【実施例】
【0043】
以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例のみに限定されるものではない。また、特に記載のない全ての操作は温度23℃、相対湿度55%RHの環境下で行った。実施例では、以下の測定、算出方法を用いた。
〔セルロース微粒子の平均重合度の測定〕
セルロースの平均重合度(DP)とは、前記したように、セルロース微粒子をカドキセンに溶解した希薄セルロース溶液の比粘度をウベローデ型粘度計で測定し、その極限粘度数[η]から、参考文献:Eur.Polym.J.,1,1(1996)に記載される以下の粘度式と換算式により算出した値である。
[η]=3.85×10
−2×M
W0.76
DP=M
W/162
【0044】
[発色粒子の平均粒子径の測定]
装置としては日機装社製のナノトラック粒度分布測定装置UPA−EX150(動的光散乱式)を用いた。測定サンプルとして、着色有機微粒子(発色粒子)が0.01重量%、純水99.99重量%のサンプルを用いた。測定条件としては積算回数を30回、1測定辺りの測定時間を30秒とし、体積平均の粒子径分布を用いそのメジアン径を平均粒子径とした。また、30回の積算によって得られた粒度分布の標準偏差と平均粒子径を用いCV値を算出した。
【0045】
[発色粒子の発色強度の測定]
装置としては日本分光社製の紫外可視近赤外分光光度計JASCO V−650(光学系:シングルモノクロメータ、ツェルニターナマウント、ダブルビーム方式 光源:重水素ランプ(190〜350nm)、ハロゲンランプ(330〜900nm))に同社製の積分球ユニットISV−722を取り付けた装置を用いた。測定するサンプルは、任意の濃度の発色粒子の水分散液又は乾燥粒子を、分散媒として蒸留水を用いて発色粒子が0.01重量%、純水99.99重量%になるよう濃度を調整したものを使用した。この濃度調整した水分散液を、光路長10mmの石英セル(容量:3.5mL 光路幅:10mm)に2.5mL加え、この石英セルを紫外可視近赤外分光光度計のサンプルフォルダにセットし、その後、測定を実施した。得られた吸光度ピークのうち、400〜800nm可視光範囲での最大値(ABS)を発色強度とした。
【0046】
[発色粒子の着色成分の割合の算出]
所定回数の着色操作を行った後の発色粒子の重量と、着色前の粒子の重量から計算し算出した。例えば、1.0gのセルロース粒子を着色し、2.5gの着色セルロース粒子を得た場合の着色成分は2.5g−1.0g=1.5gとして計算した。この場合の着色成分の割合は1.5g÷2.5g×100=60.0重量%となる。
〔発色粒子のセルロース由来成分の割合の算出〕
前記の通り、「発色粒子のセルロース由来成分の割合」=100%−(発色粒子の着色成分の割合)の計算式によって計算した。
【0047】
[発色粒子の真球度の測定]
装置としては日本電子株式社製の走査型電子顕微鏡JSM-6700を用いた。発色粒子が0.01重量%、純水99.99重量%のサンプルを雲母板に滴下し、10秒経過させることで発色粒子を雲母板上に吸着させ、キムワイプで余分な液体を吸い取り乾燥させた。得られた雲母板をプラチナでコーティングし、電子顕微鏡測定用のサンプルを調製した。加速電圧1.6kV、測定倍率5万倍で観測を行い、粒子画像が100個以上になるように必要枚数の画像を撮影し、それぞれの粒子の長径(L)と短径(D)を測定し、粒子100個のL/Dの平均値を算出した。
【0048】
[発色粒子中の粗大粒子の割合の算出]
装置はBECHMAN COULTER社製のMultisizer4(コールターカウンター式)で、アパチャーはAP20を用いて測定を行った。尚、電解液は、同じくBECHMAN COULTER社製のアイソトンII−PC希釈液(塩化ナトリウム7.93g/L、フッ化ナトリウム0.30g/L、商品番号:8546719)を使用した。測定サンプルとして、発色粒子が1.00重量%、純水99.00重量%のサンプルを用いた。まず、200mLビーカーに100mLのアイソトンII希釈液を加える。このビーカーに、更にアイソトンII−PC希釈液中の発色粒子濃度が5%程度になるように、発色粒子を加える。Multisizer4付属のスターラーで攪拌しながら、測定を行った。測定条件としては、400nm〜12000nmの範囲で、粒子の総個数が100000個の粒子を検知した時の粒子径700nm以上の粒子の個数(A)から粗大粒子の存在率(X)を以下の式から算出する。
粗大粒子の存在率(X)(%)={粒子径700nm以上の粒子の個数(A)/100000}×100
例えば、100000個のうち、粒子径700nm以上の粒子が7000個存在した場合は、7.0%となる。 操作条件の詳細を以下に示す。
・アパチャー電流値:800μA
・校正係数Kd:29.764
・増幅率:4
・測定粒子径範囲:400nm〜12000nm
・測定粒子個数:100000個
・測定時におけるアイソトンII−PC希釈液中の発色粒子濃度:5%
【0049】
[発色粒子の親水度の測定]
親水度はパルスNMR法により測定する。パルスNMR法は、微粒子分散液にラジオ波を照射して水分子のプロトンを励起させた後、基底状態に戻るまでの時間(緩和時間)を測定する分析手法である。微粒子表面に吸着している水分子は運動性が制限されるため緩和時間が短く、バルク水分子(微粒子表面と吸着していない水分子)は運動性に制限が少なく自由に運動できるため緩和時間が長い。したがって、パルスNMR法により得られる微粒子分散液の緩和時間は、微粒子表面に吸着している水分子とバルク水分子の比率により変化する。すなわち、微粒子表面の親水性が高いほど、より多くの水分子を吸着できるため緩和時間は短くなる。
パルスNMRの測定には、ブルカー社製のMinispec mq20装置を用いる。濃度1%(wt/vol)の微粒子分散液を撹拌後、0.5mLを外径10mmのガラス製NMR管に移し、30℃に設定されたパルスNMR装置に設置し、各種パラメータを以下の通りに設定し測定する。
・観測核:1H
・測定する緩和時間:横緩和時間T2(ms)
・測定モード:CPMG法
・積算回数:32回
・Recycle Delay:10(s)
・90°−180°Pulse Separation(τ):2(ms)
・Total Number of Acquired Echoes:2000点。
得られた磁化減衰曲線(磁化強度の経時変化を示す曲線)を、Microsoft Excelの指数近似機能を用いて最小二乗法により下記式(1):
M(t)=M0・exp(−t/T2)・・・式(1)
{式中、M(t):ある時間tにおける信号強度、M0:信号強度の初期値、T2:緩和時間。}によりフィッティングした。式(1)のT2が緩和時間である。
【0050】
測定した緩和時間(T2)から親水度を算出するためには、縦軸に緩和時間の変化割合(Rsp値)を、横軸に微粒子の総表面積値(TSA値)をプロットしたグラフを用意し、最小二乗法により近似直線を作成し、その傾きとして親水度を求める。
・Rsp値の計算方法
Rsp値=Rav÷Rb−1
{式中、Rav:平均緩和時定数(試料の緩和時間逆数)、Rb:バルク水分子の緩和時定数(ブランク水の緩和時間逆数)。}。
・TSA値(m
2)の計算方法
TSA値=SA×V×Ψp×ρ
{式中、SA:微粒子の比表面積(m
2/g)=6÷(ρ×d)、ここで、ρ:微粒子密度(g/cm
3)(ここで、セルロース微粒子密度:1.4g/cm
3、ラテックス粒子密度:1.0g/cm
3、金コロイド粒子密度:19.3g/cm
3)、d:微粒子直径(μm)、V:ラジオ波が照射される部分のNMR管体積(cm
3)(≒試料量)、Ψp:微粒子体積比(ここで、微粒子体積(i)=微粒子濃度(wt%)÷100÷微粒子密度(ρ:同上)、水の体積(ii)=(1−微粒子体積(i))÷水の密度(0.997g/cm
3)、Ψp(微粒子体積比)=微粒子体積(i)÷水の体積(ii)}。
【0051】
例えば、
図2に示すように、A微粒子(TSA値0.5、Rsp値10)とB微粒子(TSA値1、Rsp値5)の数値をグラフにプロットし、最小二乗法により各々の近似直線を作成する。A微粒子の場合はY=20x、B微粒子の場合はY=5xとなる。近似直線の傾き(親水度)が大きい方、すなわちA微粒子の方を親水度が大きいと判定する。
【0052】
[発色粒子の粒子表面のF元素の相対元素濃度の測定]
発色粒子の粒子表面のF元素の相対元素濃度はXPSにより測定する。発色粒子を、1.5mmΦ×0.2mmtの皿型試料台に載せて、以下条件によりXPS測定を実施した。XPS測定には、サーモフィッシャー ESCALAB250を用いて以下条件により実施した。
励起源:単色化A1Kα 15kV×10mA
分析サイズ:約1mm (形状は楕円)
光電子取込み角:0°(分光器の軸と試料面が垂直)
取込領域
Survey scan:0〜1,100eV
Narrow Scan:C1s、N1s、S2p、O1s、Na1s、F1s、Si2p、Cl2p
Pass Energy
Survey Scan:100eV
Narrow Scan:20eV
【0053】
本測定により得られたC1s、N1s、S2p、O1s、Na1s、F1s、Si2p、Cl2pの面積強度、及び各ピークの相対感度係数(C1s:1.00、N1s:1.68、S2p:1.98、O1s:2.72、Na1s:10.2、F1s:4.67、Si2p:0.93、Cl2p:2.285)から、以下の式:
[F](atomic%)=100× (I
F1s/RSF
F1s)/(ΣI
j/RSF
j)
{式中、I
F1s:F1sの面積強度(eV・cps)、RSF
F1s:F1sの相対感度係数、I
j:C1s、N1s、S2p、O1s、Na1s、F1s、Si2p、Cl2pの面積強度(eV・cps)、RSF
j:C1s、N1s、S2p、O1s、Na1s、F1s、Si2p、Cl2pの相対感度係数。}を用いてF元素の相対元素濃度([F])を求める。
【0054】
[イムノクロマト診断キットの診断時間と再現性の測定]
5mm幅にカットしたイムノクロマト診断キットをプラスチックのハウジングに入れた。得られたハウジング入りの診断キットを、浜松ホトニクス社製のイムノクロマトリーダーC10066−10を用い測定した。用いる粒子の色に応じて装置の設定を行った。検査対象物質にはヒト絨毛性ゴナドトロピン(以下「hCG」という。)を用い、hCGを、1重量%の牛血清アルブミン(以下「BSA」という。)を含む66mM、PH7.4のリン酸緩衝液(以下「PBS」という。)で希釈し、hCG濃度が10mIU/mlの陽性検体を調製した。この陽性検体120μlを診断キットのサンプル滴下部に滴下し、以降20秒毎にイムノクロマトリーダーで測定を行い、TLの発色時間の測定を行った。ここで20秒毎とした理由は、測定1回につき20秒弱が必要なためである。イムノクロマトリーダーで得られるTLの発色強度(単位はmABS)が20mABS以上になった時間を測定した。ここで20mABSとした理由は、個人差もあるが20mABS以上になれば目視でもTLの存在を確認できるからである。この測定を20回行い、得られた値の平均値を診断時間、その標準偏差を診断時間標準偏差とした。再現性を表す指標%CVは下記式:
%CV={診断時間標準偏差/診断時間}×100
により算出した:
【0055】
[イムノクロマト診断キットの感度と再現性の測定]
同様に120μlの陽性検体を診断キットのサンプル滴下部に滴下し、15分経過後のTLの発色強度をイムノクロマトリーダーで測定した。この測定を20回行い、得られた値の平均値をTL強度、その標準偏差をTL強度標準偏差とした。再現性を表す指標%CVは、下記式:
%CV={TL強度標準偏差/TL強度}×100
により算出した。
【0056】
[イムノクロマト診断キットのバックグラウンドの判定]
同様に120μlの陽性検体を診断キットのサンプル滴下部に滴下し、15分経過後のTLの2mm上流側のバックグラウンド強度と2mm下流側のバックグランウンド強度をイムノクロマトリーダーで測定した。その平均値をバックグラウンド強度とした。
【0057】
[イムノクロマト診断キットの偽陽性の測定]
1重量%BSAを含む66mM、pH7.4のPBSを調整し陰性検体を調製した。120μlの陰性検体を診断キットのサンプル滴下部に滴下し、15分経過後のTLの発色強度をイムノクロマトリーダーで測定した。この測定を5回行い、得られた値の平均値が5mABS以下であれば偽陽性はないと判断した。ここで5mABSとした理由は、個人差もあるが5mABS以下であれば目視ではTLの存在が確認できないからである。
【0058】
[イムノクロマト診断キットの検出限界の測定]
hCG濃度を3.20mIU/ml、1.60mIU/ml、0.80mIU/ml、0.40mIU/ml、0.20mIU/ml、0.10mIU/ml、0.05mIU/ml、0.025mIU/mlと段階的に薄くしていった陽性検体を調製した。前記同様に120μlを診断キットのサンプル滴下部に滴下し、15分経過後のTLの発色強度をイムノクロマトリーダーで測定した。この測定を各濃度で5回行い、得られた値の平均値が陰性検体を測定した時の値+20mABS以上の場合は陽性判定、以下の場合は検出限界以下と見なした。この陽性判定が得られる下限のhCG濃度を検出限界とした。
【0059】
[実施例1]
従来公知の方法で、セルロース濃度0.37wt%、銅濃度0.13wt%、アンモニア濃度1.00wt%の銅アンモニアセルロース溶液を調製した。得られた銅アンモニアセルロース溶液を空気存在下でゆっくり撹拌し、12時間かけて重合度を調整した。さらにテトラヒドロフラン濃度89.00wt%、水濃度11.00wt%、の凝固液を調製した。マグネティックスターラーを用い凝固液5000gをゆっくり攪拌しながら、調製しておいた銅アンモニアセルロース溶液500gを添加した。5秒程度攪拌を継続した後、10wt%の硫酸1000gを加え中和、再生を行い、セルロース微粒子を含有したスラリー6500gを得た。
得られたスラリーを10000rpmの速度で10分間遠心分離した。沈殿物をデカンテーションにより取り出し、蒸留水を注入して攪拌し、再び遠心分離した。pHが6.0〜7.0になるまでこの操作を数回繰り返し、その後、高圧ホモジナイザーによる分散処理を行い、セルロース微粒子分散液150gを得た。得られたセルロース微粒子の平均粒径を測定した結果、261nmであった。尚、当該微粒子の重合度を測定したところ、110だった。
次に、前記のようにして調製したセルロース微粒子の染色を行った。微粒子濃度を1.00wt%に調整したセルロース微粒子分散体100gに対し、硫酸ナトリウム30g、トリアジン構造を有する反応性染料(ダイスター株式会社製Levafix Red CA GR.(登録商標))1.00g、を加え攪拌させながら恒温槽を用いて60℃まで昇温した。60℃に昇温後に水酸化ナトリウム10gを加え、2時間染色を行った。得られた粗着色微粒子を脱イオン水で洗浄し、遠心分離で回収し、その後遠心分離で回収するという一連の操作を1サイクルとし、同様の操作を計5サイクルまで実施し、着色セルロース微粒子を得た。当該微粒子の平均粒径は352nm、CV値は21%、発色強度は2.9ABS、着色成分の割合は49%、真球度は1.2で、粗大粒子は1.4%だった。得られた着色セルロース微粒子の電子顕微鏡画像を
図3に示す。
【0060】
[抗体感作着色セルロース粒子の調製]
既知の方法で調製した1.0重量%の着色セルロース粒子1(平均粒子径352nm、発色強度2.9ABS、着色成分の割合49%、真球度は1.2、粗大粒子の割合1.4%)60μlを15mlの遠心管に入れ、更にトリス緩衝液(10mM、pH7.0)を540μl、0.1%の抗hCG-αマウス抗体(Fitzgerald社製、10-C25C)を60μl加え、ボルテックスで10秒撹拌した。続いて37℃に調整した乾燥機内に入れ120分間静置した。続いて1.0重量%のカゼイン(和光純薬工業社製、030−01505)を含有するブロッキング液(100mMホウ酸、pH8.5)を7.2ml加え、更に37℃の乾燥機内で60分間静置した。続いて遠心分離機(クボタ商事社製、6200)と遠心分離ローター(クボタ商事社製、AF−5008C)を用い、10,000gの遠心を15分間行い、感作粒子を沈降させた後に上澄みを除去した。続いてホウ酸緩衝液(50mMホウ酸、pH10.0)を7.2ml加え、超音波分散機(エスエムテー社製、UH−50)で10秒間処理した。続いて10,000gの遠心を15分間行い、感作粒子を沈降させた後に上澄みを除去した。また、別途スクロース(和光純薬工業社製、196−00015)1.8gと1.0重量%のカゼインブロッキング液2.4gを、ホウ酸緩衝液(50mMホウ酸、PH10.0)7.2mlに溶解させて得た緩衝液を用いて、感作粒子の分散液の重量を1.58gに調整し、0.038重量%の抗体感作着色セルロース粒子分散液を調整し、超音波分散機で10秒間処理した。
【0061】
[コンジュゲートパッドへの抗体感作着色セルロース粒子の含浸、乾燥]
ポリエチレン製コンジュゲートパッド(Pall社製、6613)を大過剰の0.05重量%のTween−20(登録商標、シグマアルドリッチ社製、T2700)に浸漬し、余分な液を取り除いた後に50℃で60分乾燥させた。続いて高さ10mm、長さ300mmの形状にカットした。続いてマイクロピペットを用い0.038重量%の抗体感作着色セルロース粒子分散液780μlを均等に塗布し、50℃で60分乾燥させた。
【0062】
[サンプルパッドの前処理]
既知の方法で調整したセルロース製サンプルパッド(Millipore社製、C083)を、大過剰の2.0重量%のBSA(シグマアルドリッチ社製、A7906)と2.0重量%のTween−20を含有するPBS緩衝液(66mM、PH7.4)に含浸し、余分な液を取り除いた後に50℃で60分乾燥させ、これを高さ20mm、長さ300mmの形状にカットした。
【0063】
[捕捉抗体塗布ニトロセルロース膜の調製]
ニトロセルロース膜(Millipore社製、SHF0900425)を高さ25mm、長さ300mmの形状にカットした。液体塗布装置(武蔵エンジニアリング社製、300DS)を用い、0.1重量%抗hCG-βマウス抗体(MedixBiochemica社製、6601)を含むPBS溶液(66mM、pH7.4)を0.1μl/mmの割合で高さ7mmの部分に塗布した。続いて0.1重量%の抗マウス-ウサギ抗体(Daco社製、Z0259)を含むPBS溶液(66mM、pH7.4)を0.1μl/mmの割合で高さ12mmの部分に塗布し、続いて37℃で30分乾燥させた。
【0064】
[イムノクロマト診断キットの調製]
バッキングカード(Adhesives Research社製、AR9020)に、調整した捕捉抗体塗布ニトロセルロース膜、吸収パッド(Millipore社製、C083)、抗体感作着色セルロース粒子を含有したコンジュゲートパッド、再生セルロース連続長繊維不織布サンプルパッドを、
図1に示すレイアウトで貼り合わせ、続いて裁断機にて5mmの幅にカットし、幅5mm、高さ60mmのイムノクロマト診断キットを得た。
【0065】
[イムノクロマト診断キットの性能評価]
得られたイムノクロマト診断キットの性能を評価した。結果を以下の表1に示す。
【0066】
[実施例2〜6]
セルロース微粒子を以下の表1に記載の重合度に調整した以外は、実施例1と同様の方法で発色粒子を作製し、イムノクロマト診断キットを調製し、その性能を評価した。結果を以下の表1に示す。
【0067】
[実施例7〜9]
セルロース微粒子を、ピリミジン構造を有する反応性染料(ダイスター株式会社製Levafix Rubine CA GR.(実施例7、登録商標)、ダイスター株式会社製Levafix Navy Blue E−BNA CA GR.(実施例8、登録商標)、ダイスター株式会社製Levafix Navy CA GR.(実施例9、登録商標))を用いて染色した以外は、実施例1と同様の方法で発色粒子を作製し、イムノクロマト診断キットを調製し、その性能を評価した。結果を以下の表1に示す。
【0068】
[実施例10〜13]
セルロース微粒子の製造条件を調整して以下の表1に記載の粒径の発色粒子を製造した以外は、実施例1と同様の方法で、イムノクロマト診断キットを調製し、その性能を評価した。結果を以下の表1に示す。
【0069】
[実施例14〜18]
発色粒子の製造条件を調整して、以下の表1に記載の発色強度の発色粒子を製造した以外は、実施例1と同様の方法で、イムノクロマト診断キットを調製し、その性能を評価した。結果を以下の表1に示す。
【0070】
[実施例19〜22]
発色粒子を混合して、以下の表1に記載の粗大粒子割合の発色粒子を作製した以外は、実施例1と同様の方法で、イムノクロマト診断キットを調製し、その性能を評価した。結果を以下の表1に示す。
【0071】
[実施例23、24]
発色粒子を混合して、以下の表1に記載のCV値と粗大粒子割合の発色粒子を作製した以外は、実施例1と同様の方法で、イムノクロマト診断キットを調製し、その性能を評価した。結果を以下の表1に示す。
【0072】
[比較例1、2]
セルロース微粒子を以下の表2に記載の重合度に調整し、更に凝固液のテトラヒドロフランの濃度を調整して、以下の表2に記載の真球度の発色粒子を作製した以外は、実施例1と同様の方法で、イムノクロマト診断キットを調製し、その性能を評価した。結果を以下の表2に示す。
【0073】
[比較例3]
セルロース微粒子を以下の表2に記載の重合度に調整し、以下の表2記載の真球度の発色粒子を作製した以外は、実施例1と同様の方法で、イムノクロマト診断キットを調製し、その性能を評価した。結果を以下の表2に示す。
【0074】
[比較例4〜6]
染色時に、特許文献3と同様の方法で、かつ使用する染料量を調整して発色強度を調整しながら染色した以外は、実施例1と同様の方法で、イムノクロマト診断キットを調製し、その性能を評価した。結果を以下の表2に示す。
【0075】
[比較例7]
染色時に、水酸化ナトリウムの代わりに12gの炭酸ナトリウムを加えて染色した以外は、実施例1と同様の方法で、イムノクロマト診断キットを調製し、その性能を評価した。結果を以下の表2に示す。
【0076】
[比較例8、9]
染色時に、染料をピリミジン構造又はトリアジン構造を有していない反応性染料(C.I.Reactive Orange16(実施例8)、C.I.Reactive Blue19(実施例9))を使用した以外は、実施例1と同様の方法で、イムノクロマト診断キットを調製し、その性能を評価した。結果を以下の表2に示す。
【0077】
[比較例10、11]
セルロース粒子の作製時、凝固液のテトラヒドロフランの濃度を調整して、以下の表2に記載の平均粒径の発色粒子を製造した以外は、実施例1と同様の方法で、イムノクロマト診断キットを調製し、その性能を評価した。結果を以下の表2に示す。
【0078】
[比較例12]
発色粒子の製造条件を調整して、以下の表2に記載の発色強度の発色粒子を製造した以外は、実施例1と同様の方法で、イムノクロマト診断キットを調製し、その性能を評価した。結果を以下の表2に示す。
【0079】
[比較例13〜15]
実施例20と比較例3の発色粒子を所定の比率で混合、調整して、以下の表2に記載の粗大粒子量の発色粒子を製造した以外は、実施例1と同様の方法で、イムノクロマト診断キットを調製し、その性能を評価した。結果を以下の表2に示す。
【0080】
[比較例16、17]
発色粒子として、金コロイド(比較例16)、ラテックス(比較例17)を用いた以外は、実施例1と同様の方法で、イムノクロマト診断キットを調製し、その性能を評価した。結果を以下の表2に示す。
【0081】
【表1】
【0082】
【表2】