(58)【調査した分野】(Int.Cl.,DB名)
車両装着時での車両内外の向きが指定されており、少なくとも車両外側となるタイヤサイド部に前記突起部が形成されている、請求項1から請求項10のいずれか1つに記載の空気入りタイヤ。
【発明を実施するための形態】
【0022】
以下、本発明に係る実施形態について図面を参照しながら説明するが、本発明はこれに限定されない。以下で説明する実施形態の構成要素は、適宜組み合わせることができる。また、一部の構成要素を用いない場合もある。
【0023】
また、この実施の形態の構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。また、この実施の形態に記載された複数の変形例は、当業者自明の範囲内にて任意に組み合わせが可能である。
【0024】
図1は、本実施の形態に係る空気入りタイヤ1の子午断面図である。以下の説明において、タイヤ径方向とは、空気入りタイヤ1の回転軸(図示せず)と直交する方向をいい、タイヤ径方向内側とはタイヤ径方向において回転軸に向かう側、タイヤ径方向外側とはタイヤ径方向において回転軸から離れる側をいう。また、タイヤ周方向とは、前記回転軸を中心軸とする周り方向をいう。また、タイヤ幅方向とは、前記回転軸と平行な方向をいい、タイヤ幅方向内側とはタイヤ幅方向においてタイヤ赤道面(タイヤ赤道線)CLに向かう側、タイヤ幅方向外側とはタイヤ幅方向においてタイヤ赤道面CLから離れる側をいう。タイヤ赤道面CLとは、空気入りタイヤ1の回転軸に直交するとともに、空気入りタイヤ1のタイヤ幅の中心を通る平面である。タイヤ幅は、タイヤ幅方向の外側に位置する部分同士のタイヤ幅方向における幅、つまり、タイヤ幅方向においてタイヤ赤道面CLから最も離れている部分間の距離である。タイヤ赤道線とは、タイヤ赤道面CL上にあって空気入りタイヤ1のタイヤ周方向に沿う線をいう。本実施の形態では、タイヤ赤道線にタイヤ赤道面と同じ符号「CL」を付す。
【0025】
本実施の形態の空気入りタイヤ1は、主に、乗用車に用いられるもので、
図1に示すようにトレッド部2と、その両側のショルダー部3と、各ショルダー部3から順次連続するサイドウォール部4およびビード部5とを有している。また、この空気入りタイヤ1は、カーカス層6と、ベルト層7と、ベルト補強層8とを備えている。
【0026】
トレッド部2は、ゴム材(トレッドゴム)からなり、空気入りタイヤ1のタイヤ径方向の最も外側で露出し、その表面が空気入りタイヤ1の輪郭となる。トレッド部2の外周表面、つまり、走行時に路面と接触する踏面には、トレッド面21が形成されている。トレッド面21は、タイヤ周方向に沿って延び、タイヤ赤道線CLと平行なストレート主溝である複数(本実施の形態では4本)の主溝22が設けられている。そして、トレッド面21は、これら複数の主溝22により、タイヤ周方向に沿って延び、タイヤ赤道線CLと平行なリブ状の陸部23が複数形成されている。また、図には明示しないが、トレッド面21は、各陸部23において、主溝22に交差するラグ溝が設けられている。陸部23は、ラグ溝によってタイヤ周方向で複数に分割されている。また、ラグ溝は、トレッド部2のタイヤ幅方向最外側でタイヤ幅方向外側に開口して形成されている。なお、ラグ溝は、主溝22に連通している形態、または主溝22に連通していない形態の何れであってもよい。
【0027】
ショルダー部3は、トレッド部2のタイヤ幅方向両外側の部位である。また、サイドウォール部4は、空気入りタイヤ1におけるタイヤ幅方向の最も外側に露出したものである。また、ビード部5は、ビードコア51とビードフィラー52とを有する。ビードコア51は、スチールワイヤであるビードワイヤをリング状に巻くことにより形成されている。ビードフィラー52は、カーカス層6のタイヤ幅方向端部がビードコア51の位置で折り返されることにより形成された空間に配置されるゴム材である。
【0028】
カーカス層6は、各タイヤ幅方向端部が、一対のビードコア51でタイヤ幅方向内側からタイヤ幅方向外側に折り返され、かつタイヤ周方向にトロイド状に掛け回されてタイヤの骨格を構成するものである。このカーカス層6は、タイヤ周方向に対する角度がタイヤ子午線方向に沿いつつタイヤ周方向にある角度を持って複数並設されたカーカスコード(図示せず)が、コートゴムで被覆されたものである。カーカスコードは、有機繊維(ポリエステルやレーヨンやナイロンなど)からなる。このカーカス層6は、少なくとも1層で設けられている。
【0029】
ベルト層7は、少なくとも2層のベルト71,72を積層した多層構造をなし、トレッド部2においてカーカス層6の外周であるタイヤ径方向外側に配置され、カーカス層6をタイヤ周方向に覆うものである。ベルト71,72は、タイヤ周方向に対して所定の角度(例えば、20度〜30度)で複数並設されたコード(図示せず)が、コートゴムで被覆されたものである。コードは、スチールまたは有機繊維(ポリエステルやレーヨンやナイロンなど)からなる。また、重なり合うベルト71,72は、互いのコードが交差するように配置されている。
【0030】
ベルト補強層8は、ベルト層7の外周であるタイヤ径方向外側に配置されてベルト層7をタイヤ周方向に覆うものである。ベルト補強層8は、タイヤ周方向に略平行(±5度)でタイヤ幅方向に複数並設されたコード(図示せず)がコートゴムで被覆されたものである。コードは、スチールまたは有機繊維(ポリエステルやレーヨンやナイロンなど)からなる。
図1で示すベルト補強層8は、ベルト層7のタイヤ幅方向端部を覆うように配置されている。ベルト補強層8の構成は、上記に限らず、図には明示しないが、ベルト層7全体を覆うように配置された構成、または、例えば2層の補強層を有し、タイヤ径方向内側の補強層がベルト層7よりもタイヤ幅方向で大きく形成されてベルト層7全体を覆うように配置され、タイヤ径方向外側の補強層がベルト層7のタイヤ幅方向端部のみを覆うように配置されている構成、あるいは、例えば2層の補強層を有し、各補強層がベルト層7のタイヤ幅方向端部のみを覆うように配置されている構成であってもよい。すなわち、ベルト補強層8は、ベルト層7の少なくともタイヤ幅方向端部に重なるものである。また、ベルト補強層8は、帯状(例えば幅10[mm])のストリップ材をタイヤ周方向に巻き付けて設けられている。
【0031】
ここで、以下の説明において、総幅は、空気入りタイヤ1を正規リムにリム組みし、かつ正規内圧(例えば、230[kPa])を充填した無負荷状態のときに、サイドウォール4上のデザイン(タイヤ側面の模様・文字など)を含んだサイドウォール4同士の間の間隔である。なお、上述のように230[kPa]という内圧は、総幅などの空気入りタイヤの寸法を規定するために選択されたものであり、本明細書に記載されているタイヤ寸法に係るパラメータは全て、内圧230[kPa]かつ無負荷状態において規定されているものとする。しかしながら、本発明に係る空気入りタイヤ1は、通常に使用される範囲の内圧が充填されているものであれば、本発明の効果を発揮するものであり、230[kPa]の内圧が充填されていることが本発明を実施する上で必須ではないことに留意されたい。
【0032】
また、タイヤサイド部Sとは、
図1において、トレッド部2の接地端Tからタイヤ幅方向外側であってリムチェックラインLからタイヤ径方向外側の範囲で一様に連続する面をいう。また、接地端Tとは、空気入りタイヤ1を正規リムにリム組みし、かつ正規内圧を充填するとともに正規荷重の70%をかけたとき、この空気入りタイヤ1のトレッド部2のトレッド面21が路面と接地する領域において、タイヤ幅方向の両最外端をいい、タイヤ周方向に連続する。また、リムチェックラインLとは、タイヤのリム組みが正常に行われているか否かを確認するためのラインであり、一般には、ビード部5の表側面において、リムフランジよりもタイヤ径方向外側であってリムフランジ近傍となる部分に沿ってタイヤ周方向に連続する環状の凸線として示されている。
【0033】
また、タイヤ最大幅位置Hとは、
図1に示すように、タイヤ断面幅HWの端となり、最もタイヤ幅方向の大きい位置である。タイヤ断面幅HWとは、空気入りタイヤ1を正規リムにリム組みし、かつ正規内圧を充填した無負荷状態のときに、最もタイヤ幅方向の大きい総幅からサイドウォール4上のデザイン(タイヤ側面の模様・文字など)を除いた幅である。なお、リムを保護するリムプロテクトバー(タイヤ周方向に沿って設けられてタイヤ幅方向外側に突出するもの)が設けられたタイヤにおいては、当該リムプロテクトバーが最もタイヤ幅方向の大きい部分となるが、本実施形態で定義するタイヤ断面幅HWは、リムプロテクトバーを除外する。
【0034】
なお、正規リムとは、JATMAで規定する「標準リム」、TRAで規定する「Design Rim」、あるいは、ETRTOで規定する「Measuring Rim」である。また、正規内圧とは、JATMAで規定する「最高空気圧」、TRAで規定する「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」に記載の最大値、あるいはETRTOで規定する「INFLATION PRESSURES」である。また、正規荷重とは、JATMAで規定する「最大負荷能力」、TRAで規定する「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」に記載の最大値、あるいはETRTOで規定する「LOAD CAPACITY」である。
【0035】
ここで、タイヤ最大幅位置Hとは、空気入りタイヤ1を正規リムにリム組みし、かつ正規内圧を充填した無負荷状態のときに、最もタイヤ幅方向の大きい位置である。
【0036】
(突起部)
本実施形態の空気入りタイヤ1は、タイヤ最大幅位置Hを含む、タイヤサイド部Sの範囲SDにおいて、当該タイヤサイド部Sの表面のプロファイルであるタイヤサイド面Saよりタイヤの外側に突出して設けた突起部9を有する。
【0037】
図2Aおよび
図2Bは、
図1の範囲SDに突起部9を設けた空気入りタイヤ1の例を示す図である。
図2Aは、空気入りタイヤ1を車両100に装着した例を示す。
図2Aに示すように、空気入りタイヤ1は、車両100のタイヤハウス100Hの内部に装着される。空気入りタイヤ1の回転方向が矢印Y1の方向である場合、車両100の進行方向は矢印Y2の方向である。
【0038】
空気入りタイヤ1は、タイヤサイド部Sに、複数の突起部91、92、93、94、95、96、97および98を有する。本例では、複数の突起部91、92、93、94、95、96、97および98の間隔は、均一すなわち等間隔である。そして、本例では、複数の突起部91、92、93、94、95、96、97および98は、タイヤ最大幅位置Hを通る。
【0039】
突起部91は、タイヤが装着される車両100の外側のタイヤサイド部Sに設けられる。突起部91は、車両100の外側のタイヤサイド部Sにおいて、空気入りタイヤ1の回転中心(回転軸)Pに対して、反時計回り方向の端部91T1と、時計回り方向の端部91T2とを有する。突起部91は、端部91T1が、端部91T2よりも、タイヤ径方向内側に位置している。このため、突起部91は、タイヤ径方向に対して交差する方向に延びている。なお、
図2Bに示すように、
図2Aとは逆に、端部91T2が、端部91T1よりも、タイヤ径方向内側に位置していてもよい。また、円弧の凸部側が空気入りタイヤ1の回転中心Pの方向を向いていてもよい。
【0040】
突起部91は、空気入りタイヤ1の回転中心(回転軸)Pに沿う方向の車両100の外側から見た形状が円弧状であり、円弧の凹部側が空気入りタイヤ1の回転中心Pの方向を向いている。
【0041】
他の突起部92、93、94、95、96、97および98についても、突起部91と同様である。なお、以降の説明では、突起部91、92、93、94、95、96、97および98を総称して「突起部9」と呼ぶことがある。
【0042】
(突起部による効果)
図3Aおよび
図3Bは、突起部を設けることによる効果を説明する図である。
図3Aは、突起部が設けられていないタイヤサイド部Sを有するタイヤの周囲の空気の流れを示す図である。
図3Bは、突起部が設けられているタイヤサイド部Sを有するタイヤの周囲の空気の流れを示す図である。なお、
図3Aおよび
図3Bは、路面から空気入りタイヤ1のトレッド面21を見上げた状態を示す。
【0043】
空気入りタイヤ1のサイド部Sに突起部が設けられていない場合、
図3Aに示すように、車両100の進行方向である矢印Y2に対して、矢印Y3で示す空気の流れは、空気入りタイヤ1の回転中心(回転軸)Pに直交する面(図示せず)とほぼ平行になる。
【0044】
これに対し、空気入りタイヤ1のタイヤサイド部Sに突起部9が設けられている場合、
図3Bに示すように、車両100の進行方向である矢印Y2に対して、矢印Y4で示す空気の流れは、空気入りタイヤ1の回転中心(回転軸)Pに直交する面(図示せず)から離れる方向、すなわち車両100から離れる方向になる。これにより、車両100の床面と路面との間の空気の密度が低くなる。このため、ダウンフォースが生じる。ダウンフォースの作用は、例えば、車両100の操縦安定性能の向上に寄与する。
【0045】
突起部9は、タイヤサイド部Sの少なくとも一方に設置されており、突起部9が設置されたタイヤサイド部Sが車両外側に向けた状態で空気入りタイヤ1が車両100に装着されれば、車両外側のタイヤサイド部Sの空気の流れを車両外側に押し出すことができ、ダウンフォースを増加させることができる。そして、突起部9の形状を適切にすることにより、空気入りタイヤ1のユニフォミティを良好に保ちつつ、ダウンフォースを増加させることができる。以下、空気入りタイヤ1のユニフォミティを良好に保ちつつ、ダウンフォースを増加させるための突起部9の配置や形状について説明する。
【0046】
(突起部の配置)
図4は、タイヤサイド部Sにおける突起部9の配置の例を示す図である。
図5A〜
図5Dは、突起部9の単位長さ当たりの質量および断面の面積を説明する図である。
【0047】
図4に示すように、タイヤ回転中心Pを通りタイヤ径方向に延びる、第1の直線S1および第2の直線S2を想定する。第1の直線S1と第2の直線S2とは、タイヤ周方向位置が互いに異なる。
【0048】
第1の直線S1は、突起部91を横切る。また、第1の直線S1は、突起部98を横切る。第1の直線S1が突起部91を横切る位置と、第1の直線S1が突起部98を横切る位置とは、タイヤ径方向に異なる位置である。第2の直線S2は、突起部98を横切る。第2の直線S2は、突起部91を横切らない。つまり、本例では、第1の直線S1が2以上の突起部91、98を横切り、第2の直線S2が単数の突起部98を横切る。
【0049】
このとき、第1の直線S1に沿った径方向において、2本の突起部91と突起部98とが重なり合う。第2の直線S2に沿った径方向においては、突起部98は他の突起部と重なり合っていない。
【0050】
(突起部の質量)
第1の直線S1および第2の直線S2と、突起部9とが上記のような関係である場合に、第1の直線S1が横切る突起部9の単位長さ当たりの質量の総和と、第2の直線S2が横切る突起部9の単位長さ当たりの質量の総和との比を、0.8以上1.2以下(すなわち「1」に近い値)とする。
【0051】
突起部91の単位長さとは、例えば、1mmである。突起部91の単位長さ当たりの質量について、
図5Aを参照して説明する。
図5Aにおいて、第1の直線S1を中心に両側に0.5mmずつ第1の直線S1を平行移動させた、直線S11および直線S12を想定する。直線S11と直線S12との間隔は単位長さである1mmとなる。つまり、直線が横切る突起部9の単位長さ当たりの質量とは、径方向に延びる直線を中心線とし、中心線に直交する方向の幅が単位長さとなる範囲に含まれる突起部の質量である。そして、突起部91を構成する材料のうち、直線S11を含んでタイヤ回転中心(回転軸)Pに平行な面(図示せず)と、直線S12を含んでタイヤ回転中心(回転軸)Pに平行な面(図示せず)との間に含まれる部分の質量が、突起部91の単位長さ当たりの質量[g/mm]である。
【0052】
同様に、突起部98を構成する材料のうち、直線S11を含んでタイヤ回転中心(回転軸)Pに平行な面(図示せず)と、直線S12を含んでタイヤ回転中心(回転軸)Pに平行な面(図示せず)との間に含まれる部分の質量が、突起部98の単位長さ当たりの質量[g/mm]である。また、第2の直線S2を中心に両側に0.5mmずつ第2の直線S2を平行移動させた、直線S21および直線S22を想定し、突起部98を構成する材料のうち、直線S21を含んでタイヤ回転中心(回転軸)Pに平行な面(図示せず)と、直線S22を含んでタイヤ回転中心(回転軸)Pに平行な面(図示せず)との間に含まれる部分の質量が、突起部98の単位長さ当たりの質量[g/mm]である。
【0053】
そして、上述したように、第1の直線S1が横切る突起部91および98の単位長さ当たりの質量の総和と、第2の直線S2が横切る突起部98の単位長さ当たりの質量の総和との比を、「1」に近い値とする。空気入りタイヤ1のタイヤ回転中心Pを通りタイヤ径方向に延びる、第1の直線および第2の直線を任意に想定した場合に、それらがそれぞれ横切る突起部9の単位長さ当たりの質量の総和の比が「1」に近い値であれば、空気入りタイヤ1のユニフォミティを良好な状態にすることができる。
【0054】
(突起部の断面積)
また、第1の直線S1および第2の直線S2と、突起部9とが上記のような関係である場合に、第1の直線S1が横切る2以上の突起部91および98の第1の直線S1に沿った断面の面積の総和に対する、第2の直線S2が横切る単数の突起部98の第2の直線S2に沿った断面の面積の比を、0.8以上1.2以下(すなわち「1」に近い値)としてもよい。突起部9の一部を異なる材料によって形成した場合には、上述したように単位長さ当たりの質量とは別にまたは質量と共に、断面積を基準とすることにより、突起部を適切に配置でき、ユニフォミティを良好な状態にすることができる。
【0055】
第1の直線S1が横切る突起部91の第1の直線S1に沿った断面(第1の直線S1を含んでタイヤ回転中心(回転軸)Pに平行な面に沿った断面)は、例えば、
図5Bに示す断面DAとなる。第1の直線S1が横切る突起部98の第1の直線S1に沿った断面(第1の直線S1を含んでタイヤ回転中心(回転軸)Pに平行な面に沿った断面)は、例えば、
図5Cに示す断面DBとなる。第2の直線S2が横切る突起部98の第2の直線S2に沿った断面(第2の直線S2を含んでタイヤ回転中心(回転軸)Pに平行な面に沿った断面)は、例えば、
図5Dに示す断面DCとなる。
【0056】
そして、上述したように、第1の直線S1が横切る2以上の突起部91、98の第1の直線S1に沿った断面DA、DBの面積の総和に対する、第2の直線S2が横切る突起部98の第2の直線S2に沿った断面DCの面積の比を、「1」に近い値とする。つまり、空気入りタイヤ1のタイヤ回転中心Pを通りタイヤ径方向に延びる、第1の直線および第2の直線を任意に想定した場合に、それらがそれぞれ横切る突起部9の断面の面積の総和の比が「1」に近い値であれば、空気入りタイヤ1のユニフォミティを良好な状態にすることができる。
【0057】
なお、上記のような質量および断面の面積の関係を実現するには、突起部の形状または長さを工夫するか、または、突起部の本数を増減すればよい。例えば、突起部9を、両端部の高さよりも中央部の高さのほうが高い形状にすることにより、上記のような質量および断面の面積の関係を実現することができる。突起部9の両端部の高さと中央部の高さとが同じであれば、任意の2本の直線を想定した場合に、径方向で重なり合う突起部の本数が同じになるように突起部9を配置すれば、上記のような質量および断面の面積の関係を実現できる。
【0058】
(突起部の高さおよび幅)
図6Aから
図6Cは、突起部9の高さおよび幅を説明する図である。
図6Bは、突起部を空気入りタイヤの側面から視た拡大図であり、
図6Cは、突起部の側面図である。
図6Aから
図6Cに示す突起部91は、その中央部91Tの高さが、端部91T1、端部91T2の高さよりも高い。このように、突起部9を、中央部の高さが、両端部の高さよりも高い形状にすることにより、上記のような質量および断面の面積の関係を実現することができる。
【0059】
具体的に、突起部9は、
図6Bおよび
図6Cに示すように、延在方向における中間部9A、および中間部9Aの延在方向の両側に連続して設けられた各先端部9Bで構成されている。中間部9Aは、突起部9の延在方向の長さ9Lの中央部9Tから延在方向の両側に長さ9Lの25%の範囲の部分である。先端部9Bは、中間部9Aの延在方向の両側にさらに延在して設けられ、延在方向の各端部9T1,9T2から突起部9の延在方向の長さ9Lの5%を除く範囲の部分である。突起部9の延在方向の長さ9Lは、突起部9の各端部9T1,9T2間の最短(直線)距離とする。
【0060】
そして、中間部9Aは、タイヤサイド面Saからの突出高さhの最大位置hHを含む。また、先端部9Bは、タイヤサイド面Saからの突出高さhの最小位置hLを含む。
図6Cでは、突起部9の延在方向の突出高さhは、一方の端部9T1から中央部9Tに向かって徐々に高くなり、中央部9Tから他方の端部9T2に向かって徐々に低くなっている。この場合、突出高さhの最大位置hHは中央部9Tに一致し、最小位置hLは端部9T1や端部9T2から長さ9Lの5%の位置であって先端部9Bの端に一致する。なお、
図6Cにおいて、突起部9の延在方向の突出高さhは、円弧状に変化して示しているが、この限りではなく、直線状に変化していてもよい。また、最大位置hHは、中間部9A全体であってもよく、この場合に先端部9Bは中間部9Aから徐々に突出高さhが低くなる。このように、突起部9は、中間部9Aの最大位置hHが、両先端部9Bの最小位置hLよりも高い。
【0061】
また、本実施形態の空気入りタイヤ1では、突起部9は、中間部9Aの突出高さhが1mm以上10mm以下であることが好ましい。
【0062】
中間部9Aの突出高さhが1mm未満であると、車両外側のタイヤサイド部Sの空気の流れを車両外側に押し出したり、後述の乱流境界層を発生させたりする作用が得難くなる。一方、中間部9Aの突出高さhが10mmを超えると、突起部9に衝突する空気の流れが増加することで空気抵抗が増加する傾向となる。このため、ダウンフォースを増加させると共に空気抵抗を低減する効果を顕著に得るうえで、中間部9Aの突出高さhを1mm以上10mm以下とすることが好ましい。
【0063】
また、
図6Aから
図6Cに示すように、突起部91は、その中央部91Tの幅が、端部91T1、端部91T2の幅よりも大きい。このように、突起部9を、中央部の幅が、両端部の幅よりも大きい形状にすることにより、上記のような質量および断面の面積の関係を実現することができる。
【0064】
具体的に、
図6Bに示すように、突起部9の中間部9Aは、最大幅位置WHを含む。また、突起部9の先端部9Bは、最小幅位置WLを含む。
図6Bでは、突起部9の幅は、一方の端部9T1から中央部9Tに向かって徐々に広くなり、中央部9Tから他方の端部9T2に向かって徐々に狭くなっている。この場合、幅の最大幅位置WHは中央部9Tに一致し、最小幅位置WLは端部9T1や端部9T2から長さ9Lの5%の位置であって先端部9Bの端に一致する。なお、
図6Bにおいて、突起部9の幅は、円弧状に変化して示しているが、この限りではなく、直線状に変化していてもよい。また、最大幅位置WHは、中間部9A全体であってもよく、この場合に先端部9Bは中間部9Aから徐々に幅が狭くなる。なお、本実施形態において、突起部9の幅は、突起部9の延在方向の長さ9Lに対して直交する方向の寸法をいう。このように、突起部9は、中間部9Aの最大幅位置WHが、両先端部9Bの最小幅位置WLよりも大きい。
【0065】
なお、上述した実施形態の空気入りタイヤ1において、突起部9の短手方向の幅は、0.5mm以上10.0mm以下とされていることが好ましい。突起部9の短手方向の幅が上記範囲未満であると、突起部9が空気の流れに接触する範囲が小さいことから、突起部9による空気の流れのよどみを改善する効果が得難くなる。一方、突起部9の短手方向の幅が上記範囲を超えると、突起部9が空気の流れに接触する範囲が大きいことから、突起部9が空気抵抗の増加の原因となったり、タイヤ重量の増加の原因になったりし得る。従って、突起部9の短手方向の幅を適正化することで、突起部9による空気の流れのよどみを改善する効果を顕著に得ることができる。
【0066】
(突起部同士の重なり)
図7は、突起部9の長さを説明する図である。
図7に示すように、第1の直線S1が突起部91を横切る位置と、第1の直線S1が突起部98を横切る位置とは、タイヤ径方向に異なる位置である。このため、第1の直線S1に沿った径方向において、2本の突起部91と突起部98とが重なり合う。
【0067】
ここで、突起部91の端部91T1を通って第1の直線S1に平行な直線SS11と、突起部98の端部98T2を通って第1の直線S1に平行な直線SS12とを想定する。このとき、直線SS11と直線SS12との距離を、突起部91と突起部98とが重なり合う部分の長さL18とする。
【0068】
突起部91と突起部98とが重なり合う部分の長さL18は、突起部91の長さの20%以上60%以下であり、かつ、突起部98の長さの20%以上60%以下である。
【0069】
突起部9の長さ9L(
図6Bおよび
図6Cに示す)は、例えば、タイヤサイド部Sの範囲SDの高さの30%を超える長さであることが好ましい。
【0070】
突起部の長さがそのような長さで、かつ、突起部同士が径方向で重なり合う部分の長さが上記の範囲であれば、ユニフォミティを良好に保ちつつ、ダウンフォースを高めることができる。
【0071】
(突起部のタイヤ周方向での質量変化)
図8は、突起部9のタイヤ周方向の質量変化を説明する図である。
図8に示すように、回転中心(回転軸)Pからタイヤ径方向に切断したタイヤ周方向に1degあたりの突起部9の質量のタイヤ周方向での変動量が0.2g/deg以下であることが好ましい。
【0072】
突起部9を含むタイヤ周方向での質量の変動を規定することでタイヤ周方向の均一性が向上するため、ユニフォミティを良好にする効果を顕著に得ることができる。
【0073】
(突起部の断面形状)
図9〜
図22は、突起部9の短手方向の断面の例を示す図である。突起部9の延在方向に直交する短手方向の断面形状について、
図9に示す突起部9は、短手方向の断面形状が四角形状とされている。
図10に示す突起部9は、短手方向の断面形状が三角形状とされている。
図11に示す突起部9は、短手方向の断面形状が台形状とされている。また、突起部9の短手方向の断面形状は、曲線を基にした外形であってもよい。
図12に示す突起部9は、短手方向の断面形状が半円形状とされている。その他、
図12には明示しないが、突起部9の短手方向の断面形状は、例えば、半楕円形状であったり、半長円形状であったりする様々な円弧に基づく形状であってもよい。また、突起部9の短手方向の断面形状は、直線および曲線を組み合わせた外形であってもよい。
【0074】
図13に示す突起部9は、短手方向の断面形状が四角形状の角を曲線とされている。
図14に示す突起部9は、短手方向の断面形状が三角形状の角を曲線とされている。また、突起部9の短手方向の断面形状は、
図13〜
図15に示すように、タイヤサイド部Sから突出する根元部分を曲線とした形状とされていてもよい。また、突起部9の短手方向の断面形状は、様々な形状の組み合わせであってもよい。
図16に示す突起部9は、四角形状の頂部が複数(
図16では2つ)の三角形状でジグザグ状とされている。
図17に示す突起部9は、四角形状の頂部が1つの三角形状で尖って形成されている。
図18に示す突起部9は、四角形状の頂部が四角形状に凹んで形成されている。
図19に示す突起部9は、四角形状の頂部が四角形に凹んで形成され、凹みの両側が突出高さhを変えて形成されている。
図20に示す突起部9は、四角形状の台部9aがタイヤサイド部Sから突出形成され、その台部9aの上部に四角形状が複数(
図20では2つ)突出形成されている。その他、
図20には明示しないが、突起部9の短手方向の断面形状は、四角形状の頂部が波形であったりする様々な形状であってもよい。
【0075】
また、
図9〜
図20において、突起部9は、長手方向に断面形状(タイヤサイド部Sからの突出高さhや短手方向の幅W)が一様に形成されていてもよく、または
図21および
図22の突起部9の長手方向の側面図に示すように、長手方向に断面形状(タイヤサイド部Sからの突出高さh)が変化して形成されていてもよい。
図21に示す突起部9は、長手方向に沿ってタイヤサイド部Sからの突出端が凹凸状(櫛歯状)に形成されている。
図22に示す突起部9は、長手方向に沿ってタイヤサイド部Sからの突出端が凹凸状(ジグザグ状)に形成されている。また、
図22には明示しないが、突起部9は、長手方向に沿ってタイヤサイド部Sからの突出端が凹凸状(波状)に形成されていてもよい。また、
図22には明示しないが、突起部9は、長手方向に沿って短手方向の幅が変化して形成されていてもよい。
【0076】
図23Aは突起部9の外観図、
図23Bは
図23AにおけるA−A断面図である。
図23Aおよび
図23Bに示すように、突起部9は、長手方向で湾曲して延在して形成されており、その長手方向の中心線が、タイヤ径方向の成分よりもタイヤ周方向の成分を多く含む、すなわち、タイヤ周方向の接線との角度が90度未満に形成されている。
【0077】
また、
図24Aは突起部9の外観図、
図24Bは
図24AにおけるB−B断面図である。
図24Aおよび
図24Bに示すように、タイヤ周方向に沿って長手状の四角形状の台部9aがタイヤサイド部Sから突出形成され、その台部9aの上部に、
図23Aおよび
図23Bに示す突起部9が突出形成されている。
【0078】
また、突起部9は、タイヤ幅方向において、両側のタイヤサイド部Sに設けられていても、一方のタイヤサイド部Sに設けられていてもよい。
【0079】
このように、本実施の形態の空気入りタイヤ1は、少なくとも一方のタイヤサイド部Sであってタイヤ最大幅位置Hよりタイヤ径方向外側に、主にタイヤ周方向に沿って長手状に延在する突起部9を配置した。
【0080】
この空気入りタイヤ1によれば、突起部9によってタイヤサイド部Sを通過する空気を乱流化させる。このため、空気入りタイヤ1の周囲に乱流境界層が発生し、車両後方において車両外側に抜ける空気の膨らみが抑制される。この結果、通過する空気の広がりが抑えられ、空気入りタイヤ1の空気抵抗を低減し、燃費の向上を図ることが可能になる。しかも、突起部9は、主にタイヤ径方向に沿って長手状に延在するもので、比較的簡素な構造である。この結果、構造の複雑化を抑え、空気入りタイヤ1の製造コストを低減することが可能になる。
【0081】
(突起部の溝や凹部)
ところで、突起部9をタイヤサイド部Sに設けると、その部分の剛性が高まる。タイヤサイド部Sの剛性が高まることは、乗り心地などタイヤの性能に影響する可能性がある。そこで、突起部9に溝またはスリットや凹部を設けて、剛性が高まることを抑えるようにしてもよい。
【0082】
図25Aは、溝を設けた突起部の例を示す図である。
図25Bは、
図25AにおけるC−C断面図である。以下、例として、突起部91に設ける溝について説明するが、他の突起部についても同様である。
【0083】
図25Aに示すように、空気入りタイヤ1のタイヤサイド部Sに設けた突起部91は、その表面であって両端部9T1,9T2間の途中に、溝Mを複数有する。溝Mを有する場合、溝Mによって突起部91が分断されることになり、突起部91は溝Mを境に物理的には別々の突起部と考えることもできる。しかしながら、溝Mの幅が2mm以下の場合、空力特性上問題が無く、溝Mを含めた全体として突起部91となり、空力的な影響は無く、ダウンフォースを増加させる効果に影響は無い。
【0084】
図25Bに示すように、溝Mの深さMDは、例えば、突起部91の突出高さh未満であればよい。溝Mの深さMDは、例えば、空気入りタイヤ1のプロファイル1a(タイヤサイド面Sa)に達しない深さであればよい。また、溝Mの深さMDは、例えば、溝を有しないタイヤ1の溝Mの周囲である突起部91の頂部から、プロファイル1aまでの突出高さhの90%以下であることが好ましい。なお、
図26Bにおける突起部9の短手方向の断面の三角形状は一例である。
【0085】
溝Mは、突起部91の全体に設けてもよいし、一部分に設けてもよい。溝Mの数は、単数でもよいし、複数でもよい。溝Mの数が複数である場合、溝M同士の間隔を一定にして溝Mをタイヤ周方向に均等に設けてもよいし、溝M同士の間隔が異なるように設けてもよい。少なくとも1つの突起部9に溝Mを設けることにより、溝Mを設けない場合に比べて、タイヤサイド部Sの剛性が高まることを抑え、乗り心地が低下することを防止できる。しかも、溝Mが形成されていることにより、突起部9の質量が低下するため、突起部9によりタイヤサイド部Sの質量増加によるユニフォミティの低下を抑えることができる。
【0086】
図25Cおよび
図25Dは、突起部91に対する溝Mの角度の例を示す図である。
図25Cに示すように、溝Mは、溝Mの延在する中心線MCを、突起部9の短手方向の中央を通過する中心線SLの接線GLに対して同じ角度θ(例えば、θ=90°)とすることが、突起部9の延在方向での極度の質量変化を抑える上で好ましい。また、
図25Dに示すように、溝Mは、例えば、溝Mの延在する中心線MCを、突起部9の短手方向の中央を通過する中心線SLの接線GLに対して角度θを90度以外としてもよい。なお、
図25Dでは、溝Mの延在する中心線MCは、突起部9の延在方向に交差するように長さ9Lに対して所定間隔で複数設けられている。また、溝Mの形状は、直線状でなくてもよい。例えば、溝Mの形状は、曲線状、屈曲線状または波線状であってもよい。
【0087】
図26Aは、凹部を設けた突起部の例を示す図である。
図26Bは、
図26AにおけるD−D断面図である。
図26Aに示すように、空気入りタイヤ1のタイヤサイド部Sに設けた突起部9は、その表面であって両端部9T1,9T2間の途中に、凹部Dを複数有する。凹部Dを有する場合、凹部Dによって突起部9の一部が分断されることになり、突起部9は凹部Dを境に物理的には別々の突起部と考えることもできる。しかしながら、凹部Dの開口径が2mm以下の場合、空力特性上問題が無く、凹部Dを含めた全体として突起部9となり、空力的な影響は無く、ダウンフォースを増加させる効果に影響は無い。
【0088】
図26Bに示すように、凹部Dの深さDDは、例えば、突起部9の突出高さh未満であればよい。凹部Dの深さDDは、例えば、空気入りタイヤ1のプロファイル1a(タイヤサイド面Sa)に達しない深さであればよい。また、凹部Dの深さDDは、例えば、凹部Dを有さない凹部Dの周囲である突起部9の頂部から、プロファイル1aまでの突出高さhの90%以下であることが好ましい。なお、
図27Bにおける突起部9の短手方向の断面の三角形状は一例である。
【0089】
凹部Dは、突起部9の全体に設けてもよいし、一部分に設けてもよい。凹部Dの数は、単数でもよいし、複数でもよい。凹部Dの数が複数である場合、凹部D同士の間隔を一定にして凹部Dをタイヤ周方向に均等に設けてもよいし、凹部D同士の間隔が異なるように設けてもよい。突起部9に凹部Dを設けることにより、凹部Dを設けない場合に比べて、タイヤサイド部Sの剛性が高まることを抑え、乗り心地が低下することを防止できる。しかも、凹部Dが形成されていることにより、突起部9の質量が低下するため、突起部9によりタイヤサイド部Sの質量増加によるユニフォミティの低下を抑えることができる。
【0090】
また、本実施形態の空気入りタイヤ1では、
図27の溝Mおよび凹部Dを設けた突起部9の例を示す図に示すように、突起部9の表面に溝Mおよび凹部Dを形成することが好ましい。
【0091】
溝Mおよび凹部Dが形成されていることにより、突起部9の剛性が低下するため、突起部9によりタイヤサイド部Sが剛構造となることによる乗り心地性の低下を抑えることができる。しかも、溝Mおよび凹部Dが形成されていることにより、突起部9の質量が低下するため、突起部9によりタイヤサイド部Sの質量増加によるユニフォミティの低下を抑えることができる。なお、溝Mおよび凹部Dは、
図28において突起部9の延在方向に沿って交互に設けられているが、これに限らず、適宜混在して配置してもよい。
【0092】
溝Mや凹部Dは、タイヤサイド部Sの、撓みが大きな部分に設けることが好ましい。例えば、溝Mや凹部Dを設ける位置は、タイヤサイド部Sの範囲SDのうち、タイヤ最大幅位置Hを含む範囲に設けることが好ましい。
【0093】
図28は、突起部に溝Mや凹部Dを設ける範囲SDHを示す図である。
図28において、溝Mや凹部Dは、例えば、タイヤサイド部Sに設けられている突起部9(
図28では省略)の、範囲SDHの部分に設ける。溝Mや凹部Dを設ける範囲SDHの高さは、例えば、タイヤサイド部Sの高さタイヤ最大幅位置Hを中心とし、タイヤサイド部Sの範囲SDの高さの20%以上80%以下とする。この範囲SDHに設けられている突起部9に溝Mや凹部Dを設ければ、タイヤサイド部Sの剛性が高まることを抑え、乗り心地が低下することを防止できる。
【0094】
また、本実施形態の空気入りタイヤ1では、各突起部9のタイヤ周方向における間隔が不均一であることが好ましい。
【0095】
この空気入りタイヤ1によれば、タイヤサイド部Sのタイヤサイド面Saに沿う空気流に対して各突起部9のタイヤ周方向の周期性を打ち消すことから、各突起部9から発生する音圧が周波数の違いにより互いに分散されたり打ち消されたりするため、騒音(音圧レベル)を低減することができる。
【0096】
なお、突起部9の間隔とは、空気入りタイヤ1の側面視において、突起部9の端部9T1,9T2からタイヤ径方向に補助線(図示せず)を引き、各突起部9での補助線間の回転中心(回転軸)Pを中心とする角度として示される。そして、各突起部9の間隔を不均一にするには、突起部9の形状(突出高さhや、短手方向の幅Wや、延在方向の長さ9L)やタイヤ周方向やタイヤ径方向に交差する傾きを同じくしてタイヤ周方向のピッチを変えること、形状(突出高さhや、短手方向の幅Wや、延在方向の長さ9L)を変えること、タイヤ周方向やタイヤ径方向に交差する傾きを変えること、などにより実施することができる。
【0097】
また、突起部9は、タイヤ周方向でのピッチが、トレッド部2のラグ溝のタイヤ周方向でのピッチに対して等ピッチでも、異なるピッチでもよい。突起部9のタイヤ周方向でのピッチを、トレッド部2のラグ溝のタイヤ周方向でのピッチに対して異ならせると、突起部9から発生する音圧と、ラグ溝による音圧とが周波数の違いにより互いに分散や打ち消しされるため、ラグ溝により発生するパターンノイズを低減することができる。なお、突起部9のタイヤ周方向でのピッチを異ならせるラグ溝は、複数の主溝22によりタイヤ幅方向に複数区画形成されたリブ状の陸部23における全てのラグ溝を含む。ただし、ラグ溝により発生するパターンノイズを低減する効果を顕著に得るには、突起部9に最も近くに配置されるタイヤ幅方向最外側のラグ溝のピッチに対して突起部9のタイヤ周方向でのピッチを異ならせることが好ましい。
【0098】
また、本実施の形態の空気入りタイヤ1は、車両装着時での車両内外の向きが指定されており、車両外側となるタイヤサイド部Sに突起部9が配置されることが好ましい。
【0099】
すなわち、本実施形態の空気入りタイヤ1は、車両100(
図3Aおよび
図3B参照)に装着した場合、タイヤ幅方向において、車両100の内側および外側に対する向きが指定されている。車両内側および車両外側に対する向きの指定は、図には明示しないが、例えば、サイドウォール部4に設けられた指標により示される。このため、車両100に装着した場合に車両100の内側に向く側が車両内側となり、車両100の外側に向く側が車両外側となる。なお、車両内側および車両外側の指定は、車両100に装着した場合に限らない。例えば、リム組みした場合に、タイヤ幅方向において、車両100の内側および外側に対するリム50(
図2Aおよび
図2B参照)の向きが決まっている。このため、空気入りタイヤ1は、リム組みした場合、タイヤ幅方向において、車両内側および車両外側に対する向きが指定される。
【0100】
車両外側のタイヤサイド部Sは、車両100への装着時にタイヤハウス100Hから外側に現れるため、この車両外側のタイヤサイド部Sに突起部9を設けることで、空気の流れを車両外側に押し出すことができ、ダウンフォースを増加させることができる。
【0101】
(突起部の他の配置例)
図29から
図32は、突起部9の他の例を示す図である。
【0102】
図29に示す空気入りタイヤ1は、タイヤサイド部Sに、複数の突起部91a、92a、93a、94a、95a、96a、97aおよび98aを有する。本例では、複数の突起部91a、92a、93a、94a、95a、96a、97aおよび98aの間隔は、均一すなわち等間隔である。そして、本例では、複数の突起部91a、92a、93a、94a、95a、96a、97aおよび98aは、タイヤ最大幅位置Hを含む範囲SDに配置される。
【0103】
突起部91aは、タイヤが装着される車両100の外側のタイヤサイド部Sに設けられる。突起部91aは、両端部と空気入りタイヤ1の回転中心Pとの関係が、
図2Aに示す突起部91とは逆の関係になっている。すなわち、突起部91aは、時計回り方向の端部が、反時計回り方向の端部よりも、タイヤ径方向内側に位置している。突起部91aは、
図2Bに示す突起部91と同様に、空気入りタイヤ1の回転中心(回転軸)Pに沿う方向の車両100の外側から見た形状が円弧状であり、円弧の凹部側が空気入りタイヤ1の回転中心Pの方向を向いている。他の突起部92a、93a、94a、95a、96a、97aおよび98aについても、突起部91aと同様である。
【0104】
図30に示す空気入りタイヤ1は、タイヤサイド部Sに、複数の突起部91b、92b、93b、94b、95b、96b、97bおよび98bを有する。本例では、複数の突起部91b、92b、93b、94b、95b、96b、97bおよび98bの間隔は、均一すなわち等間隔である。そして、本例では、複数の突起部91b、92b、93b、94b、95b、96b、97bおよび98bは、タイヤ最大幅位置Hを含む範囲SDに配置される。
【0105】
突起部91bは、空気入りタイヤ1の回転中心(回転軸)Pに沿う方向の車両100の外側から見た形状が円弧状であり、
図29に示す突起部91aとは逆に円弧の凸部側が空気入りタイヤ1の回転中心Pの方向を向いている。他の突起部92b、93b、94b、95b、96b、97bおよび98bについても、突起部91bと同様である。
【0106】
図31に示す空気入りタイヤ1は、タイヤサイド部Sに、複数の突起部91c、92c、93c、94c、95c、96c、97cおよび98cを有する。本例では、複数の突起部91c、92c、93c、94c、95c、96c、97cおよび98cの間隔は、均一すなわち等間隔である。そして、本例では、複数の突起部91c、92c、93c、94c、95c、96c、97cおよび98cは、タイヤ最大幅位置Hを含む範囲SDに配置される。
【0107】
突起部91c、92c、93c、94c、95c、96c、97cおよび98cは、空気入りタイヤ1の回転中心(回転軸)Pに沿う方向の車両100の外側から見た形状が円弧状である。そして、
図29に示す空気入りタイヤ1とは異なり、円弧の凹部側が空気入りタイヤ1の回転中心Pの方向を向く91c、93c、95c、97cと、円弧の凸部側が空気入りタイヤ1の回転中心Pの方向を向く92c、94c、96c、98cとが交互に配置される。
【0108】
図32に示す空気入りタイヤ1は、タイヤサイド部Sに、複数の突起部91d、92d、93d、94d、95d、96d、97dおよび98dを有する。本例では、複数の突起部91d、92d、93d、94d、95d、96d、97dおよび98dの間隔は、均一すなわち等間隔である。そして、本例では、複数の突起部91d、92d、93d、94d、95d、96d、97dおよび98dは、タイヤ最大幅位置Hを含む範囲SDに配置される。そして、
図29に示す空気入りタイヤ1とは異なり、円弧の凸部側が空気入りタイヤ1の回転中心Pの方向を向く91d、93d、95d、97dと、円弧の凹部側が空気入りタイヤ1の回転中心Pの方向を向く92d、94d、96d、98dとが交互に配置される。円弧の凸部側が空気入りタイヤ1の回転中心Pの方向を向く91d、93d、95d、97dは、円弧の端部よりも円弧の凸部が空気入りタイヤ1の回転中心Pに近くなるように配置される。円弧の凹部側が空気入りタイヤ1の回転中心Pの方向を向く92d、94d、96d、98dは、円弧の端部よりも円弧の凹部が空気入りタイヤ1の回転中心Pから遠くなるように配置される。
【0109】
上述したように、本実施形態の空気入りタイヤ1は、タイヤサイド部Sのタイヤ最大幅位置Hを含む範囲SDに設けられ、タイヤ径方向に対して交差する方向に延びている複数の突起部9を含み、複数の突起部9は、タイヤ周方向に互いに間隔を空けて設けられ、タイヤ回転中心Pを通りタイヤ径方向に延び、タイヤ周方向位置が互いに異なる第1の直線および第2の直線が突起部をそれぞれ横切る場合に、第1の直線が横切る前記突起部の単位長さ当たりの質量の総和と、第2の直線が横切る突起部9の単位長さ当たりの質量の総和との比が、0.8以上1.2以下である。
【0110】
また、本実施形態の空気入りタイヤ1は、タイヤサイド部Sのタイヤ最大幅位置Hを含む範囲SDに設けられ、タイヤ径方向に対して交差する方向に延びている複数の突起部9を含み、複数の突起部9は、タイヤ周方向に互いに間隔を空けて設けられ、タイヤ周方向に1degあたりの前記突起部9の質量のタイヤ周方向での変動量が0.2g/deg以下である。
【0111】
さらに、本実施形態の空気入りタイヤ1は、タイヤサイド部Sのタイヤ最大幅位置Hを含む範囲SDに設けられ、タイヤ径方向に対して交差する方向に延びている複数の突起部9を含み、前記複数の突起部9は、タイヤ周方向に互いに間隔を空けて設けられ、タイヤ回転中心Pを通りタイヤ径方向に延び、タイヤ周方向位置が互いに異なる第1の直線および第2の直線が突起部9をそれぞれ横切る場合に、第1の直線が横切る突起部9の前記第1の直線に沿った断面の面積の総和と、第2の直線が横切る突起部9の第2の直線に沿った断面の面積の総和との比が、0.8以上1.2以下である。
【0112】
このような本実施形態の空気入りタイヤ1によれば、上記のごとく配置された突起部9によりユニフォミティを良好に保ちつつ、ダウンフォースを高めると共に空気抵抗を低減することができる。
【0113】
なお、各突起部の周方向の間隔は、均一すなわち等間隔ではなく、不均一としてもよい。突起部の周方向の間隔を不均一とすることにより、タイヤサイド部を流れる空気の流れに対する突起部の配置の周期性がなくなり、特定周波数での騒音を低減できる。
【0114】
(実施例)
本実施例では、条件が異なる複数種類の空気入りタイヤについて、操縦安定性能(乾燥路面)、空気抵抗低減性能、ユニフォミティ、リフト低減性能(ダウンフォース向上性能)、乗り心地性能、および音圧レベル低減性能に関する試験が行われた。その結果を表1および表2に示す。
【0115】
操縦安定性能の試験は、新品時の試験タイヤおよび摩耗限界時の試験タイヤを、正規リムにリム組みし、正規内圧を充填した。そして、上記試験タイヤをモータアシスト付き乗用車に装着し、乾燥路面のテストコースを走行して行った。ダウンフォースの作用により、操縦安定性能が向上するため、運転者のフィーリングによって、従来例を基準(100)とした指数で示した指数評価が行われる。この指数評価は、数値が大きいほど操縦安定性能が優れていることを示している。
【0116】
ユニフォミティの試験は、試験タイヤを、正規リムにリム組みし、正規内圧を充填した。そして、上記試験タイヤにおいて、タイヤユニフォミティJASO C607「自動車タイヤのユニフォミティ試験法」に規定の方法に準じてラジアルフォースバリエーション(LFV)を測定する。そして、この測定結果に基づいて、従来例を基準(100)とした指数評価が行われる。この指数評価は、数値が98以上であれば均一性が保たれてユニフォミティが維持されていることを示し、数値が大きいほど均一性がよくユニフォミティが優れていることを示している。
【0117】
リフト低減性能および空気抵抗低減性能の試験は、モータアシスト付き乗用車のボディモデルに試験タイヤを装着した車両モデルのシミュレーションにおいて、走行速度80km/h相当で走行した場合の風洞試験を行い、その空力抵抗係数により格子ボルツマン法による流体解析ソフトウェアを用いて空力特性(リフト低減性能および空気抵抗低減性能)を算出し、算出結果に基づいて、従来例を基準(100)とした指数評価が行われる。これらの指数評価は、数値が大きいほどリフト低減性能、および空気抵抗低減性能が優れていることを示している。
【0118】
乗り心地性能の試験は、試験タイヤを上記試験車両に装着し、段差10mmの凹凸を有する直進テストコースを50km/hで実車走行し、パネラー3人による乗り心地のフィーリングテストを実施する。そして、テスト結果3回の平均を、従来例を基準(100)とした指数で示した指数評価が行われる。この指数評価は、数値が99以上であれば乗り心地性能が維持されていることを示し、数値が大きいほど乗り心地性能が優れていることを示している。
【0119】
音圧レベル低減性能の試験は、試験タイヤを上記試験車両に装着し、走行速度80km/h相当で走行した場合の車外騒音の音圧レベル(音圧レベル低減性能)を計測し、計測結果に基づいて、従来例を基準(100)とした指数評価が行われる。この係数評価は、数値が99以上であれば音圧レベル低減性能が維持されていることを示し、数値が大きいほど音圧レベル低減性能が優れていることを示している。
【0120】
表1において、従来例の空気入りタイヤは、表1に記載のタイヤサイズであって、突起部を有していない。また、比較例1〜比較例3の空気入りタイヤは、表1に記載のタイヤサイズであって、短手方向の断面形状が
図10に示す三角形状で、タイヤ最大幅位置を通ってタイヤ径方向に対して交差する方向に延びている複数の突起部を有しているが、当該突起部における質量の比が規定の範囲から外れている。
【0121】
一方、表1において、実施例1〜実施例13の空気入りタイヤは、規定範囲の表1に記載のタイヤサイズであって、
図8に示すような形態であり、短手方向の断面形状が
図10に示す三角形状で、タイヤ最大幅位置を通ってタイヤ径方向に対して交差する方向に延びている複数の突起部を有し、当該突起部における質量の比が規定を満たしている。その他、実施例1〜実施例13の空気入りタイヤは、突起部のタイヤ径方向での重複や、延在方向の突起部の突出高さや、延在方向の突起部の幅や、突起部のタイヤ周方向1degあたりの質量変化や、溝の有無や、凹部の有無や、突起部の間隔や、車両装着時の配置などの規定を満たしている。
【0122】
また、表2において、従来例の空気入りタイヤは、表2に記載のタイヤサイズであって、突起部を有していない。また、比較例4〜比較例6の空気入りタイヤは、表2に記載のタイヤサイズであって、短手方向の断面形状が
図10に示す三角形状で、タイヤ最大幅位置を通ってタイヤ径方向に対して交差する方向に延びている複数の突起部を有しているが、当該突起部における断面積の比が規定の範囲から外れている。
【0123】
一方、表2において、実施例14〜実施例26の空気入りタイヤは、規定範囲の表2に記載のタイヤサイズであって、
図8に示すような形態であり、短手方向の断面形状が
図10に示す三角形状で、タイヤ最大幅位置を通ってタイヤ径方向に対して交差する方向に延びている複数の突起部を有し、当該突起部における断面積の比が規定を満たしている。その他、実施例14〜実施例26の空気入りタイヤは、突起部のタイヤ径方向での重複や、延在方向の突起部の突出高さや、延在方向の突起部の幅や、突起部のタイヤ周方向1degあたりの質量変化や、溝の有無や、凹部の有無や、突起部の間隔や、車両装着時の配置などの規定を満たしている。
【0124】
そして、表1および表2の試験結果に示すように、各実施例の空気入りタイヤは、操縦安定性能、空気抵抗低減性能、ユニフォミティ、リフト低減性能、乗り心地性能、および音圧レベル低減性能が維持または改善していることが分かる。