【実施例】
【0151】
以下、本開示の実施例を示すが、本開示は以下の実施例には限定されない。
なお、以下の実施例では、リチウム塩錯化合物を、単に「錯化合物」ともいう。錯化合物の番号は、既述の錯化合物の番号に対応している。
以下の実施例及び比較例において、「wt%」は質量%を表す。
以下の実施例及び比較例において、「添加量」は、最終的に得られる非水電解液中における含有量(即ち、最終的に得られる非水電解液全量に対する量)を表す。
【0152】
〔実施例1〕トリフルオロメタンスルホン酸リチウムとN−メチルピロリドンとからなる錯化合物S1
撹拌装置、温度計、ガスの導入および排気ラインを備えた50mLのフラスコに、乾燥窒素ガスでパージした後に、トリフルオロメタンスルホン酸リチウム4.68g(0.03mol)と酢酸エチル25gを入れ、撹拌混和させた。この液中にN−メチルピロリドン2.97g(0.03mol)を注ぎ入れ、1時間撹拌した後に、撹拌したまま10kPa以下に減圧、60℃に加温して酢酸エチルを留去させた。得られた固体を更に、10kPa以下の減圧下、60℃で乾燥処理して生成物となる固体7.64gを得た。
【0153】
得られた固体を重水溶媒に溶解し
1H−NMR分析を行った。得られたスペクトルのケミカルシフト〔ppm〕と(積分値(比))は以下の通りであった。
1H−NMR:2.0ppm(2H)、2.4ppm(2H)、2.9ppm(3H)、3.4ppm(2H)。
また、
19F−NMR分析も行い、得られたスペクトルのケミカルシフト〔ppm〕は以下の通りであった。
19F−NMR:−78ppm。
それぞれ、N−メチルピロリドンとトリフルオロメタンスルホン酸リチウム単独のスペクトルパターンと同じパターンが確認され、生成物が両構造単位を有することが示された。
また得られた固体の、室温から600℃までの示差走査熱量(DSC)測定を行った。得られた固体は、原料化合物には認められない融点130℃および279℃ピークの吸熱熱解離挙動が観測された。
【0154】
〔実施例2〕トリフルオロメタンスルホン酸リチウムと1,3−ジメチル−2−イミダゾリジノンとからなる錯化合物S2
実施例1と同様の方法を行う中で、N−メチルピロリドンを1,3−ジメチル−2−イミダゾリジノン3.42g(0.03mol)に変更して処理を行った。最終的に生成物となる固体8.09gを得た。
【0155】
得られた固体を重水溶媒に溶解し
1H−NMR分析を行った。得られたスペクトルのケミカルシフト〔ppm〕と(積分値(比))は以下の通りであった。
1H−NMR:3.1ppm(6H)、3.4ppm(4H)。
また、
19F−NMR分析も行い、得られたスペクトルのケミカルシフト〔ppm〕は以下の通りであった。
19F−NMR:−78ppm。
それぞれ、1,3−ジメチル−2−イミダゾリジノンとトリフルオロメタンスルホン酸リチウム単独のスペクトルパターンと同じパターンが確認され、生成物が両構造単位を有することが示された。
また得られた固体の、室温から600℃までの示差走査熱量(DSC)測定を行った。得られた固体は、原料化合物には認められない融点129℃および370℃ピークの吸熱熱解離挙動が観測された。
【0156】
〔実施例3〕トリフルオロメタンスルホン酸リチウムとN,N−ジメチルホルムアミドとからなる錯化合物S3
実施例1と同様の方法を行う中で、N−メチルピロリドンをN,N−ジメチルホルムアミド2.19g(0.03mol)に変更して処理を行った。最終的に生成物となる固体6.86gを得た。
【0157】
得られた固体を重水溶媒に溶解し
1H−NMR分析を行った。得られたスペクトルのケミカルシフト〔ppm〕と(積分値(比))は以下の通りであった。
1H−NMR:2.9ppm(6H)、8.0ppm(1H)。
また、
19F−NMR分析も行い、得られたスペクトルのケミカルシフト〔ppm〕は以下の通りであった。
19F−NMR:−78ppm。
それぞれ、N,N−ジメチルホルムアミドとトリフルオロメタンスルホン酸リチウム単独のスペクトルパターンと同じパターンが確認され、生成物が両構造単位を有することが示された。
また得られた固体の、室温から600℃までの示差走査熱量(DSC)測定を行った。得られた固体は、原料化合物には認められない融点188℃および322℃ピークの吸熱熱解離挙動が観測された。
【0158】
〔実施例4〕トリフルオロメタンスルホン酸リチウムとN,N−ジメチルアクリルアミドとからなる錯化合物S4
実施例1と同様の方法を行う中で、N−メチルピロリドンをN,N−ジメチルアクリルアミド2.97g(0.03mol)に変更して処理を行った。最終的に生成物となる固体7.64gを得た。
【0159】
得られた固体を重水溶媒に溶解し
1H−NMR分析を行った。得られたスペクトルのケミカルシフト〔ppm〕と(積分値(比))は以下の通りであった。
1H−NMR:3.0ppm(6H)、5.6ppm(1H)、6.0ppm(1H)、6.6ppm(1H)。
また、
19F−NMR分析も行い、得られたスペクトルのケミカルシフト〔ppm〕は以下の通りであった。
19F−NMR:−78ppm。
それぞれ、N,N−ジメチルアクリルアミドとトリフルオロメタンスルホン酸リチウム単独のスペクトルパターンと同じパターンが確認され、生成物が両構造単位を有することが示された。
また得られた固体の、室温から600℃までの示差走査熱量(DSC)測定を行った。得られた固体は、原料化合物には認められない融点85℃および269℃ピークの吸熱熱解離挙動が観測された。
【0160】
〔実施例5〕トリフルオロメタンスルホン酸リチウムとN−ビニルピロリドンとからなる錯化合物S5
実施例1と同様の方法を行う中で、N−メチルピロリドンをN−ビニルピロリドン3.33g(0.03mol)に変更して処理を行った。最終的に生成物となる固体8.00gを得た。
【0161】
得られた固体を重水溶媒に溶解し
1H−NMR分析を行った。得られたスペクトルのケミカルシフト〔ppm〕と(積分値(比))は以下の通りであった。
1H−NMR:2.1ppm(2H)、2.4ppm(2H)、3.3ppm(2H)、5.0ppm(1H)、6.3ppm(1H)、6.9ppm(1H)。
また、
19F−NMR分析も行い、得られたスペクトルのケミカルシフト〔ppm〕は以下の通りであった。
19F−NMR:−78ppm。
それぞれ、N−ビニルピロリドンとトリフルオロメタンスルホン酸リチウム単独のスペクトルパターンと同じパターンが確認され、生成物が両構造単位を有することが示された。
また得られた固体の、室温から600℃までの示差走査熱量(DSC)測定を行った。得られた固体は、原料化合物には認められない融点116℃および365℃ピークの吸熱熱解離挙動が観測された。
【0162】
〔実施例6〕トリフルオロメタンスルホン酸リチウムと1,3−ジオキソランとからなる錯化合物S6
実施例1と同様の方法を行う中で、N−メチルピロリドンを1,3−ジオキソラン2.22g(0.03mol)に変更して処理を行った。最終的に生成物となる固体6.88gを得た。
【0163】
得られた固体を重水溶媒に溶解し
1H−NMR分析を行った。得られたスペクトルのケミカルシフト〔ppm〕と(積分値(比))は以下の通りであった。
1H−NMR:3.9ppm(4H)、4.9ppm(2H)。
また、
19F−NMR分析も行い、得られたスペクトルのケミカルシフト〔ppm〕は以下の通りであった。
19F−NMR:−78ppm。
それぞれ、1,3−ジオキソランとトリフルオロメタンスルホン酸リチウム単独のスペクトルパターンと同じパターンが確認され、生成物が両構造単位を有することが示された。
また得られた固体の、室温から600℃までの示差走査熱量(DSC)測定を行った。得られた固体は、原料化合物には認められない融点190℃および321℃ピークの吸熱熱解離挙動が観測された。
【0164】
〔実施例7〕トリフルオロメタンスルホン酸リチウムと1,3−ジオキサンとからなる錯化合物S7
実施例1と同様の方法を行う中で、N−メチルピロリドンを1,3−ジオキサン2.64g(0.03mol)に変更して処理を行った。最終的に生成物となる固体7.32gを得た。
【0165】
得られた固体を重水溶媒に溶解し
1H−NMR分析を行った。得られたスペクトルのケミカルシフト〔ppm〕と(積分値(比))は以下の通りであった。
1H−NMR:1.7ppm(2H)、3.8ppm(4H)、4.7ppm(2H)。
また、
19F−NMR分析も行い、得られたスペクトルのケミカルシフト〔ppm〕は以下の通りであった。
19F−NMR:−78ppm。
それぞれ、1,3−ジオキサンとトリフルオロメタンスルホン酸リチウム単独のスペクトルパターンと同じパターンが確認され、生成物が両構造単位を有することが示された。
また得られた固体の、室温から600℃までの示差走査熱量(DSC)測定を行った。得られた固体は、原料化合物には認められない融点119℃および219℃ピークの吸熱熱解離挙動が観測された。
【0166】
〔実施例8〕トリフルオロメタンスルホン酸リチウムとジメチルスルホキシドとからなる錯化合物S8
実施例1と同様の方法を行う中で、N−メチルピロリドンをジメチルスルホキシド2.34g(0.03mol)に変更して処理を行った。最終的に生成物となる固体7.01gを得た。
【0167】
得られた固体を重水溶媒に溶解し
1H−NMR分析を行った。得られたスペクトルのケミカルシフト〔ppm〕と(積分値(比))は以下の通りであった。
1H−NMR:2.5ppm(−)。
また、
19F−NMR分析も行い、得られたスペクトルのケミカルシフト〔ppm〕は以下の通りであった。
19F−NMR:−78ppm。
それぞれ、ジメチルスルホキシドとトリフルオロメタンスルホン酸リチウム単独のスペクトルパターンと同じパターンが確認され、生成物が両構造単位を有することが示された。
また得られた固体の、室温から600℃までの示差走査熱量(DSC)測定を行った。得られた固体は、原料化合物には認められない融点132℃および313℃ピークの吸熱熱解離挙動が観測された。
【0168】
〔実施例9〕トリフルオロメタンスルホン酸リチウムと1,5,2,4−ジオキサジチアン−2,2,4,4−テトラオキシドとからなる錯化合物S9
実施例1と同様の方法を行う中で、N−メチルピロリドンを1,5,2,4−ジオキサジチアン−2,2,4,4−テトラオキシド5.65g(0.03mol)に変更して処理を行った。最終的に生成物となる固体10.31gを得た。
【0169】
得られた固体を重水溶媒に溶解し
1H−NMR分析を行った。得られたスペクトルのケミカルシフト〔ppm〕と(積分値(比))は以下の通りであった。
1H−NMR:4.7ppm(2H)、5.8ppm(2H)。
また、
19F−NMR分析も行い、得られたスペクトルのケミカルシフト〔ppm〕は以下の通りであった。
19F−NMR:−78ppm。
それぞれ、1,5,2,4−ジオキサジチアン−2,2,4,4−テトラオキシドとトリフルオロメタンスルホン酸リチウム単独のスペクトルパターンと同じパターンが確認され、生成物が両構造単位を有することが示された。
また得られた固体の、室温から600℃までの示差走査熱量(DSC)測定を行った。得られた固体は、原料化合物には認められない融点439℃および478℃ピークの吸熱熱解離挙動が観測された。
【0170】
〔実施例10〕メチル硫酸リチウムとN−メチルピロリドンとからなる錯化合物S10
撹拌装置、温度計、ガスの導入および排気ラインを備えた50mLのフラスコに、乾燥窒素ガスでパージした後に、メチル硫酸リチウム3.54g(0.03mol)と酢酸エチル20gを入れ、撹拌混和させた。この液中にN−メチルピロリドン2.97g(0.03mol)を注ぎ入れ、1時間撹拌した後に、撹拌したまま10kPa以下に減圧、60℃に加温して酢酸エチルを留去させた。得られた固体を更に、10kPa以下の減圧下、60℃で乾燥処理して生成物となる固体6.51gを得た。
【0171】
得られた固体を重水溶媒に溶解し
1H−NMR分析を行った。得られたスペクトルのケミカルシフト〔ppm〕と(積分値(比))は以下の通りであった。
1H−NMR:2.0ppm(2H)、2.4ppm(2H)、2.9ppm(3H)、3.4ppm(2H)、3.5ppm(3H)。
N−メチルピロリドンとメチル硫酸リチウム単独のスペクトルパターンを併せたパターンが確認され、生成物が両構造単位を有することが示された。
また得られた固体の、室温から600℃までの示差走査熱量(DSC)測定を行った。得られた固体は、原料化合物には認められない融点103℃および203℃ピークの吸熱熱解離挙動が観測された。
【0172】
〔実施例11〕メチル硫酸リチウムと1,3−ジメチル−2−イミダゾリジノンとからなる錯化合物S11
実施例10と同様の方法を行う中で、N−メチルピロリドンを1,3−ジメチル−2−イミダゾリジノン3.42g(0.03mol)に変更して処理を行った。最終的に生成物となる固体6.96gを得た。
【0173】
得られた固体を重水溶媒に溶解し
1H−NMR分析を行った。得られたスペクトルのケミカルシフト〔ppm〕と(積分値(比))は以下の通りであった。
1H−NMR:3.1ppm(6H)、3.4ppm(4H)、3.5ppm(3H)。
1,3−ジメチル−2−イミダゾリジノンとメチル硫酸リチウム単独のスペクトルパターンを併せたパターンが確認され、生成物が両構造単位を有することが示された。
また得られた固体の、室温から600℃までの示差走査熱量(DSC)測定を行った。得られた固体は、原料化合物には認められない融点115℃および276℃ピークの吸熱熱解離挙動が観測された。
【0174】
〔実施例12〕メチル硫酸リチウムとN,N−ジメチルホルムアミドとからなる錯化合物S12
実施例10と同様の方法を行う中で、N−メチルピロリドンをN,N−ジメチルホルムアミド2.19g(0.03mol)に変更して処理を行った。最終的に生成物となる固体5.71gを得た。
【0175】
得られた固体を重水溶媒に溶解し
1H−NMR分析を行った。得られたスペクトルのケミカルシフト〔ppm〕と(積分値(比))は以下の通りであった。
1H−NMR:2.9ppm(6H)、3.5ppm(3H)、8.0ppm(1H)。
N,N−ジメチルホルムアミドとメチル硫酸リチウム単独のスペクトルパターンを併せたパターンが確認され、生成物が両構造単位を有することが示された。
また得られた固体の、室温から600℃までの示差走査熱量(DSC)測定を行った。得られた固体は、原料化合物には認められない融点121℃および207℃ピークの吸熱熱解離挙動が観測された。
【0176】
〔実施例13〕メチル硫酸リチウムとN,N−ジメチルアクリルアミドとからなる錯化合物S13
実施例10と同様の方法を行う中で、N−メチルピロリドンをN,N−ジメチルアクリルアミド2.97g(0.03mol)に変更して処理を行った。最終的に生成物となる固体6.51gを得た。
【0177】
得られた固体を重水溶媒に溶解し
1H−NMR分析を行った。得られたスペクトルのケミカルシフト〔ppm〕と(積分値(比))は以下の通りであった。
1H−NMR:3.0ppm(6H)、3.5ppm(3H)、5.6ppm(1H)、6.0ppm(1H)、6.6ppm(1H)。
N,N−ジメチルアクリルアミドとメチル硫酸リチウム単独のスペクトルパターンを併せたパターンが確認され、生成物が両構造単位を有することが示された。
また得られた固体の、室温から600℃までの示差走査熱量(DSC)測定を行った。得られた固体は、原料化合物には認められない融点40℃および324℃ピークの吸熱熱解離挙動が観測された。
【0178】
〔実施例14〕メチル硫酸リチウムとN−ビニルピロリドンとからなる錯化合物S14
実施例10と同様の方法を行う中で、N−メチルピロリドンをN−ビニルピロリドン3.33g(0.03mol)に変更して処理を行った。最終的に生成物となる固体6.86gを得た。
【0179】
得られた固体を重水溶媒に溶解し
1H−NMR分析を行った。得られたスペクトルのケミカルシフト〔ppm〕と(積分値(比))は以下の通りであった。
1H−NMR:2.1ppm(2H)、2.4ppm(2H)、3.3ppm(2H)、3.5ppm(3H)、5.0ppm(1H)、6.3ppm(1H)、6.9ppm(1H)。
N−ビニルピロリドンとメチル硫酸リチウム単独のスペクトルパターンを併せたパターンが確認され、生成物が両構造単位を有することが示された。
また得られた固体の、室温から600℃までの示差走査熱量(DSC)測定を行った。得られた固体は、原料化合物には認められない融点60℃および275℃ピークの吸熱熱解離挙動が観測された。
【0180】
〔実施例15〕メチル硫酸リチウムと1,3−ジオキソランとからなる錯化合物S15
実施例10と同様の方法を行う中で、N−メチルピロリドンを1,3−ジオキソラン2.22g(0.03mol)に変更して処理を行った。最終的に生成物となる固体5.75gを得た。
【0181】
得られた固体を重水溶媒に溶解し
1H−NMR分析を行った。得られたスペクトルのケミカルシフト〔ppm〕と(積分値(比))は以下の通りであった。
1H−NMR:3.5ppm(3H)、3.9ppm(4H)、4.9ppm(2H)。
1,3−ジオキソランとメチル硫酸リチウム単独のスペクトルパターンを併せたパターンが確認され、生成物が両構造単位を有することが示された。
また得られた固体の、室温から600℃までの示差走査熱量(DSC)測定を行った。得られた固体は、原料化合物には認められない融点114℃および213℃ピークの吸熱熱解離挙動が観測された。
【0182】
〔実施例16〕メチル硫酸リチウムと1,3−ジオキサンとからなる錯化合物S16
実施例10と同様の方法を行う中で、N−メチルピロリドンを1,3−ジオキサン2.64g(0.03mol)に変更して処理を行った。最終的に生成物となる固体6.17gを得た。
【0183】
得られた固体を重水溶媒に溶解し
1H−NMR分析を行った。得られたスペクトルのケミカルシフト〔ppm〕と(積分値(比))は以下の通りであった。
1H−NMR:1.7ppm(2H)、3.5ppm(3H)、3.8ppm(4H)、4.7ppm(2H)。
1,3−ジオキサンとメチル硫酸リチウム単独のスペクトルパターンを併せたパターンが確認され、生成物が両構造単位を有することが示された。
また得られた固体の、室温から600℃までの示差走査熱量(DSC)測定を行った。得られた固体は、原料化合物には認められない融点93℃および212℃ピークの吸熱熱解離挙動が観測された。
【0184】
〔実施例17〕メチル硫酸リチウムとジメチルスルホキシドとからなる錯化合物S17
実施例10と同様の方法を行う中で、N−メチルピロリドンをジメチルスルホキシド2.34g(0.03mol)に変更して処理を行った。最終的に生成物となる固体5.87gを得た。
【0185】
得られた固体を重水溶媒に溶解し
1H−NMR分析を行った。得られたスペクトルのケミカルシフト〔ppm〕と(積分値(比))は以下の通りであった。
1H−NMR:2.5ppm(6H)、3.5ppm(3H)。
ジメチルスルホキシドとメチル硫酸リチウム単独のスペクトルパターンを併せたパターンが確認され、生成物が両構造単位を有することが示された。
また得られた固体の、室温から600℃までの示差走査熱量(DSC)測定を行った。得られた固体は、原料化合物には認められない融点126℃および228℃ピークの吸熱熱解離挙動が観測された。
【0186】
〔実施例18〕メチル硫酸リチウムと1,5,2,4−ジオキサジチアン−2,2,4,4−テトラオキシドとからなる錯化合物S18
実施例10と同様の方法を行う中で、N−メチルピロリドンを1,5,2,4−ジオキサジチアン−2,2,4,4−テトラオキシド5.65g(0.03mol)に変更して処理を行った。最終的に生成物となる固体9.18gを得た。
【0187】
得られた固体を重水溶媒に溶解し
1H−NMR分析を行った。得られたスペクトルのケミカルシフト〔ppm〕と(積分値(比))は以下の通りであった。
1H−NMR:3.5ppm(3H)、4.7ppm(2H)、5.8ppm(2H)。
1,5,2,4−ジオキサジチアン−2,2,4,4−テトラオキシドとメチル硫酸リチウム単独のスペクトルパターンを併せたパターンが確認され、生成物が両構造単位を有することが示された。
また得られた固体の、室温から600℃までの示差走査熱量(DSC)測定を行った。得られた固体は、原料化合物には認められない融点435℃および462℃ピークの吸熱熱解離挙動が観測された。
【0188】
〔実施例19〕ベンゼンスルホン酸リチウムとN−メチルピロリドンとからなる錯化合物S19
撹拌装置、温度計、ガスの導入および排気ラインを備えた50mLのフラスコに、乾燥窒素ガスでパージした後に、ベンゼンスルホン酸リチウム4.92g(0.03mol)と酢酸エチル30gを入れ、撹拌混和させた。この液中にN−メチルピロリドン2.97g(0.03mol)を注ぎ入れ、1時間撹拌した後に、撹拌したまま10kPa以下に減圧、60℃に加温して酢酸エチルを留去させた。得られた固体を更に、10kPa以下の減圧下、60℃で乾燥処理して生成物となる固体7.88gを得た。
【0189】
得られた固体を重水溶媒に溶解し
1H−NMR分析を行った。得られたスペクトルのケミカルシフト〔ppm〕と(積分値(比))は以下の通りであった。
1H−NMR:2.0ppm(2H)、2.4ppm(2H)、2.9ppm(3H)、3.4ppm(2H)、7.5〜7.9ppm(5H)。
N−メチルピロリドンとベンゼンスルホン酸リチウム単独のスペクトルパターンを併せたパターンが確認され、生成物が両構造単位を有することが示された。
また得られた固体の、室温から600℃までの示差走査熱量(DSC)測定を行った。得られた固体は、原料化合物には認められない融点103℃および218℃ピークの吸熱熱解離挙動が観測された。
【0190】
〔実施例20〕ベンゼンスルホン酸リチウムと1,3−ジメチル−2−イミダゾリジノンとからなる錯化合物S20
実施例19と同様の方法を行う中で、N−メチルピロリドンを1,3−ジメチル−2−イミダゾリジノン3.42g(0.03mol)に変更して処理を行った。最終的に生成物となる固体8.33gを得た。
【0191】
得られた固体を重水溶媒に溶解し
1H−NMR分析を行った。得られたスペクトルのケミカルシフト〔ppm〕と(積分値(比))は以下の通りであった。
1H−NMR:3.1ppm(6H)、3.4ppm(4H)、7.5〜7.9ppm(5H)。
1,3−ジメチル−2−イミダゾリジノンとベンゼンスルホン酸リチウム単独のスペクトルパターンを併せたパターンが確認され、生成物が両構造単位を有することが示された。
また得られた固体の、室温から600℃までの示差走査熱量(DSC)測定を行った。得られた固体は、原料化合物には認められない融点95℃および266℃ピークの吸熱熱解離挙動が観測された。
【0192】
〔実施例21〕ベンゼンスルホン酸リチウムとN,N−ジメチルホルムアミドとからなる錯化合物S21
実施例19と同様の方法を行う中で、N−メチルピロリドンをN,N−ジメチルホルムアミド2.19g(0.03mol)に変更して処理を行った。最終的に生成物となる固体7.10gを得た。
【0193】
得られた固体を重水溶媒に溶解し
1H−NMR分析を行った。得られたスペクトルのケミカルシフト〔ppm〕と(積分値(比))は以下の通りであった。
1H−NMR:2.9ppm(6H)、7.5〜7.9ppm(5H)、8.0ppm(1H)。
N,N−ジメチルホルムアミドとベンゼンスルホン酸リチウム単独のスペクトルパターンを併せたパターンが確認され、生成物が両構造単位を有することが示された。
また得られた固体の、室温から600℃までの示差走査熱量(DSC)測定を行った。得られた固体は、原料化合物には認められない融点124℃および221℃ピークの吸熱熱解離挙動が観測された。
【0194】
〔実施例22〕ベンゼンスルホン酸リチウムとN,N−ジメチルアクリルアミドとからなる錯化合物S22
実施例19と同様の方法を行う中で、N−メチルピロリドンをN,N−ジメチルアクリルアミド2.97g(0.03mol)に変更して処理を行った。最終的に生成物となる固体7.88gを得た。
【0195】
得られた固体を重水溶媒に溶解し
1H−NMR分析を行った。得られたスペクトルのケミカルシフト〔ppm〕と(積分値(比))は以下の通りであった。
1H−NMR:3.0ppm(6H)、5.6ppm(1H)、6.0ppm(1H)、6.6ppm(1H)、7.5〜7.9ppm(5H)。
N,N−ジメチルアクリルアミドとベンゼンスルホン酸リチウム単独のスペクトルパターンを併せたパターンが確認され、生成物が両構造単位を有することが示された。
また得られた固体の、室温から600℃までの示差走査熱量(DSC)測定を行った。得られた固体は、原料化合物には認められない融点51℃および316℃ピークの吸熱熱解離挙動が観測された。
【0196】
〔実施例23〕ベンゼンスルホン酸リチウムとN−ビニルピロリドンとからなる錯化合物S23
実施例19と同様の方法を行う中で、N−メチルピロリドンをN−ビニルピロリドン3.33g(0.03mol)に変更して処理を行った。最終的に生成物となる固体8.24gを得た。
【0197】
得られた固体を重水溶媒に溶解し
1H−NMR分析を行った。得られたスペクトルのケミカルシフト〔ppm〕と(積分値(比))は以下の通りであった。
1H−NMR:2.1ppm(2H)、2.4ppm(2H)、3.3ppm(2H)、5.0ppm(1H)、6.3ppm(1H)、6.9ppm(1H)、7.5〜7.9ppm(5H)。
N−ビニルピロリドンとベンゼンスルホン酸リチウム単独のスペクトルパターンを併せたパターンが確認され、生成物が両構造単位を有することが示された。
また得られた固体の、室温から600℃までの示差走査熱量(DSC)測定を行った。得られた固体は、原料化合物には認められない融点78℃および264℃ピークの吸熱熱解離挙動が観測された。
【0198】
〔実施例24〕ベンゼンスルホン酸リチウムと1,3−ジオキソランとからなる錯化合物S24
実施例19と同様の方法を行う中で、N−メチルピロリドンを1,3−ジオキソラン2.22g(0.03mol)に変更して処理を行った。最終的に生成物となる固体7.13gを得た。
【0199】
得られた固体を重水溶媒に溶解し
1H−NMR分析を行った。得られたスペクトルのケミカルシフト〔ppm〕と(積分値(比))は以下の通りであった。
1H−NMR:3.9ppm(4H)、4.9ppm(2H)、7.5〜7.9ppm(5H)。
1,3−ジオキソランとベンゼンスルホン酸リチウム単独のスペクトルパターンを併せたパターンが確認され、生成物が両構造単位を有することが示された。
また得られた固体の、室温から600℃までの示差走査熱量(DSC)測定を行った。得られた固体は、原料化合物には認められない融点120℃および341℃ピークの吸熱熱解離挙動が観測された。
【0200】
〔実施例25〕ベンゼンスルホン酸リチウムと1,3−ジオキサンとからなる錯化合物S25
実施例19と同様の方法を行う中で、N−メチルピロリドンを1,3−ジオキサン2.64g(0.03mol)に変更して処理を行った。最終的に生成物となる固体7.55gを得た。
【0201】
得られた固体を重水溶媒に溶解し
1H−NMR分析を行った。得られたスペクトルのケミカルシフト〔ppm〕と(積分値(比))は以下の通りであった。
1H−NMR:1.7ppm(2H)、3.8ppm(4H)、4.7ppm(2H)、7.5〜7.9ppm(5H)。
1,3−ジオキサンとベンゼンスルホン酸リチウム単独のスペクトルパターンを併せたパターンが確認され、生成物が両構造単位を有することが示された。
また得られた固体の、室温から600℃までの示差走査熱量(DSC)測定を行った。得られた固体は、原料化合物には認められない融点110℃および324℃ピークの吸熱熱解離挙動が観測された。
【0202】
〔実施例26〕ベンゼンスルホン酸リチウムとジメチルスルホキシドとからなる錯化合物S26
実施例19と同様の方法を行う中で、N−メチルピロリドンをジメチルスルホキシド2.34g(0.03mol)に変更して処理を行った。最終的に生成物となる固体7.25gを得た。
【0203】
得られた固体を重水溶媒に溶解し
1H−NMR分析を行った。得られたスペクトルのケミカルシフト〔ppm〕と(積分値(比))は以下の通りであった。
1H−NMR:2.5ppm(6H)、7.5〜7.9ppm(5H)。
ジメチルスルホキシドとベンゼンスルホン酸リチウム単独のスペクトルパターンを併せたパターンが確認され、生成物が両構造単位を有することが示された。
また得られた固体の、室温から600℃までの示差走査熱量(DSC)測定を行った。得られた固体は、原料化合物には認められない融点112℃および276℃ピークの吸熱熱解離挙動が観測された。
【0204】
〔実施例27〕ベンゼンスルホン酸リチウムと1,5,2,4−ジオキサジチアン−2,2,4,4−テトラオキシドとからなる錯化合物S27
実施例19と同様の方法を行う中で、N−メチルピロリドンを1,5,2,4−ジオキサジチアン−2,2,4,4−テトラオキシド5.65g(0.03mol)に変更して処理を行った。最終的に生成物となる固体10.56gを得た。
【0205】
得られた固体を重水溶媒に溶解し
1H−NMR分析を行った。得られたスペクトルのケミカルシフト〔ppm〕と(積分値(比))は以下の通りであった。
1H−NMR:4.7ppm(2H)、5.8ppm(2H)、7.5〜7.9ppm(5H)。
1,5,2,4−ジオキサジチアン−2,2,4,4−テトラオキシドとベンゼンスルホン酸リチウム単独のスペクトルパターンを併せたパターンが確認され、生成物が両構造単位を有することが示された。
また得られた固体の、室温から600℃までの示差走査熱量(DSC)測定を行った。得られた固体は、原料化合物には認められない融点436℃および470℃ピークの吸熱熱解離挙動が観測された。
【0206】
〔実施例28〕リチウムビス(トリフルオロメタンスルホニル)イミドとN−メチルピロリドンとからなる錯化合物S28
撹拌装置、温度計、ガスの導入および排気ラインを備えた100mLのフラスコに、乾燥窒素ガスでパージした後に、リチウムビス(トリフルオロメタンスルホニル)イミド8.61g(0.03mol)と酢酸エチル50gを入れ、撹拌混和させた。この液中にN−メチルピロリドン2.97g(0.03mol)を注ぎ入れ、1時間撹拌した後に、撹拌したまま10kPa以下に減圧、60℃に加温して酢酸エチルを留去させた。得られた固体を更に、10kPa以下の減圧下、60℃で乾燥処理して生成物となる固体11.57gを得た。
【0207】
得られた固体を重水溶媒に溶解し
1H−NMR分析を行った。得られたスペクトルのケミカルシフト〔ppm〕と(積分値(比))は以下の通りであった。
1H−NMR:2.0ppm(2H)、2.4ppm(2H)、2.9ppm(3H)、3.4ppm(2H)。
また、
19F−NMR分析も行い、得られたスペクトルのケミカルシフト〔ppm〕は以下の通りであった。
19F−NMR:−79ppm。
それぞれ、N−メチルピロリドンとリチウムビス(トリフルオロメタンスルホニル)イミド単独のスペクトルパターンと同じパターンが確認され、生成物が両構造単位を有することが示された。
また得られた固体の、室温から600℃までの示差走査熱量(DSC)測定を行った。得られた固体は、原料化合物には認められない融点279℃および352℃ピークの吸熱熱解離挙動が観測された。
【0208】
〔実施例29〕リチウムビス(トリフルオロメタンスルホニル)イミドと1,3−ジメチル−2−イミダゾリジノンとからなる錯化合物S29
実施例28と同様の方法を行う中で、N−メチルピロリドンを1,3−ジメチル−2−イミダゾリジノン3.42g(0.03mol)に変更して処理を行った。最終的に生成物となる固体12.03gを得た。
【0209】
得られた固体を重水溶媒に溶解し
1H−NMR分析を行った。得られたスペクトルのケミカルシフト〔ppm〕と(積分値(比))は以下の通りであった。
1H−NMR:3.1ppm(6H)、3.4ppm(4H)。
また、
19F−NMR分析も行い、得られたスペクトルのケミカルシフト〔ppm〕は以下の通りであった。
19F−NMR:−79ppm。
それぞれ、1,3−ジメチル−2−イミダゾリジノンとリチウムビス(トリフルオロメタンスルホニル)イミド単独のスペクトルパターンと同じパターンが確認され、生成物が両構造単位を有することが示された。
また得られた固体の、室温から600℃までの示差走査熱量(DSC)測定を行った。得られた固体は、原料化合物には認められない融点252℃および348℃ピークの吸熱熱解離挙動が観測された。
【0210】
〔実施例30〕リチウムビス(トリフルオロメタンスルホニル)イミドとN,N−ジメチルホルムアミドとからなる錯化合物S30
実施例28と同様の方法を行う中で、N−メチルピロリドンをN,N−ジメチルホルムアミド2.19g(0.03mol)に変更して処理を行った。最終的に生成物となる固体10.79gを得た。
【0211】
得られた固体を重水溶媒に溶解し
1H−NMR分析を行った。得られたスペクトルのケミカルシフト〔ppm〕と(積分値(比))は以下の通りであった。
1H−NMR:2.9ppm(6H)、8.0ppm(1H)。
また、
19F−NMR分析も行い、得られたスペクトルのケミカルシフト〔ppm〕は以下の通りであった。
19F−NMR:−79ppm。
それぞれ、N,N−ジメチルホルムアミドとリチウムビス(トリフルオロメタンスルホニル)イミド単独のスペクトルパターンと同じパターンが確認され、生成物が両構造単位を有することが示された。
また得られた固体の、室温から600℃までの示差走査熱量(DSC)測定を行った。得られた固体は、原料化合物には認められない融点287℃および349℃ピークの吸熱熱解離挙動が観測された。
【0212】
〔実施例31〕リチウムビス(トリフルオロメタンスルホニル)イミドとN,N−ジメチルアクリルアミドとからなる錯化合物S31
実施例28と同様の方法を行う中で、N−メチルピロリドンをN,N−ジメチルアクリルアミド2.97g(0.03mol)に変更して処理を行った。最終的に生成物となる固体11.56gを得た。
【0213】
得られた固体を重水溶媒に溶解し
1H−NMR分析を行った。得られたスペクトルのケミカルシフト〔ppm〕と(積分値(比))は以下の通りであった。
1H−NMR:3.0ppm(6H)、5.6ppm(1H)、6.0ppm(1H)、6.6ppm(1H)。
また、
19F−NMR分析も行い、得られたスペクトルのケミカルシフト〔ppm〕は以下の通りであった。
19F−NMR:−79ppm。
それぞれ、N,N−ジメチルアクリルアミドとリチウムビス(トリフルオロメタンスルホニル)イミド単独のスペクトルパターンと同じパターンが確認され、生成物が両構造単位を有することが示された。
また得られた固体の、室温から600℃までの示差走査熱量(DSC)測定を行った。得られた固体は、原料化合物には認められない融点41℃および220℃ピークの吸熱熱解離挙動が観測された。
【0214】
〔実施例32〕リチウムビス(トリフルオロメタンスルホニル)イミドとN−ビニルピロリドンとからなる錯化合物S32
実施例28と同様の方法を行う中で、N−メチルピロリドンをN−ビニルピロリドン3.33g(0.03mol)に変更して処理を行った。最終的に生成物となる固体11.93gを得た。
【0215】
得られた固体を重水溶媒に溶解し
1H−NMR分析を行った。得られたスペクトルのケミカルシフト〔ppm〕と(積分値(比))は以下の通りであった。
1H−NMR:2.1ppm(2H)、2.4ppm(2H)、3.3ppm(2H)、5.0ppm(1H)、6.3ppm(1H)、6.9ppm(1H)。
また、
19F−NMR分析も行い、得られたスペクトルのケミカルシフト〔ppm〕は以下の通りであった。
19F−NMR:−79ppm。
それぞれ、N−ビニルピロリドンとリチウムビス(トリフルオロメタンスルホニル)イミド単独のスペクトルパターンと同じパターンが確認され、生成物が両構造単位を有することが示された。
また得られた固体の、室温から600℃までの示差走査熱量(DSC)測定を行った。得られた固体は、原料化合物には認められない融点48℃および192℃ピークの吸熱熱解離挙動が観測された。
【0216】
〔実施例33〕リチウムビス(トリフルオロメタンスルホニル)イミドと1,3−ジオキソランとからなる錯化合物S33
実施例28と同様の方法を行う中で、N−メチルピロリドンを1,3−ジオキソラン2.22g(0.03mol)に変更して処理を行った。最終的に生成物となる固体10.81gを得た。
【0217】
得られた固体を重水溶媒に溶解し
1H−NMR分析を行った。得られたスペクトルのケミカルシフト〔ppm〕と(積分値(比))は以下の通りであった。
1H−NMR:3.9ppm(4H)、4.9ppm(2H)。
また、
19F−NMR分析も行い、得られたスペクトルのケミカルシフト〔ppm〕は以下の通りであった。
19F−NMR:−79ppm。
それぞれ、1,3−ジオキソランとリチウムビス(トリフルオロメタンスルホニル)イミド単独のスペクトルパターンと同じパターンが確認され、生成物が両構造単位を有することが示された。
また得られた固体の、室温から600℃までの示差走査熱量(DSC)測定を行った。得られた固体は、原料化合物には認められない融点42℃および163℃ピークの吸熱熱解離挙動が観測された。
【0218】
〔実施例34〕リチウムビス(トリフルオロメタンスルホニル)イミドと1,3−ジオキサンとからなる錯化合物S34
実施例28と同様の方法を行う中で、N−メチルピロリドンを1,3−ジオキサン2.64g(0.03mol)に変更して処理を行った。最終的に生成物となる固体11.24gを得た。
【0219】
得られた固体を重水溶媒に溶解し
1H−NMR分析を行った。得られたスペクトルのケミカルシフト〔ppm〕と(積分値(比))は以下の通りであった。
1H−NMR:1.7ppm(2H)、3.8ppm(4H)、4.7ppm(2H)。
また、
19F−NMR分析も行い、得られたスペクトルのケミカルシフト〔ppm〕は以下の通りであった。
19F−NMR:−79ppm。
それぞれ、1,3−ジオキサンとリチウムビス(トリフルオロメタンスルホニル)イミド単独のスペクトルパターンと同じパターンが確認され、生成物が両構造単位を有することが示された。
また得られた固体の、室温から600℃までの示差走査熱量(DSC)測定を行った。得られた固体は、原料化合物には認められない融点49℃および188℃ピークの吸熱熱解離挙動が観測された。
【0220】
〔実施例35〕リチウムビス(トリフルオロメタンスルホニル)イミドとジメチルスルホキシドとからなる錯化合物S35
実施例28と同様の方法を行う中で、N−メチルピロリドンをジメチルスルホキシド2.34g(0.03mol)に変更して処理を行った。最終的に生成物となる固体10.94gを得た。
【0221】
得られた固体を重水溶媒に溶解し
1H−NMR分析を行った。得られたスペクトルのケミカルシフト〔ppm〕と(積分値(比))は以下の通りであった。
1H−NMR:2.5ppm(−)。
また、
19F−NMR分析も行い、得られたスペクトルのケミカルシフト〔ppm〕は以下の通りであった。
19F−NMR:−79ppm。
それぞれ、ジメチルスルホキシドとリチウムビス(トリフルオロメタンスルホニル)イミド単独のスペクトルパターンと同じパターンが確認され、生成物が両構造単位を有することが示された。
また得られた固体の、室温から600℃までの示差走査熱量(DSC)測定を行った。得られた固体は、原料化合物には認められない融点76℃および280℃ピークの吸熱熱解離挙動が観測された。
【0222】
〔実施例36〕リチウムビス(トリフルオロメタンスルホニル)イミドと1,5,2,4−ジオキサジチアン−2,2,4,4−テトラオキシドとからなる錯化合物S36
実施例28と同様の方法を行う中で、N−メチルピロリドンを1,5,2,4−ジオキサジチアン−2,2,4,4−テトラオキシド5.65g(0.03mol)に変更して処理を行った。最終的に生成物となる固体14.24gを得た。
【0223】
得られた固体を重水溶媒に溶解し
1H−NMR分析を行った。得られたスペクトルのケミカルシフト〔ppm〕と(積分値(比))は以下の通りであった。
1H−NMR:4.7ppm(2H)、5.8ppm(2H)。
また、
19F−NMR分析も行い、得られたスペクトルのケミカルシフト〔ppm〕は以下の通りであった。
19F−NMR:−79ppm。
それぞれ、1,5,2,4−ジオキサジチアン−2,2,4,4−テトラオキシドとリチウムビス(トリフルオロメタンスルホニル)イミド単独のスペクトルパターンと同じパターンが確認され、生成物が両構造単位を有することが示された。
また得られた固体の、室温から600℃までの示差走査熱量(DSC)測定を行った。得られた固体は、原料化合物には認められない融点424℃および466℃ピークの吸熱熱解離挙動が観測された。
【0224】
〔実施例37〕リチウムビス(フルオロスルホニル)イミドとN−メチルピロリドンとからなる錯化合物S37
撹拌装置、温度計、ガスの導入および排気ラインを備えた100mLのフラスコに、乾燥窒素ガスでパージした後に、リチウムビス(フルオロスルホニル)イミド5.61g(0.03mol)と酢酸エチル50gを入れ、撹拌混和させた。この液中にN−メチルピロリドン2.97g(0.03mol)を注ぎ入れ、1時間撹拌した後に、撹拌したまま10kPa以下に減圧、60℃に加温して酢酸エチルを留去させた。得られた固体を更に、10kPa以下の減圧下、60℃で乾燥処理して生成物となる固体8.57gを得た。
【0225】
得られた固体を重水溶媒に溶解し
1H−NMR分析を行った。得られたスペクトルのケミカルシフト〔ppm〕と(積分値(比))は以下の通りであった。
1H−NMR:2.0ppm(2H)、2.4ppm(2H)、2.9ppm(3H)、3.4ppm(2H)。
また、
19F−NMR分析も行い、得られたスペクトルのケミカルシフト〔ppm〕は以下の通りであった。
19F−NMR:55ppm。
それぞれ、N−メチルピロリドンとリチウムビス(フルオロスルホニル)イミド単独のスペクトルパターンと同じパターンが確認され、生成物が両構造単位を有することが示された。
また得られた固体の、室温から600℃までの示差走査熱量(DSC)測定を行った。得られた固体は、原料化合物には認められない融点150℃および284℃ピークの吸熱熱解離挙動が観測された。
【0226】
〔実施例38〕リチウムビス(フルオロスルホニル)イミドと1,3−ジメチル−2−イミダゾリジノンとからなる錯化合物S38
実施例37と同様の方法を行う中で、N−メチルピロリドンを1,3−ジメチル−2−イミダゾリジノン3.42g(0.03mol)に変更して処理を行った。最終的に生成物となる固体9.03gを得た。
【0227】
得られた固体を重水溶媒に溶解し
1H−NMR分析を行った。得られたスペクトルのケミカルシフト〔ppm〕と(積分値(比))は以下の通りであった。
1H−NMR:3.1ppm(6H)、3.4ppm(4H)。
また、
19F−NMR分析も行い、得られたスペクトルのケミカルシフト〔ppm〕は以下の通りであった。
19F−NMR:55ppm。
それぞれ、1,3−ジメチル−2−イミダゾリジノンとリチウムビス(フルオロスルホニル)イミド単独のスペクトルパターンと同じパターンが確認され、生成物が両構造単位を有することが示された。
また得られた固体の、室温から600℃までの示差走査熱量(DSC)測定を行った。得られた固体は、原料化合物には認められない融点125℃および301℃ピークの吸熱熱解離挙動が観測された。
【0228】
〔実施例39〕リチウムビス(フルオロスルホニル)イミドとN,N−ジメチルホルムアミドとからなる錯化合物S39
実施例37と同様の方法を行う中で、N−メチルピロリドンをN,N−ジメチルホルムアミド2.19g(0.03mol)に変更して処理を行った。最終的に生成物となる固体7.78gを得た。
【0229】
得られた固体を重水溶媒に溶解し
1H−NMR分析を行った。得られたスペクトルのケミカルシフト〔ppm〕と(積分値(比))は以下の通りであった。
1H−NMR:2.9ppm(6H)、8.0ppm(1H)。
また、
19F−NMR分析も行い、得られたスペクトルのケミカルシフト〔ppm〕は以下の通りであった。
19F−NMR:55ppm。
それぞれ、N,N−ジメチルホルムアミドとリチウムビス(フルオロスルホニル)イミド単独のスペクトルパターンと同じパターンが確認され、生成物が両構造単位を有することが示された。
また得られた固体の、室温から600℃までの示差走査熱量(DSC)測定を行った。得られた固体は、原料化合物には認められない融点178℃および300℃ピークの吸熱熱解離挙動が観測された。
【0230】
〔実施例40〕リチウムビス(フルオロスルホニル)イミドとN,N−ジメチルアクリルアミドとからなる錯化合物S40
実施例37と同様の方法を行う中で、N−メチルピロリドンをN,N−ジメチルアクリルアミド2.97g(0.03mol)に変更して処理を行った。最終的に生成物となる固体8.57gを得た。
【0231】
得られた固体を重水溶媒に溶解し
1H−NMR分析を行った。得られたスペクトルのケミカルシフト〔ppm〕と(積分値(比))は以下の通りであった。
1H−NMR:3.0ppm(6H)、5.6ppm(1H)、6.0ppm(1H)、6.6ppm(1H)。
また、
19F−NMR分析も行い、得られたスペクトルのケミカルシフト〔ppm〕は以下の通りであった。
19F−NMR:55ppm。
それぞれ、N,N−ジメチルアクリルアミドとリチウムビス(フルオロスルホニル)イミド単独のスペクトルパターンと同じパターンが確認され、生成物が両構造単位を有することが示された。
また得られた固体の、室温から600℃までの示差走査熱量(DSC)測定を行った。得られた固体は、原料化合物には認められない融点42℃および282℃ピークの吸熱熱解離挙動が観測された。
【0232】
〔実施例41〕リチウムビス(フルオロスルホニル)イミドとN−ビニルピロリドンとからなる錯化合物S41
実施例37と同様の方法を行う中で、N−メチルピロリドンをN−ビニルピロリドン3.33g(0.03mol)に変更して処理を行った。最終的に生成物となる固体8.93gを得た。
【0233】
得られた固体を重水溶媒に溶解し
1H−NMR分析を行った。得られたスペクトルのケミカルシフト〔ppm〕と(積分値(比))は以下の通りであった。
1H−NMR:2.1ppm(2H)、2.4ppm(2H)、3.3ppm(2H)、5.0ppm(1H)、6.3ppm(1H)、6.9ppm(1H)。
また、
19F−NMR分析も行い、得られたスペクトルのケミカルシフト〔ppm〕は以下の通りであった。
19F−NMR:55ppm。
それぞれ、N−ビニルピロリドンとリチウムビス(フルオロスルホニル)イミド単独のスペクトルパターンと同じパターンが確認され、生成物が両構造単位を有することが示された。
また得られた固体の、室温から600℃までの示差走査熱量(DSC)測定を行った。得られた固体は、原料化合物には認められない融点88℃および293℃ピークの吸熱熱解離挙動が観測された。
【0234】
〔実施例42〕リチウムビス(フルオロスルホニル)イミドと1,3−ジオキソランとからなる錯化合物S42
実施例37と同様の方法を行う中で、N−メチルピロリドンを1,3−ジオキソラン2.22g(0.03mol)に変更して処理を行った。最終的に生成物となる固体7.82gを得た。
【0235】
得られた固体を重水溶媒に溶解し
1H−NMR分析を行った。得られたスペクトルのケミカルシフト〔ppm〕と(積分値(比))は以下の通りであった。
1H−NMR:3.9ppm(4H)、4.9ppm(2H)。
また、
19F−NMR分析も行い、得られたスペクトルのケミカルシフト〔ppm〕は以下の通りであった。
19F−NMR:55ppm。
それぞれ、1,3−ジオキソランとリチウムビス(フルオロスルホニル)イミド単独のスペクトルパターンと同じパターンが確認され、生成物が両構造単位を有することが示された。
また得られた固体の、室温から600℃までの示差走査熱量(DSC)測定を行った。得られた固体は、原料化合物には認められない融点164℃および286℃ピークの吸熱熱解離挙動が観測された。
【0236】
〔実施例43〕リチウムビス(フルオロスルホニル)イミドと1,3−ジオキサンとからなる錯化合物S43
実施例37と同様の方法を行う中で、N−メチルピロリドンを1,3−ジオキサン2.64g(0.03mol)に変更して処理を行った。最終的に生成物となる固体8.24gを得た。
【0237】
得られた固体を重水溶媒に溶解し
1H−NMR分析を行った。得られたスペクトルのケミカルシフト〔ppm〕と(積分値(比))は以下の通りであった。
1H−NMR:1.7ppm(2H)、3.8ppm(4H)、4.7ppm(2H)。
また、
19F−NMR分析も行い、得られたスペクトルのケミカルシフト〔ppm〕は以下の通りであった。
19F−NMR:55ppm。
それぞれ、1,3−ジオキサンとリチウムビス(フルオロスルホニル)イミド単独のスペクトルパターンと同じパターンが確認され、生成物が両構造単位を有することが示された。
また得られた固体の、室温から600℃までの示差走査熱量(DSC)測定を行った。得られた固体は、原料化合物には認められない融点145℃および281℃ピークの吸熱熱解離挙動が観測された。
【0238】
〔実施例44〕リチウムビス(フルオロスルホニル)イミドとジメチルスルホキシドとからなる錯化合物S44
実施例37と同様の方法を行う中で、N−メチルピロリドンをジメチルスルホキシド2.34g(0.03mol)に変更して処理を行った。最終的に生成物となる固体7.94gを得た。
【0239】
得られた固体を重水溶媒に溶解し
1H−NMR分析を行った。得られたスペクトルのケミカルシフト〔ppm〕と(積分値(比))は以下の通りであった。
1H−NMR:2.5ppm(−)。
また、
19F−NMR分析も行い、得られたスペクトルのケミカルシフト〔ppm〕は以下の通りであった。
19F−NMR:55ppm。
それぞれ、ジメチルスルホキシドとリチウムビス(フルオロスルホニル)イミド単独のスペクトルパターンと同じパターンが確認され、生成物が両構造単位を有することが示された。
また得られた固体の、室温から600℃までの示差走査熱量(DSC)測定を行った。得られた固体は、原料化合物には認められない融点54℃および278℃ピークの吸熱熱解離挙動が観測された。
【0240】
〔実施例45〕リチウムビス(フルオロスルホニル)イミドと1,5,2,4−ジオキサジチアン−2,2,4,4−テトラオキシドとからなる錯化合物S45
実施例37と同様の方法を行う中で、N−メチルピロリドンを1,5,2,4−ジオキサジチアン−2,2,4,4−テトラオキシド5.65g(0.03mol)に変更して処理を行った。最終的に生成物となる固体11.25gを得た。
【0241】
得られた固体を重水溶媒に溶解し
1H−NMR分析を行った。得られたスペクトルのケミカルシフト〔ppm〕と(積分値(比))は以下の通りであった。
1H−NMR:4.7ppm(2H)、5.8ppm(2H)。
また、
19F−NMR分析も行い、得られたスペクトルのケミカルシフト〔ppm〕は以下の通りであった。
19F−NMR:55ppm。
それぞれ、1,5,2,4−ジオキサジチアン−2,2,4,4−テトラオキシドとリチウムビス(フルオロスルホニル)イミド単独のスペクトルパターンと同じパターンが確認され、生成物が両構造単位を有することが示された。
また得られた固体の、室温から600℃までの示差走査熱量(DSC)測定を行った。得られた固体は、原料化合物には認められない融点396℃および442℃ピークの吸熱熱解離挙動が観測された。
【0242】
〔実施例46〕リチウムビス(パーフルオロエチルスルホニル)イミドとN−メチルピロリドンとからなる錯化合物S46
撹拌装置、温度計、ガスの導入および排気ラインを備えた100mLのフラスコに、乾燥窒素ガスでパージした後に、リチウムビス(パーフルオロエチルスルホニル)イミド11.61g(0.03mol)と酢酸エチル65gを入れ、撹拌混和させた。この液中にN−メチルピロリドン2.97g(0.03mol)を注ぎ入れ、1時間撹拌した後に、撹拌したまま10kPa以下に減圧、60℃に加温して酢酸エチルを留去させた。得られた固体を更に、10kPa以下の減圧下、60℃で乾燥処理して生成物となる固体14.57gを得た。
【0243】
得られた固体を重水溶媒に溶解し
1H−NMR分析を行った。得られたスペクトルのケミカルシフト〔ppm〕と(積分値(比))は以下の通りであった。
1H−NMR:2.0ppm(2H)、2.4ppm(2H)、2.9ppm(3H)、3.4ppm(2H)。
また、
19F−NMR分析も行い、得られたスペクトルのケミカルシフト〔ppm〕と(積分値(比))は以下の通りであった。
19F−NMR:−80ppm(6F)、−119ppm(4F)。
それぞれ、N−メチルピロリドンとリチウムビス(パーフルオロエチルスルホニル)イミド単独のスペクトルパターンと同じパターンが確認され、生成物が両構造単位を有することが示された。
また得られた固体の、室温から600℃までの示差走査熱量(DSC)測定を行った。得られた固体は、原料化合物には認められない融点231℃および282℃ピークの吸熱熱解離挙動が観測された。
【0244】
〔実施例47〕リチウムビス(パーフルオロエチルスルホニル)イミドと1,3−ジメチル−2−イミダゾリジノンとからなる錯化合物S47
実施例46と同様の方法を行う中で、N−メチルピロリドンを1,3−ジメチル−2−イミダゾリジノン3.42g(0.03mol)に変更して処理を行った。最終的に生成物となる固体15.02gを得た。
【0245】
得られた固体を重水溶媒に溶解し
1H−NMR分析を行った。得られたスペクトルのケミカルシフト〔ppm〕と(積分値(比))は以下の通りであった。
1H−NMR:3.1ppm(6H)、3.4ppm(4H)。
また、
19F−NMR分析も行い、得られたスペクトルのケミカルシフト〔ppm〕と(積分値(比))は以下の通りであった。
19F−NMR:−80ppm(6F)、−119ppm(4F)。
それぞれ、1,3−ジメチル−2−イミダゾリジノンとリチウムビス(パーフルオロエチルスルホニル)イミド単独のスペクトルパターンと同じパターンが確認され、生成物が両構造単位を有することが示された。
また得られた固体の、室温から600℃までの示差走査熱量(DSC)測定を行った。得られた固体は、原料化合物には認められない融点180℃および304℃ピークの吸熱熱解離挙動が観測された。
【0246】
〔実施例48〕リチウムビス(パーフルオロエチルスルホニル)イミドとN,N−ジメチルホルムアミドとからなる錯化合物S48
実施例46と同様の方法を行う中で、N−メチルピロリドンをN,N−ジメチルホルムアミド2.19g(0.03mol)に変更して処理を行った。最終的に生成物となる固体13.80gを得た。
【0247】
得られた固体を重水溶媒に溶解し
1H−NMR分析を行った。得られたスペクトルのケミカルシフト〔ppm〕と(積分値(比))は以下の通りであった。
1H−NMR:2.9ppm(6H)、8.0ppm(1H)。
また、
19F−NMR分析も行い、得られたスペクトルのケミカルシフト〔ppm〕と(積分値(比))は以下の通りであった。
19F−NMR:−80ppm(6F)、−119ppm(4F)。
それぞれ、N,N−ジメチルホルムアミドとリチウムビス(パーフルオロエチルスルホニル)イミド単独のスペクトルパターンと同じパターンが確認され、生成物が両構造単位を有することが示された。
また得られた固体の、室温から600℃までの示差走査熱量(DSC)測定を行った。得られた固体は、原料化合物には認められない融点253℃および295℃ピークの吸熱熱解離挙動が観測された。
【0248】
〔実施例49〕リチウムビス(パーフルオロエチルスルホニル)イミドとN,N−ジメチルアクリルアミドとからなる錯化合物S49
実施例46と同様の方法を行う中で、N−メチルピロリドンをN,N−ジメチルアクリルアミド2.97g(0.03mol)に変更して処理を行った。最終的に生成物となる固体14.57gを得た。
【0249】
得られた固体を重水溶媒に溶解し
1H−NMR分析を行った。得られたスペクトルのケミカルシフト〔ppm〕と(積分値(比))は以下の通りであった。
1H−NMR:3.0ppm(6H)、5.6ppm(1H)、6.0ppm(1H)、6.6ppm(1H)。
また、
19F−NMR分析も行い、得られたスペクトルのケミカルシフト〔ppm〕と(積分値(比))は以下の通りであった。
19F−NMR:−80ppm(6F)、−119ppm(4F)。
それぞれ、N,N−ジメチルアクリルアミドとリチウムビス(パーフルオロエチルスルホニル)イミド単独のスペクトルパターンと同じパターンが確認され、生成物が両構造単位を有することが示された。
また得られた固体の、室温から600℃までの示差走査熱量(DSC)測定を行った。得られた固体は、原料化合物には認められない融点137℃および256℃ピークの吸熱熱解離挙動が観測された。
【0250】
〔実施例50〕リチウムビス(パーフルオロエチルスルホニル)イミドとN−ビニルピロリドンとからなる錯化合物S50
実施例46と同様の方法を行う中で、N−メチルピロリドンをN−ビニルピロリドン3.33g(0.03mol)に変更して処理を行った。最終的に生成物となる固体14.93gを得た。
【0251】
得られた固体を重水溶媒に溶解し
1H−NMR分析を行った。得られたスペクトルのケミカルシフト〔ppm〕と(積分値(比))は以下の通りであった。
1H−NMR:2.1ppm(2H)、2.4ppm(2H)、3.3ppm(2H)、5.0ppm(1H)、6.3ppm(1H)、6.9ppm(1H)。
また、
19F−NMR分析も行い、得られたスペクトルのケミカルシフト〔ppm〕と(積分値(比))は以下の通りであった。
19F−NMR:−80ppm(6F)、−119ppm(4F)。
それぞれ、N−ビニルピロリドンとリチウムビス(パーフルオロエチルスルホニル)イミド単独のスペクトルパターンと同じパターンが確認され、生成物が両構造単位を有することが示された。
また得られた固体の、室温から600℃までの示差走査熱量(DSC)測定を行った。得られた固体は、原料化合物には認められない融点166℃および274℃ピークの吸熱熱解離挙動が観測された。
【0252】
〔実施例51〕リチウムビス(パーフルオロエチルスルホニル)イミドと1,3−ジオキソランとからなる錯化合物S51
実施例46と同様の方法を行う中で、N−メチルピロリドンを1,3−ジオキソラン2.22g(0.03mol)に変更して処理を行った。最終的に生成物となる固体13.82gを得た。
【0253】
得られた固体を重水溶媒に溶解し
1H−NMR分析を行った。得られたスペクトルのケミカルシフト〔ppm〕と(積分値(比))は以下の通りであった。
1H−NMR:3.9ppm(4H)、4.9ppm(2H)。
また、
19F−NMR分析も行い、得られたスペクトルのケミカルシフト〔ppm〕と(積分値(比))は以下の通りであった。
19F−NMR:−80ppm(6F)、−119ppm(4F)。
それぞれ、1,3−ジオキソランとリチウムビス(パーフルオロエチルスルホニル)イミド単独のスペクトルパターンと同じパターンが確認され、生成物が両構造単位を有することが示された。
また得られた固体の、室温から600℃までの示差走査熱量(DSC)測定を行った。得られた固体は、原料化合物には認められない融点188℃および328℃ピークの吸熱熱解離挙動が観測された。
【0254】
〔実施例52〕リチウムビス(パーフルオロエチルスルホニル)イミドと1,3−ジオキサンとからなる錯化合物S52
実施例46と同様の方法を行う中で、N−メチルピロリドンを1,3−ジオキサン2.64g(0.03mol)に変更して処理を行った。最終的に生成物となる固体14.24gを得た。
【0255】
得られた固体を重水溶媒に溶解し
1H−NMR分析を行った。得られたスペクトルのケミカルシフト〔ppm〕と(積分値(比))は以下の通りであった。
1H−NMR:1.7ppm(2H)、3.8ppm(4H)、4.7ppm(2H)。
また、
19F−NMR分析も行い、得られたスペクトルのケミカルシフト〔ppm〕と(積分値(比))は以下の通りであった。
19F−NMR:−80ppm(6F)、−119ppm(4F)。
それぞれ、1,3−ジオキサンとリチウムビス(パーフルオロエチルスルホニル)イミド単独のスペクトルパターンと同じパターンが確認され、生成物が両構造単位を有することが示された。
また得られた固体の、室温から600℃までの示差走査熱量(DSC)測定を行った。得られた固体は、原料化合物には認められない融点130℃および304℃ピークの吸熱熱解離挙動が観測された。
【0256】
〔実施例53〕リチウムビス(パーフルオロエチルスルホニル)イミドとジメチルスルホキシドとからなる錯化合物S53
実施例46と同様の方法を行う中で、N−メチルピロリドンをジメチルスルホキシド2.34g(0.03mol)に変更して処理を行った。最終的に生成物となる固体13.95gを得た。
【0257】
得られた固体を重水溶媒に溶解し
1H−NMR分析を行った。得られたスペクトルのケミカルシフト〔ppm〕と(積分値(比))は以下の通りであった。
1H−NMR:2.5ppm(−)。
また、
19F−NMR分析も行い、得られたスペクトルのケミカルシフト〔ppm〕と(積分値(比))は以下の通りであった。
19F−NMR:−80ppm(6F)、−119ppm(4F)。
それぞれ、ジメチルスルホキシドとリチウムビス(パーフルオロエチルスルホニル)イミド単独のスペクトルパターンと同じパターンが確認され、生成物が両構造単位を有することが示された。
また得られた固体の、室温から600℃までの示差走査熱量(DSC)測定を行った。得られた固体は、原料化合物には認められない融点154℃および274℃ピークの吸熱熱解離挙動が観測された。
【0258】
〔実施例54〕リチウムビス(パーフルオロエチルスルホニル)イミドと1,5,2,4−ジオキサジチアン−2,2,4,4−テトラオキシドとからなる錯化合物S54
実施例46と同様の方法を行う中で、N−メチルピロリドンを1,5,2,4−ジオキサジチアン−2,2,4,4−テトラオキシド5.65g(0.03mol)に変更して処理を行った。最終的に生成物となる固体17.25gを得た。
【0259】
得られた固体を重水溶媒に溶解し
1H−NMR分析を行った。得られたスペクトルのケミカルシフト〔ppm〕と(積分値(比))は以下の通りであった。
1H−NMR:4.7ppm(2H)、5.8ppm(2H)。
また、
19F−NMR分析も行い、得られたスペクトルのケミカルシフト〔ppm〕と(積分値(比))は以下の通りであった。
19F−NMR:−80ppm(6F)、−119ppm(4F)。
それぞれ、1,5,2,4−ジオキサジチアン−2,2,4,4−テトラオキシドとリチウムビス(パーフルオロエチルスルホニル)イミド単独のスペクトルパターンと同じパターンが確認され、生成物が両構造単位を有することが示された。
また得られた固体の、室温から600℃までの示差走査熱量(DSC)測定を行った。得られた固体は、原料化合物には認められない融点458℃および515℃ピークの吸熱熱解離挙動が観測された。
【0260】
以上に示すように、各実施例では、新規なリチウム塩錯化合物が得られた。
また、各実施例で得られたリチウム塩錯化合物は、原料化合物(特定リチウム塩及び特定化合物)には認められない融点が観測され、更にこの融点より高い温度で吸熱熱解離挙動が観測された。即ち、得られたリチウム塩錯化合物は、熱的安定性に優れることが確認された。
【0261】
〔実施例101〕
以下の手順にて、リチウム二次電池であるコイン型電池(試験用電池)を作製した。
【0262】
<負極の作製>
天然黒鉛系黒鉛100質量部、カルボキシメチルセルロース1質量部及びSBRラテックス2質量部を水溶媒で混錬してペースト状の負極合剤スラリーを調製した。
次に、この負極合剤スラリーを厚さ18μmの帯状銅箔製の負極集電体に塗布し乾燥した後に、ロールプレスで圧縮して負極集電体と負極活物質層とからなるシート状の負極を得た。このときの負極活物質層の塗布密度は12mg/cm
2であり、充填密度は1.5g/mlであった。
【0263】
<正極の作製>
LiNi
0.5Mn
0.3Co
0.2O
2を90質量部、アセチレンブラック5質量部及びポリフッ化ビニリデン5質量部を、N−メチルピロリドンを溶媒として混錬してペースト状の正極合剤スラリーを調製した。
次に、この正極合剤スラリーを厚さ20μmの帯状アルミ箔の正極集電体に塗布し乾燥した後に、ロールプレスで圧縮して正極集電体と正極活物質とからなるシート状の正極を得た。このときの正極活物質層の塗布密度は22mg/cm
2であり、充填密度は2.9g/mlであった。
【0264】
<非水電解液の調製>
非水溶媒としてエチレンカーボネート(EC)とジメチルカーボネート(DMC)とメチルエチルカーボネート(EMC)とをそれぞれ30:35:35(質量比)の割合で混合し、混合溶媒を得た。
得られた混合溶媒中に、電解質であるヘキサフルオロリン酸リチウムを、最終的に得られる非水電解液中における電解質濃度が1モル/リットルとなるように溶解させた。
上記で得られた溶液に対して、添加剤として、メチル硫酸リチウムとN−メチルピロリドンとからなる錯化合物S10(添加量0.5質量%)を添加し、非水電解液を得た。
【0265】
<コイン型電池の作製>
上述の負極を直径14.5mmで、上述の正極を直径13mmで、それぞれ円盤状に打ち抜いて、コイン状の電極(負極及び正極)を得た。また、厚さ20μmの微多孔性ポリエチレンフィルムを直径16mmの円盤状に打ち抜きセパレータを得た。
得られたコイン状の負極、セパレータ及びコイン状の正極を、この順序でステンレス製の電池缶(2032サイズ)内に積層し、上記非水電解液40μlを注入してセパレータと正極と負極に含漬させた。
さらに、正極上にアルミニウム製の板(厚さ1.2mm、直径16mm)及びバネを乗せ、ポリプロピレン製のガスケットを介して、電池缶蓋をかしめることにより電池を密封し、直径20mm、高さ3.2mmの
図3で示す構成を有するコイン型電池(試験用電池)を作製した。
【0266】
〔電池試験〕
得られたコイン型電池(試験用電池)について、ASKA充放電装置(ASKA CHARGE DISCHARGE SYSTEM ACD−M01A, ASKA ElectronicCo.,Ltd.,Japan)と恒温槽(LU−113,ESPEC CORP.,Japan)とを用いて、各測定を実施した。
電池試験はコンディショニングを含む。
【0267】
<コンディショニング>
上記コイン型電池を恒温槽内で25℃にて0.2CでCC−CV電圧4.2Vまで充電してから、0.2CでCC放電し、以上の工程を4回繰り返した。
【0268】
<直流抵抗>
コンディショニング後のコイン型電池を用いて、以下の方法により25℃にて直流抵抗を測定した。
まず、SOC(State of Chargeの略)50%から0.2CでCC10s放電を行い、0.2CでCC−CV10s充電を行った。
次に、1CでCC10s放電を行い、1CでCC−CV10s充電を行った。
次に、2CでCC10s放電を行い、2CでCC−CV10s充電を行った。
次に、5CでCC10s放電を行い、5CでCC−CV10s充電を行った。
なお、CC10s放電とは、定電流(constant current)にて10秒間放電することを意味する。CC−CV10s充電とは、定電流定電圧(constant current−constant voltage)にて10秒間充電することを意味する。
各充放電休止電流と休止電圧とから直流抵抗を求めた。
結果を表1に示す。
【0269】
〔実施例102〕
非水電解液の調製において、添加剤の添加量を1.0質量%としたこと以外は実施例101と同様の操作を行った。
結果を表1に示す。
【0270】
〔比較例101〕
非水電解液の調製において、添加剤を添加しなかったこと以外は実施例101と同様の操作を行った。
結果を表1に示す。
【0271】
【表1】
【0272】
添加剤として、錯化合物S10を含む非水電解液を用いた実施例101〜102は、添加剤を含まない非水電解液を用いた比較例101と比較して、電池抵抗(直流抵抗)が低減されていることがわかる。
また、添加剤の添加量が1.0wt%の実施例102は、かかる添加量が0.5wt%の実施例101と比較して、電池抵抗(直流抵抗)がより低減されていることがわかる。