【文献】
ALTMAN, M., et al.,Conformational behavior of ionic self-complementary peptides,Protein Science,2000年,Vol.9,p.1095-1105
【文献】
KELEI CHEN,A HYBRID SILK/RADA-BASED FIBROUS SCAFFOLD WITH TRIPLE HIERARCHY FOR LIGAMENT REGENERATION,TISSUE ENGINEERING PART A,MARY ANN LIEBERT, INC,2012年 7月 1日,VOL:18, NR:13-14,PAGE(S):1399 - 1409,URL,http://dx.doi.org/10.1089/ten.tea.2011.0376
(58)【調査した分野】(Int.Cl.,DB名)
1種類以上の治療薬剤、予防薬剤または診断薬剤が、止血剤、抗感染剤、成長因子、細胞、麻酔剤、血管収縮薬およびこれらの組み合わせからなる群から選択される、請求項5に記載のメッシュ。
マイクロフルイディクス、射出成形、スタンピング、望ましい形状を有する表面の上でのテンプレート化、エレクトロスピニング、粉末の凍結、溶液の凍結、固体基材のコーティング、およびこれらの組み合わせからなる群から選択される工程を含む、請求項1〜8のいずれか一項に記載のメッシュを調製するための方法。
メッシュが、5mM未満の濃度のLi+、Na+、K+またはCs+イオンを含む自己組織化ペプチドのストック溶液をエレクトロスピニングすることによって調製される、請求項9に記載の方法。
対象の体液の移動を阻害または防止するための請求項1〜8のいずれか一項に記載のメッシュであって、当該メッシュが対象上のまたは対象内の創傷に適用され、自己組織化ペプチドが組織化して、当該メッシュを通る体液の移動を阻害または防止する障壁構造を形成する、メッシュ。
保護層、下地層または支持層が、ポリ(L−乳酸 コ−ε−カプロラクトン)(PLCL)、ポリ(DL−乳酸)(PDLA)、ポリ(乳酸−コ−グリコール酸)(PLGA)、ポリ(エチレンオキシド)(PEO)、ポリ(ビニルアルコール)(PVA)、ポリ(メタクリル酸メチル)(PMMA)、ポリ(エチレン−コ−酢酸ビニル)(PEVA)、ポリスチレン、ポリウレタン、ポリ(L−乳酸)(PLLA)、ポリ乳酸(PLA)またはこれらの混合物を含む、請求項23に記載のメッシュ。
【発明を実施するための形態】
【0021】
I.定義
「生体適合性」は、本明細書で使用される場合、毒性ではなく、傷害性ではなく、または生理学的に反応性ではなく、免疫拒絶を引き起こさない、生きた組織または生きた系との適合性を指す。
【0022】
「相補的な」は、ある構造中の隣接するペプチドからの親水性残基間のイオン性相互作用または水素結合相互作用を生成する能力を有することを意味する。ペプチド中のそれぞれの親水性残基は、隣接するペプチドの親水性残基と水素結合するかイオン対を形成するか、または溶媒にさらされる。対形成は、ファンデルワールス力が関与していてもよい。
【0023】
「有効な量」は、自己組織化ペプチドまたは生体分子、医薬などのような活性薬剤に言及するとき、望ましい生物学的応答を誘発するのに必要な量を指す。当業者によって理解されるように、ある薬剤の有効な量は、望ましい生物学的終点、送達される薬剤、薬剤が送達される部位の性質、薬剤が投与される状態の性質などの因子に依存して変わってもよい。例えば、疾患または障害を治療するのに有効な量の組成物は、この組成物が存在しないときに起こり得るよりも大きな程度までの回復を促進するのに十分な量であってもよい。
【0025】
「予防」は、このような状態、状況、もしくは疾患、または発現もしくは徴候、または重篤度の悪化を低減させることを指す。予防は、このような状態、状況、または疾患、または症状または徴候の危険性を減らし、または、重篤度の悪化が起こるのを防ぐことを含む。
【0026】
「治療する」、「治療」および「治療すること」という用語は、1つ以上の治療薬(例えば、本発明の化合物のような1つ以上の治療薬剤)の投与から得られる、傷害、疾患または障害の進行、重篤度および/または持続の減少または軽減、疾患または障害の発生を遅らせること、または傷害、疾患または障害の1つ以上の結果、兆候または症状(好ましくは、1つ以上の区別可能な症状)の軽減を指す。「治療する」、「治療」および「治療すること」という用語は、疾患または障害が進行する危険性の低減、疾患または障害の再発を遅らせるか、または阻害することも包含する。
【0027】
「修復」は、本発明の種々の実施形態における組織の修復に言及して用いられる場合、傷害、悪化、または他の損傷の前の組織状態の解剖学的回復または機能的回復の任意の態様を含んでいてもよい。例えば、傷害、悪化または他の損傷によって分離された組織の部分の間の物理的連続性の回復を含んでいてもよい。好ましくは、このような物理的連続性の回復は、組織の傷跡のような傷害の前に存在しなかった種類の組織による明らかな分離のない、組織の部分の再配置または再接続を含む。修復は、必須ではないが、新しい組織の成長または発展を含んでいてもよい。「修復」および「治癒」は、本明細書で区別しないで用いられる。
【0028】
「自己組織化」は、本明細書で使用される場合、分子の組織化が、分子間力および/または分子内力によって一緒に保持される、規定され、安定な非共有結合による組織化になることを指す。組織化は、自然と起こってもよく、または誘発されてもよい。
【0029】
II.メッシュ
血液のような体液の移動を制御するために使用するためのメッシュが本明細書に記載される。メッシュは、部分的または完全に生分解性または非生分解性であってもよい。一実施形態において、メッシュは、1種類以上の自己組織化ペプチドから作られる。ペプチドは、ナノファイバーのような繊維の形態であってもよい。ペプチドは、メッシュを作製する前、またはメッシュが作られた後ではあるが、適用前に組織化してもよい。または、メッシュは、組織化していないペプチドから作られ、適用するときに組織化してもよい。ペプチドは、体液(例えば、血液)と接触して組織化してもよく、または、イオン溶液と接触させ、組織化を開始させてもよい。
【0030】
別の実施形態において、メッシュは、自己組織化ペプチドと別の物質の混合物から作られる。他の材料は、有機材料または無機材料であってもよい。例示的な有機材料は、ポリペプチドおよびタンパク質を含む。幾つかの実施形態において、繊維状ペプチド(例えば、コラーゲンおよびアミロイド)を含む。
【0031】
他の実施形態において、乾燥粉末またはゲルの形態のペプチドを、接着性または非接着性の下地に組み込み、下地は、自己組織化ペプチド以外の材料から作られる。
【0032】
A.自己組織化ペプチド
一実施形態において、自己組織化材料は、自己組織化ペプチドである。用語「ペプチド」は、本明細書で使用される場合、「ポリペプチド」、「オリゴペプチド」および「タンパク質」を含み、共有結合(例えば、ペプチド結合)によって一緒に接続した少なくとも2個のα−アミノ酸残基の鎖を指す。「ペプチド」は、個々のペプチドを指してもよく、または、同じ配列または異なる配列を有するペプチド群を指してもよく、このどちらも、天然に存在するα−アミノ酸残基、非天然に存在するα−アミノ酸残基およびこれらの組み合わせを含んでいてもよい。α−アミノ酸アナログは、当該技術分野でも知られており、これらが代わりに使用されてもよい。特に、D−α−アミノ酸残基を使用してもよい。
【0033】
ペプチドは、アミノ酸残基配列として表すことができる。これらの配列は、アミノ(「n−」)末端からカルボキシル(「−c」)末端の方向に左から右に書かれる。標準的な命名法によれば、アミノ酸残基の配列は、以下に示すように、3文字または1文字のコードによって示される。アラニン(Ala、A)、アルギニン(Arg、R)、アスパラギン(Asn、N)、アスパラギン酸(Asp、D)、システイン(Cys、C)、グルタミン(Gln、Q)、グルタミン酸(Glu、E)、グリシン(Gly、G)、ヒスチジン(His、H)、イソロイシン(Ile、I)、ロイシン(Leu、L)、リジン(Lys、K)、メチオニン(Met、M)、フェニルアラニン(Phe、F)、プロリン(Pro、P)、セリン(Ser、S)、トレオニン(Thr、T)、トリプトファン(Trp、W)、チロシン(Tyr、Y)およびバリン(Val、V)。ペプチドの「改変体」は、ポリペプチドを指すか、または参照ポリペプチドとは異なるが、この本質的な特徴を保持している。ポリペプチドの典型的な改変体は、別の参照ポリペプチドとはアミノ酸配列が異なる。改変体および参照ポリペプチドは、1つ以上の改変(例えば、置換、付加および/または欠失)によってアミノ酸配列が異なっていてもよい。
【0034】
ポリペプチドの自己組織化特徴に実質的に影響を与えることなく、本開示のポリペプチドの構造中に、改変および変更(例えば、保存的アミノ酸置換)が作られてもよい。例えば、活性を明らかに変化させずに、特定のアミノ酸が、配列中の他のアミノ酸と置換されていてもよい。このような変更を行うときに、アミノ酸の疎水性親水性指数を考慮してもよい。ポリペプチドに相互作用性を与える際のアミノ酸の疎水性親水性指数の重要性は、一般的に、当該技術分野で理解される。特定のアミノ酸は、同様の疎水性親水性指数またはスコアを有し、同様の機能活性を有するポリペプチドを生じる他のアミノ酸と置換されてもよいことが知られている。アミノ酸を、同様の疎水性親水性指数を有し、機能的に等価なポリペプチドを依然として与える別のアミノ酸によって置換されてもよいことが知られている。
【0035】
このようなアミノ酸の置換は、電荷を基準として行うこともできる。特定の実施形態において、本開示のポリペプチドの構造中、ポリペプチドの自己組織化に実質的に影響を与えることなく、生理学的条件で等価な電荷を有するアミノ酸の置換を行うことができる。以下の電荷状態:生理学的条件で、負に帯電(「−ve」)、正に帯電(「+ve」)および帯電していないか、または中性(「neu」)を以下のアミノ酸残基に割り当てることができる。アスパルテート(−ve);グルタメート(−ve);アルギニン(+ve);リジン(+ve);ヒスチジン(neuまたは+ve);セリン(neu);アスパラギン(neu);グルタミン(neu);グリシン(neu);プロリン(neu);トレオニン(neu);アラニン(neu);システイン(neu);メチオニン(neu);バリン(neu);ロイシン(neu);イソロイシン(neu);チロシン(neu);フェニルアラニン(neu);トリプトファン(neu)。
【0036】
有用なペプチドは、本明細書に記載される1つ以上の目的に有用な程度まで自己組織化する能力を保持している限り、長さがさまざまであってもよい。ペプチド中のアミノ酸残基の数は、2個のα−アミノ酸残基程度から200個を超える残基までの範囲であってもよい。典型的には、自己組織化するペプチドは、約6残基から200残基、好ましくは、約6残基から約64残基、さらに好ましくは、約8残基から約36残基、最も好ましくは、約8残基から約24残基を有する。ペプチドは、少なくとも6アミノ酸長(例えば、8アミノ酸または10アミノ酸)、少なくとも12アミノ酸長(例えば、12アミノ酸または14アミノ酸)、または少なくとも16アミノ酸長(例えば、16、18、20、22または24アミノ酸)であってもよい。100アミノ酸残基長未満、さらに好ましくは、約50アミノ酸長未満のペプチドは、より容易に組織化するだろう。一実施形態において、ペプチドは、約8残基から約16残基である。別の実施形態において、ペプチドは、約12残基から約20残基である。さらに別の実施形態において、ペプチドは、約16残基から約20残基である。
【0037】
これに加えて、自己組織化ペプチド中の1つ以上のアミノ酸残基は、限定されないが、アシル基、炭水化物基、炭水化物鎖、ホスフェート基、ファルネシル基、イソファルネシル基、脂肪酸基、またはペプチドの共役または官能基化を可能にするリンカーを含む、1つ以上の化学部分の付加によって変えてもよく、または誘導体化してもよい。例えば、所与のペプチドの片方または両方の末端を改変してもよい。例えば、カルボキシル末端残基およびアミノ酸末端残基のカルボキシル基および/またはアミノ基は、それぞれ、保護されていてもよく、または保護されていなくてもよい。末端の電荷も改変することができる。例えば、アシル基のような基またはラジカル(RCO−、Rが、有機基(例えば、アセチル基(CH
3CO−)である。)が、ペプチドのN末端に存在し、中和されなければ存在し得た「余分な」正電荷(例えば、N末端アミノ酸の側鎖から生じない電荷)を中和してもよい。同様に、アミン基のような基(RNH−、Rは、有機基(例えば、アミノ基−NH
2)である。)を使用し、中和されなければ存在し得る「余分な」負電荷(例えば、C末端アミノ酸残基の側鎖から生じない電荷)を中和してもよい。アミンが使用されると、C末端にアミド(−CONHR)がもたらされる。末端の電荷を中和すると、自己組織化が容易になるだろう。当業者は、他の適切な基を選択することができるだろう。
【0038】
有用なペプチドを分岐してもよく、この場合には、ペプチドは少なくとも2個のアミノ酸ポリマーを含み、それぞれが、ペプチド結合によって接続した少なくとも3個のアミノ酸残基からなる。2個のアミノ酸ポリマーが、ペプチド結合以外の結合によって接続していてもよい。
【0039】
ペプチドの配列はさまざまであってもよいが、有用な配列としては、ペプチドに両性の性質を運ぶものが挙げられ(例えば、ペプチドは、ほぼ同じ数の疎水性アミノ酸残基と親水性アミノ酸残基を含んでいてもよい。)、ペプチドは、相補的であり、構造的に適合性であってもよい。相補的なペプチドは、構造中の隣接するペプチドの残基(例えば、親水性残基)の間にイオン結合または水素結合を生成する能力を有する。例えば、ペプチド中の1つ以上の親水性残基は、隣接するペプチドの1つ以上の親水性残基と水素結合またはイオン対を生成してもよい。親水性残基は、典型的には、極性官能基、または生理学的条件で帯電している官能基を含む残基である。例示的な官能基としては、限定されないが、カルボン酸基、アミノ基、サルフェート基、ヒドロキシ基、ハロゲン基、ニトロ基、ホスフェート基などが挙げられる。疎水性残基は、非極性官能基を含む残基である。例示的な官能基としては、限定されないが、アルキル基、アルケン基、アルキン基およびフェニル基が挙げられる。
【0040】
一実施形態において、親水性残基は、式−NH−CH(X)−COO−を有し、Xは、式(CH
2)
yZを有し、y=0−8、好ましくは、1−6、さらに好ましくは、1−4、最も好ましくは、1−3であり、Zは、限定されないが、カルボン酸基、アミノ基、サルフェート基、ヒドロキシ基、ハロゲン基、ニトロ基、ホスフェート基または四級アミンを含有する官能基を含む、極性基または帯電した基である。アルキル鎖は、直鎖、分枝鎖または環状の配置であってもよい。Xは、アルキル鎖の中に1個以上のヘテロ原子も含有していてもよく、および/またはXは、1つ以上のさらなる置換基で置換されていてもよい。好ましい実施形態において、Zは、カルボン酸基またはアミノ基である。一実施形態において、疎水性残基は、式−NH−CH(X)−COO−を有し、Xは、式(CH
2)
yZを有し、y=0−8、好ましくは、1−6、さらに好ましくは、1−4、さらに好ましくは、1−3であり、Zは、限定されないが、アルキル基、アルケン基、アルキン基またはフェニル基を含む非極性官能基である。アルキル、アルケンまたはアルキンの鎖は、直鎖、分枝鎖または環状の配置であってもよい。Xは、アルキル鎖の中に1個以上のヘテロ原子も含有していてもよく、および/またはXは、1つ以上のさらなる置換基で置換されていてもよい。好ましい実施形態において、Xは、アルキル基、例えば、メチル基である。
【0041】
一実施形態において、自己組織化材料は、式I−IV
((Xaa
neu−Xaa
+)
x(Xaa
neu−Xaa
−)
y)
n (I)
((Xaa
neu−Xaa
−)
x(Xaa
neu−Xaa
+)
y)
n (II)
((Xaa
+−Xaa
neu)
x(Xaa
−−Xaa
neu)
y)
n (III)
((Xaa
−−Xaa
neu)
x(Xaa
+−Xaa
neu)
y)
n (IV)
の1つ以上を構築するアミノ酸残基の配列を有するペプチドを含み、
式中、Xaa
neuは、中性電荷を有するアミノ酸残基を表し;Xaa
+は、正電荷を有するアミノ酸残基を表し;Xaa
−は、負電荷を有するアミノ酸残基を表し;xおよびyは、独立して1、2、3または4の値の整数であり;nは、1−5の値を有する整数である。モジュールIを有するペプチド(即ち、片側(例えば、βシートの極性面)に正に帯電したR基と負に帯電したR基を交互に有するペプチド)は、それぞれ式I−IVによって記載され、式中、xおよびyは、1である。モジュールIのペプチドの例としては、限定されないが、RADA(配列番号57)およびRADARADARADARADA(配列番号1)が挙げられる。モジュールIIのペプチドの例(即ち、1種類の電荷(例えば、正電荷)を有する2個の残基の後、別の種類の電荷(例えば、中性電荷)を含む2個の残基を有するペプチド)は、同じ式によって記載され、xもyも2である。モジュールIIIのペプチド(即ち、1種類の電荷(例えば、正電荷)を有する3個の残基の後、別の種類の電荷(例えば、負の電荷)を含む3個の残基を有するペプチド))の例としては、限定されないが、RARARADADADA(配列番号112)が挙げられる。モジュールIVのペプチド(即ち、1種類の電荷(例えば、正電荷)を有する3個の残基の後、別の種類の電荷(例えば、負の電荷)を含む3個の残基を有するペプチド))の例としては、限定されないが、RARARARADADADADA(配列番号113)が挙げられる。
【0042】
自己組織化ペプチドが使用される場合、これらの側鎖(またはR基)を、正および/または負に帯電したイオン性側鎖(例えば、−OH、−NH、−CO
2Hまたは−SH基を含む側鎖)を有する極性の面と、生理学的pHで中性であるか、または帯電していないと考えられる側鎖(例えば、他の疎水性基を有する1つ以上のアラニン残基の側鎖)を有する非極性の面の2つの面に分割すると思われる。1つのペプチドの極性の面上の正に帯電したアミノ酸残基と、負に帯電したアミノ酸残基は、別のペプチドの逆に帯電した残基と相補的なイオン対を生成することができる。従って、これらのペプチドは、イオン性の自己相補的なペプチドと呼ばれてもよい。イオン性残基が、極性の面に1個の正に帯電した残基と1個の負に帯電した残基の状態で交互に存在する場合(−+−+−+−+)、このペプチドは、「モジュールI」と記載されてもよく、イオン性残基が、極性の面に2個の正に帯電した残基と2個の負に帯電した残基の状態で交互に存在する場合(−−++−−++)、このペプチドは、「モジュールII」と記載され、イオン性残基が、極性の面に3個の正に帯電した残基と3個の負に帯電した残基の状態で交互に存在する場合(+++−−−+++−−−)、このペプチドは、「モジュールIII」と記載され、イオン性残基が、極性の面に4個の正に帯電した残基と4個の負に帯電した残基の状態で交互に存在する場合(++++−−−−++++−−−−)、このペプチドは、「モジュールIV」と記載される。配列EAKA(配列番号111)の4個の繰り返し単位を有するペプチドは、EAKA16−I(配列番号410)と命名されてもよく、他の配列を有するペプチドは、同じ規則によって記載されてもよい。
【0043】
限定されないが、アスパラギンおよびグルタミンを含む、水素結合を生成する他の親水性残基が、ペプチドに組み込まれてもよい。ペプチド中のアラニン残基が、より疎水性の高い残基(例えば、ロイシン、イソロイシン、フェニルアラニンまたはチロシン)に交換される場合、得られるペプチドは、自己組織化する傾向が高くなり、強度が向上したペプチドマトリックスを生成する。本明細書に記載されるペプチドと同様のアミノ酸配列および長さを有する幾つかのペプチドは、βシートではなく、αらせんおよびランダムコイルを生成し、巨視的な構造を生成しない。従って、自己相補性に加え、他の因子は、巨視的な構造(例えば、ペプチドの長さ、分子間相互作用の程度、交互に配置された列を生成する能力)の生成にとって重要な可能性が高い。
【0044】
対になっていない残基は、溶媒と相互作用し得る(例えば、水素結合などを生成する。)。ペプチド−ペプチド相互作用は、ファンデルワールス力および/または共有結合を構成しない力が関与する場合もある。ペプチドは、自己組織化および構造の生成を可能にするほど十分に一定のペプチド内距離を維持することができるとき、構造的に適合性である。ペプチド内距離は、さまざまであってもよい。「ペプチド内距離」は、本明細書で使用される場合、隣接するアミノ酸残基の間の代表的な距離数の平均を指す。一実施形態において、分子内距離は、約4オングストローム未満、好ましくは、3オングストローム未満、さらに好ましくは、約2オングストローム未満、最も好ましくは、約1オングストローム未満である。しかし、分子内距離は、この値より大きくてもよい。これらの距離は、分子モデリングに基づいて、またはZhangらに対する米国特許第5,670,483号に記載される単純化された手順に基づいて計算することができる。
【0045】
本明細書に記載される構造は、Zhangらに対する米国特許第5,670,483号;第5,955,343号;第6,548,630号および第6,800,481号;Holmesら、Proc.Natl.Acad.Sci.USA、
97:6728−6733(2000);Zhangら、Proc.Natl.Acad.Sci.USA、
90:3334−3338(1993);Zhangら、Biomaterials、
16:1385−1393(1995);Caplanら、Biomaterials、
23:219−227(2002);Leonら、J.Biomater.Sci.Polym.Ed.、
9:297−312(1998);およびCaplanら、Biomacromolecules、
1:627−631(2000)に記載されるペプチドの自己組織化によって作製することができる。
【0046】
疎水性アミノ残基と親水性アミノ残基を交互に含む自己組織化ペプチドを使用してもよい。代表的な疎水性ペプチドおよび親水性ペプチドの例を表1に列挙する。
【0048】
開示される自己組織化ペプチドまたは組成物と組み合わせて、またはこれらの代わりに、他のペプチドまたはタンパク質を使用してもよい。さらなるペプチドが、他の自己組織化ペプチドまたはタンパク質を含んでいてもよいことが理解されるだろう。または、ペプチドは、自己組織化しないペプチドであってもよい。代表的なさらなるペプチド、タンパク質またはこれらの化学修飾された改変体としては、限定されないが、表2に与えられるペプチドが挙げられる。
【0050】
例えば、1個のアミノ酸残基または複数のアミノ酸残基によって例示されるものとは異なる(例えば、4回の繰り返しを含むか、または排除することによる)他の有用な自己組織化ペプチドを作ることができる。例えば、1個以上のシステイン残基をペプチドに組み込んでもよく、これらの残基は、ジスルフィド結合の生成によって互いに結合してもよい。この様式で結合した構造は、システイン残基を含まず、従って、ジスルフィド結合を生成することができない匹敵するペプチドを用いて作られる構造と比較して、機械的強度が増加するだろう。
【0051】
自己組織化ペプチド中のアミノ酸残基は、天然に存在するアミノ酸残基または天然に存在しないアミノ酸残基であってもよい。天然に存在するアミノ酸は、標準的な遺伝子コードによってコードされるアミノ酸残基と、非標準的なアミノ酸(例えば、L配置ではなくD配置を有するアミノ酸)と、標準的なアミノ酸の改変によって作ることができるアミノ酸(例えば、ピロリシンまたはセレノシステインおよびオルニチン)とを含んでいてもよい。天然に存在しないアミノ酸は、天然に見つからないか、または今までに天然で見つかっていないが、ペプチド鎖に組み込むことができる。適切な天然に存在しないアミノ酸としては、限定されないが、D−アロイソロイシン(2R,3S)−2−アミノ−3−メチルペンタン酸、L−シクロペンチルグリシン(S)−2−アミノ−2−シクロペンチル酢酸が挙げられる。天然に存在しないアミノ酸の他の例は、文書またはワールドワイドウェブ中に見出すことができる(例えば、機能性タンパク質にうまく組み込まれる非天然アミノ酸の構造を示す、California Institute of Technologyによって管理されているサイト)。非天然アミノ酸残基およびアミノ酸誘導体は、Ellisonに対する米国特許出願公開第2004/0204561号に記載される。
【0052】
自己組織化ペプチドは、化学的に合成することができるか、または、当該技術分野でよく知られた方法によって、天然の供給源または組み換えによって作られる供給源から調製されてもよい。例えば、ペプチドは、標準的なF−moc化学を用いて合成することができる。
【0053】
標準的なFmoc(9−フルオレニルメトキシカルボニル)誘導体としては、Fmoc−Asp(OtBu)−OH、Fmoc−Arg(Pbf)−OHおよびFmoc−Ala−OHが挙げられる。カップリングは、DIC(ジイソプロピルカルボジイミド)/6−Cl−HOBT(6−クロロ−1−ヒドロキシベンゾトリアゾール)を用いて媒介される。幾つかの実施形態において、ペプチドの少なくとも4個の残基は、1つ以上の再カップリング手順を必要とする。特に、最終的なFmoc−Arg(Pbf)−OHカップリングは、再カップリングを必要とする場合がある。例えば、DIC/HOAT(1−ヒドロキシ−7−アザベンゾトリアゾール)またはHATU(1−[ビス(ジメチルアミノ)メチレン]−1H−1,2,3−トリアゾロ[4,5−b]ピリジニウム 3−オキシドヘキサフルオロホスフェート)/NMM(N−メチルモルホリン)のような強力な活性化学を用い、ペプチドを完成させるために、第2または第3の再カップリングを行うことができる。
【0054】
ペプチドの酸分解による開裂は、炭酸捕捉剤(チオアニソール、アニソールおよびH
2O)を使用して行うことができる。開裂混合物の成分の比率を変えることによって、最適化を達成することができる。例示的な開裂混合物の比率は、90:2.5:2.5:5(トリフルオロ酢酸(TFA):チオアニソール−アニソール−H
2O)である。この反応は、室温で4時間行うことができる。
【0055】
幾つかの実施形態において、残留不純物の除去は、洗浄工程によって行われる。例えば、TFAおよび有機不純物は、沈殿、冷ジエチルエーテルおよびメチルt−ブチルエーテル(MTBE)を用いた洗浄の繰り返しによって除去することができる。
【0056】
開示される方法を用いて作られたペプチドは、高圧液体クロマトグラフィー(HPLC)を用いて精製することができる。ペプチドを溶解するのに適した溶媒としては、未希釈のトリフルオロ酢酸(TFA)が挙げられる。幾つかの実施形態において、8mLのTFA/ペプチド(g)は、ペプチドを完全に溶解し、その後、沈殿するのに十分である。例えば、開示される方法で使用するために、TFAをH
2Oで希釈してもよい。典型的には、ペプチドは、0.5%から8%のTFA濃度で可溶性のままであり、塩交換のために逆相(RP)−HPLCカラムに入れることができる。例示的な塩交換方法は、3から4カラム体積の酸性バッファーを用い、この強い酸性係数に起因して、TFA対イオンを洗い流す。TFA対イオンの洗い流しに使用するのに適したバッファーとしては、H
2O中の0.1% HClが挙げられる。
【0057】
TFAを除去した後、段階的な勾配を用い、ペプチドを溶出させることができる。例示的な溶出バッファーは、30% アセトニトリル(MeCN)対H
2O中の0.1% HClを含む。アセテート交換のために、ペプチドを、同じ希釈したTFA溶液から入れ、3−4カラム体積のH
2O中の1%酢酸(AcOH)を用いて洗浄し、その後、2カラム体積のH
2O中の0.1M NH
4OAc(pH4.4)を用いて洗浄することができる。幾つかの実施形態において、カラムを、3−4カラム体積のH
2O中の1% AcOHを用いて再び洗浄する。
【0058】
ペプチドを、30%MeCN対H
2O中の1%AcOHの段階的な勾配を用い、カラムから溶出させることができる。幾つかの実施形態において、ペプチドの溶出は、向上したアセテート交換であってもよい。アセテート交換のための例示的なバッファーは、H
2O中の0.1M NH
4OAc(pH4.4)を含む。
【0059】
ペプチドの純度および均一性を評価するために、分析HPLCを行うことができる。分析HPLCに使用するための例示的なHPLCカラムは、PHENOMENEX(R)JUPITER(R)カラムである。幾つかの実施形態において、分析HPLCは、25℃より高い温度(例えば、25℃から75℃)まで加熱されたカラムおよびバッファーを用いて行われる。特定の実施形態において、分析HPLCは、約65℃の温度で行われる。段階的な勾配を用い、ペプチド組成物を分離することができる。幾つかの実施形態において、勾配は、1%−40% MeCN対H
2O中の0.05%TFAである。勾配の変化は、1ml/分の流速を用い、20分間で達成することができる。ペプチドは、215nmでのUV検出を用いて検出することができる。
【0060】
自己相補的なペプチド、例えば、EAKA16−I(配列番号410)、RADA16−I(配列番号1)、RAEA16−I(配列番号58)、およびKADA16−I(配列番号59)は、Zhangら((1999)Peptide self−assembly in functional polymer science and engineering.Reactive & Functional Polymers、41、91−102)に記載される。
【0061】
ペプチド由来の構造は、ペプチドの異種混合物(即ち、所与の式または2つ以上の式を構成する1種類より多いペプチドを含む混合物)から作られてもよい。幾つかの実施形態において、混合物中のそれぞれの種類のペプチドは、単独で自己組織化することができる。他の実施形態において、それぞれの種類のペプチドの1つ以上は、単独で自己組織化しないが、異種ペプチドの組み合わせが、自己組織化してもよい(即ち、混合物中のペプチドは、相補的であり、互いに構造的に適合性である。)。従って、同じ配列を有するか、または同じ繰り返しサブユニットを含む自己相補的で自己適合性のペプチドの均一な混合物、または互いに相補的であり、構造的に適合性である、異なるペプチドの異種混合物を使用することができる。
【0062】
好ましい実施形態において、自己組織化を助ける1つ以上の短いアミノ酸配列(組織化補助配列と呼ばれる。)を、単独では自己組織化することができないアミノ酸配列の均一または不均一な混合物に加えてもよい。組織化補助配列は、混合物中の配列内のアミノ酸と相補的なアミノ酸を含む。組織化補助配列は、任意の数のアミノ酸を含んでいてもよい。好ましくは、組織化補助配列は、少なくとも4個のアミノ酸を含む。組織化補助配列は、自己組織化を助けるアミノ酸の間に可撓性リンカーを含んでいてもよい。例えば、組織化補助配列は、可撓性リンカーを介して接続する配列の末端に、組織化を助けるアミノ酸の対、トライアド、またはカルテットを含んでいてもよい。適切な組織化補助配列としては、限定されないが、RADA(配列番号57)およびEAKA(配列番号111)が挙げられる。
【0063】
適切なリンカーとしては、限定されないが、エーテル系接続部、例えば、ポリエチレングリコール(PEG)、N−スクシンイミジル 3−(2−ピリジルジチオ)プロピオネート(SPDP、3−および7−原子スペーサー)、長鎖SPDP(12−原子スペーサー)、(スクシンイミジルオキシカルボニル−α−メチル−2−(2−ピリジルジチオ)トルエン)(SMPT、8−原子スペーサー)、スクシンイミジル−4−(N−マレイミドメチル)シクロヘキサン−1−カルボキシレート)(SMCC、11−原子スペーサー)およびスルホスクシンイミジル−4−(N−マレイミドメチル)シクロヘキサン−1−カルボキシレート(スルホ−SMCC、11−原子スペーサー)、m−マレイミドベンゾイル−N−ヒドロキシスクシンイミドエステル(MBS、9−原子スペーサー)、N−(γ−マレイミドブチリルオキシ)スクシンイミドエステル(GMBS、8−原子スペーサー)、N−(γ−マレイミドブチリルオキシ)スルホスクシンイミドエステル(スルホ−GMBS、8−原子スペーサー)、スクシンイミジル 6−((ヨードアセチル)アミノ)ヘキサノエート(SIAX、9−原子スペーサー)、スクシンイミジル 6−(6−(((4−ヨードアセチル)アミノ)ヘキサノイル)アミノ)ヘキサノエート(SIAXX、16−原子スペーサー)およびp−ニトロフェニルヨードアセテート(NPIA、2−原子スペーサー)が挙げられる。当業者は、原子数が異なる多くの他のリンカーを使用してもよいことも理解するだろう。
【0064】
本明細書に記載される組成物は、正確な形態(例えば、液体形態であるか、または成形されているか)にかかわらず、最終的な組成(例えば、別の薬剤と合わさっているか、デバイスの中に入っているか、またはキットに封入されているか)にかかわらず、1つ以上のペプチド鎖の混合物を含んでいてもよい。
【0065】
さまざまな剛性度または弾性度を有する自己組織化された構造を作ることができる。この構造は、典型的には、低い弾性係数を有する(例えば、標準的な円錐−平板レオメーターのような標準的な方法によって測定される場合、約0.01kPaから約1000kPa、好ましくは、約1kPaから約100kPa、さらに好ましくは、約1kPaから約10kPaの範囲の弾性係数)。細胞収縮事象において、圧力に応答して、移動の結果として構造の変形が可能なため、低い値が好ましいだろう。さらに特定的には、剛性は、前駆体分子(例えば、自己組織化ペプチド)の長さ、配列および/または濃度を変えることによるものを含め、種々の様式で制御することができる。剛性を高めるための他の方法も使用することができる。例えば、前駆体に、ビオチン分子、または任意の他の分子を接続し、その後に架橋してもよく、または互いに結合してもよい。分子(例えば、ビオチン)は、ペプチドのN末端またはC末端に含まれていてもよく、または、末端の間の1つ以上の残基に接続してもよい。ビオチンが使用される場合、その後にアビジンを加えることによって、架橋を行うことができる。ビオチンを含有するペプチドまたは他の架橋可能な分子を含有するペプチドは、本発明の範囲内である。例えば、重合可能な基(限定されないが、ビニル基を含む。)を有するアミノ酸残基を、UV光を当てることによって組み込み、架橋してもよい。架橋の程度は、所定の時間、光を当てることによって、正確に制御することができる。架橋の程度は、当該技術分野でよく知られている方法を用い、光の散乱、ゲル濾過または走査型電子顕微鏡によって決定することができる。さらに、架橋は、プロテアーゼ(例えば、マトリックスメタロプロテアーゼ)を用いて消化した後の構造のHPLCまたは質量分光分析によって調べることができる。物質の強度は、架橋の前後に決定してもよい。架橋が、化学薬剤によって達成されるか、または光エネルギーによって達成されるかにかかわらず、型を作製する一連の間に、またはペプチドを含有する溶液が身体に塗布されるときに、分子が架橋してもよい。さらに、自己組織化ペプチド鎖を架橋させ、材料をin vivoで強化するためにクモウェブ型のパターンを作製してもよい。架橋は、材料を強化し、剛性および強度を高めるのに役立つ。例えば、自己組織化材料は、創傷に適用されてもよく、この材料の周囲が、重合可能な基で官能基化される。架橋すると、身体が動くにつれて動くように材料の内側は柔軟なままで、材料の周囲がより固くなり、創傷部分に材料が固定される。
【0066】
構造の半減期(例えば、in vivoでの半減期)も、プロテアーゼまたはペプチダーゼの開裂部位を前駆体に組み込み、その後に所与の構造を作製することによって調節することができる。次いで、in vivoで天然に生じるか、または(例えば、手術によって)導入されるプロテアーゼまたはペプチダーゼは、この認識物質を開裂させることによる分解を促進することができる。
【0067】
本明細書に記載される任意の改変を組み合わせてもよい。例えば、プロテアーゼ開裂部位とシステイン残基および/または架橋剤を含む自己組織化ペプチド、これらを含むキットおよびデバイス、これらを用いる方法を利用することができる。
【0068】
任意の方法によって作られる任意の自己組織化ペプチドから作られるペプチド構造は、例えば、円二色性(CD)、動的光散乱、フーリエ変換赤外線(FTIR)、原子間力(張力)顕微鏡(ATM)、走査型電子顕微鏡(SEM)および透過型電子顕微鏡(TEM)を含む種々の生物物理学的技術および光学技術を用いて特性決定することができる。例えば、生物物理学的方法を用い、ペプチド構造中のβシートの二次構造の程度を決定することができる。走査型電子顕微鏡および/または透過型電子顕微鏡の定量的な画像分析を用い、フィラメントおよび穴の大きさ、繊維の直径、長さ、弾性、体積分率を決定することができる。膨張の程度、pHおよびイオン濃度が構造生成に及ぼす影響、種々の条件での水和レベル、引張強度、構造を作製し、分解するのに必要な時間をかけて種々の特徴が変わる様式を測定するために、幾つかの標準的な機械的試験を用い、構造を調べることもできる。これらの方法によって、当業者は、本明細書に記載されるどの種々の代替例およびペプチドが、種々の方法で使用するのに最も適しているかを決定することができ、種々の方法を最適化することができる。
【0069】
別の実施形態において、自己組織化材料は、本明細書に記載される血管および/または組織の縁で、構造的な細胞外マトリックス(ECM)に固定されるか、または相互作用してもよい。これらの自己組織化材料は、典型的には、この材料がECM中に見出される糖タンパク質と反応するか、または相互作用することができる疎水性部分および/または親水性部分を有する。
【0070】
好ましくは、自己組織化材料は、破壊されたとき、二次毒性を生じない。さらに、自己組織化材料の破壊生成物は、周囲の組織の成長および修復に適しているだろう。
【0071】
1.他の自己組織化材料
別の実施形態は、生理学的条件で負電荷を有する残基部分に接続した、生理学的条件で正電荷を有する残基部分を含む自己組織化ペプチドを提供する。正または負に帯電した残基部分は、約2から約50のアミノ酸残基、典型的には、約3から約30の残基、さらに典型的には、約10から約20のアミノ酸残基を含んでいてもよい。別の実施形態において、自己組織化ペプチドの残基の約半分は、正に帯電したアミノ酸残基を、自己組織化ペプチドの他の半分は、負に帯電したアミノ酸残基を含む。これらのペプチドの組み合わせによって、第1の自己組織化ペプチドの正の末端を、第2の自己組織化ペプチドの負の末端に合わせることによって、自己組織化することができる。第1の自己組織化ペプチドの負の末端は、第2の自己組織化ペプチドの正の末端と合うか、または整列するだろう。自己組織化ペプチドは、生理学的組成での電荷に基づいて攻撃される自己組織化ペプチドの対向する末端に基づいて、重なり合うか、または凝集するだろう。ある代表的な実施形態は、以下の配列RRRR−DDDD(配列番号114)またはGGGG−SSSS(配列番号115)を有する自己組織化ペプチドを提供する。
【0072】
さらに別の実施形態において、自己組織化ペプチドは、第1の親水性領域に作動可能に連結する第1の疎水性領域を有する。第1の疎水性領域は、生理学的条件で疎水性側鎖を有するアミノ酸残基の部分を含んでいてもよい。第1の親水性領域は、生理学的条件で親水性側鎖を有するアミノ酸残基の部分を含んでいてもよい。この実施形態において、自己組織化ペプチドの疎水性末端は、他の疎水性末端と組織化し、親水性末端は、他の親水性末端と組織化するだろう。この組織化は、ペプチドの環境を変えることによって制御することができる。このような材料を使用し、内腔の内側をコーティングすることができる。疎水性末端は、内腔表面のECMと相互作用し、表面を密閉しつつ、親水性末端が内腔の中央に向かって伸びるようである。流体は、内腔を通って流れ続けるだろう。材料が分解するか、および/または内腔表面から外れるにつれて、材料は、他の領域から流入し、再び内腔表面に固定され、従って、組成物は、必要な場合に新規材料を与える容器として作用する。または、さらなる材料を投与し、使い果たされた材料または分解した材料を置き換えてもよい。別の実施形態において、材料を動的パッチ剤として、例えば、潰瘍の治療において、または腸で使用するために使用してもよい。
【0073】
別の実施形態は、生理学的条件で正電荷または負電荷のいずれかを有する残基部分を含む自己組織化ペプチドを提供する。正に帯電した自己組織化ペプチドの代表的なアミノ酸配列としては、限定されないが、KKKK(配列番号116)、RRRR(配列番号117)またはHHHH(配列番号118)が挙げられる。負に帯電した自己組織化ペプチドの代表的なアミノ酸配列としては、限定されないが、DDDD(配列番号119)またはEEEE(配列番号120)が挙げられる。合わさると、正に帯電したアミノ酸残基の紐状物は、負に帯電したアミノ酸残基の紐状物と平行して逆向きに整列するだろう。特定の実施形態において、正に帯電したアミノ酸の紐状物は、複数層の構造のために、負に帯電したアミノ酸の紐状物と交互に並ぶだろう。
【0074】
さらに別の実施形態は、生理学的条件で親水性極性アミノ酸残基と疎水性非極性アミノ酸残基の組み合わせを含む自己組織化ペプチドを提供する。1個以上の親水性残基は、1個以上の疎水性残基と交互に並んでもよい。例えば、代表的な自己組織化ペプチドのアミノ酸配列は、GQGQ(配列番号121)、GGQQGG(配列番号122)、GQQGQQG(配列番号123)、GGQGGQGG(配列番号124)などであってもよい。自己組織化ペプチドを極性環境または非極性環境に分割することは、疎水性アミノ酸残基と親水性アミノ酸残基の比率を変えることによって制御することができることが理解されるだろう。1より大きい:1の比率は、ペプチドが、親水性状態と比較して、疎水性状態に多く分割されることを示す。1未満:1の比率は、ペプチドが、疎水性状態と比較して、親水性状態に多く分割されることを示す。
【0075】
本明細書に記載される任意の改変を組み合わせてもよい。例えば、プロテアーゼ開裂部位とシステイン残基および/または架橋剤を含む自己組織化ペプチド、これらを含むキットおよびデバイス、これらを用いる方法を利用することができる。組成物を使用し、体液の移動を防ぐか、または制限し、組織または細胞を安定化し、または、必要な部位に投与されたときに、汚染を防ぐことができる。組成物は、乾燥粉末、ウエハー、円板状、錠剤、カプセル、液体、ジェル、クリーム、泡状物、軟膏、エマルション、ステント、カテーテルまたは他の医療用インプラントの上のコーティング、微粒子に組み込まれたペプチド、ポリマーマトリックス、ヒドロゲル、布地、包帯、縫合糸またはスポンジの形態であってもよい。
【0076】
B.自己組織化する非ペプチド材料
自己組織化することができる別の種類の材料は、ペプチド模倣物である。ペプチド模倣物は、本明細書で使用される場合、ペプチド構造を模倣する分子を指す。ペプチド模倣物は、この親構造、ポリペプチドと類似した一般的な特徴を有する(例えば、両親媒性)。このようなペプチド模倣物材料の例は、Mooreら、Chem.Rev.101(12)、3893−4012(2001)に記載される。
【0077】
ペプチド模倣物材料は、α−ペプチド、β−ペプチド、γ−ペプチドおよびδ−ペプチドの4つのカテゴリーに分類することができる。これらのペプチドのコポリマーも使用することができる。
【0078】
α−ペプチドのペプチド模倣物の例としては、限定されないが、N,N’−結合したオリゴ尿素、オリゴピロリノン、オキサゾリジン−2−オン、アゼチドおよびアザペプチドが挙げられる。
【0079】
β−ペプチドの例としては、限定されないが、β−ペプチドフォルダマー、β−アミノオキシ酸、硫黄を含有するβ−ペプチドアナログおよびヒドラジノペプチドが挙げられる。
【0080】
γ−ペプチドの例としては、限定されないが、γ−ペプチドフォルダマー、オリゴ尿素、オリゴカルバメートおよびホスホジエステルが挙げられる。
【0081】
δ−ペプチドの例としては、限定されないが、アルケン系δ−アミノ酸およびカルボペプトイド、例えば、ピラノース系カルボペプトイドおよびフラノース系カルボペプトイドが挙げられる。
【0082】
1.骨格を有し、らせん、シートまたは格子の構造に適合させることができるペプチド模倣物およびオリゴマー
自己組織化する別の種類の化合物としては、骨格を有し、らせんまたはシートの構造に適合させることができるオリゴマーが挙げられる。このような化合物の例としては、限定されないが、ビピリジン部分を利用した骨格を有する化合物、疎溶媒性相互作用を利用した骨格を有する化合物、側鎖相互作用を利用した骨格を有する化合物、水素結合相互作用を利用した骨格を有する化合物、および金属配位を利用した骨格を有する化合物が挙げられる。
【0083】
ビピリジン部分を利用した骨格を有する化合物の例としては、限定されないが、オリゴ(ピリジン−ピリミジン)、ヒドラザルリンカーを含むオリゴ(ピリジン−ピリミジン)、ピリジン−ピリダジンが挙げられる。
【0084】
疎溶媒性相互作用を利用した骨格を有する化合物の例としては、限定されないが、オリゴグアニジン、アエダマー(共有結合したサブユニットの芳香族電子供与−受容相互作用の積み重なる性質を利用する構造)、例えば、1,4,5,8−ナフタレン−テトラカルボン酸ジイミド環および1,5−ジアルコキシナフタレン環を含むオリゴマー、シクロファン、例えば、置換されたN−ベンジルフェニルピリジニウムシクロファンが挙げられる。
【0085】
側鎖相互作用を利用した骨格を有する化合物の例としては、限定されないが、オリゴチオフェン、例えば、キラルp−フェニル−オキサゾリン側鎖を有するオリゴチオフェン、オリゴ(m−フェニレン−エチニレン)が挙げられる。
【0086】
水素結合相互作用を利用した骨格を有する化合物の例としては、限定されないが、芳香族アミド骨格、例えば、オリゴ(アシル化された2,2’−ビピリジン−3,3’−ジアミン)およびオリゴ(2,5−ビス[2−アミノフェニル]ピラジン)、シアヌレートによってテンプレート化されたジアミノピリジン骨格、イソフタル酸によってテンプレート化されたフェニレン−ピリジン−ピリミジンエチニレン骨格が挙げられる。
【0087】
金属配位を利用した骨格を有する化合物の例としては、限定されないが、亜鉛ビリノン、Co(II)、Co(III)、Cu(II)、Ni(II)、Pd(II)、Cr(III)またはY(III)と錯化したオリゴピリジン、金属配位するシアノ基を含有するオリゴ(m−フェニレンエチニレン)、ヘキサピリンが挙げられる。
【0088】
2.ヌクレオチド模倣物
自己組織化することができる別の種類の分子は、ヌクレオチド模倣物、例えば、異性体オリゴヌクレオチド、改変された炭水化物、改変されたヌクレオチド結合を有するヌクレオチド、交互に並んだヌクレオ塩基を有するヌクレオチドである。
【0089】
異性体ヌクレオチドの例としては、限定されないが、iso−RNA、iso−DNAおよびα−DNA(βからαへのアノマー構造の変化)、alt−DNAおよび1−DNAが挙げられる。
【0090】
改変された炭水化物の例としては、限定されないが、C1’−塩基の接続を含む骨格、例えば、テトロフラノシルオリゴヌクレオチド、ペントピラノシルオリゴヌクレオチドおよびヘキソピラノシルオリゴヌクレオチド;C2’−塩基の接続を含む骨格、例えば、イソヌクレオチド(C1位からC2位への塩基糖接続の再配置)、HNA(フラノースの04’位とC1’位の間のさらなるメチレン基の挿入)、ANA(C3’−(S)−ヒドロキシル基の組み込み)、MNA(ANA中の(S)から(R)へのC3’−OH構造の転位)、CNA(ヘキソースのOがメチレン基と交換)、CeNA(類似の環の中への5’−6’アルケンの導入)および他の環系、ねじり方向が制限されたオリゴヌクレオチド、例えば、二環オリゴヌクレオチド、LNA(ペントファラノース(pentofaranose)骨格の3’−endo構造への制限)、ねじれ方向に柔軟性を有するオリゴヌクレオチド、例えば、塩基糖の伸長(α−デオキシヌクレオチドおよびβ−デオキシヌクレオチドの両方へのメチレン基およびエチレン基の挿入)およびアクリル骨格(ホスホジエステル結合を組み込んだグリセロール誘導体)が挙げられる。
【0091】
改変されたヌクレオチド結合を有するヌクレオチドの例としては、限定されないが、PNA(ペプチド核酸)、NDP(ヌクレオ−δ−ペプチド)、縮合した糖−塩基骨格、カチオン性結合が挙げられる。
【0092】
交互に並んだヌクレオ塩基の例としては、限定されないが、交互に並んだ芳香族ヌクレオ塩基を含むヌクレオチドが挙げられる。
【0093】
3.他の材料
自己組織化することができる他の材料としては、N−アルキルアクリルアミドオリゴマーおよびジブロックコポリマーおよびトリブロックコポリマーが挙げられる。N−アルキルアクリルアミドは、シートに似た構造に自己組織化すると推定することができる(Kendhaleら、Chem Comm.を参照)。ブロックコポリマーの例としては、コポリペプチド、ポリペプチド−PEGS、PEO−ポリブタジエン、PEG−多糖などが挙げられる。
【0094】
自己組織化することが知られている別の種類の材料は、デンドリマーである。「デンドリマー」は、本明細書で使用される場合、中心のコアの周囲に分岐ユニットの連続したシェルを含む、分岐したポリマーを指す。デンドリマーは、水素結合、イオン性相互作用、疎水性相互作用、溶媒相互作用、側鎖相互作用などの種々の異なる機構によって自己組織化することができる。自己組織化デンドリマーの非限定例は、Zimmermanら、Science、Vol.271、No.5252、1095−1098(1996);Zimmermanら、J.Am.Chem.Soc.、124(46)、13757−13769(2002);およびFrechet、Proc.Nat.Acad.Sci.、Vol.99、No.8、4782−4787(2002)に記載される。
【0095】
C.特定の組織を標的とする自己組織化材料の改変
自己組織化材料は、さらに、組織に特異的な成分を含んでいてもよい。組織に特異的な成分は、目、脳または皮膚細胞に特異的なペプチド、多糖または糖タンパク質であってもよい。例えば、細胞表面の炭水化物は、哺乳動物細胞の外側表面の主要成分であり、細胞の種類に特徴的であることが非常に多い。細胞の種類に特異的な炭水化物は、細胞−細胞相互作用に関与すると推定される。従って、組織に特異的な成分は、これらの細胞特異的な表面炭水化物を標的とすることができる。
【0096】
さらに、疎水性または親水性のテール部を自己組織化材料に付加してもよい。テール部は、細胞膜と相互作用するため、細胞表面にある自己組織化材料に固定される。表3は、疎水性テール部を有するペプチドのリストを示す。親水性テール部は、単独で、または疎水性テール部に加えて、ペプチドに付加され、異なる血管または組織(例えば、膀胱)のECMとの相互作用を容易にすることもできる。
【0098】
D.自己組織化材料の作製
メッシュを作製するために使用されるペプチドは、パッチ剤を貼る前に組織化してもよく、または、メッシュとイオン性溶液とを接触させることによって、またはメッシュを体液に接触させることによって、貼ったときに組織化してもよい。
【0099】
自己組織化は、イオン性溶質または希釈剤を材料溶液に加えることによって、またはpHの変化によって、任意のその後の時間に開始してもよく、または促進されてもよい。例えば、約5mMから5Mの濃度のNaClは、短時間で(例えば、数分以内に)巨視的な構造の組織化を誘発することができる。より低い濃度のNaClも、遅い速度ながら組織化を誘発するだろう。または、自己組織化は、材料(乾燥しているか、半固体ゲルであるか、またはイオンを実質的に含まない液体溶液に溶解しているかによらない。)を、このようなイオンを含む流体(例えば、生理学的流体、例えば、血液または胃液)または領域(例えば、体腔、例えば、鼻または口、または外科手術によって露出した空洞)に導入することによって、開始されるか、または促進されるだろう。ゲルは、望ましい部位に貼る前にあらかじめ作られている必要はない。一般的に、自己組織化は、この材料が、任意の様式でこのような溶液と接触するときに起こると予想される。
【0100】
アニオンおよびカチオン(二価、一価または三価)を含む多様なイオンを使用してもよい。例えば、Li
+、Na
+、K
+およびCs
+のような一価カチオンにさらすことによって、相転移を促進させることができる。自己組織化を誘発するか、または促進するのに必要なこのようなイオンの濃度は、典型的には、少なくとも5mM(例えば、少なくとも10、20または50mM)である。より低い濃度でも、速度が低いものの、組織化を促進する。所望な場合、自己組織化材料は、疎水性材料(例えば、医薬として許容される油)と共に、自己組織化が可能な濃度で送達することができるが、速度は低い。自己組織化材料を、疎水性薬剤(例えば、油または脂質)と混合する場合、材料の組織化によって異なる構造が生成する。この構造は、油の層の上にある氷のように見えるだろう。別の材料が加えられる幾つかの場合において、材料は、治療薬剤を保持するのに適切であり得る種々の他の三次元構造へと組織化するだろう。分子の親水性部分は、疎水性−親水性相互作用を最小にするような様式で組織化し、これによって、この2つの環境の間に障壁を作製する。幾つかの実験は、自己組織化材料が、分子の疎水性部分は油表面を向き、分子の親水性部分は油から離れる方を向いて、水の上の氷のように、油表面に並ぶか、または、疎水性材料が内側に含まれるドーナツ状の構造を生成するだろうことを明らかにした。この種の挙動によって、体内に送達するための目的の治療分子または他の分子を封入することができる。
【0101】
別の実施形態において、組成物は、好ましい構造への組織化を引き起こす塩捕捉部を含んでいてもよい。例えば、円二色性(「CD」)実験は、組織化の力学を、塩捕捉部または塩増強を用いて制御して、β−シート、α−らせんの生成を増やすか、またはランダム構造の生成を増やすことができることを示す。組成物は、場合により、組織化の構造(例えば、α−らせん、β−シート、格子など)を示す指示薬を含んでいてもよい。
【0102】
または、本明細書に記載される材料の幾つかは、自己組織化するためにイオンを必要としないが、溶媒との相互作用、疎水性相互作用、側鎖相互作用、水素結合などを用いた相互作用に起因して自己組織化してもよい。
【0103】
材料は、規則的な形状または不規則な形状の型の中で成形されてもよく、この型は、体腔または身体の一部(例えば、血管の内腔)を含んでいてもよく、または、プラスチックまたはガラスのような不活性材料であってもよい。構造または足場材は、所定の形状に合うように、または所定の体積を有するように作られてもよい。所定の形状または体積を有する構造(例えば、薄いシートまたは膜を含む、望ましい幾何形状または寸法)を作製するために、材料の水溶液を、あらかじめ成形したキャスト成型用の型に入れ、複数のイオンを加えることによって、この材料を自己組織化するように誘発する。または、実質的な組織化が起こる前に型に溶液を入れることに注意を払っている限り、溶液を型に入れるすぐ前に、イオンを溶液に加えてもよい。この型が組織である場合(例えば、血管または他の区画の内腔、in situであるかそうではないかにかかわらない。)、イオン性溶液の添加は、必須ではない場合がある。得られる材料の特徴、組織化に必要な時間、生成する巨視的な構造の寸法は、加えられる溶液の濃度および量、構造の組織化を誘発するために使用されるイオンの濃度、キャスト成型装置の寸法によって支配される。足場材は、室温でゲル状であるか、または実質的に固体の形態を達成してもよく、溶融を促進するために熱を加えてもよい(例えば、成形方法で使用される溶液(例えば、前駆体を含有する溶液)を、ほぼ体温(約37℃)の範囲の温度まで加熱してもよい。)。足場材が、望ましい程度の硬さに達したら、型から取り出し、本明細書に記載される目的のために使用することができる。または、本明細書に記載される材料を使用し、宿主組織を組織マトリックスまたは足場材に固定してもよい。例えば、本明細書に記載される材料を、宿主組織を固定するための「のり」として使用してもよく、この宿主組織は、注入されるか、または移植される局所的な環境の所定位置にマトリックスまたは足場が確実に留まるように、組織マトリックスまたは足場に再生される。組織マトリックスおよび足場材は、当該技術分野で知られており、合成材料、半合成材料および/または天然材料から調製することができる。
【0104】
身体またはイオン性溶液と接触したときに組織化および/または相転移(例えば、液体状態から半固体、ゲルなどへの転移)を受ける材料は、体内の物質の移動を防ぐのに有用である。自己組織化または相転移は、被験体の体内に見られる化合物(例えば、イオン)または生理学的pHが引き金となり、生理学的温度によって補助される。自己組織化または相転移は、組成物が被験体の身体と接触したときに始まってもよく、組成物が堆積した(または将来的に堆積する)領域に熱を局所的に加えることによって促進されてもよい。今日までの研究に基づき、自己組織化は、さらなる熱を加えることなく、内部の身体組織と接触したときに迅速に起こる。効果的な組織化および/または相転移に必要な時間は、被験体の内部組織または体内に見られる条件と同様の条件と接触してから60秒以下で起こることが可能である(例えば、50、40、30、20または10秒以下)。幾つかの状況において(例えば、組成物中の自己組織化剤の濃度が低いか、または身体の物質移動がかなりある場合)、自己組織化または相転移は、望ましい効果を達成するためにもっと長くかかり、例えば、最大1分、5分、10分、30分、1時間またはもっと長くかかるだろう。例えば、脳、肝臓または筋肉中の血管横断面の部位に適用された自己組織化ペプチドを含有する溶液は、適用してから10秒程度の短い時間内に完全な止血を与えた。組成物を使用し、被験体が汚染しないように保護する場合には、イオンを含有しない溶液が無傷の皮膚に接触した場合に相転移が起こらないか、または迅速に起こらないため、イオンを含有する溶液が好ましい場合がある。
【0105】
組成物は、かなり固い(例えば、固体またはほぼ固体の)構造を生成してもよく、または、明確な形状および寸法を呈する構造(例えば、in vivoまたはex vivoであるかによらず、液体組成物が投与された位置の形状および体積に合うような構造)を生成してもよい。固化された材料は、組織化または相転移の後にある程度変形可能または圧縮可能であり得るが、液体から固体への連続性に沿った異なる時点での組成物がある領域から別の領域に流れるようには、ある領域から別の領域に実質的に流れない。このことは、少なくとも部分的に、相転移を受ける能力に起因し得る。結果として、組成物を使用し、必要な被験体において体内の物質移動を防ぐことができる。自己組織化は、特定の範囲の生理学的な値内の条件(例えば、細胞または組織培養に適した条件)にさらされることによって、または、非生理学的な条件にさらされることによって、in vitro、in vivoまたはex vivoで達成することができる。「非生理学的な条件」は、この部位で正常な生理学的条件とは逸脱した身体または特定の部位内の条件を指す。このような状態は、外傷、手術、傷害、感染または疾患、障害または状態によって生じるだろう。例えば、胃の中の穿孔による創傷は、一般的に、胃酸が創傷部位に流れることによってpHの減少を引き起こす。本明細書に記載される材料は、このような条件で自己組織化すべきである。液体配合物は、容易に分注されるが、投与される組成物は、被験体の身体と接触したときに固くなってもよいゲル形態であってもよい。
【0106】
自己組織化材料の正確な性質にかかわらず、本明細書に記載されるような条件にさらされると、材料は、規則的または不規則な編み合わされたナノファイバー(例えば、直径が約5−20nm、穴の大きさが長さ寸法で約50−100nmの繊維)を含む安定な巨視的な多孔性マトリックスを含む、膜状の二次元または三次元の構造を生成することができる。三次元の巨視的なマトリックスは、低解像度(例えば、約10倍以下)で見ることができるほど十分に大きな寸法を有していてもよく、この膜状の構造は、透明であっても肉眼で見ることができる。三次元ではあるが、この構造は、制限された数の分子層(例えば、分子の2層、3層またはもっと多い層)を含み、顕著に薄くてもよい。典型的には、所与の構造のそれぞれの寸法は、大きさが少なくとも10μm(例えば、2つの寸法が、大きさで少なくとも100−1000μmである(例えば、1−10mm、10−100mm、またはもっと大きい。))。関連する寸法は、実質的に規則的な形状を有する構造の場合には(例えば、構造が、球状、円筒形、立方体などである場合)、長さ、幅、深さ、広がり、高さ、半径、直径または周囲として表現されてもよく、または、構造が規則的な形状を有しない場合には、上のいずれかの概算値で表されてもよい。
【0107】
自己組織化材料は、本明細書に記載されるような条件(例えば、十分な濃度(例えば、生理学的濃度)のイオン(例えば、一価カチオン)存在下)で水と接触したとき、水和材料を生成してもよい。材料は、含水量が高くてもよく(例えば、約95%以上(例えば、約97%、98%、99%またはもっと多く))、組成物は、水和することができるが、実質的に自己組織化しない場合がある。所与の値は、測定は、例えば、作り出され、当業者が測定を行う環境に依存して変わり得るという認識において、「概算値」であってもよい。一般的に、ある値は概算値ではないことが文脈から明らかであるか、または、例えば、このような値が、可能な値の100%を超えることがある場合を除き、第1の値が、第2の値から10%の範囲内(これより大きいか、または少ないかによらず)に収まる場合、第1の値は、第2の値とほぼ等しい。
【0108】
構造または足場材の特性および機械的強度は、この中に含まれる成分の操作によって必要な場合に制御することができる。例えば、組織化されたゲルの剛性は、この中の自己組織化材料の濃度を上げることによって上げることができる。または、材料の異なる部分が、異なる機械的特性を有することが望ましい場合がある。例えば、アミノ酸配列を操作することによって、材料のすべてまたは一部の安定性を下げることが有利な場合がある。材料を使用して空隙を満たす場合には、このことが望ましく、この結果、組織部位に接続するように材料の縁が自己組織化し、一方、材料の残りの部分は、空隙から外に流れ出る。材料の配列、特徴および特性、自己組織化するときに作られる構造を以下にさらに記載する。
【0109】
E.治療薬剤、予防薬剤および診断薬剤)
メッシュは、他の治療薬剤、予防薬剤および診断薬剤も含んでいてもよい。好ましい実施形態において、これらは、抗炎症剤、血管作用剤、抗感染剤、麻酔剤、成長因子、ビタミン、栄養物質および/または細胞であってもよい。
【0110】
これらは、ペプチドまたはタンパク質、多糖または糖、核酸ヌクレオチド、プロテオグリカン、脂質、炭水化物、または低分子、典型的には、天然から単離されるか、または化学合成によって調製されてもよい複数の炭素−炭素結合を有する有機化合物であってもよい。低分子は、分子量が比較的低く(例えば、約1500g/mol未満)、ペプチドまたは核酸ではない。この物質は、生体分子であってもよく、この生体分子は、生きた有機体に見られる分子に典型的な特徴を有するペプチド、プロテオグリカン、脂質、炭水化物、または核酸のような分子である。低分子と同様に、生体分子は、天然に生じてもよく、または、人工であってもよい(即ち、天然に見つからなかった分子であってもよい。)。例えば、天然には見つからなかった配列を有するタンパク質(例えば、公的に入手可能な配列データベースに存在しないもの)またはヒトの手によって通常とは異なる様式で改変された既知の配列を有するもの(例えば、グリコシル化のような翻訳後処理を変えることによって改変される配列)は、人工生体分子である。このようなタンパク質(例えば、オリゴヌクレオチド、場合により、発現ベクターに含まれる。)をコードする核酸分子も生体分子であり、本明細書に記載される組成物に組み込むことができる。例えば、組成物は、(タンパク質生体分子をコードする核酸配列を含むという観点で)複数の自己組織化材料と、タンパク質生体分子を発現する細胞、またはタンパク質生体分子を発現するように操作された細胞を含んでいてもよい。
【0111】
多くの異なる治療薬剤、予防薬剤または診断薬剤を、製剤に組み込むことができる。代表的な血管収縮薬としては、エピネフリンおよびフェニレフリンが挙げられ、代表的な着色剤としては、アルセナゾIII、クロロホスホナゾIII、アンチピリラゾ111、ムレキシド、Eriochrome Black T、Eriochrome Blue SE、オキシアセトアゾI、カルボキシアゾIII、トロポロン、メチルチモールブルーおよびMordant Black 32が挙げられ、代表的な麻酔剤としては、ベンゾカイン、ブピバカイン、ピクリン酸ブタムベン、クロロプロカイン、コカイン、クラーレ、ジブカイン、ディクロニン、エチドカイン、リドカイン、メピバカイン、プラモキシン、プリロカイン、プロカイン、プロポキシカイン、ロピバカイン、テトラカイン、またはこれらの組み合わせが挙げられる。麻酔剤の局所適用は、幾つかの状況では、例えば、褥瘡性潰瘍を含む皮膚の火傷または他の創傷;創傷、例えば、癌の痛みの場合、または低侵襲施術のために、必要となる場合がある。局所的な麻酔剤と自己組織化材料とを合わせると、同じ組成物中に存在することによって合わされているか、または併用投与することによって合わされているかにかかわらず、体内に麻酔剤が入り、循環に入る量を減らすのに役立つだろう。
【0112】
フェニレフリンのような血管収縮薬は、局所麻酔の効果を長引かせるために含まれていてもよい(例えば、0.1−0.5%のフェニレフリン)。局所麻酔剤以外の鎮痛剤(例えば、ステロイド、インドメタシンのような非ステロイド系抗炎症剤、血小板活性化因子(PAF)阻害剤、例えば、レキシパファント、CV 3988、および/またはPAF受容体阻害剤、例えば、SRI 63−441。
【0113】
抗感染剤または抗菌剤(例えば、抗生物質、抗菌剤、抗ウイルス剤または抗真菌剤)が、全身投与または局所投与のために含まれていてもよい。例としては、β−ラクタム抗生物質、例えば、ペニシリンおよびセハロスポリン;細胞壁合成の他の阻害剤、例えば、バンコマイシン;クロラムフェニコール;テトラサイクリン;マクロライド;クリンダマイシン;ストレプトグラミン;アミノグリコシド;スペクチノマイシン;スルホンアミド;トリメトプリム;キノロン;アンホテリシンB;フルシトシン;アゾール、例えば、ケトコナゾール、イトラコナゾール、フルコナゾール、クロトリマゾールおよびミコナゾール;グリセオフルビン;テルビナフィン;ナイスタチンが挙げられる。抗菌剤は、局所的に投与されてもよく(例えば、皮膚の感染または火傷を治療するために)、またはカテーテル(例えば、静脈内カテーテル)挿入部位の感染を防ぐのに役立つように投与されてもよい。
【0114】
適切な局所的抗菌剤としては、カナマイシン、ネオマイシン、バシトラシン、ポリミキシン、局所的なスルホンアミド、例えば、酢酸マフェニドまたはスルファジアジン銀および硫酸ゲンタマイシンが挙げられる。抗菌剤は、広スペクトルの薬剤であってもよい。例えば、第2世代、第3世代または第4世代のセハロスポリンを使用してもよい。これらの薬剤は、グラム陽性種およびグラム陰性種の両方を含む、広範囲の細菌に対して活性であってもよい。このような抗菌剤は、特に、本発明の足場材を使用し、腸内容物の移動を阻害する場合に、例えば、腸切除の間、または腸壁の一体性を意図的に、または偶発的に破壊する他の手術の間に適している場合がある。当業者は、患者の履歴(例えば、このような薬剤に対するアレルギー反応の履歴)、ペプチドが適用される位置、存在する可能性のある感染因子の種類を考慮することによって、適切な抗菌剤を選択することができるだろう。抗菌剤を含有する組成物は、(1)抗菌剤の活性に起因して、感染因子を殺す;(2)材料の組織化によって感染を防ぎ、感染因子の組織特異的な配列が組織と相互作用するのを遮断することによって、感染因子が組織に入り込むのを遮断する障壁を生成する、(3)自己組織化材料の変化に起因して、感染因子が、組織に関する配向を変え、従って、感染因子が組織へ入り込むのを遮断する、(4)自己組織化材料内で感染因子を封入し、感染因子が入り込むのを防ぐ、およびこれらの組み合わせを含む、種々の様式で感染を防ぐことができる。材料を使用し、他の生体物質および/または有害物質による汚染または感染を防ぐこともできる。
【0115】
任意の本明細書に記載される組成物は、着色剤を含んでいてもよい。適切な着色剤としては、市販の食品着色料、天然および合成の染料、蛍光分子が挙げられる。好ましくは、着色剤は、非毒性であるか、または毒性の影響を最低限にするような低い濃度で含まれる。着色剤の使用によって、構造または足場材によって覆われる領域の視覚化を改善することができ、除去が可能な場合には、除去を容易にすることができる。着色剤は、汚染した領域と接触したときに色が変わるものであってもよい(例えば、色変化は、汚染自体が引き金となってもよい(例えば、創傷部位に存在する血液または細菌によって))。例えば、細菌の代謝産物が、色変化を引き起こしてもよい。汚染によって誘発されるpHまたは酸化還元状態のような条件も検出されてもよい。例示的な指示薬としては、Mg
2+のために、アルセナゾIII、クロロホスホナゾIII、アンチピリラゾIII、ムレキシド、Eriochrome Black TおよびEriochrome Blue SE;オキシアセトアゾI、カルボキシアゾIII、トロポロン、メチルチモールブルーおよびMordant Black 32が挙げられる。酸化還元指示薬であるAlamarBlueおよびフェノールレッドも、本組成物および方法に使用される。別の実施形態において、着色剤は、ある光の波長を反射し、凝集すると(即ち、ペプチドの自己組織化)、異なる波長の光を反射するナノ粒子の形態であってもよい。
【0116】
多くの他の活性薬剤が、組成物に含まれていてもよい。例えば、多くの成長因子が、治癒の1つ以上の態様(例えば、血管新生、細胞移動、工程の伸長、細胞増殖)を促進するために含まれていてもよい。これらの種類の組成物は、組成物に含まれることにより、または本方法で併用投与することにより、他の薬剤と同様に「含まれて」いてもよい。例としては、血管内皮細胞増殖因子(VEGF)、トランスフォーミング成長因子(TGF)、例えば、トランスフォーミング成長因子p、血小板由来成長因子(PDGF)、上皮成長因子(EGF)、神経成長因子(NGF)、インスリン様成長因子(例えば、インスリン様成長因子I)、グリア成長因子(GGF)、繊維芽細胞増殖因子(FGF)などが挙げられる。多くの場合に、これらの用語は、種々の異なる分子種を指すことが理解されるだろう。例えば、幾つかのトランスフォーミング成長因子R種は、当該技術分野で公知である。当業者は、例えば、組成物が投与される部位を考慮することによって、適切な成長因子の選択に導かれるだろう。例えば、EGFは、皮膚に貼られる組成物中に含まれていてもよく、NGFおよび/またはGGFは、神経または神経系に適用される組成物に含まれていてもよい、など。
【0117】
成長因子または別の薬剤は、化学走性物質であってもよく、化学走性物質は、in vivoまたは細胞培養物中、物質が存在する部位に細胞を動員する能力を有する。動員される細胞は、新しい組織の生成またはすでに存在する損傷を受けた組織の修復に寄与する能力を有していてもよい(組織に対し、構造的および/または機能的に寄与することによって(例えば、成長因子を与えることによって、または、望ましい免疫応答に寄与することによって))。特定の化学走性物質は、増殖剤としても機能することができる(例えば、神経栄養因子、例えば、NGFまたはBDNF)。
【0118】
シアノアクリレート、酸化されたセルロース、フィブリンシーラント、コラーゲンゲル、トロンビン粉末、微孔性多糖粉末、血栓形成因子(例えば、Factor V、Factor VIII、フィブリノゲンまたはプロトロンビン)およびゼオライト粉末と組み合わせて、またはこれらに代えて、組成物を使用することもできる。
【0119】
一実施形態において、材料にビタミンを加えてもよい(例えば、肝臓手術後にビタミンK)。これに加えて、材料と組み合わせて局所的に適用される場合、組織または皮膚の再建を容易にするために、他のビタミンを加えてもよい。このことを、損傷の後、または正常な一連の局所的な水和中に行ってもよい。
【0120】
1つ以上の治療薬剤、診断薬剤および/または予防薬剤を、同じ配合物中、自己組織化材料と共に同時に投与してもよく、別個の配合物中、同時に投与してもよく、または逐次投与してもよい。または、活性薬剤(1または複数)を自己組織化材料に共有結合により接続してもよい。
【0121】
治療分子は、臨床的に顕著な結果を達成するために、有効な量で一般的に投与されることが理解されるだろう。有効な投薬量および濃度は、当該技術分野で公知である。これらの投薬量および濃度から、本発明の内容での投薬量および濃度の選択に導くことができる。生体活性分子は、種々の適切な濃度および適切な量で与えられてもよい(例えば、マイクログラムまたはミリグラム範囲、またはもっと多く)。案内のために、Goodman and Gilman’s The Pharmacological Basis of Therapeutics、10th Ed.、and Katzung、Basic and Clinical Pharmacologyのような文書を調べてもよい。
【0122】
細胞
細胞が患者に送達される場合(例えば、組織の治癒を促進するために)、自家細胞を使用することができる。一実施形態において、細胞は、材料に分散され、移植された患者由来の造血細胞であってもよい。別の実施形態において、細胞は、脊髄の赤血球細胞であってもよい。
【0123】
メッシュは、生体活性分子または細胞のような1つ以上のさらなる物質を含んでいてもよい。幾つかの場合において、細胞は、生体活性分子を天然に、または(例えば、組み換えタンパク質を発現および/または分泌するための)遺伝子操作によって分泌してもよい。本明細書に記載される構造は、細胞の接続、生存能力および成長を支えることができ、材料表面で細胞を培養するとき、または、材料の中で細胞を成長させるとき(例えば、封入されている場合)、これらは、観察されている。これに加えて、構造は、ニューロンがこの表面または内部で成長するとき、神経突起およびシナプス生成のための物質として機能することができる。従って、生体活性分子および細胞は、ペプチド構造の中に封入されていてもよく、このように封入されたとき、かなりの機能および生存能力を維持する(例えば、U.S.S.N.09/778,200およびU.S.S.N.10/196,942を参照)。
【0124】
F.他の構成要素
開示されるメッシュは、さらなる有機材料および/または無機材料を含んでいてもよい。幾つかの実施形態において、さらなる材料は、メッシュに対して構造的な支え(例えば、足場材を与える材料)を与えることができる。足場材料は、用途によって必要な物理的な強度、弾性、多孔性、溶解度、体積および嵩を与えるように選択することができる。特定の実施形態において、足場材料は、細胞外マトリックス(ECM)と同様の機械的特性および/または生物学的特性を有する。
【0125】
足場材料は、ポリペプチドおよびタンパク質のような天然ポリマーを含む、ポリマーを含んでいてもよい。天然ポリマーは、自己組織化ペプチド、治療薬剤、細胞または他の薬剤が接続するか、または会合する足場材を作る。幾つかの実施形態において、開示される手術用メッシュは、タンパク質、例えば、ECMタンパク質を含む。開示されるメッシュに使用するための例示的な天然足場材料としては、アルギネート;フィブリノゲン;ヒアルロン酸;デンプン;キトサン;絹;ゼラチン;デキストラン;エラスチン;コラーゲン、およびこれらの組み合わせが挙げられる。
【0126】
幾つかの実施形態において、メッシュは、合成ポリマーである足場材料を含む。例示的な合成ポリマーとしては、ポリ(L−乳酸 コ−ε−カプロラクトン)(PLCL);ポリ(DL−乳酸)(PDLA);ポリ(乳酸−コ−グリコール酸)(PLGA);ポリ(エチレンオキシド)(PEO);ポリ(ビニルアルコール)(PVA);ポリ(メタクリル酸メチル)(PMMA);ポリ(エチレン−コ−酢酸ビニル)(PEVA);ポリスチレン;ポリウレタン;ポリ(L−乳酸)(PLLA);ポリ乳酸(PLA)、およびこれらの混合物が挙げられる。
【0127】
好ましい実施形態において、足場材料は、生体適合性である。好ましい実施形態において、足場材料は、免疫応答を誘発しない。
【0128】
III.メッシュを製造する方法
本明細書に記載されるメッシュは、当該技術分野で知られている任意の技術を用いて調製することができる。メッシュは、典型的には、ゆるく織られた材料であり、このような織られた材料を調製するのに適した分野の任意の技術を使用することができる。メッシュは、不織布であってもよい。メッシュは、種々の形状および大きさになるように構築されてもよい。メッシュは、厚みが数マイクロメートルから数センチメートルであってもよく、望ましい用途に従って成形してもよい。
【0129】
種々の天然および非天然のポリマーを含む、織られたメッシュおよび足場材または不織布のメッシュおよび足場材を製造するための方法の非限定例は、U.S.S.N.8,568,637;U.S.S.N.7,700,721;U.S.S.N.8,039,258;U.S.S.N.7,704,740;U.S.S.N.5,762,846;U.S.S.N.8,512,728;およびDhanら、Nanomedicine:Nanotechnology,Biology,and Medicine、8、pp.1242−1262(2012);NguyenおよびLee、Sci.Technol.Adv.Mater.、13、035002(11pp)(2012);Ahmadら、Carbohydrate Polymers,V89(1)、pp.222−229(2012);およびBrunら、Acta Biomaterialia、7、pp.2526−2532(2011)に記載される。
【0130】
A.自己組織化ペプチドの配合
開示されるメッシュを製造するときに使用するための自己組織化ペプチドは、少なくとも75%重量/重量(w/w)の自己組織化ペプチド、少なくとも80% w/w、少なくとも85% w/w、少なくとも90% w/w、少なくとも95% w/w、または95% w/wより多い自己組織化ペプチドを含む乾燥粉末配合物であってもよい。
【0131】
他の実施形態において、開示されるメッシュを製造するときに使用するための自己組織化ペプチドは、約0.25%重量/体積(w/v)から少なくとも7.5% w/vの自己組織化ペプチド、好ましくは、約1% w/vから約3% w/vの自己組織化ペプチドを含む溶液に配合されてもよい。幾つかの実施形態において、少なくとも75%、少なくとも80%、少なくとも85%、少なくとも90%、少なくとも95%、または95%を超える自己組織化ペプチドが、同じ大きさおよび配列を有する。
【0132】
液体の物理特性(例えば、粘度、表面張力および電気伝導性)は、当業者に知られる任意の技術および装置を用いて測定することができる(例えば、粘度計、Kruss張力計、導電計など)。
【0133】
幾つかの実施形態において、メッシュは、同じ配列および長さを有するペプチドから作られる。他の実施形態において、異なる大きさおよび配列を有する自己組織化ペプチドの混合物を使用してもよい。特定の実施形態において、メッシュ繊維に含まれるペプチドの大きさおよび配列によって、異なる構造および機能特性を有するメッシュを得ることができる。例えば、メッシュの強度および弾性は、メッシュを作製するために使用されるペプチドの長さに従ってさまざまであってもよい。特定の実施形態において、自己組織化ペプチドの関連する比率は、用途によって望ましいように変えることができる。
【0134】
特定の実施形態において、メッシュは、異なる数の同じ自己組織化単位を有するペプチド(例えば、RADA(配列番号57)およびRADARADARADARADA(配列番号1))を含む。他の実施形態において、メッシュは、異なる自己組織化単位および異なる大きさを有するペプチドを含む(例えば、RADA(配列番号57)およびEAKAEAKAEAKAEAKA(配列番号410))。
【0135】
幾つかの実施形態において、異なる大きさおよび異なるアミノ酸配列を有する自己組織化ペプチドのコンポジットを使用し、特定の構造および生物学的特性を有するメッシュを与えることができる。特定の実施形態において、自己組織化ペプチドは、配列RADAの2つ以上の繰り返し単位、配列EAKAの2つ以上の繰り返し単位、またはこれらの混合物を含む。
【0136】
組織に特異的な配列を有する自己組織化ペプチドは、対応する組織種で使用することを意図したメッシュに含まれていてもよい。同じ配列または異なる配列を有するペプチドを、第1のメッシュ層の上部に堆積させ、望ましい空間(例えば、創傷または手術部位の体積)を満たす三次元メッシュを作製してもよい。幾つかの実施形態において、開示される技術に従って、メッシュを適用または使用することを意図した組織種と同じモジュールを有する自己組織化ペプチドを用いてメッシュを調製してもよい。
【0137】
開示される材料および方法に従って調製されたメッシュを架橋し、使用前に乾燥させ、または凍結させてもよい。乾燥したメッシュを長期間保存することができる。
【0138】
B.エレクトロスピニング
一実施形態において、メッシュは、エレクトロスピニングによって調製される。エレクトロスピニングは、電荷を用い、液体からの非常に微細な(典型的には、マイクロスケールまたはナノスケールの)繊維を引き出す。
【0139】
開示されるメッシュは、1種類以上の自己組織化材料を含むストック溶液のエレクトロスピニングによって製造することができる。ストック溶液は、水溶液、非水溶液または乾燥粉末としての自己組織化ペプチドを含んでいてもよい。自己組織化ペプチドは、蒸発を防ぐのに十分に高い濃度で、ストック溶液中に存在していてもよい。
【0140】
エレクトロスピニングして繊維メッシュにするための自己組織化ペプチドの配合物が開示される。配合物をストック溶液として使用することができる。エレクトロスピニングのための自己組織化ペプチドのストック溶液は、乾燥粉末または溶液(例えば、水溶液または非水溶液)であってもよい。ストック溶液は、1つの配列を有するペプチドまたは1つ以上の異なる配列を有するペプチドを含んでいてもよい。幾つかの実施形態において、2つ以上の異なるストック溶液を、複数のノズルを用いて同時に支持材にエレクトロスピニングするか、または、その後に同じノズルまたは異なるノズルを用いてエレクトロスピニングすることができる。
【0141】
エレクトロスピニングストック溶液は、場合により、エレクトロスピニングしてメッシュにするための材料の混合物を含んでいてもよい。幾つかの実施形態において、エレクトロスピニングの前に、自己組織化ペプチドを、1つ以上の他の材料の溶液と混合する。例えば、ストック溶液は、1つ以上の自己組織化ペプチドと、1つ以上の足場材料、治療試薬または診断試薬、またはこれらの組み合わせを含んでいてもよい。1種類より多い材料を含むストック溶液を使用する場合、自己組織化ペプチドと、他の材料の比率は、用途の必要性に従って変わってもよい。例えば、自己組織化ペプチドは、他の材料に対し、任意の比率で溶液中に存在していてもよい。
【0142】
他の実施形態において、メッシュは、1つ以上の足場材料を含むストック溶液のエレクトロスピニングによって製造され、次いで、自己組織化ペプチドで覆われるか、またはコーティングされる。特定の実施形態において、自己組織化ペプチドは、エレクトロスピニングされた足場材料の表面にコーティングされる。幾つかの実施形態において、自己組織化ペプチドは、乾燥粉末として足場材に適用される。
【0143】
幾つかの実施形態において、エレクトロスピニングするにつれて、細胞を繊維の上に堆積させる。別個のノズルから細胞を堆積させてもよく、この結果、メッシュが作られる前に、細胞が繊維の上に堆積する。他の実施形態において、細胞は、メッシュを作製した後に、メッシュの上に堆積する。
【0144】
静電スピニング
静電スピニング(エレクトロスピニング)は、繊維のエレクトロスプレーおよび従来の溶液乾燥スピニングの特徴をあわせもつ。この方法は、溶液から固体の糸を製造するために、凝固化学または高温の使用を必要としない。これにより、この方法は、大きく複雑な分子を用いた繊維(例えば、自己組織化ペプチド)の製造に特に適する。溶融した前駆体からのエレクトロスピニングも行うことができる。最終的な生成物の中に溶媒が含まれないように、この方法を行うことができる。
【0145】
十分に高い電圧を液適に加えると、液体本体が帯電し、静電反発は、表面張力を弱め、液滴が伸び、臨界点で、液体の蒸気が表面でゆっくり動いた。このゆっくり動く時間は、Taylerコーンとして知られている。液体の分子の凝縮が十分に大きい場合、蒸気の破壊は起こらず(蒸気の破壊が起こる場合、液滴をエレクトロスピニングし)、帯電した液体噴射物を作製する。
【0146】
この噴射物が飛んでいる間に乾燥するため、電荷が繊維表面に移動するにつれて、電流の態様をオーム電流から対流電流に変える。次いで、この噴射物は、最終的に、接地されたコレクタの上に堆積するまで、繊維中の小さな曲がり部分で開始される静電反発によって生じるウィッピング法によって伸ばされる。この曲がり部分の不安定さから生じる繊維の伸長および薄化によって、ナノメートルスケールの直径を有する均一な繊維が生成する。
【0147】
紡糸口金の改変および/または溶液の種類は、固有の構造および特性を有する繊維の作製を可能にする。エレクトロスピニングされた繊維は、スピニングされる材料の種類、蒸発速度および関与する溶媒の混和性に依存して、多孔性またはコア−シェル形状に合わせることができる。複数のスピニング液に関与する技術について、繊維を作製するための一般的な基準は、外側溶液の紡糸性に依存して変わる。これにより、薬物送達システムとして機能し、失敗したときに自己修復する能力を有するコンポジット繊維を作製する可能性が広がる。
【0148】
幾つかの実施形態において、コレクタは、スピニング中に、紡糸口金に対して移動する。コレクタの移動は、スピニング方法から望ましい構造を生成することができるように制御することができる。幾つかの実施形態において、メッシュは、ゆるく編まれたメッシュまたは不織布のメッシュである。
【0149】
自己組織化ペプチドのエレクトロスピニングされた繊維の大きさは、ナノスケールであってもよく、繊維は、ナノスケールの表面組織を有していてもよく、マクロスケールの材料と比較したとき、他の材料との異なる相互作用の態様を生じる。これに加え、エレクトロスピニングによって作られた自己組織化されたペプチドの超微細な繊維は、体積に対する表面の比率が非常に高く、分子レベルで比較的欠陥のない構造を有する。
【0150】
体積に対する表面の比率が高いことにより、エレクトロスピニングされた自己組織化ペプチドメッシュは、例えば、化学反応のための部位を与える、または物理的に絡まった濾過によって小さな大きさの粒状材料を捕捉するなど、高度な物理的接触を必要とする活動に適している。第2の特性は、エレクトロスピニングされた繊維を、スピニングされた材料の理論的に最大の強度に近づけることができ、高い機械的性能のコンポジット材料を製造する可能性を広げることができる。
【0151】
同軸エレクトロスピニング
同軸設定は、複数の溶液供給システムを使用し、紡糸口金の先端で、ある溶液を別の溶液に注入することができる。鞘の流体は、担体として作用すると考えられ、エレクトロスピニングジェットのTaylorコーンで内側の流体を引き出す。溶液が不混和性である場合、通常、コアシェル構造が観察される。しかし、混和性溶液は、繊維が固化する間の相分離に起因して、別個の相を有する空隙または繊維を生じる場合がある。
【0152】
エマルションのエレクトロスピニング
エマルションを使用し、紡糸口金を改変することなく、コアシェルまたはコンポジット繊維を作製することができる。しかし、これらの繊維は、通常は、エマルションを作製するときに考慮しなければならない多数の変数に起因して、同軸スピニングと比較して、製造するのがもっと困難である。水相および不混和性の溶媒相が、乳化剤存在下で混合し、エマルションを生成する。不混和性の相の間の界面を安定化させる薬剤を使用してもよい。ドデシル硫酸ナトリウムのような界面活性剤、Tritonおよびナノ粒子が、適切に使用されてきた。エレクトロスピニング方法の間、流体の中のエマルション液滴が伸び、徐々に封じ込められ、凝集する。内部流体の体積分率が十分に高い場合、連続した内側のコアを作ることができる。
【0153】
ブレンドのエレクトロスピニングは、この技術の変形であり、ポリマーが、一般に、互いに不混和性であり、界面活性剤を使用せずに相分離し得るという事実を使用する。この方法は、両方のポリマーを溶解する溶媒を使用する場合、さらに単純化することができる。
【0154】
溶融エレクトロスピニング
ポリマー溶融物のエレクトロスピニングは、溶液エレクトロスピニングにおける揮発性溶媒の必要性を除外する。この設定は、従来のエレクトロスピニングに使用されるものと非常に似ており、シリンジまたは紡糸口金、高電圧の供給およびコレクタの使用を含む。ポリマー溶融物は、通常、抵抗加熱、流体の循環、空気加熱またはレーザーのいずれかからの加熱によって作られる。
【0155】
高粘度のポリマー溶融物に起因して、繊維の直径は、通常は、溶液エレクトロスピニングから得られるものより大幅に大きい。繊維の均一性は、安定な流速および熱平衡に達したら、非常に良好な傾向がある。溶液からのスピニングのために繊維が伸ばされる主要な段階であるウィッピングの不安定性は、低い溶融伝導率に起因して、溶融スピニング工程には存在しない。文献から、繊維の大きさに最も大きな影響を与える因子は、供給速度およびポリマーの分子量である傾向がある。低分子量のポリマーを用いて達成される小さな大きさとは大きく異なり、約250nm程度から数百マイクロメートルの範囲の大きさの繊維が作られる。
【0156】
直接配置によるエレクトロスピニング
幾つかの実施形態において、メッシュのエレクトロスピニングは、in vitroまたはin vivoで、適用する直前または適用時に行ってもよい。特定の実施形態において、エレクトロスピニングされた繊維は、分注する紡糸口金から直接的に被験体の身体内部または身体表面に堆積される。特定の実施形態において、分注によって、疾患組織または損傷を受けた組織(例えば、創傷または手術部位)の内部または表面にメッシュを直接堆積させてもよい。
【0157】
幾つかの実施形態において、エレクトロスピニング装置は、エレクトロスピニングされた繊維の直接配置を容易にするために調整される。特定の実施形態において、エレクトロスピニング装置は、持ち運び可能な装置または携帯用装置である。持ち運び可能な装置または携帯用装置の使用によって、in vivoおよびin vitroで望ましい位置に繊維を直接配置するのを補助することができる。
【0158】
さらなる実施形態において、紡糸口金および/または溶液の種類を改変し、お互いに対して自己組織化する繊維を直接配置することができる。直接配置を制御するパラメータとしては、電荷、疎水性およびpHを挙げることができる。自己組織化ペプチドを直接配置すると、望ましい構造および機能特徴(例えば、メッシュの別個の領域で異なる強度および弾性率)を有するメッシュを作製することができる。
【0159】
エレクトロスピニングされた繊維を直接配置すると、特定の組織種および/または組織内の特定の位置に特定の繊維を特異的に配置することができる。一実施形態において、標的位置の表面または内部に異なる種類の繊維を逐次堆積することによって、多層構造が作られる。幾つかの実施形態において、異なる層の中の繊維は、別個の配列、大きさおよび構造を有する自己組織化ペプチドを含む。
【0160】
C.メッシュを製造する他の方法
自己組織化ペプチドのメッシュは、限定されないが、マイクロフルイディクス技術;分散スピニング、ウェットスピニング、タックスピニング、遠心力を用いた強制スピニングおよびゲルスピニングを含むスピニング技術;表面でのテンプレート化;自己組織化ペプチドの配合物の射出成形;自己組織化ペプチドの乾燥粉末配合物または凍結した配合物のスタンピング;自己組織化ペプチドを含むスラリー配合物を、ステンシルまたはパターン形成された表面(例えば、包帯または接着性包帯)に直接塗布;またはこれらの方法の組み合わせによって作られるコンポジット材料の組織化を含む、当業者に知られている1つ以上の技術を用いて製造することができる。
【0161】
幾つかの実施形態において、あらかじめ作られたポリマーメッシュを、自己組織化ポリペプチドの溶液に浸し、次いで、凍結乾燥させ、このポリマーにポリペプチドをコーティングする。
【0162】
幾つかの実施形態において、記載される方法で使用するためのペプチドを、メッシュを作製する前に組織化させる。他の実施形態において、メッシュを作製するとき、またはメッシュを作製した後に、自己組織化が起こる。物理的パラメータ(例えば,温度および溶媒のイオン強度)を変え、メッシュ構造を作製する間の所望な時間に、ペプチドの組織化を誘発することができる。
【0163】
D.保護材料または支持材料
開示されるメッシュは、繊維構造に支えおよび/または保護を与える1つ以上の生体材料または非生体材料を含んでいてもよい。幾つかの実施形態において、メッシュは、保護層または支持層(例えば、接着片、膜、微孔性基材または網目、スポンジなど)を含む。保護層または支持層は、下地層(例えば、接着性包帯または金属膜)の形態であってもよい。
【0164】
例示的な保護材料または支持材料としては、限定されないが、ポリウレタン、スズ箔、ポリ(L−乳酸 コ−ε−カプロラクトン)(PLCL);ポリ(DL−乳酸)(PDLA);ポリ(乳酸−コ−グリコール酸)(PLGA);ポリ(エチレンオキシド)(PEO);ポリ(ビニルアルコール)(PVA);ポリ(メタクリル酸メチル)(PMMA);ポリ(エチレン−コ−酢酸ビニル)(PEVA);PPOブロックコポリマーポリスチレン;ポリウレタン;ポリ(L−乳酸)(PLLA);ポリ乳酸(PLA)およびこれらの混合物が挙げられる。支持材料は、完全または部分的に生分解性または非生分解性であってもよい。
【0165】
特定の実施形態において、自己組織化ペプチドのメッシュが作られ、保護層または支持層に直接堆積させる。
【0166】
IV.メッシュを用いる方法
開示される手術用メッシュを、手術中、および/または組織を強くするために、臓器および他の組織のための永久的な支えまたは一時的な支えとして使用してもよい。メッシュは、無機材料および生体材料の両方で入手可能であり、種々の手術で使用される。ヘルニア修復手術は、最も一般的な用途であるが、再建の作業、例えば、骨盤臓器(例えば、膀胱、子宮、腸または直腸)の逸脱および胸壁の再建にも使用することができる。メッシュを使用し、手術または外傷による創傷を治療することもできる。永久的なメッシュは体内に留まり、一方、一時的なメッシュは、時間をかけて溶解し、一例として、あるメッシュは、永久的なメッシュと、一時的なメッシュを合わせている(例えば、ポリグリコール酸とプロレンと再吸収されないポリプロピレンから作られる再吸収性材料であるビプリルを合わせた生成物の商標名であるVipro)。使用前に、メッシュは、織られた繊維シートまたは不織布の繊維シートであってもよく、体積に対する表面積の比率が高い。
【0167】
ここで記載されるメッシュを使用し、体液の移動を制御する(例えば、流体、例えば、血液の移動を防ぐ)こともできる。一実施形態において、メッシュは、止血メッシュである。特定の実施形態において、メッシュは、生分解性である。メッシュは、治癒および組織の再生に必要な時間と一致する時間で、適用後から生分解性であってもよい。メッシュは、適用から1日、1週間、1ヶ月または1ヶ月より長い期間で生分解性であってもよい。幾つかの実施形態において、開示されるメッシュは、適用から数週間(例えば、1、2、3、5、6、7、8週間、または8週間より長い間)に分解する。メッシュは、完全に分解してもよく、または、部分的に生分解性であってもよく、または、完全に非生分解性であってもよい。
【0168】
ペプチドは、メッシュを適用する前、またはメッシュを適用している間の任意の時点で組織化させることができる。例えば、メッシュを製造し、最終的なメッシュは、ゲル生成を誘発するためにイオン性溶液にさらされる。ゲル化されたメッシュを、使用まで保存することができる。ゲル化されたメッシュを貯蔵前に脱水してもよい。メッシュを型の中でゲル化し、特定の形状を作製してもよい。他の実施形態において、メッシュを調製し、組織化されていない形態で保存する。貯蔵前にメッシュを乾燥させてもよい。使用直前に、メッシュをイオン性溶液にさらし、組織化を開始させる。再び、メッシュを型の中でゲル化し、特定の形状を作製してもよい。さらに他の実施形態において、組織化されていない形態でメッシュを適用するか、または移植し、体液と接触させると、ペプチドが組織化する。このことは、適用部位(例えば、空隙、血管、内腔など)の形状の中でメッシュをゲル化したい場合には、有用であろう。
【0169】
メッシュは、上に記載されるように、1つ以上の治療薬剤、予防薬剤および/または診断薬剤と会合していてもよい。これらの薬剤をメッシュに含浸させ、および/またはメッシュをコーティングしてもよい。他の実施形態において、薬剤を、メッシュを構成する1つ以上の材料に共有結合によって接続する。幾つかの実施形態において、メッシュは、1つ以上の止血剤、成長因子、乾燥剤、ビタミン、抗菌剤、鎮痛剤、抗炎症剤、またはこれらの組み合わせと会合する。
【0170】
他の実施形態において、メッシュは、投与部位でpHを変えるために、投与部位で放出されるpH調整剤を含む。例えば、皮膚に対する創傷は、典型的には、低いpHでもっと効果的に治癒される。従って、適用部位でpHを下げる1つ以上の薬剤は、治癒時間を短くし、メッシュの効率を高めるだろう。対照的に、胃腸管に対する創傷(例えば、手術、外傷またはその他(潰瘍))は、胃腸管のより酸性の環境を打ち消すために、処理部位でより高いpHから利益を受けるだろう。適用部位でのpHは、メッシュに塩基性薬剤を組み込むことによって上げることができる。
【0171】
メッシュは、さらに、メッシュに支えおよび/または保護を与える下地層または支持層を含む。下地層は、生分解性であってもよく、または非生分解性であってもよい。下地層は、これらの実施形態のために、生体適合性の任意の材料で構成されていてもよく、下地層も、適用される/移植される。他の実施形態において、下地層は、メッシュを適用する前に除去されてもよい。下地層は、接着性または非接着性であってもよい。下地層が適用される/移植されるこれらの実施形態のために、下地層は、上述のような1つ以上の治療薬剤、予防薬剤および/または診断薬剤と会合していてもよい。
【0172】
本明細書に記載されるメッシュを使用し、上述の種々の障害を治療することができる。幾つかの実施形態において、本明細書に記載されるメッシュを使用し、原発性または続発性または後天性の出血/凝固/血栓形成障害患者を治療する。例示的な凝固障害としては、ビタミンK不足;Von Willebrand病;血友病;先天性フィブリノゲン欠乏症;Glanzmann血小板無力症;Bernard−Soulier症候群;および血小板減少症が挙げられる。凝固性が低下した例示的な患者としては、凝固カスケード系の1つ以上の成分が不足した被験体(Factor V;Factor X;Factor XIIなど)、および抗凝固剤治療(例えば、アスピリン;アルデパリン;ウロキナーゼ;ワーファリン;ヘパリン;トロンビン阻害剤など)、または正常なコントロールと比較して、出血が多くなるか、または凝固性が低くなる他の薬剤を接種した患者が挙げられる。
【0173】
到達させることが難しい位置(胃腸管、肺、心臓など)または複雑な形状/幾何形状を有する位置(例えば、鼻血のための鼻)にメッシュを適用しやすくするために、メッシュを1つ以上のデバイスに入れてもよい。例示的なデバイスとしては、円錐形および位置に達することが困難な位置にメッシュを移植することができる他のデバイスが挙げられる。他のデバイスとしては、腹腔鏡、内視鏡などが挙げられる。
【実施例】
【0174】
[実施例1]自己組織化ペプチドで止血を行う
材料および方法
配列RADARADARADARADA(RADA4;配列番号1)を有する自己組織化ペプチドの酢酸塩を滅菌水で3%になるように再構築した。試験施設に着くまで、コールドパック中、冷却器の周囲温度でこの材料を保存した。3個のバイアルのLyoケーキをスパチュラで砕き、次いで、1個のバイアルに合わせた。合わせた内容物を1mL体積の滅菌水で注射のために再構築した。凍結乾燥した配合物は、溶液に1分から2分で簡単に入り込み、使用30秒前にボルテックスによって攪拌した。
【0175】
それぞれ300gから320gの4匹の雌Sprague Dawleyラットを、キシラキシン/ケタミンの混合物で麻酔した。適切な麻酔平坦状態に達したら、腹部において、肝臓の右側の葉部が見え、作業できるように腹側正中線を切開した。門脈を露出させるためのさらなる操作を行い、血液の活性化血栓形成時間(ACT)の測定のために血液1mLを抜き取った。
【0176】
次いで、木製のスパチュラを、肝臓の右側の葉部の裏側に置き、直径4mmの生検パンチを使用し、直径4mmの全厚みの肝臓断面を除去し、新鮮な出血を伴う病変を得た。
【0177】
すぐに、滅菌水で再構築された、あらかじめ配合したRADA4ペプチドの3%水溶液0.5mLを、22と1/2ゲージ針を用い、上の生検部位に適用した。
【0178】
結果
RADA4ペプチド溶液を適用すると、出血がゆっくりになり、30秒以内に完全に止まった。RADA4適用から10分後の評価から、さらなる出血がなく、止血が安定したことを示した。
【0179】
[実施例2]抗凝固剤存在下、自己組織化ペプチドで止血を行う
材料および方法
抗凝固剤存在下で止血を達成することができるかどうかを決定するために、500IU/体重kgの投薬量でヘパリンを動物に門脈に直接注射して投与した。ヘパリン注射から2分後、第2の直径4mmの生検パンチによる病変を、肝臓の右側の葉部の第1の病変に隣接して作製し、3%RADA4ペプチド水溶液0.5mlを上の病変に再び加えた。
【0180】
結果
上のペプチドを添加して30秒以内に出血がゆっくりになり、止まったようであり、上述と同様に、この状態が10分で安定化した。これらの動物のベースラインACT測定は、約110秒であった。ヘパリン注射(500IU/kg)から8分後に行ったさらなるACT測定は、1,300秒より長く、このことは、これらの動物において、ヘパリンによって誘発される顕著な抗凝固性を示す。
【0181】
3%RADA4ペプチド水溶液として配合されたRADA4ペプチドの使用によって、臨床的に顕著な抗凝固存在下および非存在下で、ラットの肝臓生検パンチモデルにおいて、止血に成功した。
【0182】
他の意味であると定義されていない限り、本明細書で使用されるすべての技術用語および化学用語は、開示される本発明が属する当業者に一般的に理解されるのと同じ意味を有する。本明細書に引用される刊行物および引用される文書は、参考として明確に組み込まれる。
【0183】
当業者は、通常の実験を超えない実験を用い、本明細書に記載される本発明の具体的な実施形態の多くの均等物を認識するか、または確認することができるだろう。このような均等物は、以下の特許請求の範囲に包含されることを意図している。