(58)【調査した分野】(Int.Cl.,DB名)
前記コントローラは、測定された前記範囲に基づいて、前記解剖学的構造を物理的に調整する方法を提案するための前記通知を生成する、請求項5に記載のロボットシステム。
前記コントローラは、前記解剖学的構造に対する前記器具の実際の位置と前記解剖学的構造に対する前記器具の意図された位置との差を測定することにより、前記範囲を測定する、請求項11に記載のロボットシステム。
前記コントローラは、前記器具の届く範囲外に前記解剖学的構造を押すことを避けるために前記器具の送り速度を調整することで前記器具を自律制御することによって、測定された前記範囲に基づいて前記ロボットシステムを制御する、請求項14に記載のロボットシステム。
【発明を実施するための形態】
【0013】
外科手技を行うためにロボットシステムを制御するシステム及び方法が開示される。図
1には、患者に対して外科手技を行うためのロボットシステム10を示している。
【0014】
外科手技の前に、医療従事者は患者の術前データを収集することができる。術前データ
は、x線、CTスキャン、MRI、又は術前データを収集することのできる任意の他のモ
ダリティ(modality)によるものとすることができる。収集された術前データは、ロボッ
トシステム10によって使用するためにセーブし、記憶することができる。
【0015】
一実施形態では、患者は外科手技の際に支持ステーション12上に置かれる。支持ステ
ーション12は、患者の解剖学的構造(anatomy)を固定する支持体すなわち外科用ホル
ダ14を有している。患者の解剖学的構造を、
図1の符号Aにより示している。解剖学的
構造は、実施形態によっては、大腿骨F及び/又は脛骨Tとすることができる。外科用ホ
ルダ14は任意の方法で支持ステーション12につなぐことができることを理解されたい
。
【0016】
図1において、支持ステーション12は、トラック18を有する手術台16を備えてい
る。外科用ホルダ14は、外科用ホルダ14が手術台16上でトラック18に沿って移動
できるように、トラック18に接続されている。外科手技中に、医療従事者は、外科用ホ
ルダ14をトラック18に沿って前後にスライドさせて、解剖学的構造を位置決めするこ
とができる。外科用ホルダ14は、該外科用ホルダ14が定位置にあるものとなるように
、トラック18に固定することができる。例えば、外科用ホルダ14は、解剖学的構造が
最適な位置にあるときに、定位置に固定することができる。適切な外科用ホルダ14の一
実施形態が、「Multi-Position Limb Holder」と題する2012年7月20日出願の米国
特許出願第13/554,010号に示されている。この米国特許出願の内容は、引用す
ることによりその全体が本明細書の一部をなすものとする。
【0017】
外科用ホルダ14は定位置にあるものとすることができるが、解剖学的構造は、外科用
ホルダ14に対して依然として動くことができるように外科用ホルダ14内に置かれる。
例えば、解剖学的構造は、最大で6自由度を含む、1以上の自由度において外科用ホルダ
14に対して動くことができる。それにより、解剖学的構造は、実質的には、ロボットシ
ステム10における動的な部分である。さらに、外科用ホルダ14は、解剖学的構造に力
を加えるときに、該解剖学的構造の全体的な、又は大きな動きが制限されるように、該解
剖学的構造をしっかりと保持するものであり、その結果、ロボットシステム10が該解剖
学的構造を処置できる。
【0018】
ロボットシステム10は、手術器具22を操作して解剖学的構造を処置するために用い
ることができるマニピュレータ20を有している。マニピュレータ20の一実施形態は、
「Surgical Manipulator Capable of Controlling a Surgical Instrument in Multiple
Modes」と題する2013年3月15日出願の米国仮特許出願第61/792,251号
に記載されている。この米国仮特許出願の内容は、引用することによりその全体が本明細
書の一部をなすものとする。
【0019】
マニピュレータ20は、カート24と、カート24から遠位端(distal end)まで延び
ている一対のアーム26とを有している。器具22は、一対のアーム26の遠位端に結合
される。器具22は、任意のやり方でマニピュレータ20と一体化される場合があること
を理解されたい。一実施形態では、器具22は、該器具22から延びるエネルギーアプリ
ケータ(energy applicator)34を有している。エネルギーアプリケータ34は、超音
波チップ、バー(bur)又は外科手技を行うための任意の他の処置デバイスとすることが
できる。外科用ホルダ14は通常、マニピュレータ20に対して固定される。
【0020】
マニピュレータ20及び器具22は、位置、力・トルク等を検知するための1以上のセ
ンサ及び/又はエンコーダも有することができる。センサ及びエンコーダは、マニピュレ
ータ20及び器具22に関連する物理データ又は他のタイプのデータを提供するために本
技術分野において知られている任意の形式のものとすることができる。1つのタイプのセ
ンサは力・トルクセンサ28であり、器具22に加えられた力及びトルクを検出すること
ができる。適切な力・トルクセンサ28の一実施形態が、「Force/Torque Transducer」
と題する2013年3月12日出願の米国仮特許出願第61/777,596号に示され
ている。この米国仮特許出願の内容は、引用することによりその全体が本明細書の一部を
なすものとする。
【0021】
また、マニピュレータ20は、マニピュレータコントローラ30も有している。マニピ
ュレータコントローラ30は、力・トルクセンサ28を含む、センサ及びエンコーダと通
信する。マニピュレータコントローラ30は、力・トルクセンサ28により検知された力
及びトルクがマニピュレータコントローラ30に返されるように、力・トルクセンサ28
と通信することができる。マニピュレータコントローラ30は更に、ナビゲーションシス
テム32と通信する。
【0022】
ロボットシステム10、より詳細には、マニピュレータ20は、手動で、又は自律的に
動作することができる。手動で動作するとき、ロボットシステム10は、手動モードにお
いて動作している。手動モードでは、医療従事者が、ロボットシステム10にコマンドを
適用することによって、器具22を手動で位置決めすることができる。コマンドを適用す
る一例は、医療従事者が器具22を握り、器具22に力・トルクを加えることを含む。医
療従事者によって適用されたコマンドに基づいて、ロボットシステム10は、アーム26
を作動させて、それに応じて、器具22が実質的に同時にリアルタイムに所望の位置に移
動する。
【0023】
ロボットシステム10は、器具22を自律制御するように構成されている。より詳細に
は、ロボットシステム10は、自律動作モード又は半自律動作モードにおいて器具22を
自律制御する。自律モード又は半自律モードでは、マニピュレータコントローラ30は、
プリロードされたデータ、ナビゲーションシステム32からのデータ、及びエンコーダか
らのデータを処理して、器具22が従うことになる経路を導き出す。経路はプリプログラ
ミングするか、又はあらかじめ決定することができる。ロボットシステム10はアーム2
6を作動させ、その経路に沿って器具22を自律的に移動させて、解剖学的構造に処置を
施す。ロボットシステム10は、医療従事者からの入力を実質的に用いることなく、手技
を行う。
【0024】
半自律モードでは、ロボットシステム10は、その経路に沿って器具22を自律的に移
動させる。しかし、医療従事者が、コマンドをアサートして、ロボットシステム10の動
作を制御することができる。例えば、ロボットシステム10は、器具を移動できるように
するために、医療従事者がロボットシステム10に関連付けられた制御ボタン又はスイッ
チを持続的に押下することを要求する場合がある。医療従事者がボタン又はスイッチを放
すと、器具22の動きが一時的に停止する。自律モード又は半自律モードにおいて利用さ
れる1つの適切なナビゲーションシステムが、「Navigation System Including Optical
and Non-Optical Sensors」と題する2012年9月26日出願の米国仮特許出願第61
/705,804号に記載されている。この米国仮特許出願の内容は、引用することによ
りその全体が本明細書の一部をなすものとする。しかし、他のナビゲーションシステムも
使用できることを理解されたい。
【0025】
ナビゲーションシステム32は、ナビゲーションコンピュータ38を収容したコンピュ
ータカートアセンブリ36を有するものとすることができる。ナビゲーションインターフ
ェースは、ナビゲーションコンピュータ38と動作可能に通信する。ナビゲーションイン
ターフェースによって、医療従事者は、ロボットシステム10と通信できるようになる。
ナビゲーションインターフェースは、医療従事者がナビゲーションコンピュータ38と通
信できるようにするために、少なくとも1つのディスプレイ40、42と、キーボード及
びマウス等の入力デバイス44、46とを含む。
【0026】
ナビゲーションコンピュータ38は、マニピュレータ20を制御するために、マニピュ
レータコントローラ30と協働する。ナビゲーションコンピュータ38は、マニピュレー
タコントローラ30がマニピュレータ20の動きを、それゆえ、器具22の動きを指示で
きるように、マニピュレータコントローラ30に器具22の姿勢データを与える。
【0027】
ローカライザ48は、ナビゲーションコンピュータ38と通信する。
図1に示している
実施形態において、ローカライザ48は光学ローカライザ48であり、カメラユニット5
0を有している。カメラユニット50は、1以上の光センサ52を収容する外部ケーシン
グを有している。幾つかの実施形態では、少なくとも2つの光センサ52が利用される。
他の実施形態では、3つ以上の光センサ52が用いられる場合がある。
【0028】
ナビゲーションシステム32は1以上のトラッカを含む。トラッカは、ポインタトラッ
カPT、器具トラッカ54、第1の患者トラッカ58及び第2の患者トラッカ60を含む
ことができる。トラッカはアクティブ型マーカ56を含む。アクティブ型マーカ56は、
発光ダイオードすなわちLEDとすることができる。他の実施形態では、トラッカ54、
58、60は、カメラユニット50から放射された光を反射する反射体等の、パッシブ型
マーカを有することができる。ロボットシステム10の一部とすることができる更なる構
成要素を追跡するために、ナビゲーションシステム32に更なるトラッカを組み込むこと
ができることを理解されたい。
【0029】
図1に示している実施形態では、第1の患者トラッカ58は患者Pの大腿骨Fにしっか
り固定され、第2の患者トラッカ60は患者Pの脛骨Tにしっかり固定される。患者トラ
ッカ58、60は、骨の複数の部分にしっかり固定される。さらに、器具トラッカ54は
器具22にしっかり固定される。トラッカ54、58及び60は、役に立つと思われる任
意のやり方で個々の構成要素に固定することができる。
【0030】
図2に示すように、各LEDは、関連するトラッカのハウジング(図示せず)内に位置
し、ナビゲーションコンピュータ38との間でデータを送受信するトラッカコントローラ
62に接続される。また、トラッカ54、58、60は、トラッカ54、58、60の角
速度を測定する3次元ジャイロスコープセンサ64も含む。また、トラッカ54、58、
60は、x、y、z座標系において加速度を測定する加速度計66も含む。
【0031】
トラッカ54、58、60のアクティブ型マーカ56から姿勢データを伝えるために、
カメラユニット50は、光センサ52と通信するカメラコントローラ68を有している。
その際、カメラコントローラ68は、ナビゲーションコンピュータ38に姿勢データを伝
える。その際、ナビゲーションコンピュータ38は、更なる術前データとともに姿勢デー
タを処理して、患者の解剖学的構造との関連において器具22、それゆえ、エネルギーア
プリケータ34の姿勢を伝える。一実施形態では、ナビゲーションインターフェースは、
そのようなデータを医療従事者に伝える。医療従事者がロボットシステム10とやりとり
するために、当業者がこれまでの実施形態において説明されていない他の方法を見つける
ことができることを理解されたい。
【0032】
外科手技中に、ロボットシステム10は、手動モードから半自律モード又は自律モード
に切り替わることが望ましい。骨切断手技等の幾つかの手技では、器具22が骨と関わっ
ているときに解剖学的構造が器具22と同じ速度で動かないように、解剖学的構造が外科
用ホルダ14内でしっかり配置されることが望ましい。さもなければ、器具22は骨を切
断することができない。言い換えると、外科用ホルダ14内に固定されるときに、解剖学
的構造は、何らかの最小の剛性又は他の特性を有することが望ましい。さらに、外科手技
中に器具22が解剖学的構造に当てられるときに、解剖学的構造が器具22より遅い速度
で動くのを確実にするために、剛性等の幾つかの特性の値に基づいてロボットシステム1
0を制御することが望ましい。
【0033】
器具22が解剖学的構造に当てられるときの解剖学的構造の動きを考慮するために、ロ
ボットシステム10は、解剖学的構造の1以上の特性に基づいて較正される。1以上の特
性は、剛性特性(k)、減衰(damping)特性(b)、質量(m)、減衰比(ζ)、周波
数応答(ωn)及び/又は他の特性とすることができる。剛性特性(k)は、ばね定数と
して更に定めることができる。別の例では、特性は、解剖学的構造が外科用ホルダ14に
よって固定される範囲(程度)(extent)を表すデータを含む。より詳細には、特性は、外科用ホルダ14に対して解剖学的構造が動く範囲を表すデータを含む。
【0034】
図3は、外科手技中に患者Pの解剖学的構造を操作するためにロボットシステム10を
制御する基本ステップを示している。ステップ72において、解剖学的構造に力を加えて
解剖学的構造による反応を生成する。ステップ74において、解剖学的構造の反応が測定
される。ステップ76において、その反応に基づいて解剖学的構造の特性が計算される。
ステップ78において、計算された特性に基づいて、解剖学的構造に対して器具22が自
律制御される。
【0035】
ステップ72において、解剖学的構造に力を加えるために、一般的に、解剖学的構造に
隣接するように、又は当たるように加力(force-applying)デバイスが位置決めされる。
一実施形態では、ロボットシステム10、より詳細にはマニピュレータコントローラ30
は、力を加えるために、加力デバイスを解剖学的構造に向かって能動的に動かす。あるい
は、ロボットシステム10は静止していることができ、力を加えるために、加力デバイス
がロボットシステム10から解剖学的構造に向かって伸長する。加力デバイスのそのよう
な動きは、マニピュレータコントローラ30から独立して行うことができる。加力デバイ
スは任意の適切な構成を有することができる。例えば、解剖学的構造を操作する器具22
が加力デバイスである。別の例では、センサ又はゲージ(gauge)等の、器具22以外の
デバイスが、加力デバイスとしての役割を果たし、解剖学的構造に当たるように位置決め
される。器具22以外の任意の適切なデバイスが、加力デバイスとしての役割を果たすこ
とができる。
【0036】
医療従事者は、ロボットシステム10、より詳細にはマニピュレータコントローラ30
が、器具22又は他の加力デバイスを解剖学的構造に当たるように位置決めできるように
、手動モードにおいて入力を与えることができる。場合によっては、エネルギーアプリケ
ータ34が解剖学的構造に当たるように位置決めされる場合がある。また、場合によって
は、解剖学的構造に当接して位置決めするために、手術器具22には、その遠位端におい
て非侵襲性で生体適合性のある構造を有する較正プローブ(図示せず)が設けられる。
【0037】
代替的なバージョンでは、ロボットシステム10は、ステップ72において力を加える
前に、器具22を解剖学的構造に当接して自律的に位置決めするために、半自律又は自律
モードにおいて利用される場合がある。医療従事者は、自律動作中に介入し、解剖学的構
造に当接する器具22の位置決めを指示するために、ナビゲーションインターフェースと
やりとりすることができる。医療従事者は、当業者が器具22の位置を指示するのに役に
立つと判断する任意のやり方において、マニピュレータ20、ナビゲーションシステム3
2又はロボットシステム10の任意の他の構成要素とやりとりできることを理解されたい
。さらに、医療従事者は、器具22を解剖学的構造に当接して位置決めするときに、手動
モード、自律モード及び/又は半自律モード間で切り替えることができる。
【0038】
ステップ72において、解剖学的構造に力が加えられる。ステップ72の一実施形態で
は、器具22が解剖学的構造に力を加える。別の実施形態では、器具22以外の加力デバ
イスが、解剖学的構造に力を加える。いずれの場合でも、手動モード、自律モード及び/
又は半自律モードにおいて、解剖学的構造に力を加えることができる。一実施形態では、
力はあらかじめ決定される。さらに、力は1自由度において加えることができる。あるい
は、力及びトルクは、6自由度等の幾つかの自由度において加えられる場合がある。
【0039】
一実施形態では、力はステップ関数(step function)に従って解剖学的構造に加えら
れる。その場合、力は第1の間隔において第1のレベルで加えられ、第1の間隔に続く第
2の間隔において第2のレベルで加えられる。第1のレベルは第2のレベルより高いもの
とすることができるか、又はその逆の場合もある。したがって、ロボットシステム10は
、解剖学的構造に種々のレベルの力を加えることができる。ステップ関数は、任意の適切
な数のレベル及び間隔を含むことができる。
【0040】
別の実施形態では、力は、インパルス関数F(t)に従って解剖学的構造に加えられる
。この実施形態では、力が解剖学的構造に加えられ、解剖学的構造の反応を時間に応じて
測定した信号が記録される。
【0041】
更に別の実施形態では、ステップ72は較正処理を起動(activate)することを含む。
したがって、解剖学的構造に力を加えることは、較正処理の起動に応じて行われる。較正
処理は、マニピュレータコントローラ30内に記憶された較正プログラムとすることがで
きる。記憶される較正プログラムは、コンピュータプログラムを記憶することができ、ロ
ボットシステム10の一部である任意の媒体に記憶することができる。ナビゲーションイ
ンターフェースは、較正処理を開始するようにユーザに促すことができる。あるいは、較
正処理を自動的に開始することができる。
【0042】
較正処理において、記憶された較正プログラムは、マニピュレータコントローラ30と
協働して、解剖学的構造に力を加えるように器具22に指示することができる。一実施形
態では、器具22が較正処理全体を通して解剖学的構造との接触を維持するものとなるよ
うに、解剖学的構造に力が加えられる。それに加えて、又はその代わりに、マニピュレー
タ20は、所定のしきい値の力に達するまで、解剖学的構造に加えられる力を増やし続け
ることができる。
【0043】
解剖学的構造は、力が加えられた後に反応を生成する。後に詳細に説明されるように、
解剖学的構造の生成された反応は、種々の形の任意の組み合わせをとることができる。一
実施形態では、解剖学的構造の生成された反応は、機械的な反応とすることができる。例
えば、生成された反応は、解剖学的構造の機械的な動き、より詳細には、解剖学的構造の
変位又は回転運動とすることができる。解剖学的構造の生成された反応が機械的ではない
形をとる場合もあることが、当業者には理解されよう。例えば、生成された反応は、電気
的な反応とすることができる。
【0044】
解剖学的構造による反応が生成された後に、ステップ74において、その反応が測定さ
れる。この反応は、種々の方法に従って測定することができる。反応測定デバイスが反応
を測定する。ステップ74の一実施形態では、反応は、力・トルクセンサ28を用いて測
定される。力・トルクセンサ28を器具22に関連付けることができる。器具22が解剖
学的構造に力及び/又はトルクを加えたときに、力・トルクセンサ28は力及び/又はト
ルクを測定することができる。あるいは、力・トルク28は、器具22以外のデバイスに
関連付けることができる。力及び/又はトルクは、時間に応じて測定することができる。
さらに、力及び/又はトルクは、離散的又は連続的に測定することができる。
【0045】
ステップ74の別の実施形態では、解剖学的構造の反応は、関節トルク(joint torque
)を測定することによって測定される。関節トルクは、マニピュレータ20の関節のうち
の1つに関連するトルクに対応する。任意の適切なセンサ及び/又はエンコーダが、関節
トルクを検知することができる。さらに、2つ以上の関節トルクを測定することができる
。一実施形態では、関節トルクは、以下の式(1)を用いて、計算され、ツール中心点(
tool center point, TCP)の力・トルクに変換される。式(1)において、(J’)はT
CPから関節までのヤコビアンの転置であり、(t)は関節トルクのベクトルである。関
節トルクは、以下の式(2)に示すように、器具22を操作するために用いられるモータ
コントローラによって引き込まれる電流から計算することができる。ただし、(kt)は
モータトルク定数であり、(i)は電流である。さらに、関節トルクセンサを用いて、関
節トルクの推定値を求めることができる。関節トルクは、種々の他の方法に従って測定す
ることができる。
【数1】
【0046】
ステップ74の更に別の実施形態では、解剖学的構造の反応は、解剖学的構造の変位を
測定することによって測定される。変位は、力を加えられたことによって解剖学的構造が
動く距離とすることができる。変位は、時間に応じて測定することができる。さらに、変
位は離散的又は連続的に測定することができる。幾つかの実施形態では、所望の変位に達
するまで、マニピュレータ20は、器具22を解剖学的構造に当て続けることができる。
任意の適切なデバイス又は方法を利用して、解剖学的構造の変位を測定することができる
。一例では、ナビゲーションシステム32が、トラッカ58及び60の位置の変化を測定
することによって変位を計算する。例えば、ナビゲーションシステム32は、ステップ7
2において力を加える前に、解剖学的構造の初期位置を求めることができる。力が加えら
れた後に、ナビゲーションシステム32は、解剖学的構造の変位位置を求めることができ
る。ナビゲーションシステム32はその後、変位位置を初期位置と比較し、変位を求める
ことができる。
【0047】
ロボットシステム10は、変位を測定するとき、最終的な力及び変位測定値を記録する
ことができる。ロボットシステム10が最終的な力及び変位測定値を記録する前に解剖学
的構造及び器具22が平衡点(equilibrium point)に達するものとなるように、ステッ
プ74において、マニピュレータ20は、定められた整定時間(settling time)だけ待
つことができる。さらに、マニピュレータコントローラ30は、エンコーダ及び運動学的
計算により、解剖学的構造の変位を計算することができる。解剖学的構造の変位を計算す
る代替的な方法を当業者が見つけることができることを理解されたい。
【0048】
解剖学的構造の反応を測定する際に、解剖学的構造の質量(m)を考慮することができ
る。一実施形態では、解剖学的構造の質量は術前データから推定される。さらに、解剖学
的構造の質量は、外科用ホルダ14の質量に加えることができる。したがって、解剖学的
構造の反応を測定する際に、解剖学的構造及びホルダ14の質量を考慮することができる
。さらに、反応を測定するときに、質量及び変位の両方を考慮に入れることができる。
【0049】
解剖学的構造の反応は、上記の実施形態の任意の組み合わせに従って測定することがで
きる。一実施形態では、その方法の幾つかのステップが異なる時刻に行われる。例えば、
ステップ72及び74が異なる時刻に行われる。より詳細には、解剖学的構造の反応が測
定される前に、解剖学的構造に力が加えられる。別の例では、ステップ72及び78が異
なる時刻に行われる。詳細には、器具22の自律制御前に、解剖学的構造に力が加えられ
る。そのような場合には、解剖学的構造に力を加えるステップ72は、器具22を自律制
御するステップ78から独立して別に行われる。
【0050】
あるいは、本方法の幾つかのステップを、同時に行うことができる。例えば、力が加え
られるのと同時に解剖学的構造の反応が測定されるように、ステップ72及び74を同時
に行うことができる。別の例では、ステップ72がステップ78と同時に行われる。詳細
には、器具22が自律制御されるのに応じて、力が加えられる。そのような場合には、器
具22を自律制御する前に、力を加えるステップ72が行われる必要はない。すなわち、
器具22の自律制御は、解剖学的構造にあらかじめ力を加えることなく開始することがで
きる。むしろ、器具22の自律制御中に、解剖学的構造に力が絶えず加えられる。さらに
、ステップ74及び76をステップ78と同時に行うことができる。すなわち、器具22
が自律制御されるのに応じて、解剖学的構造の反応を測定することができ、解剖学的構造
の特性を計算することができる。
【0051】
さらに、本方法の最も広い範囲から逸脱することなく、解剖学的構造の反応を測定する
代替的な方法を当業者が見つけることができることを理解されたい。
【0052】
上記のように、ステップ76において、解剖学的構造の測定された反応に基づいて、解
剖学的構造の特性が計算される。種々の実施形態に従って特性を計算することができる。
一実施形態では、特性は静的手法を用いて測定される。この手法では、解剖学的構造の剛
性特性(k)が特定される。解剖学的構造に加えられる力は既知であり、(F)によって
表される。解剖学的構造の計算された変位も既知であり、(x)によって表される。マニ
ピュレータコントローラ30は、ステップ76において剛性特性(k)について解くため
に、力(F)及び変位(x)を以下の式(3)に入力することによって、力(F)及び計
算された変位(x)を処理する。
【数2】
【0053】
式(3)において、解剖学的構造の静的な撓み(deflection)が測定される。剛性特性
(k)はばね定数であり、定常状態条件下で推定することができる。解剖学的構造の特性
を計算するための代替の静的手法を当業者が見つけることができることを理解されたい。
【0054】
別の実施形態では、動的手法を用いて、特性が測定される。この手法では、解剖学的構
造のステップ応答又はインパルス応答が測定される。質量・ばね・ダンパのモデルに関す
る以下の特性方程式(4)を用いて、パラメータが推定される。
【数3】
【0055】
式(4)において、(m)はホルダ及び/又は解剖学的構造の質量であり、(b)は減
衰(damping)係数等の減衰特性であり、(k)はばね定数であり、(x’’)は、変位
の時間に対する二次導関数(例えば、加速度)であり、(x’)は変位の時間に対する一
次導関数(例えば、速度)であり、(x)は変位である。式(4)において、パラメータ
(m、b又はk)のうちの少なくとも1つを仮定するか、又は既知のものとして、その他
のパラメータを容易に推定することができる。例えば、3つのパラメータのうちの2つが
既知である場合には、これにより、第3のパラメータの推定を向上させることができる。
一例では、質量が既知であるか、又は入手可能な臨床データから推定することができる。
別の例では、ばね定数(k)が静的試験により計算及び推定される。いずれの例でも、実
験データから残りの2つの変数を計算することができる。あるいは、両方の例の手法を組
み合わせて、(m)及び(k)の両方に関する初期推定値を与えて、減衰特性(b)を実
験データから計算することができる。
【0056】
ステップ76の別の実施形態では、特性の計算は、マニピュレータコントローラ30に
よって作成された経時的な変位のグラフから、解剖学的構造の反応の共振周波数(ωn)
及び減衰比(ζ)を推定することを含む。推定された質量を用いて、以下の式(5)及び
式(6)を解くことで、剛性特性(k)及び減衰特性(b)を計算することができる。他
の例では、質量、剛性特性(k)及び減衰特性(b)が推定される。
【数4】
【0057】
更に別の実施形態では、ステップ76は、変位と時間との関係のデータから評価される
ような、計算された反応xc(t)と実験的な反応x(t)との平均二乗誤差を最小にす
るパラメータ値を探索する反復型最適化ルーチンの実行を含む。この実施形態では、式(
7)において質量、ばね、ダンパモデルHsに関する完全な伝達関数を利用して、質量(
m)、減衰特性(b)及び剛性特性(k)の値を計算する。
【数5】
【0058】
式(8)において、力の入力すなわちf(t)は既知であり、f(t)のラプラス変換
が計算されて、F(s)が求められる。したがって、式(7)におけるF(s)は、力の
入力のラプラス変換である。式(7)において、X(s)は並進出力(translation outp
ut)のラプラス変換であり、sはラプラス周波数変数である。式(7)において、X(s
)は、F(s)の計算値と、(m)、(k)及び(b)の推定値とを用いて求められる。
X(s)がわかると、以下の式(9)によって示されるような、逆ラプラス変換を用いて
、X(s)を周波数領域からxc(t)である時間領域に変換する。その後、xc(t)
とx(t)との平均二乗誤差が計算される。その後、本処理は、平均二乗誤差が許容可能
な差以内に収束するまで、(m)、(k)及び(b)に関する更新された推定値を用いて
繰り返される。
【数6】
【0059】
解剖学的構造の特性を計算するために上記で言及されていない代替の数学的方法を用い
ることを当業者が予想できることは理解されたい。
【0060】
上記のように、ステップ78において、ロボットシステム10は、計算された特性に基
づいて、解剖学的構造に対して器具22を自律制御する。それにより、本方法は、器具2
2を自律制御するときに、解剖学的構造の特性を考慮する。マニピュレータコントローラ
30は、計算された特性に基づいて、解剖学的構造に対する器具22、それゆえ、エネル
ギーアプリケータ34の先端部の位置を制御することができる。一実施形態によれば、器
具22の自律制御は、計算された特性を利用して外科手技中の解剖学的構造の動きを考慮
することを含む。
【0061】
別の実施形態では、計算された特性は、自律モード又は半自律モードにおいてマニピュ
レータの送り速度(feed rate)を制御する際に1つの要素として使用される。マニピュ
レータの送り速度は、「Surgical Manipulator Capable of Controlling a Surgical Ins
trument in Multiple Modes」と題する2013年3月15日出願の米国仮特許出願第6
1/716,251号に記載されている。この米国仮特許出願の内容は、引用することに
よりその全体が本明細書の一部をなすものとする。
【0062】
一例では、器具22の送り速度は、計算された特性に基づいて調整される。例えば、送
り速度は、外科手技中に器具22が解剖学的構造に当てられたときに解剖学的構造が動く
速度より速いものとなるように調整される。このようにして、器具22の送り速度が、外
科用ホルダ14内で動く場合がある解剖学的構造と器具22が接触できるようにするのに
十分であることを確実にするために、計算された特性が考慮される。
【0063】
別の例では、送り速度は、解剖学的構造が外科用ホルダ14によって固定される範囲を
表すデータに基づいて調整される。より詳細には、送り速度は、解剖学的構造が外科用ホ
ルダ14に対して動く範囲を表すデータに基づいて調整される。そのようなデータは、器
具22の実際の位置を、解剖学的構造に対する器具22の意図した位置と比較することに
よって導き出すことができる。ナビゲーションシステム32は、解剖学的構造及び器具2
2を追跡して、実際の位置を求める。実際の位置は、器具22の横断切断経路(traverse
d cut path)を含むことができる。意図した位置は、意図した横断切断経路を表す所定の
プリロードされたデータとすることができる。器具22の切断経路は、複数の離散点にお
いて求めることができる。実際の経路と意図した経路とのプロファイル誤差を求めること
ができる。その後、プロファイル誤差を所定のしきい値と比較することができる。一例で
は、しきい値を超えるプロファイル誤差を有する横断切断経路点のパーセンテージが容認
できないと見なされた場合は、送り速度が減速され、及び/又は通知が表示される。場合
によっては、プロファイル誤差目標値及び容認可能なパーセンテージは、調整することが
できるか、又は可変とすることができる。そのような調整は、例えば、その切断が荒切り
(rough cut)か、仕上げ切り(finish cut)かに応じて行うことができる。さらに、そ
のような調整は、切断対象の解剖学的構造の重症度に基づいて行うことができる。アンダ
ーカット(undercut)は、オーバーカット(overcut)とは異なるしきい値を有すること
もできる。別の例では、上記の方法を利用して、器具22による実際の骨除去と、機器2
2による意図した骨除去とを比較する。
【0064】
別の実施形態では、器具の自動制御は、解剖学的構造の計算された特性に基づいて、器
具22の最大送り速度を設定することを含む。場合によっては、ロボットシステム10は
、外科手技を受ける詳細な解剖学的構造に応じて、器具22のデフォルト最大送り速度を
指定することができる。言い換えると、デフォルト最大送り速度は、対象となる解剖学的
構造に応じて異なる場合がある。その一方で、計算された特性に応じて、ロボットシステ
ム10は、デフォルト最大送り速度以下となるように最大送り速度を設定することができ
る。例えば、計算された特性が、比較的硬い解剖学的構造を示す場合には、ロボットシス
テム10は、最大送り速度をデフォルト最大送り速度に設定することができる。解剖学的
構造が比較的硬い場合、器具22を当てる際に不正確になる可能性は低いので、ロボット
システム10は最大送り速度を維持することができる。あるいは、例えば、計算された特
性が、比較的緩く固定された解剖学的構造を示す場合には、ロボットシステム10は、器
具22の最大送り速度を、デフォルト最大送り速度未満に、すなわちデフォルト最大送り
速度未満である送り速度範囲内に設定することができる。ロボットシステム10は、解剖
学的構造が緩く固定されることから生じる場合のある、器具22を当てる際の不正確さを
解消するために、最大送り速度を制限することができる。他の実施形態では、最大送り速
度は、上記のようなデフォルト最大送り速度にかかわらず、単に、計算された特性に応じ
て設定される。
【0065】
さらに、計算された特性に基づく器具22の自律制御は、計算された特性をシミュレー
ションプログラムにおいて適用することを含むことができる。シミュレーションプログラ
ムは、外科手技中に解剖学的構造に対する器具22の動きを、より詳細には、エネルギー
アプリケータ34の動きをモデル化することができる。一実施形態では、シミュレーショ
ンは、骨切削手技をモデル化する。
【0066】
本方法の範囲から逸脱することなく、上記の実施形態において説明される特性以外の計
算された特性に基づく、器具22を自律制御するための使用法を当業者が見つけることが
できることは理解されたい。
【0067】
計算された特性に基づいて、ロボットシステム10は、
図4及び
図5に示すように、メ
ッセージ又は通知80を与えることができる。通知80は、外科手技中に医療従事者を助
けるものである。通知80は、ユーザインターフェース等の任意の適切な媒体上で与える
ことができる。
図4及び
図5において、通知80はナビゲーションシステム32のディス
プレイ42上に与えられる。通知80は、画像、テキスト、又は画像及びテキストの組み
合わせによって与えることができる。さらに、通知80は動画とすることができる。
【0068】
通知80は、計算された特性に基づいて与えられる。一実施形態では、通知80は、計
算された特性の評価に基づいて与えられる。例えば、通知80は、計算された特性と、最
適な動作に関連するしきい値との比較に基づいて与えることができる。しきい値は、最小
しきい値又は最大しきい値とすることができる。計算された特性が最大しきい値より大き
いか、又は最小しきい値より小さい場合には、ロボットシステム10は通知80を与える
。例えば、剛性k(又はパラメータm、b及びkの組み合わせ)に関する最小しきい値が
決定される場合がある。計算された剛性が剛性kに関する最小しきい値より小さい場合に
は、ロボットシステム10は、医療従事者に、解剖学的構造がよりしっかり固定されるま
で手技が継続できないという通知80を与える。
【0069】
その代わりに、又はそれに加えて、計算された特性に基づいて、自律モード又は半自律
モードにおける送り速度を、機械加工精度を維持するために必要なレベルに調整すること
ができる。一例では、送り速度は、解剖学的構造がよりしっかり固定されるまで、又は解
剖学的構造がよりしっかり固定されない限り減速される。詳細には、解剖学的構造が、低
い剛性を示す自由度においてよりしっかり固定されるまで、又はよりしっかり固定されな
い限り、送り速度を減速することができる。送り速度の調整は、医療従事者が送り速度を
手動で調整する必要がないように、自動的及び受動的なものとすることができる。むしろ
、より迅速な機械加工が望ましい場合には、解剖学的構造の剛性が調整される。その後、
ロボットシステム10は、解剖学的構造がよりしっかり固定された場合には、医療従事者
に対して、送り速度を上げることができるという通知80を表示することができる。
【0070】
他の実施形態では、計算された特性が、最適動作に関する所定の特性範囲と比較される
。計算された特性がその範囲外の場合には、ロボットシステム10は、通知80を送るこ
とができる。例えば、ロボットシステム10が、剛性特性(k)等の計算された特性が最
適動作に関する範囲外にあると判断した場合は、ロボットシステム10は、通知80を送
り、計算された特性が範囲外にあること、又は外科手技が中止されるべきであることを医
療従事者に警告することができる。他方、剛性特性(k)が最適動作特性の範囲内にある
場合には、ロボットシステム10は、外科手技が継続できることを医療従事者に通知する
ことができる。さらに、上記の実施形態は、較正処理において行うことができる。例えば
、較正処理は、計算された特性が最適動作特性の範囲内にあるときに終了することができ
る。
【0071】
多くの場合に、計算された特性に基づいて患者の解剖学的構造を調整する方法に関する
指示を伴う通知80を与えることが有利である。通知80は、解剖学的構造がよりしっか
り固定されるように、外科用ホルダ14内で解剖学的構造を位置決めし直すように医療従
事者に警告することができる。解剖学的構造を位置決めし直すことは、外科用ホルダ14
を操作することによって行われる。したがって、通知80は、外科用ホルダ14を操作す
る(例えば、動かす、調整する)方法に関する指示を示唆することができる。解剖学的構
造の位置は、外科用ホルダ14を用いて、複数の自由度に沿って調整可能に設定すること
ができる。解剖学的構造に加えられる力は、各自由度に対する解剖学的構造による反応を
生む。自由度ごとに、解剖学的構造の反応が測定される。計算された特性は、自由度ごと
に求められる。計算された特性に基づいて、自由度のうちのいずれかに対して解剖学的構
造が調整されるべきであるか否かに関する判断を行うことができる。その判断は、計算さ
れた特性が所定のしきい値又は範囲を超えたか否かを含む、種々の方法に従って行うこと
ができる。調整の大きさ又は範囲も判断することができる。
【0072】
通知80は、解剖学的構造の自由度に基づく計算から導き出される示唆(suggestion)
を与える。解剖学的構造のどの自由度が操作を必要とするか、及びそのような操作の範囲
を判断することによって、通知80は、外科用ホルダ14の位置を変更するための示唆を
与える。外科用ホルダ14の位置を変えることによって、解剖学的構造の位置が変化する
。計算された特性は、解剖学的構造の位置の変化に応じて変化する。したがって、通知8
0は、計算された特性を変更するために、解剖学的構造を位置決めし直すように促す。
【0073】
図4及び
図5に示しているように、通知80は、外科用ホルダ14を調整する方法を視
覚的に示す画像又は動画として表示される場合がある。通知80は、解剖学的構造を現在
位置90から推奨位置92まで動かす方法を示している。解剖学的構造の現在位置90は
、解剖学的構造のリアルタイムの位置である。推奨位置92は、上記のように、計算され
た特性から導き出される。
図4及び
図5において、現在位置90は破線によって示してお
り、推奨位置92は実線によって示している。
【0074】
通知80によって提供される示唆は、外科用ホルダ14の構成によって決まる場合があ
る。例えば、
図4及び
図5において、外科用ホルダ14によって支持される解剖学的構造
は、脚(leg)などの肢(limb)である。外科用ホルダ14は、解剖学的構造を伸ばすか
、又は曲げるための機構を有するものとすることができる。外科用ホルダ14は、そり(
sled)100によって支持され、そり100は支持棒102に沿って移動する。通知80
は、そり100を支持棒102から解放することと、そり100を支持棒102に沿って
推奨位置92まで移動させることとを示唆することができる。その後、外科用ホルダ14
は推奨位置92に固定される。
図4のそり100の推奨移動方向が、簡単にするために矢
印によって示される。通知80は、伸長から屈曲、又はその逆の脚の動きを示唆すること
ができる。通知80は、任意の所与の自由度(複数の場合もある)に沿った解剖学的構造
の動きを示唆する。例えば、
図5において、通知80は、外科用ホルダ14を内側に(患
者の中心線に向かって)回転させることを示唆する。あるいは、通知80は、外科用ホル
ダ14を側方に(患者の中心線から離れるように)回転させることを示唆することができ
る。そのような場合に、通知80は、外科用ホルダ14を内側に、又は側方に動かすよう
に示唆することができる。さらに、
図4に示しているように、外科用ホルダ14は、解剖
学的構造を固定するための少なくとも1つのストラップ106を有するものとすることが
できる。通知80は、ストラップ106をしっかり締めることを示唆することができる。
【0075】
当然、外科用ホルダ14は、種々の他の構成を有することができ、本明細書において列
挙されない種々の他のやり方において操作することができる。さらに、通知80は、外科
用ホルダ14の2つ以上の機構を位置決めし直すことを示唆することができる。また、通
知80は、単一のステップ又は一連のステップを通して指示を与えることもできる。例え
ば、通知80は、最初に第1のステップとして
図4に示した示唆を表示することができ、
その後、第2のステップとして、
図5に示した示唆を表示することができる。
【0076】
場合によっては、通知80は受動的であり、単に、推奨位置92への動きを示唆する。
そのような場合、ロボットシステム10は一般的に、外科用ホルダ14が推奨位置92に
動かされたか否かを判断しない。場合によっては、通知80は能動的であり、ロボットシ
ステム10は、解剖学的構造及び/又は外科用ホルダ14が推奨位置92に達したか否か
を判断する。ロボットシステム10は、解剖学的構造及び外科用ホルダ14の動きを間欠
的又は連続的に監視することができる。ロボットシステム10は、解剖学的構造及び外科
用ホルダ14が推奨位置92に達したか否かを判断するのに適した任意の方法及びシステ
ムを利用することができる。例えば、ロボットシステム10は、解剖学的構造及び/又は
外科用ホルダ14の現在位置及び推奨位置92を判断するために、ナビゲーションシステ
ム32及び患者トラッカ58、60を利用することができる。
【0077】
さらに、ロボットシステム10は、推奨位置92に達したことを伝えるのに適した任意
の通知方法を利用することができる。例えば、ナビゲーションシステム32は、解剖学的
構造及び/又は外科用ホルダ14の推奨位置92に対する、解剖学的構造及び/又は外科
用ホルダ14の現在位置90を表示することができる。解剖学的構造及び/又は外科用ホ
ルダ14が動かされることに応じて、解剖学的構造及び/又は外科用ホルダ14の、表示
されている現在位置90が、表示されている推奨位置92に接近する。表示されている現
在位置90が表示されている推奨位置92に達するまで、調整が行われる。当然、触覚に
よる方法又は聴覚による方法等の他の伝達方法を用いて、推奨位置92に達したことを伝
えることができる。
【0078】
詳述された明細書から本発明の数多くの特徴及び利点が明らかであり、それゆえ、添付
の特許請求の範囲は、本発明の真の趣旨及び範囲に属する本発明の全てのそのような特徴
及び利点に及ぶことを意図している。さらに、当業者には数多くの変更及び変形が容易に
思い浮かぶことになるので、本発明を図示及び説明されたのと全く同じ構成及び動作に限
定することは意図されておらず、それゆえ、本発明の範囲に属する、全ての適切な変更形
態及び均等物を採用することができる。