(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6879966
(24)【登録日】2021年5月7日
(45)【発行日】2021年6月2日
(54)【発明の名称】イオンクロマトグラフィのための電解試薬濃縮器
(51)【国際特許分類】
G01N 30/02 20060101AFI20210524BHJP
G01N 30/26 20060101ALI20210524BHJP
【FI】
G01N30/02 E
G01N30/26 H
G01N30/26 L
【請求項の数】15
【全頁数】29
(21)【出願番号】特願2018-37585(P2018-37585)
(22)【出願日】2018年3月2日
(65)【公開番号】特開2018-146583(P2018-146583A)
(43)【公開日】2018年9月20日
【審査請求日】2021年2月24日
(31)【優先権主張番号】15/449,868
(32)【優先日】2017年3月3日
(33)【優先権主張国】US
【早期審査対象出願】
(73)【特許権者】
【識別番号】591025358
【氏名又は名称】ダイオネックス コーポレイション
(74)【代理人】
【識別番号】100094569
【弁理士】
【氏名又は名称】田中 伸一郎
(74)【代理人】
【識別番号】100088694
【弁理士】
【氏名又は名称】弟子丸 健
(74)【代理人】
【識別番号】100103610
【弁理士】
【氏名又は名称】▲吉▼田 和彦
(74)【代理人】
【識別番号】100095898
【弁理士】
【氏名又は名称】松下 満
(74)【代理人】
【識別番号】100098475
【弁理士】
【氏名又は名称】倉澤 伊知郎
(74)【代理人】
【識別番号】100130937
【弁理士】
【氏名又は名称】山本 泰史
(72)【発明者】
【氏名】カナン スリニヴァサン
(72)【発明者】
【氏名】ムリナル セングプタ
(72)【発明者】
【氏名】エスエム ラーマット ウラー
【審査官】
黒田 浩一
(56)【参考文献】
【文献】
特表2011−511290(JP,A)
【文献】
特表2010−529480(JP,A)
【文献】
米国特許出願公開第2015/0076005(US,A1)
【文献】
特開平6−50951(JP,A)
【文献】
特開2016−95307(JP,A)
【文献】
米国特許出願公開第2013/0220814(US,A1)
【文献】
特表2001−520752(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01N 30/00−30/96
(57)【特許請求の範囲】
【請求項1】
電解試薬濃縮器装置(300)であって、
試薬イオン源チャネル(310)と、
対イオン源チャネル(320)と、
再生剤濃縮チャネル(330)と、
第1の電荷を有し、かつ、前記第1の電荷とは異極性の電荷を有する少なくとも試薬イオンに透過性であるが、前記第1の電荷と同極性の電荷を有する他のイオンに透過性でない第1のイオン交換バリア(340)であって、前記試薬イオン源チャネル(310)と前記再生剤濃縮チャネル(330)との間の液体のバルクフローをブロックすることにより前記再生剤濃縮チャネル(330)から前記試薬イオン源チャネル(310)を分離する、第1のイオン交換バリア(340)と、
前記第1の電荷とは異極性の第2の電荷を有し、かつ、少なくとも前記第2の電荷とは異極性の電荷を有する電解生成対イオンに透過性であるが、前記第2の電荷と同極性の電荷を有する他のイオンに透過性でない第2のイオン交換バリア(350)であって、前記対イオン源チャネル(320)と前記再生剤濃縮チャネル(330)との間の液体のバルクフローをブロックすることにより前記再生剤濃縮チャネル(330)から前記対イオン源チャネル(320)を分離する、第2のイオン交換バリア(350)と、
前記試薬イオン源チャネル(310)と電気通信する電極(360)と、
前記対イオン源チャネル(320)と電気通信する対電極(370)と、
前記試薬イオン源チャネル(310)内への前記試薬イオンを含む液体の流量と比較して、前記再生剤濃縮チャネル(330)内への液体の流量を制限するための流量制御装置(380)と、を備え
前記電極(360)、前記試薬イオン源チャネル(310)、前記再生剤濃縮チャネル(330)、前記対イオン源チャネル(320)、及び、前記対電極(370)は、電解電位または電解電流の印加時に、試薬イオンを前記試薬イオン源チャネル(310)から、かつ電解生成対イオンを前記対イオン源チャネル(320)から、前記再生剤濃縮チャネル(330)内に移動させるように電解槽を形成する、電解試薬濃縮器装置(300)。
【請求項2】
前記流量制御装置(380)は、
検出器から検出器流を受容するように構成された第1の入力部と、
前記再生剤濃縮チャネル(330)の入力部に連結された第1の出力部と、
前記対イオン源チャネル(320)の入力部に連結された第2の出力部と、を含み、
前記流量制御装置は、前記第2の出力部から出力される液体の流量に対して、前記第1の出力部から出力される液体の流量を制限する、請求項1に記載の電解試薬濃縮器装置(300)。
【請求項3】
前記対イオン源チャネル(320)は抑制器(100)のイオン源再生剤チャネル(110)に流体的に相互接続され、
前記抑制器のイオン受容再生剤チャネル(112)は前記試薬イオン源チャネル(310)に流体的に相互接続されている、請求項2に記載の電解試薬濃縮器装置(300)。
【請求項4】
前記電極(360)は前記試薬イオン源チャネル(310)に隣接して配置され、
前記対電極(370)は前記対イオン源チャネル(320)に隣接して配置されている、請求項1に記載の電解試薬濃縮器装置(300)。
【請求項5】
前記電極(360)は前記試薬イオン源チャネル(310)内に配置され、
前記対電極(370)は前記対イオン源チャネル(320)内に配置されている、請求項1に記載の電解試薬濃縮器装置(300)。
【請求項6】
前記試薬イオン源チャネル(310)、前記対イオン源チャネル(320)、及び、前記再生剤濃縮チャネル(330)のうちの少なくとも1つの内部に配置されたイオン交換材料と、
前記再生剤濃縮チャネル(330)内に配置された中性充填材料と、をさらに備える、請求項1に記載の電解試薬濃縮器装置(300)。
【請求項7】
ガス除去装置(200)をさらに備え、前記ガス除去装置は、
溶離剤チャネル(210)と、
再生剤チャネル(220)と、
前記溶離剤チャネルと前記再生剤チャネルとの間のガスの移動を可能にするように、前記溶離剤チャネル(210)を前記再生剤チャネル(220)から分離するガス透過性膜と、を含み、
前記再生剤チャネル(220)は、前記再生剤濃縮チャネル(330)の出力部の下流にあり、前記再生剤濃縮チャネルの出力部と流体的に相互接続され、
前記溶離剤チャネル(210)は、前記再生剤濃縮チャネル(330)の入力部の上流にあり、前記再生剤濃縮チャネルの入力部と流体的に相互接続されており、
前記溶離剤チャネルは、前記再生剤濃縮チャネル(330)内に運ばれる液体が溶離剤液体流の一部であるように、前記流量制御装置の上流にあり、前記流量制御装置に流体的に相互接続されている、請求項1に記載の電解試薬濃縮器装置(300)。
【請求項8】
イオンクロマトグラフィシステムを操作する方法であって、
前記イオンクロマトグラフィシステムの抑制器(100)のイオン受容再生剤チャネルから第1の液体流を流すステップであって、前記第1の液体流は少なくとも溶離剤試薬イオン及び水を含有する、流すステップと、
電解試薬濃縮器装置(300)を得るステップであって、前記電解試薬濃縮器装置が、
試薬イオン源チャネル(310)と、
対イオン源チャネル(320)と、
再生剤濃縮チャネル(330)と、
第1の電荷を有し、かつ、前記第1の電荷とは異極性の電荷を有する少なくとも試薬イオンに透過性であるが、前記第1の電荷と同極性の電荷を有する他のイオンに透過性でない第1のイオン交換バリア(340)であって、前記試薬イオン源チャネル(310)と前記再生剤濃縮チャネル(330)との間の液体のバルクフローをブロックすることにより前記再生剤濃縮チャネル(330)から前記試薬イオン源チャネル(310)を分離する、第1のイオン交換バリア(340)と、
前記第1の電荷とは異極性の第2の電荷を有し、かつ、前記第2の電荷とは異極性の電荷を有する少なくとも電解生成対イオンに透過性であるが、前記第2の電荷と同極性の電荷を有する他のイオンに透過性でない第2のイオン交換バリア(350)であって、前記対イオン源チャネル(320)と前記再生剤濃縮チャネル(330)との間の液体のバルクフローをブロックすることにより前記再生剤濃縮チャネル(330)から前記対イオン源チャネル(320)を分離する、第2のイオン交換バリア(350)と、
前記試薬イオン源チャネル(310)と電気通信する電極(360)と、
前記対イオン源チャネル(320)と電気通信する対電極(370)と、を備え、
前記電極(360)、前記試薬イオン源チャネル(310)、前記再生剤濃縮チャネル(330)、前記対イオン源チャネル(320)、及び、前記対電極(370)が、電解槽を形成する、電解試薬濃縮器装置(300)を得るステップと、
前記第1の液体流を第1の流量で前記試薬イオン源チャネル(310)に流すステップと、
少なくとも水を含有する第2の液体流を第2の流量で前記対イオン源チャネル(320)に流すステップと、
少なくとも水を含有する第3の液体流を前記第1の流量未満である第3の流量で前記再生剤濃縮チャネル(330)に流すステップと、
前記電極及び前記対電極に電流または電位を印加して、前記溶離剤試薬イオンを前記試薬イオン源チャネル(310)から、かつ前記電解生成対イオンを前記対イオン源チャネル(320)から、前記再生剤濃縮チャネル(330)内に移動させて濃縮再生剤溶液を形成するステップと、を含む方法。
【請求項9】
ガス除去装置(200)を得るステップであって、前記ガス除去装置が、
ガス除去チャネル(210)と、
ガス再生剤チャネル(220)と、
前記ガス除去チャネルと前記ガス再生剤チャネルとの間のガスの移動を可能にするように、前記ガス除去チャネル(210)を前記ガス再生剤チャネル(220)から分離するガス透過性膜と、を含み、前記ガス再生剤チャネルが、前記再生剤濃縮チャネルの下流にあり、前記再生剤濃縮チャネルと流体的に相互接続されている、ガス除去装置(200)を得るステップと、
前記濃縮再生剤溶液を前記電解試薬濃縮器装置(300)から前記ガス除去装置(200)の前記ガス再生剤チャネル(220)に流すステップと、をさらに含む、請求項8に記載の方法。
【請求項10】
前記試薬イオン源チャネル(310)内の第1の液体流は、前記再生剤濃縮チャネル(330)内の第3の液体流に向流して流れる、請求項8に記載の方法。
【請求項11】
前記電解試薬濃縮器装置(300)は、前記試薬イオン源チャネル(310)内への第1の液体流の第1の流量と比較して、前記再生剤濃縮チャネル(330)内への第3の液体流の第3の流量を制限するための流量制御装置をさらに備え、
前記方法は、
第4の液体流を前記ガス除去チャネル(210)から前記流量制御装置(380)に流すステップと、
前記流量制御装置を介して、第4の液体流の第1の部分を入力として前記抑制器(100)のイオン源再生剤チャネルに供給するステップと、
前記流量制御装置(380)を介して、前記第4の液体流の第2の部分を前記第3の液体流として前記再生剤濃縮チャネル(330)に供給するステップであって、前記第2の部分は、前記第1の部分の流量未満の流量を有する、供給するステップと、をさらに含む、請求項9に記載の方法。
【請求項12】
前記対イオン源チャネル(320)の出力を抑制器装置(100)のイオン源再生剤チャネル(110)に流すステップと、
前記抑制器装置(100)のイオン源再生剤チャネル(110)の出力を前記抑制器装置のイオン受容再生剤チャネル(112)に流すステップと、
前記抑制器装置のイオン受容再生剤チャネル(112)の出力を前記第1の液体流として前記試薬イオン源チャネル(310)に流すステップと、をさらに含む、請求項8に記載の方法。
【請求項13】
流量比は、前記第1の液体流の流量を前記第3の液体流の流量で割ったものであり、
前記流量比は、約2/1〜約1000/1の範囲である、請求項8に記載の方法。
【請求項14】
流量比は、前記第1の液体流の流量を前記第3の液体流の流量で割ったものであり、
前記流量比は、約10/1〜約30/1である、請求項8に記載の方法。
【請求項15】
前記濃縮再生剤溶液が塩基溶液であり、ガス除去装置(200)が炭酸塩除去装置である、請求項8に記載の方法。
【発明の詳細な説明】
【背景技術】
【0001】
イオンクロマトグラフィ(IC)は、溶液中のカチオン性及びアニオン性検体を分析するための好ましい方法である。ICシステムは、通常、溶離剤の導電率を低下させ、完全に解離した検体の測定感度を高めるために使用される抑制器装置を備える。水酸化物溶離剤では、溶離カチオンをヒドロニウムイオンと交換することによって水酸化物を中和し、通常1μS/cm未満のバックグラウンド伝導率を有する弱解離水を生成する。しかしながら、炭酸塩及び/または重炭酸塩溶離剤では、抑制器は炭酸塩種を炭酸に変換し、中性pH水よりも著しく高いバックグラウンド導電率を保持する溶液を生成する。分析のためにICシステムに導入された試料に溶解され得る二酸化炭素はまた、炭酸塩種に変換され、変換時に、溶離剤流の導電率を過渡的に変化させ得る。二酸化炭素及び炭酸塩種は結果的に、他のアニオンに対する測定感度の低下、測定ノイズの増加、及び測定干渉の可能性に寄与する。
【0002】
ガス透過性膜は、溶存二酸化炭素ガスの除去により、抑制された溶離剤流から炭酸を除去する。Thermo Scientific(商標)Dionex(商標)CRD 300のような市販製品は、抑制された溶離剤から溶存二酸化炭素ガスを引き出し、化学的平衡によって炭酸の解離を、より溶存二酸化炭素ガスと水にさせて炭酸を枯渇させ、最終的に低い全バックグラウンド導電率を有する抑制された液体流をもたらす。このような炭酸塩除去装置(CRD)は、溶離剤から溶存二酸化炭素ガスを物理的または化学的に引き出すために、ガス透過性膜を横断して真空に引く、または塩基性の再生剤溶液をガス透過性膜の反対側の区画に循環させるポンプを必要とする。ある市販製品では、最大1ヶ月間使用するために再循環された200mM水酸化ナトリウム(NaOH)再生剤溶液を使用して、ガス透過性膜(例えば、Teflon AF)を通して二酸化炭素を化学的に引き抜くことを推奨する。これらのアプローチは、導電率セルによって測定される信号において低いバックグラウンド及びノイズを達成することができ、したがって、ICシステム内の標的検体の信号対雑音比を改善する。しかしながら、さらに別のポンプ及びさらに別の試薬を維持する必要性及び追加された実施作業は、炭酸塩溶離剤を用いたCRD装置を使用するICシステムの操作上の複雑さを増大させる。
【0003】
これに関連して、ICシステム用の溶離剤試薬は、システム内での1回の使用の後に廃棄物として一般に処分され、試薬の各バッチが消費されると新鮮な溶離剤で定期的に交換する必要がある。溶離剤試薬の製造及び維持を頻繁に行うと、化学廃棄物の量及び化学廃棄物に関連するコストも増加する。
【0004】
したがって、開示された装置及び方法のような改良が必要とされる。
【発明の概要】
【0005】
本発明の一態様では、電解試薬濃縮器は、追加のポンプ及び試薬の供給の必要性を回避する。操作において、印加電圧が約1.5Vを超えると、試薬イオンは試薬イオン源チャネルから第1のイオン交換バリアを通って中央濃縮チャネルに輸送され、同時に、水の電気分解から生成された対イオンは対イオン源チャネルから第2のイオン交換バリアを通って中央濃縮チャネルに輸送され、これらイオン交換バリアは、液体のバルクフローをブロックすることによって各々のチャネルを互いに分離するが、それぞれのチャネル間で適切に荷電したイオンの移動はブロックしない。濃縮器装置は、中央濃縮チャネルを通る液体の流量が試薬イオン源チャネルを通る液体の流量よりも低く、したがってその場で濃縮器装置機構を形成するように構成される。この装置は試薬イオン源チャネルの供給源流として廃棄物流を使用することができ、検出器流をイオン源チャネルに供給するための2つの流れに分割し、中央濃縮チャネル、ならびに抑制器のような他のイオンクロマトグラフィ装置にも適用することができるので、自己持続式であり、追加のポンプまたは試薬を必要としない。
【0006】
本発明の別の態様では、インライン電解試薬濃縮器装置を備えるイオンクロマトグラフィシステムを操作する方法を開示する。この方法は、イオンクロマトグラフィシステムのイオン検出器セルから第1の液体流を得て、第1の液体流を電解試薬濃縮器の試薬イオン源チャネルに供給することを含む。第1の液体流は、試薬イオン源チャネルに供給される前に、より大きい部分が対イオン源チャネル及び場合によっては抑制器に供給されるように分割され、より少ない部分が再生剤濃縮チャネルに提供される試薬イオンを再生剤濃縮チャネル及び生成された溶液内に濃縮する。1つの代替案では、本方法は、ガス除去装置用の濃縮再生剤溶液を再生するために使用される。別の代替案では、この方法は、イオンクロマトグラフィシステムの分離カラムと共に使用するための溶離剤を再生するために使用される。
【0007】
第1の態様では、電解試薬濃縮器装置は、試薬イオン源チャネル、対イオン源チャネル、再生剤濃縮チャネル、第1イオン交換バリア、第2イオン交換バリア、電極、対電極及び、流量制御装置を備える。前記第1イオン交換バリアは、第1の電荷を有することができ、かつ、少なくとも前記第1の電荷とは異極性の電荷を有する試薬イオンに透過性であるが、前記第1の電荷と同極性の電荷を有する他のイオンに透過性でない。前記第1のイオン交換バリアは、前記試薬イオン源チャネルと前記再生剤濃縮チャネルとの間の液体のバルクフローをブロックすることにより前記再生剤濃縮チャネルから前記試薬イオンチャネルを分離する。前記第2のイオン交換バリアは、前記第1の電荷とは異極性の第2の電荷を有し、かつ、少なくとも前記第2の電荷とは異極性の電荷を有する電解生成対イオンに透過性であるが、前記第2の電荷と同極性の電荷を有する他のイオンに透過性でない。前記第2のイオン交換バリアは、前記対イオン源チャネルと前記再生剤濃縮チャネルとの間の液体のバルクフローをブロックすることにより前記再生剤濃縮チャネルから前記対イオン源チャネルを分離する。前記電極は、前記試薬イオン源チャネルと電気通信しており、前記対電極は、前記対イオンチャネルと電気通信している。流量制御装置は、前記試薬イオン源チャネル内への前記試薬イオンを含む液体の流量と比較して、前記再生剤濃縮チャネル内への液体の流量を制限する。流量制御装置の第1の部分は、すべて流体的に相互接続されている、対イオン源チャネル、イオン源再生剤チャネル、イオン受容再生剤チャネル、及び試薬源チャネルを通る流れを制御することに留意されたい。電極、試薬イオン源チャネル、再生剤濃縮チャネル、対イオン源チャネル及び対電極は、電解電位または電流の印加時に、試薬イオンを試薬イオン源チャネルから、電解生成対イオンを対イオン源チャネルから再生剤濃縮チャネル内へ駆動するように、電解槽を形成することができる。
【0008】
第1の態様に関して、流量制御装置は、検出器からの検出器流を受容するように構成された第1の入力部、再生剤濃縮チャネルの入力部に連結された第1の出力部、及び対イオン源チャネルの入力部に連結された第2の出力部を含むことができる。前記流量制御装置は、前記第2の出力部から出力される液体の流量に対して、前記第1出力部から出力される液体の流量を制限することができる。
【0009】
第1の態様に関して、対イオン源チャネルは抑制器のイオン源再生剤チャネルに流体的に相互接続され、抑制器のイオン受容再生剤チャネルは試薬源チャネルに流体的に相互接続される。
【0010】
第1の態様に関して、電極は試薬イオン源チャネルに隣接して配置することができ、対電極は対イオン源チャネルに隣接して配置することができる。
【0011】
第1の態様に関して、電極は試薬イオン源チャネル内に配置することができ、対電極は対イオン源チャネル内に配置することができる。
【0012】
第1の態様に関して、イオン交換材料は、試薬イオン源チャネル、対イオン源チャネル、及び再生剤濃縮チャネルのうちの少なくとも1つの内部に配置することができる。
【0013】
第1の態様に関しては、中性充填材料を再生剤濃縮チャネル内に配置することができる。
【0014】
第1の態様に関して、それは、溶離剤チャネルと、再生剤チャネルと、溶離剤チャネルと再生剤チャネルとの間のガスの移動を可能にするように溶離剤チャネルを再生剤チャネルから分離するガス透過性膜とを備えるガス除去装置を、さらに備えることができる。再生剤チャネルは、再生剤濃縮チャネルの出力部の下流にあり、それと流体的に相互接続され、溶離剤チャネルは、再生剤濃縮チャネルの入力部の上流にあり、それと流体的に相互接続することができる。
【0015】
第1の態様に関して、溶離剤チャネルは、再生剤濃縮チャネル内に運ばれる液体が溶離剤液流の一画分になるように、流量制御装置の上流にあり、それに流体的に相互接続することができる。
【0016】
第1の態様に関して、ガス除去装置は、炭酸塩除去装置またはアンモニア除去装置であってもよい。
【0017】
第2の態様において、イオンクロマトグラフィのための抑制器−濃縮器装置は、再生剤チャネル、溶離剤チャンネル、再生剤濃縮チャネル、第1のイオン交換バリア、第2のイオン交換バリア、電極、対向電極、及び流量制御装置を含む。第1のイオン交換バリアは、第1の電荷を有し得、かつ、少なくとも前記第1の電荷とは異極性の電荷を有する前記溶離剤試薬イオンに透過性であるが、前記第1の電荷と同極性の電荷を有する他のイオンに透過性でない。第1のイオン交換バリアは、溶離剤チャネルと再生剤濃縮チャネルとの間の液体のバルクフローをブロックすることによって、溶離剤チャネルを再生剤濃縮チャネルから分離する。第2のイオン交換バリアは、前記第1の電荷と同極性の第2の電荷を有し、かつ、少なくとも前記第2の電荷とは異極性の電荷を有する電解生成イオンに透過性であるが、前記第2の電荷と同極性の電荷を有する他のイオンに透過性でなく、前記第2のイオン交換バリアは、前記再生剤チャネルと前記溶離剤チャネルとの間の液体のバルクフローをブロックすることにより前記溶離剤チャネルから前記再生剤チャネルを分離する。前記電極は、再生剤チャネルと電気通信しており、前記対電極は、再生剤濃縮チャネルと電気通信している。流量制御装置は、溶離剤チャネル内への液体の流量と比較して再生剤濃縮チャネル内への液体の流量を制限することができる。流量制御装置は、再生剤濃縮チャネルを通る流量が溶離剤チャネルを通る流量未満になるように、溶離剤チャネルの出力部及び再生剤濃縮チャネルの入力部と流体的に相互接続することができる。電極、再生剤チャネル、溶離剤チャネル、再生剤濃縮チャネル、及び対電極は、電解電位または電流の印加時に、溶離剤チャネルを溶離剤チャネルから再生剤濃縮チャネルに駆動するように、電解槽を形成することができる。
【0018】
第2の態様に関して、流量制御装置は、検出器から検出器流を受容するように構成された第1の入力部と、再生剤濃縮チャネルの入力部に連結された第1の出力部と、再生チャネルの入力部に連結された第2の出力部とを含み、前記流量制御装置は、前記第2の出力部から出力される液体の流量に対して、前記第1の出力部から出力される液体の流量を制限する。
【0019】
第2の態様に関しては、電極を再生剤チャネルに隣接して配置することができ、対電極を再生剤濃縮チャネルに隣接して配置することができる。
【0020】
第2の態様に関しては、電極を再生剤チャネル内に配置することができ、対電極を再生剤濃縮チャネル内に配置することができる。
【0021】
第2の態様に関して、それは、再生剤濃縮チャネルに隣接して配置されたガス除去チャネルをさらに含むことができる。ガス除去チャネルは、ガス除去チャネルを再生剤濃縮チャネルから分離するガス透過膜を有することができる。
【0022】
第2の態様に関して、それは、ガス除去チャネルと、ガス再生剤チャネルと、前記ガス除去チャネルと前記ガス再生剤チャネルとの間のガスの移動を可能にするように、前記ガス除去チャネルを前記ガス再生剤チャネルから分離するガス透過性膜と、を含む、ガス除去装置をさらに含むことができる。ガス再生剤チャネルは、再生剤濃縮チャネルの下流にあり、再生剤濃縮チャネルと流体的に相互接続することができる。ガス除去チャネルは、溶離剤チャネルの出力部の下流にあり、それと流体的に相互接続していてもよい。
【0023】
第2の態様に関して、再生剤濃縮チャネル内に位置付けられたガス除去チャネルを含むことができ、このガス除去チャネルは、再生剤濃縮チャネル内に少なくとも部分的に配置されたガス透過性管材によって画定される。
【0024】
第2の態様に関して、ガス除去チャネルは、再生剤濃縮チャネルと隣接関係で位置付けられ得る。対電極は、再生剤濃縮チャネルと電気通信することができ、この場合、ガス除去チャネルは、再生剤濃縮チャネルに少なくとも部分的に配置された平面的な気体透過性管材によって画定される。
【0025】
第2の態様に関して、対電極は多孔質であってもよく、またはそれを通って延在する複数の開口を含んでいてもよい。
【0026】
第3の態様では、イオンクロマトグラフィシステムを操作する方法は、イオンクロマトグラフィシステムの抑制器のイオン受容再生剤チャネルから第1の液体流を流すことであって、第1の液体流が少なくとも溶離試薬イオン及び水を含有する、ことを含むことができる。この方法は、第1の態様の電解試薬濃縮器装置を得ることを含む。第1の液体流は、第1の流量で試薬イオン源チャネルに流すことができる。少なくとも水を含有する第2の液体流は、第2の流量で対イオン源チャネルに流すことができる。少なくとも水を含有する第3の液体流は、第3の流量で再生剤濃縮チャネルに流すことができ、第3の流量は第1の流量未満である。電流または電位は、溶離試薬イオンを試薬イオン源チャネルから、及び電解生成した対イオンを対イオン源チャネルから、再生剤濃縮チャネル内に駆動して濃縮再生剤溶液を形成するように、電極及び対電極に印加できる。
【0027】
第3の態様に関して、この方法は、第1の態様からのガス除去装置を得ることをさらに含むことができる。ガス再生剤チャネルは、再生剤濃縮チャネルの下流にあり、それと流体的に相互接続することができる。電解試薬濃縮器装置からの濃縮再生剤溶液は、ガス除去装置のガス再生チャネルに流すことができる。
【0028】
第3の態様に関して、試薬イオン源チャネル内の第1の液体流は、再生剤濃縮チャネル内の第3の液体流に向流するように流れることができる。
【0029】
第3の態様に関して、電極及び対電極への印加電流は、所定のレベルにあり得る。
【0030】
第3の態様に関して、電解試薬濃縮器は、試薬イオン源チャネル内への第1の液体流の第1の流量と比較して、再生剤濃縮チャネル内への第3の液体流の第3の流量を制限する流量制御装置をさらに含むことができる。この方法は、さらに第4の液体流をガス除去チャネルから流量制御装置に流すことと、流量制御装置を介して、入力として抑制器のイオン源再生剤チャネルに第4の液体流の第1の部分を供給することと、流量制御装置を介して、前記第3の液体流として前記再生剤濃縮チャネルに第4の液体流の第2の部分を供給することと、をさらに含むことができる。第2の部分は、第1の部分の流量未満の流量を有することができる。
【0031】
第3の態様に関して、それは、対イオン源チャネルの出力を前記抑制器装置のイオン源再生剤チャネルに流すことと、抑制器装置のイオン源再生剤チャネルの出力を抑制器装置のイオン受容再生剤チャネルに流すことと、抑制器装置のイオン受容再生剤チャネルの出力を前記第1の液体流として前記試薬イオン源チャネルに流すことと、をさらに含むことができる。
【0032】
第3の態様に関して、流量比は、第1の液体流の流量を第3の液体流の流量で割ったものである。流量比は、約2/1〜約1000/1、または約2/1〜約200/1、または約10/1〜約30/1の範囲であり得る。
【0033】
第3の態様に関して、濃縮再生剤溶液は塩基溶液であり得、ガス除去装置は炭酸塩除去装置であり得るか、または濃縮再生剤溶液は酸溶液であり得、ガス除去装置はアンモニア除去装置であり得る。
【0034】
第4の態様では、イオンクロマトグラフィシステムを操作する方法は、イオンクロマトグラフィシステムのイオン検出器セルから第1の液体流を流すことであって、第1の液体流が少なくとも水を含有する、ことを含むことができる。この方法は、第2の態様の抑制器濃縮器装置を得ることを含む。第1の液体流は、第1の流量で再生剤チャネルに流すことができる。第2の液体流としてのイオンクロマトグラフィシステムの分離カラムからの溶離剤は、第2の流量で溶離剤チャネルに流すことができる。少なくとも水を含有する第3の液体流は、第3の流量で再生剤濃縮チャネルに流すことができ、第3の流量は第2の流量未満である。電流または電位は、溶離剤イオンを溶離剤チャネルから再生剤濃縮チャネルに駆動し、再生剤濃縮チャネル内に対イオンを電解生成して、濃縮再生剤溶液を形成するように、電極及び対電極に印加することができる。
【0035】
第4の態様に関して、方法は、第2の態様からのガス除去装置を得ることをさらに含むことができる。ガス再生剤チャネルは、再生剤濃縮チャネルの下流にあり、それと流体的に相互接続することができる。抑制器濃縮器装置からの濃縮された再生剤溶液は、入力としてガス除去装置のガス再生剤チャネルに流すことができる。
【0036】
第4の態様に関して、抑制器濃縮器装置は、溶離剤チャネルへの液体の流量と比較して液体の流量を再生剤濃縮チャネルに制限する流量制御装置をさらに含むことができる。流量制御装置は、再生剤濃縮チャネルを通る流量が溶離剤チャネルを通る流量より小さくなるように、溶離剤チャネルの出力及び再生剤濃縮チャネルの入力と相互接続することができる。この方法は、流量制御装置を介して、第1の液体流としての第1の部分を再生剤チャネルに供給することと、流量制御装置を介して、第3の液体流として第2の部分を、再生剤濃縮チャネルに供給すること、とを含むことができ、第2の部分は、溶離剤チャネル内への液体の流量未満の流量を有する。
【0037】
第4の態様に関して、電極、再生剤チャネル、溶離剤チャネル、再生剤濃縮チャネル、及び対電極は、電解電位または電流の印加時に、溶離剤試薬イオンを溶離剤チャネルから再生剤濃縮チャネル内に移動させるように、電解槽を形成することができる。
【0038】
第4の態様に関して、流量比は、第2の液体流の流量を第3の液体流の流量で割ったものである。流量比は、約2/1〜約1000/1、または約2/1〜約200/1、または約10/1〜約30/1の範囲であり得る。
【0039】
第5の態様では、イオンクロマトグラフィシステムを操作する方法は、第1のチャネル、第2のチャネル、中央チャネル、第1のイオン交換バリア、第2のイオン交換バリア、第1の電極、第2の電極、及びガス除去装置を含むことができる。第1のイオン交換バリアは、第1の電荷を有することができ、かつ、少なくとも前記第1の電荷とは反対の電荷を有するイオンに透過性であるが、前記第1の電荷と同極性の電荷を有する他のイオンに透過性でなく、液体のバルクフローを許容せず、前記中央チャネルから前記第1のチャネルを分離する。第2のイオン交換バリアは、第2の電荷を有することができ、かつ、前記第2の電荷とは反対の電荷を有するイオンに透過性であるが、前記第2の電荷と同極性を有するイオンに透過性でなく、液体のバルクフローを許容せず、前記中央チャネルから前記第1のチャネルを分離する。前記第1の電極は第1のチャネル内に配置され、前記第2の電極は第1のチャネル内に配置される。前記ガス除去装置は、ガス除去チャネルと、ガス再生剤チャネルと、前記ガス除去チャネルと前記ガス再生剤チャネルとの間のガスの移動を可能にするように、前記ガス除去チャネルを前記ガス再生剤チャネルから分離するガス透過性膜とを含む。前記第1の電極と前記第2の電極との間に電流または電位を印加して、第1の電極に正電荷をもたらし、第2の電極に負電荷をもたらすことができる。荷電した検体は、溶離剤と共にクロマトグラフィカラム及び検出器を通して流すことができる。溶離剤の少なくとも一部は、第1の流量で検出器から中央チャネルに流すことができる。第1の液体流は、第1のチャネル及び第2のチャネルからなる群から選択されるチャネルに第2の流量で流すことができる。第1の流量での溶離剤が、荷電した検体と同じ電荷を有する第1の電極及び第2の電極のうちの一方の近傍にある場合、第1の流量は第2の流量よりも低くなり得る。溶離剤が荷電検体と同じ電極を有するチャネル内にある場合、または溶離剤が、検体と同じ電極を有するチャネルに隣接するチャネル内にある場合、溶離剤は近傍にある。第2の流量は、第2の流量での第1の液体流が、荷電した検体と同じ電荷を有する第1の電極及び第2の電極のうちの一方の近傍にある場合、第1の流量よりも低くなり得る。第1の液体流が荷電した検体と同じ電極を有するチャネル内にある場合、または第1の液体流が荷電した検体と同じ電極を有するチャネルに隣接するチャネル内にある場合、前記第1の液体流は近傍にある。
【0040】
第6の態様では、電解試薬濃縮器装置は、試薬イオン源チャネル、対イオン源チャネル、再生剤濃縮チャネル、第1イオン交換バリア、第2イオン交換バリア、電極、対電極、第1ポンプ、及び第2ポンプを含む。第1のイオン交換バリアは、第1の電荷を有することができ、かつ、少なくとも前記第1の電荷とは反対の電荷を有する試薬イオンに透過性であるが、前記第1の電荷と同極性を有するイオンに透過性でなく、液体のバルクフローを許容しない。第1のイオン交換バリアは、再生剤濃縮チャネルから試薬イオン源チャネルを分離する。第2のイオン交換バリアは、第2の電荷を有することができ、かつ、少なくとも第2の電荷とは反対の電荷を有する電解生成対イオンに透過性であるが、前記第2の電荷と同極性を有するイオンに透過性でなく、液体のバルクフローを許容しない。第2のイオン交換バリアは、再生剤濃縮チャネルから対イオン源チャネルを分離する。電極は、試薬イオン源チャネルと電気通信しており、対電極は、対イオン源チャネルと電気通信している。第1のポンプは、液体を第1の流量で再生剤濃縮チャネルに圧送するように構成される。第2のポンプは、第2の流量で試薬イオン源チャネル内に液体を圧送するように構成され、前記第1の流量は前記第2の流量未満である。
【図面の簡単な説明】
【0041】
【
図1】抑制器装置及び炭酸塩除去装置の構成要素を示す従来技術のICシステムの部分概略図である。
【
図2】電解試薬濃縮器装置の第1の実施形態の第1の実行形態の概略図である。
【
図3】
図2の装置を、装置のイオン源チャネルの流量よりも著しく低い再生剤濃縮チャネルを通る流量で操作させることによって達成される濃度挙動を示す。
【
図4】
図2の電解濃縮器装置を使用するICシステムの第1の実行形態の概略図である。
【
図5A】
図4に示すシステムを用いて分析したアニオン標準のクロマトグラムを含む。
【
図5B】CRDを外部から提供される試薬で操作したことを除けば
図4に示したシステムと同様のシステムを用いて分析したアニオン標準のクロマトグラムを含む。
【
図6】
図5(a)に示される結果のピーク保持時間及びピーク面積を表にしたものである。
【
図7】
図5(b)に示される結果のピーク保持時間及びピーク面積を表にしたものである。
【
図8】
図4のシステムを用いて分析されたアニオン標準の15回のクロマトグラフィ実行のオーバーレイであり、個々のクロマトグラムのプロットは、システムの再現可能な性能を視覚的に示すために重ね合わされている。
【
図9】
図8に示す15回の実行について、保持時間及びピーク応答(面積)再現性統計、すなわち相対標準偏差を表にしたものである。
【
図10】a)250mM NaOH試薬を含む標準物質及びb)実施例によって生成された濃縮試薬のナトリウム含量を比較する。
【
図11】装置が抑制器−濃縮器装置である第3の実施形態の第1の実行形態の概略図である。
【
図12】装置がオールインワン装置、すなわち炭酸塩除去装置が管状構成である抑制器−濃縮器−炭酸塩除去装置である第3の実施形態の第2の実行形態の概略図である。
【
図13】オールインワン装置の第2の実行形態の変形例、すなわち、炭酸塩除去装置が平坦な膜構成にある抑制器−濃縮器−炭酸塩除去装置の概略図である。
【
図14】濃縮塩基、濃縮酸、または濃縮塩基と濃縮酸の両方を同時に生成するように構成された二重機能ERC装置の別の実施形態の概略図である。
【発明を実施するための形態】
【0042】
図1は、外部から提供される濃縮塩基溶液20が外部ポンプによってCRD装置200を通ってポンプ輸送される典型的な従来技術のシステムを示す。CRD装置200は、溶離剤流10bを受容する溶離剤チャネル210と、塩基溶液20を受容するための再生剤チャネル220と、それぞれのチャネル210,220を分離するガス透過性膜230とを含む。上述のように、溶離剤流10aは、炭酸塩種を炭酸に変換する抑制器100を通って導かれてもよい。次いで、抑制された溶離剤流10bは、CRD装置200を通って導かれ、炭酸及び他の炭酸塩化学種を、その炭酸の化学平衡状態で除去する。炭酸ガスは、抑制された溶離剤流に溶解した二酸化炭素ガスをガス透過性膜230を横断して塩基溶液20に引き込み、炭酸塩アニオン(CO
32-)に変換され、塩基溶液流によって除去されることによって除去される。このような装置では、気体透過性膜230は管状膜であってもよく、その結果、
図1に示す再生剤チャネル220は、管状膜230を取り囲む連続チャネルである。
【0043】
図2は、電解試薬濃縮器(ERC)装置300の第1の実施形態の概略図を示す。簡潔には、ERC装置300は、第1の液体流312を受容する試薬イオン源チャネル310、第2の液体流322を受容するための対イオン源チャネル320、及び第3の液体流332を受容するための再生剤濃縮チャネル330を含む。チャネル310及び330は、ナトリウムカチオンのような少なくとも試薬カチオンを透過するカチオン交換膜340によって分離されている。より一般的な意味では、カチオン交換膜340は、電荷を有し、検体イオンの電荷とは反対の電荷を有する試薬イオンに対して透過性である第1のイオン交換膜である。好ましくは、検体がアニオンである場合、試薬イオン(例えば、Na
+及びK
+)は、溶離剤流10aの主なカチオン成分である。チャネル320及び330は、少なくとも水酸化物イオンを透過するアニオン交換膜350によって分離されている。より一般的な意味では、アニオン交換膜350は、(第1のイオン交換バリアと反対の)電荷を有し、試薬イオンの電荷と反対の電荷を有する対イオン(例えばOH
-)に対して透過性である第2のイオン交換膜である。したがって、試薬カチオン及び潜在的に他のカチオンは、印加電位(電位差)によって、試薬イオン源チャネル310から再生剤濃縮チャネル330内へ駆動又は移動させられ得るが、再生剤濃縮チャネル330から対イオン源チャネル320内へは駆動され得ない。反対に、水酸化物イオン及び潜在的に他のアニオンは、印加電位によって、対イオン源チャネル320から再生剤濃縮チャネル330内へ駆動又は移動させられ得るが、再生剤濃縮チャネル330から試薬イオン源チャネル310内へは駆動され得ない。イオン交換膜は、イオン交換バリアと呼ぶこともできることに留意すべきである。
【0044】
ERC装置300は、イオン源チャネル310及び320にそれぞれ隣接して配置された(または配置された)一対の電極360及び370をさらに備える。
図2において、アノード360は、試薬イオン源チャネル310に隣接して電気的に接触して配置され、カソード370は、対イオン源チャネル320に隣接して電気的に接触して配置される。一般に、試薬イオン源チャネル310に隣接する電極360は試薬イオン源チャネルから再生剤濃縮チャネル330内に試薬カチオンを駆動し、そして対イオン源チャネル320に隣接する電極370は水酸化物対イオンを電解的に生成し、それを試薬濃縮チャネル330内に駆動して濃縮された試薬の形成を助ける。アノード360は電極であり、好ましくは白金または白金でコーティングされたチタンなどの貴金属から製造されるが、水の電気分解に適した任意の電極を使用することができる。カソード370は、同じまたは異なる適切な材料から製造された電極である。操作中、アノード360及びカソード370は、適切な電源(図示せず)に接続され、アノード360、チャネル310、330、320、及びカソード370のアセンブリが電解槽を形成する。操作中、電解電位または電流が印加され、アノード360及びカソード370にそれぞれヒドロニウム及び水酸化物が生成される。アノード360で電解生成されたヒドロニウムイオンは、チャネル310内の水酸化物イオンなどの供給源流中のアニオンと結合して水を形成し、一方、試薬カチオンは、第1のイオン交換バリア、例えばカチオン交換膜340を横断して再生剤濃縮チャネル330へ駆動される。同時に、カソード370における電解生成水酸化物イオンは、第2のイオン交換バリア、例えばアニオン交換膜350を横断して再生剤濃縮チャネル330へ駆動される。試薬カチオン及び水酸化物対イオンは、第3の液体流332が通過する際に、再生剤濃縮チャネル330内で試薬カチオン水酸化物を形成するために結合し、塩基性濃縮再生剤溶液流40として排出される。次いで、その塩基性再生剤溶液流40をCRD200の再生剤チャネル(
図4に示す)に入力することができる。試薬イオン源チャネル310から再生剤濃縮チャネル330へのヒドロニウムイオンの有意な輸送がないと仮定すると、印加される電流及びそれぞれの第1及び第3の液体流の流量を用いて、生成された再生剤溶液濃度を制御することができる。ヒドロニウムイオンの有意な輸送が起こると、かなりの量の酸が生成された塩基を中和し、再生剤溶液濃度関数を損なうことがある。したがって、好ましくは、第1の液体流312は、試薬カチオンがヒドロニウムイオンの代わりにカチオン交換膜340を通って輸送されるように、十分に高い濃度の試薬カチオンを含むべきである。
【0045】
その全体が参照により本明細書に組み込まれる、米国特許第4,999,098号に開示されている官能化されたスクリーン材料のようなイオン交換材料は、試薬カチオン及び/またはヒドロキシル対イオンの再生剤濃縮チャネル330内への移動を容易にするために、それぞれのチャネル内に設けられる、スクリーン314,324、及び334、またはこれに限定されないが、多孔質樹脂、ビーズ及びモノリスを含む構造体に使用することができる。好ましい一実施形態では、チャネル310内のスクリーン314は、主にカチオン交換材料であり、一方チャネル320内のスクリーン324は、主にアニオン交換材料である。再生剤濃縮チャネル330のスクリーン334は、これも参照によりその全体が本明細書に組み込まれる、米国特許第6,077,434号に記載されているように、印加電位の低下を助け、ほぼ100%の電流効率を達成するために、低容量のイオン交換材料またはあっても機能しない中性充填材料であってもよい。一実施形態では、平面スクリーンは、平面電極に平行なチャネル内に配置することができる。好ましい構成は、再生剤濃縮チャネル330における水の最小限の形成をもたらし、その結果、改善した再生剤溶液濃縮係数が達成される。そのような材料は、チャネル310、320、330のうちの1つ以上に、及びこれらチャネルの任意の組み合わせで提供されてもよい。
【0046】
使用時には、試薬カチオン、場合によっては他のカチオン及びアニオンが再生剤濃縮チャネル330内に濃縮される。ヒドロニウム及び水酸化物は中和して水を生成するが、適用される電解電位または電流の最適化により、試薬カチオン及びヒドロキシル対イオンを含有する溶液の形成が好ましい。試薬カチオンが、イオン検出器セル溶離剤廃棄物流または抑制器廃棄物流などの溶離剤廃棄物流から収集される場合、ほとんどまたは実質的にすべての試薬カチオンが塩基性再生剤流内に捕獲され得る。例えば15mMの炭酸ナトリウム(Na
2CO
3)の典型的なIC溶出強度では、装置は、試薬カチオン濃度にほぼ比例する強度、例えば約30mMのナトリウムで塩基性再生剤溶液を生成することができる。さらに、有利には、ERC装置300は、商業的に推奨される再生剤溶液と同等かそれ以上の強度で再生剤溶液を生成する濃縮器装置として、操作するまたは構造的に構成することができる。濃縮試薬の好ましい濃度は100〜500mMであり、より好ましくは150〜300mMであり、最も好ましくは200〜300mMである。読者は、再生剤濃縮チャネル330を通る流量、適用される電解電流、またはその両方を調整して、必要に応じて再生剤溶液内の試薬カチオン及び水酸化物の濃度を変化させることができることに留意すべきである。
【0047】
図3は、再生剤濃縮チャネル330内の第3の液体流332の流量を減少させることにより、イオン種を再生剤濃縮チャネル330に濃縮させることができることを示している。第1の液体流312または試薬イオン源チャネル310のカチオンは、再生剤濃縮チャネル330に移動し、アノード360で生成されたヒドロニウムイオンによって置換される一方、対イオン源チャネル320の電極370によって生成されたアニオンは、チャネル330に入り、カチオンと結合する。より大きい流量で装置を通って流れる、より大容量の第1の液体流312からの試薬カチオンは、より少ない流量で装置を通って流れる第3の液体流332内に集められ濃縮される。低流量比(試薬チャネル源310流量に対する濃縮チャネル330の流量)では、300mMまでのNaOHの塩基性再生剤溶液が生成されている。この濃度は、既存の市販のCRD装置における二酸化炭素の除去に適している。装置のいくつかの実施形態では、外部ポンプ及びリザーバを用いて、再生剤濃縮チャネル330を通る第3の液体流332の流量を、それらのそれぞれのイオン源チャネル310及び320を通る第1及び第2の液体流312及び322の流量よりも著しく低くなるように構成して使用することができる。例えば1つ以上のバルブ、1つ以上の制限オリフィス、1つ以上の制限管(1つ以上の「制限されない」管と比較して制限された内径及び/または曲がりくねった流路を有する管)、及び/または流れを大きい及び小さい副流に分けるための他の既知の要素を有する任意の流量制御装置380を含むことにより、ERC装置300は、第1及び第2の液体流312、322、のための抑制器廃棄物流及び/または導電性セル溶離剤廃棄物流及び第3の液体流332のためのそれらの廃棄物流のうちの1つの分離された画分を使用することによって、インラインで、かつポンプまたは外部供給試薬を追加することなく、操作できる。読者は、試薬カチオンの濃縮係数は、第3の液体流332の流量比に対する第1の液体流312の流量比によって決定されることに注意すべきである。一実施形態では、第3の液体流332の流量比に対する第1の液体流312の流量比(すなわち、第1の液体流312の流量/第3の液体流332の流量)は、約2/1〜約1000/1の範囲、好ましくは約2/1〜約200/1の範囲、より好ましくは約2/1〜約100/1の範囲、さらに好ましくは約2/1〜約50/1の範囲、さらにより好ましくは約10/1〜約30/1の範囲である。第2の液体流322の流量は、電解プロセスのための水(これは本質的に高濃度である)を提供すること以外の濃縮態様において直接的な役割を果たすものではないが、後述するように、抑制器及び/または第1の液体流に接続して液体を再使用することができる。
【0048】
図4は、第1の実施形態の実施を概略的に示す。ポンプを使用して、液体を炭酸塩用の任意の溶離剤発生器に送り込むことができる。溶離剤が生成されない場合、炭酸塩溶離剤は、注入バルブを介してポンプによって送り込むことができる。負に荷電した検体を注入器に注入し、溶離剤と共にクロマトグラフィカラムに流すことができる。導電率検出器セルなどのイオン検出器セル400からの溶離剤廃棄物は、分割され、ERC装置300への第2の液体流322及び第3の液体流332として使用される。次に、第2の液体流322は、抑制器装置100のイオン源再生剤チャネル110内に、次にイオン受容再生剤チャネル112に向けられ、次にERC装置300の第1の液体流312として再び再使用される。結果として、ERC装置300は、液体流がICシステム内の溶離剤流の流れに動力を供給する同じシステムポンプによって駆動され、かつこの液体流が直接または間接的に溶離剤廃棄物流から完全に供給される、インライン濃縮器として機能することができる。したがって、単一ポンプを使用して、検体の分析のために溶離剤を送り込むことができ、CRD200の再生剤溶液を再循環及び濃縮することもできる。別の実施では、脱イオン水または他の既知の溶液を使用して再生された抑制器などの溶離剤廃棄物流に水圧的に接続されていない抑制器廃棄物流からの第1の液体流312を供給することができ、及び/または脱イオン水の供給源からの第2の液体流322を供給でき、及び/または脱イオン水の供給源からの第3の液体流332を供給することができる。
図4に示された実行形態の利点は、ERC装置300及びCRD装置200の操作に追加のポンプまたは試薬が必要とされないことである。
【0049】
図4は、CRD装置200、ERC装置300、及び流量制御装置380を別々の機能ブロックで示しているが、ERC装置自体が流量制御装置380を含むことは明らかであろう。第2の実施形態では、装置300は、自己再生式CRD装置として製造され、販売され、さらに溶離剤流10bを受容するための溶離剤チャネル210、再生剤濃縮チャネル330から出力される第3液体流332を受容するための再生剤チャネル220及び、各チャネル210、220を分離するガス透過性膜230を含み、再生剤チャネル220は、再生剤濃縮チャネル330と流体的に相互接続される。自己再生式CRD装置の実施形態は、それ自体も流量制御装置380を含むことができる。
【0050】
図5A及び
図5Bは、プロトタイプのERC装置300を備えた市販のCRD装置200と、塩基試薬の外部供給源で再生された同じCRD装置200、の性能を比較する。ピーク形状、バックグラウンド導電率レベル、及びノイズ性能から、両方のアプローチが質的に同等の性能レベルを提供することは明らかであろう。
図6及び
図7は、それぞれのアプローチの保持時間及びピーク面積を提供し、またそれらが定量的に同等の性能を有することを示す。
図8は、システムの一貫した操作品質を実証する、ERC供給システムにおける15回の注入のオーバーレイを示す。
図9は、導電率検出器(CD)による測定の相対標準偏差の観点から15回の注入について、ピーク保持時間及びピーク応答の両方についての再現性データを要約している。このデータは、手作業で調製したポンプ循環再生剤溶液、すなわち保持時間の0.5%未満のRSD及びピーク面積の2%未満のRSDを供給された市販のCRD装置を備えたICシステムから期待される性能と一致する。上記の結果から、これらの期待値は実施例によって上回ることは明らかである。
【0051】
図10は、250mMの水酸化ナトリウム(NaOH)試薬標準のアニオン分析(上部クロマトグラム)に対し、ERC装置300の産出第3液体流332、すなわち生成した塩基性再生剤溶液のアニオン分析(下部クロマトグラム)、をプロットする。それぞれの試料を1000倍に希釈して分析したところ、結果は図示のようにプロットされた。第3の液体流332の産出物から採取した試料を用いて測定したナトリウムピークは、250mM水酸化ナトリウム(NaOH)試薬標準のピーク高さ及び面積を超えた、ピーク高さ及び面積を有していた。この分析からCRD装置に送達するための高濃度塩基性再生剤溶液を生成することができることは明らかである。具体的には、約10.4mMのNa
+を流速1.2mL/分で含有する溶離剤から開始し、ERC装置300を1〜30の流量比(濃縮チャネル330対試薬イオン源チャネル310)で操作することにより(ERC濃縮器チャンネル流量約0.04mL/分)、優れたクロマトグラフィ性能を維持しながら、より小さい流量の中に30倍濃度のナトリウムカチオンを示す300mMのNaOH再生剤流を生成することができた。
【0052】
図11は、アニオン分析のための抑制器−濃縮器装置500の第3の実施形態の第1の実行形態の概略図を示す。装置500は、第1の液体流512を受容するための再生剤チャネル510、第2の液体流522、すなわち溶離剤流10aを受容するための溶離剤チャネル520、及び第3の液体流532を受容するための再生剤濃縮チャネル530を含む。チャネル510及び520は、第1のカチオン交換膜540によって分離されている。チャネル520及び530は、第2のカチオン交換膜550によって分離されている。したがって、試薬カチオン及び潜在的に他のカチオンは、印加電解電位によって溶離剤チャネル520から再生剤濃縮チャネル530内へ送り込まれ得る。再生剤濃縮チャネル530では、カチオンはカソード570で生成された水酸化物と結合して塩基を形成する。溶離剤チャネル520は、ガス除去装置200に流体接続することができる。ガス除去装置200は、
図11に示すように、ガス除去チャネル211及びガス再生剤チャネル221を含む。
【0053】
装置500は、再生剤チャネル510に隣接して配置された(または配置された)アノード560、及び再生剤濃縮チャネル530に隣接して配置された(または配置された)カソード570をさらに含む。アノード560は、好ましくは白金または白金でコーティングされたチタンから製造される電極であるが、水の電気分解に適した任意の電極を使用することができる。カソード570は、同じまたは異なる適切な材料のいずれかから製造された電極である。使用時には、アノード560及びカソード570が適切な電源(図示せず)に接続されて、アノード560、チャネル510、520、530、及びカソード570のアセンブリが電解槽を形成する。操作中、電解電位または電流が印加され、アノード及びカソードにそれぞれヒドロニウム及び水酸化物が形成される。溶離剤流10aからの試薬カチオンはカソード570に向かって送り込まれる。これらのカチオンはカソード570で生成された水酸化物イオンと結合して塩基再生剤溶液40を形成する。印加電流とそれぞれの第2及び第3の液体流の流量は、本開示で先に説明したように、生成された再生剤溶液濃度を制御するために使用され得る。装置300と同様に、装置500のための試薬カチオンの濃縮係数は、第3の液体流532の流量比に対する第2の液体流522の流量比によって決定される。第3液体流532の流量比に対する第2の液体流522の流量比(すなわち、第2液体流522の流量/第3液体流532の流量)は、約2/1〜約1000/1の範囲、好ましくは約2/1〜約200/1の範囲、より好ましくは約2/1〜約100/1の範囲、さらに好ましくは約2/1〜約50/1の範囲、さらにより好ましくは約10/1〜約30/1の範囲である。イオン交換材料は、試薬カチオンの再生剤濃縮チャネル530への移動を容易にするために、上記のスクリーンまたは他の構造の形態で、それぞれのチャネル内に提供されてもよい。イオン交換材料は、チャネル510、520、530の1つ以上、及びチャネルの任意の組み合わせで提供されてもよい。
【0054】
装置500は、例えば1つ以上のバルブ、1つ以上の制限オリフィス、1つ以上の制限管、及び/または、入力液体流(例えば、溶離剤廃棄物流)を副流(少なくとも第1の液体流512及び第3の液体流532のような)に分割するための他の既知の要素を有する、流量制御装置580をさらに備え、前記流量制御装置は、再生剤及び再生剤濃縮チャネル510及び530と相互接続され、再生剤濃縮チャネルを通る第3の液体流532の流量が再生剤チャネルを通る第1の液体流512の流量よりも著しく低くなるように構成することができる。
【0055】
操作において、溶離剤チャネル520及び隣接するチャネル510及び530は、抑制器として機能する。少なくとも試薬カチオン、及びおそらく他のカチオンは、再生剤濃縮チャネル530内に濃縮される。水酸化物は、カソード570に近接した再生剤濃縮チャネル530内で生成され、試薬カチオン及びヒドロキシル対イオンの溶液を形成する。ほとんどまたは本質的にすべての試薬カチオンを、溶離剤流10a、すなわち第2の液体流522から、生成された塩基性再生剤溶液40内に捕捉することができる。溶離液流10a/第2の液体流522よりも、再生剤濃縮チャネル530を通る著しく低い流量で操作することによって、装置500は、商業的に推奨される再生剤溶液と同程度またはそれ以上の強度の再生剤溶液を生成する濃縮器装置として動作する。装置500は、
図11に示す炭酸塩除去装置200などのガス除去装置のための濃縮再生剤溶液を生成するように操作されてもよい。別の代替案では、装置500は、濃縮された再生剤溶液40が溶離剤リザーバに供給され、補給水と所望の濃度で混合された状態で、イオンクロマトグラフィシステムの分離カラムと共に使用するための溶離剤溶液を再生するように操作されてもよい。
【0056】
図12は、抑制器−濃縮器−CRD機能を提供するオールインワン装置600を形成する、第3の実施形態の第2の実行形態の概略図を示す。上記の第1の実施形態で特に説明したように、装置600は、第1の液体流612を受容するための再生剤チャネル610と、分離カラムから第2の液体流622を受容するための溶離剤抑制チャネル620と、第3の液体流632を受容するための再生剤濃縮チャネル630と、溶離剤抑制チャネル620から再生剤チャネル610を及び溶離剤抑制チャネル620から再生剤濃縮チャネル630をそれぞれ分離するカチオン交換膜640及び650と、アノード660と、カソード670とを含む。イオン交換材料、例えばスクリーン614、624、634または他の構造の形態の任意のものを、任意に含むことができ、流量制御装置680は、装置600に既に接続されているものとして任意に含まれてもよく、あるいは、代わりにキット内の別個の装置として存在してもよい。第2の実行態様は、装置が再生剤濃縮チャンネル630に配置されたガス除去チャンネル690を含む点で第1のものと異なる。
図12に示すように、ガス除去チャネル690は、チャネル630を少なくとも部分的に通って延在するように、再生剤濃縮チャネル630内に位置付けられた管状型のガス透過性膜694を含むことができる。したがって、膜694は、事後抑制第2液体流622の第4液体流692を実質的に受容するためのガス除去チャネル690を画定することができる。ガス除去チャネル690は、交換を容易にするために、ガス透過性膜を有するカートリッジまたはカセットを代替的に備えることができることは明らかであろう。したがって、再生剤濃縮チャネル630は、
図4に示すCRDの再生剤チャネル220のように、(二酸化炭素ガスとして)炭酸塩除去チャネル690のガス透過性膜を横切って引き出され、系の廃棄物として分離されたごく少量のセル溶離剤廃棄物流で除去される炭酸塩アニオンで機能することができる。
【0057】
図13は、炭酸塩除去チャネル690が再生剤濃縮チャネル630と隣接関係で配置されている、第3の実施形態のオールインワン抑制器−濃縮機/CRDの代替的な実行形態の概略図を示す。膜694は、第4の液体流692を受容するためのガス除去チャネル690を少なくとも部分的に形成するため平面型を有してもよい。ガス透過性膜694を横断する最適なガス移動を維持するために、カソード670は、再生剤濃縮チャネル630に隣接して、または再生剤濃縮チャネル630内に配置されてもよい。再生剤濃縮チャネル630は、
図1に示すCRDの再生剤チャネル220と同様に、炭酸ガス除去チャネル690のガス透過性膜694を横断して引き出され、第3の液体流632、すなわち、分離された、ごく少量のセル溶離剤廃棄物流で系の廃棄物として除去される二酸化炭素ガスで機能することができる。変形例のカソード670は、多孔質であってもよく、及び/または、塩基性再生剤溶液、任意の溶存二酸化炭素、隔離された炭酸塩などを再生剤濃縮チャネル630を横断して混合させるためにそれを通って延在する複数の開口を含んでもよい。
【0058】
図14は、濃縮塩基、濃縮酸、または濃縮塩基及び濃縮酸の両方を同時に生成するように構成された二重機能ERC装置1400の代替の実施形態を示す。ERC装置1400は、中央試薬イオン源チャネル1402、水酸化物対イオン源チャネル1420、塩基再生剤濃縮チャネル1430、酸再生剤濃縮チャネル1432、及びヒドロニウム対イオン源チャネル1410を含む。水酸化物対イオン源チャネル1420及び塩基再生剤濃縮チャネル1430は、アニオン交換膜1450によって分離されている。塩基性再生剤濃縮チャネル1430及び中央試薬イオン源チャネル1402は、カチオン交換膜1440によって分離されている。中心試薬イオン源チャネル1402及び酸再生剤濃縮チャネル1432は、アニオン交換膜1452によって分離されている。酸再生剤濃縮チャネル1432及びヒドロニウム対イオン源チャネル1410は、カチオン交換膜1442によって分離されている。カソード1470は、水酸化物対イオン源チャネル1420内に(またはそれに隣接して)配置され、水酸化物対イオン源チャネル1420と電気通信している。アノード1460は、ヒドロニウム対イオン源チャネル1410内に(またはそれに隣接して)配置され、電気通信している。
【0059】
図14を再び参照すると、イオン源(例えばKOH及び/またはメタンスルホン酸)を中心試薬イオン源チャネル1402に入力することができる。一実施形態では、イオン源は抑制器の再生剤チャネルから来ることができ、少なくとも溶離試薬イオン及び水を含むことができる。流量制御装置の第2の部分を介して検出器流出液からの液体流は、塩基再生剤濃縮チャネル1430及び/または酸再生剤濃縮チャネル1432のいずれかに入力することができる。流量制御装置の第1の部分を介して検出器流出液からの別の液体流は、水酸化物対イオン源チャネル1420及び/またはヒドロニウム対イオン源チャネル1410のいずれかに入ることができる。
【0060】
開示された装置は、ERCがCRDのための(またはCRDの機能を統合する)塩基性再生剤溶液を生成するIC/CRDシステムの文脈で提示されているが、より一般的な文脈におけるERCは、カチオンまたはアニオン分析などの用途のための溶離剤液を再生することができる。アニオン分析用途では、開示された装置は、リチウム、ナトリウム、カリウム、セシウム及びアンモニウムなどの様々な試薬カチオンを含有する濃縮塩基性試薬を生成することができる。カチオン分析用途では、開示された装置は、メタンスルホン酸、硫酸塩、塩化物、リン酸塩、酢酸塩などの様々な試薬アニオンを含む濃縮酸試薬を生成して、メタンスルホン酸、硫酸、塩酸などを生成することができる。具体的には、電極360はカソードであってもよく、第1のイオン交換膜340はカチオン検体とは反対の電荷を有するメタンスルホン酸などの試薬アニオンを透過するアニオン交換膜であってもよい。相応して、対向電極370はアノードであってもよく、第2のイオン交換膜350は少なくともヒドロニウムイオンを透過するカチオン交換膜であってもよい。したがって、印加された電解電位または電流は、試薬アニオン及びヒドロニウムイオンを再生剤濃縮チャネル330に駆動し、上記の塩基性再生剤溶液に類似した酸溶離剤溶液を生成する。実際には、特定の装置における試薬イオン源チャネル310及び対イオン源チャネル320の役割のみが反転し、選択されたチャネル310または320に適切な試薬イオン源をルーティングし、両方の操作モードに適した第1及び第2のイオン交換膜340及び350を使用して、同じ装置を用いて酸性または塩基性の溶離剤液を作製することができることに読者は注目するであろう。次いで、これらの酸または塩基溶離剤液を、再生溶離剤液として分離カラムの上流のイオンクロマトグラフィシステムに入力することができる。また、例えば、アンモニアがCRD様アンモニア除去装置によって除去される場合、酸性再生剤溶液を生成することが望ましい。脱プロトン化された酸成分の源流体流は、抑制器廃棄物蒸気から生じ、酸は試薬濃縮チャネル330のためのより少ない流量を使用することによって濃縮される。次いで、酸再生剤溶液流40をアンモニア除去装置に入れることができる。したがって、濃縮された酸生成は、試薬の添加を必要とせずに可能であり、(溶離剤溶液を生成するために使用される場合)溶離液試薬源を交換する必要性を遅らせるか、またはさらに別のポンプを維持する必要性、及び例えばアンモニア除去装置のためのさらに別の試薬の必要性なく、可能である。アンモニアまたは他の同様の化合物を抑制及び除去する装置を製造するために、イオン交換膜のタイプを変更し(カチオン対アニオン及びその逆)、電極の極性を上記の他の実施形態において対応して変更する(カソードからアノードへ、及びその逆)ことができることにも読者はまた注目するべきである。
【0061】
本明細書に示され記載された実施形態は特定の実施形態のみであり、決して限定するものではない。したがって、添付の特許請求の範囲に反映される本発明の精神から逸脱することなく、それらの実施形態に対する様々な変更、修正、または変更を行うことができる。
以下に本発明の実施態様を記載する。
(実施態様1)電解試薬濃縮器装置であって、試薬イオン源チャネルと、対イオン源チャネルと、再生剤濃縮チャネルと、
第1の電荷を有し、かつ、前記第1の電荷とは異極性の電荷を有する少なくとも試薬イオンに透過性であるが、前記第1の電荷と同極性の電荷を有する他のイオンに透過性でない第1のイオン交換バリアであって、前記試薬イオン源チャネルと前記再生剤濃縮チャネルとの間の液体のバルクフローをブロックすることにより前記再生剤濃縮チャネルから前記試薬イオン源チャネルを分離する、第1のイオン交換バリアと、
前記第1の電荷とは異極性の第2の電荷を有し、かつ、少なくとも前記第2の電荷とは異極性の電荷を有する電解生成対イオンに透過性であるが、前記第2の電荷と同極性の電荷を有する他のイオンに透過性でない第2のイオン交換バリアであって、前記対イオン源チャネルと前記再生剤濃縮チャネルとの間の液体のバルクフローをブロックすることにより前記再生剤濃縮チャネルから前記対イオン源チャネルを分離する、第2のイオン交換バリアと、
前記試薬イオン源チャネルと電気通信する電極と、
前記対イオン源チャネルと電気通信する対電極と、
前記試薬イオン源チャネル内への前記試薬イオンを含む液体の流量と比較して、前記再生剤濃縮チャネル内への液体の流量を制限するための流量制御装置と、を備え
前記電極、前記試薬イオン源チャネル、前記再生剤濃縮チャネル、前記対イオン源チャネル、及び、前記対電極は、電解電位または電解電流の印加時に、試薬イオンを前記試薬イオン源チャネルから、かつ電解生成対イオンを前記対イオン源チャネルから、前記再生剤濃縮チャネル内に移動させるように電解槽を形成する、電解試薬濃縮器装置。
(実施態様2)前記流量制御装置は、
検出器から検出器流を受容するように構成された第1の入力部と、
前記再生剤濃縮チャネルの入力部に連結された第1の出力部と、
前記対イオン源チャネルの入力部に連結された第2の出力部と、を含み、
前記流量制御装置は、前記第2の出力部から出力される液体の流量に対して、前記第1の出力部から出力される液体の流量を制限する、請求項1に記載の電解試薬濃縮器装置。
(実施態様3)前記対イオン源チャネルは抑制器のイオン源再生剤チャネルに流体的に相互接続され、前記抑制器のイオン受容再生剤チャネルは前記試薬イオン源チャネルに流体的に相互接続されている、請求項2に記載の電解試薬濃縮器装置。
(実施態様4)前記電極は前記試薬イオン源チャネルに隣接して配置され、
前記対電極は前記対イオン源チャネルに隣接して配置されている、実施態様1に記載の電解試薬濃縮器装置。
(実施態様5)前記電極は前記試薬イオン源チャネル内に配置され、前記対電極は前記対イオン源チャネル内に配置されている、実施態様1に記載の電解試薬濃縮器装置。
(実施態様6)前記試薬イオン源チャネル、前記対イオン源チャネル、及び、前記再生剤濃縮チャネルのうちの少なくとも1つの内部に配置されたイオン交換材料をさらに備える、実施態様1に記載の電解試薬濃縮器装置。
(実施態様7)前記再生剤濃縮チャネル内に配置された中性充填材料をさらに備える、実施態様1に記載の電解試薬濃縮器装置。
(実施態様8)ガス除去装置をさらに備え、前記ガス除去装置は、溶離剤チャネルと、再生剤チャネルと、前記溶離剤チャネルと前記再生剤チャネルとの間のガスの移動を可能にするように、前記溶離剤チャネルを前記再生剤チャネルから分離するガス透過性膜と、を含み、
前記再生剤チャネルは、前記再生剤濃縮チャネルの出力部の下流にあり、前記再生剤濃縮チャネルの出力部と流体的に相互接続され、
前記溶離剤チャネルは、前記再生剤濃縮チャネルの入力部の上流にあり、前記再生剤濃縮チャネルの入力部と流体的に相互接続されている、実施態様1に記載の電解濃縮器装置。
(実施態様9)前記溶離剤チャネルは、前記再生剤濃縮チャネル内に運ばれる液体が溶離剤液体流の一部であるように、前記流量制御装置の上流にあり、前記流量制御装置に流体的に相互接続されている、実施態様8に記載の電解試薬濃縮器装置。
(実施態様10)前記ガス除去装置は、炭酸塩除去装置及びアンモニア除去装置からなる群から選択される装置を含む、実施態様8に記載の電解試薬濃縮器装置。
(実施態様11)イオンクロマトグラフィのための抑制器−濃縮器装置であって、再生剤チャネルと、溶離剤チャネルと、再生剤濃縮チャネルと、
第1の電荷を有し、かつ、前記第1の電荷とは異極性の電荷を有する少なくとも溶離剤試薬イオンに透過性であるが、前記第1の電荷と同極性の電荷を有する他のイオンに透過性でない第1のイオン交換バリアであって、前記溶離剤チャネルと前記再生剤濃縮チャネルとの間の液体のバルクフローをブロックすることにより前記再生剤濃縮チャネルから前記溶離剤チャネルを分離する、第1のイオン交換バリアと、
前記第1の電荷と同極性の第2の電荷を有し、かつ、少なくとも前記第2の電荷とは異極性の電荷を有する電解生成イオンに透過性であるが、前記第2の電荷と同極性の電荷を有する他のイオンに透過性でない第2のイオン交換バリアであって、前記再生剤チャネルと前記溶離剤チャネルとの間の液体のバルクフローをブロックすることにより前記溶離剤チャネルから前記再生剤チャネルを分離する、第2のイオン交換バリアと、
前記再生剤チャネルと電気通信する電極と、
前記再生剤濃縮チャネルと電気通信する対電極と、
前記溶離剤チャネル内への液体の流量と比較して、前記再生剤濃縮チャネル内への液体の流量を制限するための流量制御装置であって、前記流量制御装置は、前記再生剤濃縮チャネルを通る流量が前記溶離剤チャネルを通る流量未満になるように構成されるように、前記溶離剤チャネルの出力部及び前記再生剤濃縮チャネルの入力部と流体的に相互接続されている、流量制御装置と、を備え、
前記電極、前記再生剤チャネル、前記溶離剤チャネル、前記再生剤濃縮チャネル、及び、前記対電極は、電解電位または電解電流の印加時に、前記溶離剤試薬イオンを前記溶離剤チャネルから前記再生剤濃縮チャネル内に移動させるように電解槽を形成する、イオンクロマトグラフィのための抑制器−濃縮器装置。
(実施態様12)前記流量制御装置は、
検出器から検出器流を受容するように構成された第1の入力部と、
前記再生剤濃縮チャネルの入力部に連結された第1の出力部と、
前記再生剤チャネルの入力部に連結された第2の出力部と、を含み、
前記流量制御装置は、前記第2の出力部から出力される液体の流量に対して、前記第1の出力部から出力される液体の流量を制限する、実施態様11に記載の抑制器−濃縮器装置。
(実施態様13)前記電極は前記再生剤チャネルに隣接して配置され、前記対電極は前記再生剤濃縮チャネルに隣接して配置されている、実施態様11に記載の抑制器−濃縮器装置。
(実施態様14)前記電極は前記再生剤チャネル内に配置され、
前記対電極は前記再生剤濃縮チャネル内に配置されている、実施態様11に記載の抑制器−濃縮器装置。
(実施態様15)前記再生剤濃縮チャネルに隣接して配置されるガス除去チャネルをさらに備え、前記ガス除去チャネルは、前記ガス除去チャネルを前記再生濃縮剤チャネルから分離するガス透過性膜を有する、実施態様11に記載の抑制器−濃縮器装置。
(実施態様16)ガス除去装置をさらに備え、前記ガス除去装置は、ガス除去チャネルと、ガス再生剤チャネルと、
前記ガス除去チャネルと前記ガス再生剤チャネルとの間のガスの移動を可能にするように、前記ガス除去チャネルを前記ガス再生剤チャネルから分離するガス透過性膜と、を含み、
前記再生剤チャネルは、前記再生剤濃縮チャネルの下流にあり、前記再生剤濃縮チャネルと流体的に相互接続され、
前記ガス除去チャネルは、前記溶離剤チャネルの出力部の下流にあり、前記溶離剤チャネルの出力部と流体的に相互接続されている、実施態様11に記載の抑制器−濃縮器装置。
(実施態様17)前記再生剤濃縮チャネル内に位置付けられたガス除去チャネルをさらに備え、前記ガス除去チャネルは、前記再生剤濃縮チャネル内に少なくとも部分的に配置されたガス透過性管材によって規定される、実施態様11に記載の抑制器−濃縮器装置。
(実施態様18)前記ガス除去チャネルは、前記再生剤濃縮チャネルと隣接関係で位置付けられ、
前記対電極は、前記再生剤濃縮チャネルと電気通信しており、
前記ガス除去チャネルは、前記再生剤濃縮チャネル内に少なくとも部分的に配置された平面的なガス透過性管材によって規定される、実施態様11に記載の抑制器−濃縮器装置。
(実施態様19)前記対電極は、多孔質であるか、又は前記対電極を通って延在する複数の開口を備える、実施態様18に記載の抑制器−濃縮器装置。
(実施態様20)イオンクロマトグラフィシステムを操作する方法であって、
前記イオンクロマトグラフィシステムの抑制器のイオン受容再生剤チャネルから第1の液体流を流すステップであって、前記第1の液体流は少なくとも溶離剤試薬イオン及び水を含有する、流すステップと、
電解試薬濃縮器装置を得るステップであって、前記電解濃縮器装置が、
試薬イオン源チャネルと、
対イオン源チャネルと、
再生剤濃縮チャネルと、
第1の電荷を有し、かつ、前記第1の電荷とは異極性の電荷を有する少なくとも試薬イオンに透過性であるが、前記第1の電荷と同極性の電荷を有する他のイオンに透過性でない第1のイオン交換バリアであって、前記試薬イオン源チャネルと前記再生剤濃縮チャネルとの間の液体のバルクフローをブロックすることにより前記再生剤濃縮チャネルから前記試薬イオン源チャネルを分離する、第1のイオン交換バリアと、
前記第1の電荷とは異極性の第2の電荷を有し、かつ、前記第2の電荷とは異極性の電荷を有する少なくとも電解生成対イオンに透過性であるが、前記第2の電荷と同極性の電荷を有する他のイオンに透過性でない第2のイオン交換バリアであって、前記対イオン源チャネルと前記再生剤濃縮チャネルとの間の液体のバルクフローをブロックすることにより前記再生剤濃縮チャネルから前記対イオン源チャネルを分離する、第2のイオン交換バリアと、
前記試薬イオン源チャネルと電気通信する電極と、
前記対イオン源チャネルと電気通信する対電極と、を備え、
前記電極、前記試薬イオン源チャネル、前記再生剤濃縮チャネル、前記対イオン源チャネル、及び、前記対電極が、電解槽を形成する、電解試薬濃縮器装置を得るステップと、
前記第1の液体流を第1の流量で前記試薬イオン源チャネルに流すステップと、
少なくとも水を含有する第2の液体流を第2の流量で前記対イオン源チャネルに流すステップと、
少なくとも水を含有する第3の液体流を前記第1の流量未満である第3の流量で前記再生剤濃縮チャネルに流すステップと、
前記電極及び前記対電極に電流または電位を印加して、前記溶離剤試薬イオンを前記試薬イオン源チャネルから、かつ前記電解生成対イオンを前記対イオン源チャネルから、前記再生剤濃縮チャネル内に移動させて濃縮再生剤溶液を形成するステップと、を含む方法。
(実施態様21)ガス除去装置を得るステップであって、前記ガス除去装置が、ガス除去チャネルと、ガス再生剤チャネルと、前記ガス除去チャネルと前記ガス再生剤チャネルとの間のガスの移動を可能にするように、前記ガス除去チャネルを前記ガス再生剤チャネルから分離するガス透過性膜と、を含み、前記再生剤チャネルが、前記再生剤濃縮チャネルの下流にあり、前記再生剤濃縮チャネルと流体的に相互接続されている、ガス除去装置を得るステップと、
前記濃縮再生剤溶液を前記電解試薬濃縮器装置から前記ガス除去装置の前記ガス再生剤チャネルに流すステップと、をさらに含む、実施態様20に記載の方法。
(実施態様22)前記試薬イオン源チャネル内の第1の液体流は、前記再生剤濃縮チャネル内の第3の液体流に向流して流れる、実施態様20に記載の方法。
(実施態様23)前記電極及び対電極に印加される電流は所定のレベルである、実施態様20に記載の方法。
(実施態様24)前記電解試薬濃縮器装置は、前記試薬イオン源チャネル内への第1の液体流の第1の流量と比較して、前記再生剤濃縮チャネル内への第3の液体流の第3の流量を制限するための流量制御装置をさらに備え、
前記方法は、
第4の液体流を前記ガス除去チャネルから前記流量制御装置に流すステップと、
前記流量制御装置を介して、第4の液体流の第1の部分を入力として前記抑制器のイオン源再生剤チャネルに供給するステップと、
前記流量制御装置を介して、前記第4の液体流の第2の部分を前記第3の液体流として前記再生剤濃縮チャネルに供給するステップであって、前記第2の部分は、前記第1の部分の流量未満の流量を有する、供給するステップと、をさらに含む、実施態様21に記載の方法。
(実施態様25)前記対イオン源チャネルの出力を抑制器装置のイオン源再生剤チャネルに流すステップと、
前記抑制器装置のイオン源再生剤チャネルの出力を前記抑制器装置のイオン受容再生剤チャネルに流すステップと、
前記抑制器装置のイオン受容再生剤チャネルの出力を前記第1の液体流として前記試薬イオン源チャネルに流すステップと、をさらに含む、実施態様24に記載の方法。
(実施態様26)流量比は、前記第1の液体流の流量を前記第3の液体流の流量で割ったものであり、前記流量比は、約2/1〜約1000/1の範囲である、実施態様20に記載の方法。
(実施態様27)流量比は、前記第1の液体流の流量を前記第3の液体流の流量で割ったものであり、
前記流量比は、約2/1〜約200/1である、実施態様20に記載の方法。
(実施態様28)流量比は、前記第1の液体流の流量を前記第3の液体流の流量で割ったものであり、
前記流量比は、約10/1〜約30/1である、実施態様20に記載の方法。
(実施態様29)前記濃縮再生剤溶液が塩基溶液であり、前記ガス除去装置が炭酸塩除去装置である、実施態様20に記載の方法。
(実施態様30)前記濃縮再生剤溶液が酸溶液であり、前記ガス除去装置がアンモニア除去装置である、実施態様20に記載の方法。
(実施態様31)イオンクロマトグラフィシステムを操作する方法であって、
前記イオンクロマトグラフィシステムのイオン検出器セルから少なくとも水を含有する第1の液体流を流すステップと、
抑制器−濃縮器装置を得るステップであって、前記抑制器−濃縮器装置が、
再生剤チャネルと、
溶離剤チャネルと、
再生剤濃縮チャネルと、
第1の電荷を有し、かつ、前記第1の電荷とは異極性の電荷を有する少なくとも溶離剤試薬イオンに透過性であるが、前記第1の電荷と同極性の電荷を有する他のイオンに透過性でない第1のイオン交換バリアであって、前記溶離剤チャネルと前記再生剤濃縮チャネルとの間の液体のバルクフローをブロックすることにより前記再生剤濃縮チャネルから前記溶離剤チャネルを分離する、第1のイオン交換バリアと、
前記第1の電荷と同極性の第2の電荷を有し、かつ、前記第2の電荷とは異極性の電荷を有する少なくとも電解生成イオンに透過性であるが、前記第2の電荷と同極性の電荷を有する他のイオンに透過性でない第2のイオン交換バリアであって、前記再生剤チャネルと前記溶離剤チャネルとの間の液体のバルクフローをブロックすることにより前記溶離剤チャネルから前記再生剤チャネルを分離する、第2のイオン交換バリアと、
前記再生剤チャネルと電気通信する電極と、
前記再生剤濃縮チャネルと電気通信する対電極と、を備える、抑制器−濃縮器装置を得るステップと、
第1の液体流を第1の流量で前記再生剤チャネルに流すステップと、
溶離剤を第2の流量で第2の液体流として前記イオンクロマトグラフィシステムの分離カラムから前記溶離剤チャネルに流すステップと、
少なくとも水を含有する第3の液体流を前記第2の流量未満である第3の流量で前記再生剤濃縮チャネルに流すステップと、
前記電極及び前記対電極に電流または電位を印加して、前記溶離剤試薬イオンを前記溶離剤チャネルから前記再生剤濃縮チャネルに移動させ、かつ対イオンを前記再生剤濃縮チャネル内に電解生成させて、濃縮再生剤溶液を形成するステップと、を含む、方法。
(実施態様32)ガス除去装置を得るステップであって、前記ガス除去装置は、
ガス除去チャネルと、
ガス再生剤チャネルと、
前記ガス除去チャネルと前記ガス再生剤チャネルとの間のガスの移動を可能にするように、前記ガス除去チャネルを前記ガス再生剤チャネルから分離するガス透過性膜と、を含み、前記ガス再生剤チャネルは、前記再生剤濃縮チャネルの下流にあり、前記再生剤濃縮チャネルと流体的に相互接続される、ガス除去装置を得るステップと、
前記濃縮再生剤溶液を前記抑制器−濃縮器装置から入力として前記ガス除去装置のガス再生剤チャネルに流すステップと、をさらに含む、実施態様31に記載の方法。
(実施態様33)前記抑制器−濃縮器装置は、前記溶離剤チャネル内への液体の流量と比較して、前記再生剤濃縮チャネル内への液体の流量を制限するための流量制御装置であって、前記流量制御装置は、前記再生剤濃縮チャネルを通る流量が、前記溶離剤チャネルを通る流量未満になるように構成されるように、前記溶離剤チャネルの出力部及び前記再生剤濃縮チャネルの入力部と相互接続されている、流量制御装置をさらに備え、
前記方法は、
前記流量制御装置を介して、前記第1の液体流として第1の部分を前記再生剤チャネルに供給するステップと、
前記流量制御装置を介して、前記第3の液体流として第2の部分を前記再生剤濃縮チャネルに供給するステップであって、前記第2の部分は、前記溶離剤チャネル内への液体の流量未満の流量を有する、供給するステップと、をさらに含む、実施態様31に記載の方法。
(実施態様34)前記電極、前記再生剤チャネル、前記溶離剤チャネル、前記再生剤濃縮チャネル、及び、前記対電極は、電解電位または電解電流の印加時に、前記溶離剤試薬イオンを前記溶離剤チャネルから前記再生剤濃縮チャネル内に移動させるように電解槽を形成する、実施態様31に記載の方法。
(実施態様35)流量比は、前記第2の液体流の流量を前記第3の液体流の流量で割ったものであり、前記流量比は、約2/1〜約1000/1の範囲である、実施態様31に記載の方法。
(実施態様36)流量比は、前記第2の液体流の流量を前記第3の液体流の流量で割ったものであり、前記流量比は、約2/1〜約200/1である、実施態様31に記載の方法。
(実施態様37)流量比は、前記第2の液体流の流量を前記第3の液体流の流量で割ったものであり、前記流量比は、約10/1〜約30/1である、実施態様31に記載の方法。
(実施態様38)イオンクロマトグラフィシステムを操作する方法であって、前記方法は、電解試薬濃縮器装置を提供するステップであって、前記電解試薬濃縮器装置が、
第1のチャネルと、
第2のチャネルと、
中央チャネルと、
第1の電荷を有し、かつ、前記第1の電荷とは反対の電荷を有するイオンに透過性であるが、前記第1の電荷と同極性の電荷を有する他のイオンに透過性でなく、液体のバルクフローを許容せず、前記中央チャネルから前記第1のチャネルを分離する、第1のイオン交換バリアと、
第2の電荷を有し、かつ、前記第2の電荷とは反対の電荷を有するイオンに透過性であるが、前記第2の電荷と同極性を有するイオンに透過性でなく、液体のバルクフローを許容せず、前記中央チャネルから前記第1のチャネルを分離する、第2のイオン交換バリアと、
第1のチャネル内に配置された第1の電極と、
第1のチャネル内に配置された第2の電極と、を備える、電解試薬濃縮器装置を提供するステップと、
ガス除去装置を提供するステップであって、前記ガス除去装置が、
ガス除去チャネルと、
ガス再生剤チャネルと、
前記ガス除去チャネルと前記ガス再生剤チャネルとの間のガスの移動を可能にするように、前記ガス除去チャネルを前記ガス再生剤チャネルから分離するガス透過性膜と、を備える、ガス除去装置を提供するステップと、
前記第1の電極と前記第2の電極との間に電流または電位を印加して、前記第1の電極に正電荷をもたらし、前記第2の電極に負電荷をもたらすステップと、
荷電した検体を溶離剤と共にクロマトグラフィカラム及び検出器を通して流すステップと、
前記溶離剤の少なくとも一部を第1の流量で前記検出器から前記中央チャネルに流すステップと、
第1の液体流を第2の流量で前記第1のチャネル及び前記第2のチャネルからなる群から選択されるチャネルに流すステップと、を含み、
第1の流量の溶離剤が、荷電した検体と同じ電荷を有する前記第1の電極及び前記第2の電極のうちの一方の近傍にある場合、前記第1の流量は前記第2の流量よりも低く、ここで、前記溶離剤が荷電した検体と同じ電極を有するチャネル内にある場合、または前記溶離剤が荷電した検体と同じ電極を有するチャネルに隣接するチャネル内にある場合、前記溶離剤は近傍にあり、
第2の流量の第1の液体流が、荷電した検体と同じ電荷を有する前記第1の電極及び第2の電極のうちの一方の近傍にある場合、前記第2の流量は前記第1の流量よりも低く、ここで、前記第1の液体流が荷電した検体と同じ電極を有するチャネル内にある場合、または前記第1の液体流が荷電した検体と同じ電極を有するチャネルに隣接するチャネル内にある場合、前記第1の液体流は近傍にある、方法。
(実施態様39)電解試薬濃縮器装置であって、試薬イオン源チャネルと、対イオン源チャネルと、再生剤濃縮チャネルと、
第1の電荷を有し、かつ、前記第1の電荷とは反対の電荷を有する少なくとも試薬イオンに透過性であるが、前記第1の電荷と同極性を有するイオンに透過性でなく、液体のバルクフローを許容せず、前記再生剤濃縮チャネルから前記試薬イオン源チャネルを分離する、第1のイオン交換バリアと、
第2の電荷を有し、かつ、前記第2の電荷とは反対の電荷を有する少なくとも電解生成対イオンに透過性であるが、前記第2の電荷と同極性を有するイオンに透過性でなく、液体のバルクフローを許容せず、前記再生濃縮チャネルから前記対イオン源チャネルを分離する、第2のイオン交換バリアと、
前記試薬イオン源チャネルと電気通信する電極と、
前記対イオン源チャネルと電気通信する対電極と、
液体を第1の流量で前記再生剤濃縮チャネル内に圧送するように構成された第1のポンプと、
液体を第2の流量で前記試薬イオン源チャネル内に圧送するように構成された第2のポンプであって、前記第1の流量は前記第2の流量未満である、第2のポンプと、を備える、装置。