質層が配置されているとした。しかし、正極410と負極420とが屈曲された部分において内側に配置されるような基材層の片面のみに、活物質層が配置されていてもかまわない。
【0126】
また、上記実施の形態及びその変形例を任意に組み合わせて構築される形態も、本発明の範囲内に含まれる。また、上記実施の形態及びその変形例の部分的な構成を、適宜組み合わせてなる構成であってもよい。例えば、変形例1に変形例2の構成を組み合わせてなる構成であってもかまわない。