(58)【調査した分野】(Int.Cl.,DB名)
工程(2)において、細胞培養容器中に含まれる細胞培養培地の総体積が、細胞生存域を含むポリイミド多孔質膜体積の総和の10000倍又はそれより少ない、請求項1〜5のいずれか1項に記載の方法。
ポリイミド多孔質膜が、テトラカルボン酸二無水物とジアミンとから得られるポリアミック酸溶液と着色前駆体とを含むポリアミック酸溶液組成物を成形した後、250℃以上で熱処理することにより得られる着色したポリイミド多孔質膜である、請求項10又は11に記載の方法。
【発明を実施するための形態】
【0014】
本発明の一態様は、脱分化しやすい細胞の脱分化を抑制する方法であって、
(1)前記細胞をポリマー多孔質膜に適用する工程、及び
(2)前記細胞を培養し、増殖させる工程
を含み、
ここで、前記ポリマー多孔質膜が、複数の孔を有する表面層A及び表面層Bと、前記表面層A及び表面層Bの間に挟まれたマクロボイド層とを有する三層構造のポリマー多孔質膜であり、ここで前記表面層Aに存在する孔の平均孔径は、前記表面層Bに存在する孔の平均孔径よりも小さく、前記マクロボイド層は、前記表面層A及びBに結合した隔壁と、当該隔壁並びに前記表面層A及びBに囲まれた複数のマクロボイドとを有し、前記表面層A及びBにおける孔が前記マクロボイドに連通している、前記方法に関する。以下で「本発明の脱分化抑制方法」とも呼ぶ。
【0015】
また、本発明の別の態様は、脱分化しやすい細胞を調製する方法であって、
(1)前記細胞をポリマー多孔質膜に適用する工程、及び
(2)前記細胞を培養し、増殖させる工程
を含み、
ここで、前記ポリマー多孔質膜が、複数の孔を有する表面層A及び表面層Bと、前記表面層A及び表面層Bの間に挟まれたマクロボイド層とを有する三層構造のポリマー多孔質膜であり、ここで前記表面層Aに存在する孔の平均孔径は、前記表面層Bに存在する孔の平均孔径よりも小さく、前記マクロボイド層は、前記表面層A及びBに結合した隔壁と、当該隔壁並びに前記表面層A及びBに囲まれた複数のマクロボイドとを有し、前記表面層A及びBにおける孔が前記マクロボイドに連通しており、
前記工程(2)において前記細胞の脱分化は抑制される、前記方法に関する。以下で「本発明の細胞調製方法」とも呼ぶ。
【0016】
また、本発明の別の態様は、脱分化しやすい細胞を用いて物質を産生する方法であって、
(1)前記細胞をポリマー多孔質膜に適用する工程、
(2)前記細胞を培養し、増殖させる工程、及び
(3)前記細胞が産生する物質を回収する工程
を含み、
ここで、前記ポリマー多孔質膜が、複数の孔を有する表面層A及び表面層Bと、前記表面層A及び表面層Bの間に挟まれたマクロボイド層とを有する三層構造のポリマー多孔質膜であり、ここで前記表面層Aに存在する孔の平均孔径は、前記表面層Bに存在する孔の平均孔径よりも小さく、前記マクロボイド層は、前記表面層A及びBに結合した隔壁と、当該隔壁並びに前記表面層A及びBに囲まれた複数のマクロボイドとを有し、前記表面層A及びBにおける孔が前記マクロボイドに連通しており、
前記工程(2)において前記細胞の脱分化は抑制される、前記方法に関する。以下で「本発明の物質産生方法」とも呼ぶ。
【0017】
「本発明の脱分化抑制方法」、「本発明の細胞調製方法」及び「本発明の物質産生方法」を、以下で「本発明の方法」とも呼ぶ。
【0018】
本明細書中、「脱分化」とは、より未分化性の高い状態に戻ることを意味し、言い換えれば、分化とは逆のプロセスをいう。
【0019】
本発明の方法で使用される「脱分化しやすい細胞」としては、特に限定されないが、例えば従来の平板培養では脱分化する傾向にある細胞であり、好ましくは軟骨細胞、骨芽細胞、象牙芽細胞、エナメル芽細胞、乳腺上皮細胞、繊毛上皮細胞、腸上皮細胞、脂肪細胞、肝細胞、メサンギウム細胞、糸球体上皮細胞、類洞内皮細胞、又は筋芽細胞である。より好ましくは、軟骨細胞又は骨芽細胞である。本明細書において、「脱分化しやすい細胞」を、以下で単に「本発明で使用される細胞」とも呼ぶ。
【0020】
本発明に利用し得る脱分化しやすい細胞の種類は、特に限定されないが、好ましくは哺乳動物の細胞であり、より好ましくは霊長類(ヒト、サルなど)、げっ歯類(マウス、ラット、モルモットなど)、ネコ、イヌ、ウサギ、ヒツジ、ブタ、ウシ、ウマ、ロバ、ヤギ又はフェレットの細胞であり、特に好ましくはヒトの細胞である。
【0021】
1.本発明で使用される細胞をポリマー多孔質膜へする適用する工程について
本発明で使用される細胞のポリマー多孔質膜への適用の具体的な工程は特に限定されない。本明細書に記載の工程、あるいは、細胞を膜状の担体に適用するのに適した任意の手法を採用することが可能である。限定されるわけではないが、本発明の方法において、細胞のポリマー多孔質膜への適用は、例えば、以下のような態様を含む。
【0022】
(A)細胞を前記ポリマー多孔質膜の表面に播種する工程を含む、態様;
(B)前記ポリマー多孔質膜の乾燥した表面に細胞懸濁液を載せ、
放置するか、あるいは前記ポリマー多孔質膜を移動して液の流出を促進するか、あるいは表面の一部を刺激して、細胞懸濁液を前記膜に吸い込ませ、そして、
細胞懸濁液中の細胞を前記膜内に留め、水分は流出させる、
工程を含む、態様;並びに、
(C)前記ポリマー多孔質膜の片面又は両面を、細胞培養液又は滅菌された液体で湿潤し、
前記湿潤したポリマー多孔質膜に細胞懸濁液を装填し、そして、
細胞懸濁液中の細胞を前記膜内に留め、水分は流出させる、
工程を含む、態様。
【0023】
(A)の態様は、ポリマー多孔質膜の表面に細胞、細胞塊を直接播種することを含む。あるいは、ポリマー多孔質膜を細胞懸濁液中に入れて、膜の表面から細胞培養液を浸潤させる態様も含む。
【0024】
ポリマー多孔質膜の表面に播種された細胞は、ポリマー多孔質膜に接着し、多孔の内部に入り込んでいく。好ましくは、特に外部から物理的又は化学的な力を加えなくても、細胞はポリマー多孔質膜に自発的に接着する。ポリマー多孔質膜の表面に播種された細胞は、膜の表面及び/又は内部において安定して生育・増殖することが可能である。細胞は生育・増殖する膜の位置に応じて、種々の異なる形態をとりうる。
【0025】
(B)の態様において、ポリマー多孔質膜の乾燥した表面に細胞懸濁液を載せる。ポリマー多孔質膜を放置するか、あるいは前記ポリマー多孔質膜を移動して液の流出を促進するか、あるいは表面の一部を刺激して、細胞懸濁液を前記膜に吸い込ませることにより、細胞懸濁液が膜中に浸透する。理論に縛られるわけではないが、これはポリマー多孔質膜の各表面形状等に由来する性質によるものであると考えられる。本態様により、膜の細胞懸濁液が装填された箇所に細胞が吸い込まれて播種される。
【0026】
あるいは、(C)の態様のように、前記ポリマー多孔質膜の片面又は両面の部分又は全体を、細胞培養液又は滅菌された液体で湿潤してから、湿潤したポリマー多孔質膜に細胞懸濁液を装填してもよい。この場合、細胞懸濁液の通過速度は大きく向上する。
【0027】
例えば、膜の飛散防止を主目的として膜極一部を湿潤させる方法(以後、これを「一点ウェット法」と記載する)を用いることができる。一点ウェット法は、実質上は膜を湿潤させないドライ法((B)の態様)にほぼ近いものである。ただし、湿潤させた小部分については、細胞液の膜透過が迅速になると考えられる。また、ポリマー多孔質膜の片面又は両面の全体を十分に湿潤させたもの(以後、これを「ウェット膜」と記載する)に細胞懸濁液を装填する方法も用いることができる(以後、これを「ウェット膜法」と記載する)。この場合、ポリマー多孔質膜の全体において、細胞懸濁液の通過速度が大きく向上する。
【0028】
(B)及び(C)の態様において、細胞懸濁液中の細胞を前記膜内に留め、水分は流出させる。これにより細胞懸濁液中の細胞の濃度を濃縮する、細胞以外の不要な成分を水分とともに流出させる、などの処理も可能になる。
【0029】
(A)の態様を「自然播種」(B)及び(C)の態様を「吸込み播種」と呼称する場合がある。
【0030】
限定されるわけではないが、好ましくは、ポリマー多孔質膜には生細胞が選択的に留まる。よって、本発明の方法の好ましい実施形態において、生細胞が前記ポリマー多孔質膜内に留まり、死細胞は優先的に水分とともに流出する。
【0031】
態様(C)において用いる滅菌された液体は特に限定されないが、滅菌された緩衝液若しくは滅菌水である。緩衝液は、例えば、(+)及び(-)Dulbecco’s PBS 、(+)及び(-)Hank's Balanced Salt Solution等である。緩衝液の例を以下の表1に示す。
【0033】
さらに、本発明の方法において、細胞のポリマー多孔質膜への適用は、浮遊状態にある接着性細胞をポリマー多孔質膜と懸濁的に共存させることにより細胞を膜に付着させる態様(絡め取り)も含む。例えば、本発明の方法において、細胞をポリマー多孔質膜に適用するために、細胞培養容器中に、細胞培養培地、細胞及び1又はそれ以上の前記ポリマー多孔質膜を入れてもよい。細胞培養培地が液体の場合、ポリマー多孔質膜は細胞培養培地中に浮遊した状態である。ポリマー多孔質膜の性質から、細胞はポリマー多孔質膜に接着しうる。よって、生来浮遊培養に適さない細胞であっても、ポリマー多孔質膜は細胞培養培地中に浮遊した状態で培養することが可能である。好ましくは、細胞は、ポリマー多孔質膜に自発的に接着する。「自発的に接着する」とは、特に外部から物理的又は化学的な力を加えなくても、細胞がポリマー多孔質膜の表面又は内部に留まることを意味する。
【0034】
上述した細胞のポリマー多孔質膜への適用は、2種類又はそれより多くの方法を組み合わせて用いてもよい。例えば、態様(A)〜(C)のうち、2つ以上の方法を組み合わせてポリマー多孔質膜に細胞を適用してもよい。
【0035】
2.本発明で使用される細胞を培養し、増殖させる工程について
細胞培養は、細胞培養における存在形態により培養細胞は接着培養系細胞と浮遊培養系細胞に分類することができる。接着培養系細胞は培養容器に付着し増殖する培養細胞であり、継代には培地交換を行う。浮遊培養系細胞は培地中において浮遊状態で増殖する培養細胞であり、一般的には継代の際には培地交換は行わず、希釈培養を行う。浮遊培養は、浮遊状態、即ち液体中での培養が可能なため、大量培養が可能であり、培養容器表面にのみ生育する付着細胞と比較すると、立体的な培養である為に、単位空間当りの培養可能細胞数は多いという利点がある。
【0036】
本発明の方法において、ポリマー多孔質膜を細胞培養培地中に浮遊した状態で用いる場合、2以上の前記ポリマー多孔質膜の小片を用いてもよい。ポリマー多孔質膜は立体的でフレキシブルな薄膜であるため、例えばその小片を培養液中に浮遊させて用いることにより、一定容量の細胞培養培地中に多くの培養可能な表面積を有するポリマー多孔質膜を持ち込むことが可能となる。通常培養の場合、容器底面積が細胞培養可能な面積の上限となるが、本発明のポリマー多孔質膜を用いた細胞培養では、先の持ち込まれたポリマー多孔質膜の大表面積の全てが細胞培養可能な面積となる。ポリマー多孔質膜は細胞培養液を通過させるので、例えば折りたたまれた膜内にも栄養や酸素等の供給が可能となる。また、ポリマー多孔質膜は従来の平面培養とは全く異なり、立体的かつフレキシブルな構造を有する細胞培養基材であるため、接着性を有する細胞を培養容器の形状を選ばず、様々な形状、材質、大きさの培養容器内でも培養可能である(例えば、シャーレ、フラスコ、タンク、バッグ等)。
【0037】
ポリマー多孔質膜の小片の大きさ、形状は、特に限定されない。形状は、円、楕円形、四角、三角、多角形、ひも状など任意の形をとりうる。
【0038】
本発明のポリマー多孔質膜は柔軟性があるため形状を変化させて用いることができる。ポリマー多孔質膜を平面状ではなく、立体状に形状を加工して用いてもよい。例えば、ポリマー多孔質膜を、i)折り畳んで、ii)ロール状に巻き込んで、iii)シートもしくは小片を糸状の構造体で連結させて、あるいは、iv)縄状に結んで、細胞培養容器中の細胞培養培地中で浮遊もしくは固定させてもよい。i)〜iv)のように形状を加工することにより、小片を用いる場合と同様に、一定容量の細胞培養培地中に多くのポリマー多孔質膜を入れることができる。さらに、各小片を集合体として取り扱うことができるため、細胞体を集合化して移動させることが可能となり、総合的な応用性が高い。
【0039】
小片集合体と同様の考え方として、2以上のポリマー多孔質膜を、上下又は左右に細胞培養培地中に積層して用いてもよい。積層とは、ポリマー多孔質膜が一部重なる態様も含む。積層培養により、狭いスペースで高密度に細胞を培養することが可能になる。既に細胞が育成している膜上にさらに膜を積層させて設置して別種細胞との多層系を形成することも可能である。積層するポリマー多孔質膜の数は特に限定されない。
【0040】
本発明の方法において、好ましくは、細胞はポリマー多孔質膜の表面及び内部に生育し増殖する。
【0041】
本発明の方法において、従来のようにトリプシン処理等を行う継代操作を行う事なく、少なくとも30日間、少なくとも60日間、少なくとも120日間、少なくとも200日間、または少なくとも300日間の長期にわたって、脱分化を抑制しながら細胞を培養することができる。また、本発明の方法により、従来の平面培養で培養することができる期間以上、例えば、平面培養期間の1.5倍以上、2倍以上、2.5倍以上、3倍以上、3.5倍以上、4倍以上、4.5倍以上の期間、脱分化を抑制しながら細胞を培養することができる。本発明によれば、シャーレ等の平面培養での長期間の細胞培養で発生する細胞の剥離や死滅等を生じる事なく、休止状態ではなく動的な生命を長期間維持する事ができる。また、本発明によれば、長期培養した細胞であってもセルバイアビリティ又は細胞の性質(例えば、細胞表面マーカーの発現量等)が、長期培養前の細胞と比較してほとんど変化しない。また、本発明によれば、細胞がポリマー多孔質膜内において三次元的に増殖するため、従来の平面培養で見られるような培養領域の制限及び平面環境によりおこるコンタクトインヒビションが起こりにくいため、長期間、生育させる培養が可能となる。また、本発明によれば、細胞が接着したポリマー多孔質膜に別のポリマー多孔質膜を接触させることによって、細胞培養可能な空間を任意に増加することが可能であり、従来のようなトリプシン処理を伴った継代操作を行うことなく、コンタクトインヒビションが引き起こされるコンフルエント状態を回避しながら長期間、増殖させる培養が可能となる。また、本発明によれば、細胞を凍結等行うことなく、生きたまま長期間保存するという新たな保存方法までも提供するものである。
【0042】
3.本発明で使用されるポリマー多孔質膜について
本発明で使用されるポリマー多孔質膜中の表面層A(以下で、「A面」又は「メッシュ面」とも呼ぶ)に存在する孔の平均孔径は、特に限定されないが、例えば、0.01μm以上200μm未満、0.01〜150μm、0.01〜100μm、0.01〜50μm、0.01μm〜40μm、0.01μm〜30μm、0.01μm〜20μm、又は0.01μm〜15μmであり、好ましくは、0.01μm〜15μmである。
【0043】
本発明で使用されるポリマー多孔質膜中の表面層B(以下で、「B面」又は「大穴面」とも呼ぶ)に存在する孔の平均孔径は、表面層Aに存在する孔の平均孔径よりも大きい限り特に限定されないが、例えば、5μm超200μm以下、20μm〜100μm、30μm〜100μm、40μm〜100μm、50μm〜100μm、又は60μm〜100μmであり、好ましくは、20μm〜100μmである。
【0044】
ポリマー多孔質膜表面の平均孔径は、多孔質膜表面の走査型電子顕微鏡写真より、200点以上の開孔部について孔面積を測定し、該孔面積の平均値から下式(1)に従って孔の形状が真円であるとした際の平均直径を計算より求めることができる。
【数1】
(式中、Saは孔面積の平均値を意味する。)
【0045】
表面層A及びBの厚さは、特に限定されないが、例えば0.01〜50μmであり、好ましくは0.01〜20μmである。
【0046】
ポリマー多孔質膜におけるマクロボイド層中のマクロボイドの膜平面方向の平均孔径は、特に限定されないが、例えば10〜500μmであり、好ましくは10〜100μmであり、より好ましくは10〜80μmである。また、当該マクロボイド層中の隔壁の厚さは、特に限定されないが、例えば0.01〜50μmであり、好ましくは、0.01〜20μmである。一の実施形態において、当該マクロボイド層中の少なくとも1つの隔壁は、隣接するマクロボイド同士を連通する、平均孔径0.01〜100μmの、好ましくは0.01〜50μmの、1つ又は複数の孔を有する。別の実施形態において、当該マクロボイド層中の隔壁は孔を有さない。
【0047】
本発明で使用されるポリマー多孔質膜の膜厚は、特に限定されないが、5μm以上、10μm以上、20μm以上又は25μm以上であってもよく、500μm以下、300μm以下、100μm以下、75μm以下又は50μm以下であってもよい。好ましくは、5〜500μmであり、より好ましくは25〜75μmである。
【0048】
本発明で使用されるポリマー多孔質膜の膜厚の測定は、接触式の厚み計で行うことができる。
【0049】
本発明で使用されるポリマー多孔質膜の空孔率は特に限定されないが、例えば、40%以上95%未満である。
【0050】
本発明において用いられるポリマー多孔質膜の空孔率は、所定の大きさに切り取った多孔質フィルムの膜厚及び質量を測定し、目付質量から下式(2)に従って求めることができる。
【数2】
(式中、Sは多孔質フィルムの面積、dは膜厚、wは測定した質量、Dはポリマーの密度をそれぞれ意味する。ポリマーがポリイミドである場合は、密度は1.34g/cm
3とする。)
【0051】
本発明において用いられるポリマー多孔質膜は、好ましくは、複数の孔を有する表面層A及び表面層Bと、前記表面層A及び表面層Bの間に挟まれたマクロボイド層とを有する三層構造のポリマー多孔質膜であって、ここで前記表面層Aに存在する孔の平均孔径は0.01μm〜15μmであり、前記表面層Bに存在する孔の平均孔径は20μm〜100μmであり、前記マクロボイド層は、前記表面層A及びBに結合した隔壁と、当該隔壁並びに前記表面層A及びBに囲まれた複数のマクロボイドとを有し、前記マクロボイド層の隔壁、並びに前記表面層A及びBの厚さは0.01〜20μmであり、前記表面層A及びBにおける孔がマクロボイドに連通しており、総膜厚が5〜500μmであり、空孔率が40%以上95%未満である、ポリマー多孔質膜である。一の実施形態において、マクロボイド層中の少なくとも1つの隔壁は、隣接するマクロボイド同士を連通する、平均孔径0.01〜100μmの、好ましくは0.01〜50μmの、1つ又は複数の孔を有する。別の実施形態において、隔壁は、そのような孔を有さない。
【0052】
本発明において用いられるポリマー多孔質膜は、滅菌されていることが好ましい。滅菌処理としては、特に限定されないが、乾熱滅菌、蒸気滅菌、エタノール等消毒剤による滅菌、紫外線やガンマ線等の電磁波滅菌等任意の滅菌処理などが挙げられる。
【0053】
本発明で使用されるポリマー多孔質膜は、上記した構造的特徴を備える限り、特に限定されないが、好ましくはポリイミド、又はポリエーテルスルホン(PES)の多孔質膜である。
【0054】
ポリイミドとは、繰り返し単位にイミド結合を含む高分子の総称であり、通常は、芳香族化合物が直接イミド結合で連結された芳香族ポリイミドを意味する。芳香族ポリイミドは芳香族と芳香族とがイミド結合を介して共役構造を持つため、剛直で強固な分子構造を持ち、かつ、イミド結合が強い分子間力を持つために非常に高いレベルの熱的、機械的、化学的性質を有する。
【0055】
一実施形態において、本発明で使用され得るポリイミド多孔質膜は、好ましくは、テトラカルボン酸二無水物とジアミンとから得られるポリイミドを(主たる成分として)含むポリイミド多孔質膜であり、より好ましくはテトラカルボン酸二無水物とジアミンとから得られるポリイミドからなるポリイミド多孔質膜である。「主たる成分として含む」とは、ポリイミド多孔質膜の構成成分として、テトラカルボン酸二無水物とジアミンとから得られるポリイミド以外の成分は、本質的に含まない、あるいは含まれていてもよいが、テトラカルボン酸二無水物とジアミンとから得られるポリイミドの性質に影響を与えない付加的な成分であることを意味する。
【0056】
本発明で使用され得るポリイミド多孔質膜は、テトラカルボン酸成分とジアミン成分とから得られるポリアミック酸溶液と着色前駆体とを含むポリアミック酸溶液組成物を成形した後、250℃以上で熱処理することにより得られる着色したポリイミド多孔質膜も含まれる。
【0057】
ポリアミック酸は、テトラカルボン酸成分とジアミン成分とを重合して得られる。ポリアミック酸は、熱イミド化又は化学イミド化することにより閉環してポリイミドとすることができるポリイミド前駆体である。
【0058】
ポリアミック酸は、アミック酸の一部がイミド化していても、本発明に影響を及ぼさない範囲であればそれを用いることができる。すなわち、ポリアミック酸は、部分的に熱イミド化又は化学イミド化されていてもよい。
【0059】
ポリアミック酸を熱イミド化する場合は、必要に応じて、イミド化触媒、有機リン含有化合物、無機微粒子、有機微粒子等の微粒子等をポリアミック酸溶液に添加することができる。また、ポリアミック酸を化学イミド化する場合は、必要に応じて、化学イミド化剤、脱水剤、無機微粒子、有機微粒子等の微粒子等をポリアミック酸溶液に添加することができる。ポリアミック酸溶液に前記成分を配合しても、着色前駆体が析出しない条件で行うことが好ましい。
【0060】
本明細書において、「着色前駆体」とは、250℃以上の熱処理により一部または全部が炭化して着色化物を生成する前駆体を意味する。
【0061】
上記ポリイミド多孔質膜の製造において使用され得る着色前駆体としては、ポリアミック酸溶液又はポリイミド溶液に均一に溶解または分散し、250℃以上、好ましくは260℃以上、更に好ましくは280℃以上、より好ましくは300℃以上の熱処理、好ましくは空気等の酸素存在下での250℃以上、好ましくは260℃以上、更に好ましくは280℃以上、より好ましくは300℃以上の熱処理により熱分解し、炭化して着色化物を生成するものが好ましく、黒色系の着色化物を生成するものがより好ましく、炭素系着色前駆体がより好ましい。
【0062】
着色前駆体は、加熱していくと一見炭素化物に見えるものになるが、組織的には炭素以外の異元素を含み、層構造、芳香族架橋構造、四面体炭素を含む無秩序構造のものを含む。
【0063】
炭素系着色前駆体は特に制限されず、例えば、石油タール、石油ピッチ、石炭タール、石炭ピッチ等のタール又はピッチ、コークス、アクリロニトリルを含むモノマーから得られる重合体、フェロセン化合物(フェロセン及びフェロセン誘導体)等が挙げられる。これらの中では、アクリロニトリルを含むモノマーから得られる重合体及び/又はフェロセン化合物が好ましく、アクリロニトリルを含むモノマーから得られる重合体としてはポリアクリルニトリルが好ましい。
【0064】
また、別の実施形態において、本発明で使用され得るポリイミド多孔質膜は、上記の着色前駆体を使用せずに、テトラカルボン酸成分とジアミン成分とから得られるポリアミック酸溶液を成形した後、熱処理することにより得られる、ポリイミド多孔質膜も含まれる。
【0065】
着色前駆体を使用せずに製造されるポリイミド多孔質膜は、例えば、極限粘度数が1.0〜3.0であるポリアミック酸3〜60質量%と有機極性溶媒40〜97質量%とからなるポリアミック酸溶液をフィルム状に流延し、水を必須成分とする凝固溶媒に浸漬又は接触させて、ポリアミック酸の多孔質膜を作製し、その後当該ポリアミック酸の多孔質膜を熱処理してイミド化することにより製造されてもよい。この方法において、水を必須成分とする凝固溶媒が、水であるか、又は5質量%以上100質量%未満の水と0質量%を超え95質量%以下の有機極性溶媒との混合液であってもよい。また、上記イミド化の後、得られた多孔質ポリイミド膜の少なくとも片面にプラズマ処理を施してもよい。
【0066】
上記ポリイミド多孔質膜の製造において使用され得るテトラカルボン酸二無水物は、任意のテトラカルボン酸二無水物を用いることができ、所望の特性などに応じて適宜選択することができる。テトラカルボン酸二無水物の具体例として、ピロメリット酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(s−BPDA)、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物(a−BPDA)などのビフェニルテトラカルボン酸二無水物、オキシジフタル酸二無水物、ジフェニルスルホン−3,4,3’,4’−テトラカルボン酸二無水物、ビス(3,4−ジカルボキシフェニル)スルフィド二無水物、2,2−ビス(3,4−ジカルボキシフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン二無水物、2,3,3’,4’−ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、ビス(3,4−ジカルボキシフェニル)メタン二無水物、2,2−ビス(3,4−ジカルボキシフェニル)プロパン二無水物、p−フェニレンビス(トリメリット酸モノエステル酸無水物)、p−ビフェニレンビス(トリメリット酸モノエステル酸無水物)、m−ターフェニル−3,4,3’,4’−テトラカルボン酸二無水物、p−ターフェニル−3,4,3’,4’−テトラカルボン酸二無水物、1,3−ビス(3,4−ジカルボキシフェノキシ)ベンゼン二無水物、1,4−ビス(3,4−ジカルボキシフェノキシ)ベンゼン二無水物、1,4−ビス(3,4−ジカルボキシフェノキシ)ビフェニル二無水物、2,2−ビス〔(3,4−ジカルボキシフェノキシ)フェニル〕プロパン二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物、1,4,5,8−ナフタレンテトラカルボン酸二無水物、4,4’−(2,2−ヘキサフルオロイソプロピリデン)ジフタル酸二無水物等を挙げることができる。また、2,3,3’,4’−ジフェニルスルホンテトラカルボン酸等の芳香族テトラカルボン酸を用いることも好ましい。これらは単独でも、2種以上を組み合わせて用いることもできる。
【0067】
これらの中でも、特に、ビフェニルテトラカルボン酸二無水物及びピロメリット酸二無水物からなる群から選ばれる少なくとも一種の芳香族テトラカルボン酸二無水物が好ましい。ビフェニルテトラカルボン酸二無水物としては、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物を好適に用いることができる。
【0068】
上記ポリイミド多孔質膜の製造において使用され得るジアミンは、任意のジアミンを用いることができる。ジアミンの具体例として、以下のものを挙げることができる。
1)1,4−ジアミノベンゼン(パラフェニレンジアミン)、1,3−ジアミノベンゼン、2,4−ジアミノトルエン、2,6−ジアミノトルエンなどのベンゼン核1つのべンゼンジアミン;
2)4,4’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテルなどのジアミノジフェニルエーテル、4,4’−ジアミノジフェニルメタン、3,3’−ジメチル−4,4’−ジアミノビフェニル、2,2’−ジメチル−4,4’−ジアミノビフェニル、2,2’−ビス(トリフルオロメチル)−4,4’−ジアミノビフェニル、3,3’−ジメチル−4,4’−ジアミノジフェニルメタン、3,3’−ジカルボキシ−4,4’−ジアミノジフェニルメタン、3,3’,5,5’−テトラメチル−4,4’−ジアミノジフェニルメタン、ビス(4−アミノフェニル)スルフィド、4,4’−ジアミノベンズアニリド、3,3’−ジクロロベンジジン、3,3’−ジメチルベンジジン、2,2’−ジメチルベンジジン、3,3’−ジメトキシベンジジン、2,2’−ジメトキシベンジジン、3,3’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルエーテル、3,3’−ジアミノジフェニルスルフィド、3,4’−ジアミノジフェニルスルフィド、4,4’−ジアミノジフェニルスルフィド、3,3’−ジアミノジフェニルスルホン、3,4’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルスルホン、3,3’−ジアミノベンゾフェノン、3,3’−ジアミノ−4,4’−ジクロロベンゾフェノン、3,3’−ジアミノ−4,4’−ジメトキシベンゾフェノン、3,3’−ジアミノジフェニルメタン、3,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルメタン、2,2−ビス(3−アミノフェニル)プロパン、2,2−ビス(4−アミノフェニル)プロパン、2,2−ビス(3−アミノフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン、2,2−ビス(4−アミノフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン、3,3’−ジアミノジフェニルスルホキシド、3,4’−ジアミノジフェニルスルホキシド、4,4’−ジアミノジフェニルスルホキシドなどのベンゼン核2つのジアミン;
3)1,3−ビス(3−アミノフェニル)ベンゼン、1,3−ビス(4−アミノフェニル)ベンゼン、1,4−ビス(3−アミノフェニル)ベンゼン、1,4−ビス(4−アミノフェニル)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,4−ビス(3−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)−4−トリフルオロメチルベンゼン、3,3’−ジアミノ−4−(4−フェニル)フェノキシベンゾフェノン、3,3’−ジアミノ−4,4’−ジ(4−フェニルフェノキシ)ベンゾフェノン、1,3−ビス(3−アミノフェニルスルフィド)ベンゼン、1,3−ビス(4−アミノフェニルスルフィド)ベンゼン、1,4−ビス(4−アミノフェニルスルフィド)ベンゼン、1,3−ビス(3−アミノフェニルスルホン)ベンゼン、1,3−ビス(4−アミノフェニルスルホン)ベンゼン、1,4−ビス(4−アミノフェニルスルホン)ベンゼン、1,3−ビス〔2−(4−アミノフェニル)イソプロピル〕ベンゼン、1,4−ビス〔2−(3−アミノフェニル)イソプロピル〕ベンゼン、1,4−ビス〔2−(4−アミノフェニル)イソプロピル〕ベンゼンなどのベンゼン核3つのジアミン;
4)3,3’−ビス(3−アミノフェノキシ)ビフェニル、3,3’−ビス(4−アミノフェノキシ)ビフェニル、4,4’−ビス(3−アミノフェノキシ)ビフェニル、4,4’−ビス(4−アミノフェノキシ)ビフェニル、ビス〔3−(3−アミノフェノキシ)フェニル〕エーテル、ビス〔3−(4−アミノフェノキシ)フェニル〕エーテル、ビス〔4−(3−アミノフェノキシ)フェニル〕エーテル、ビス〔4−(4−アミノフェノキシ)フェニル〕エーテル、ビス〔3−(3−アミノフェノキシ)フェニル〕ケトン、ビス〔3−(4−アミノフェノキシ)フェニル〕ケトン、ビス〔4−(3−アミノフェノキシ)フェニル〕ケトン、ビス〔4−(4−アミノフェノキシ)フェニル〕ケトン、ビス〔3−(3−アミノフェノキシ)フェニル〕スルフィド、ビス〔3−(4−アミノフェノキシ)フェニル〕スルフィド、ビス〔4−(3−アミノフェノキシ)フェニル〕スルフィド、ビス〔4−(4−アミノフェノキシ)フェニル〕スルフィド、ビス〔3−(3−アミノフェノキシ)フェニル〕スルホン、ビス〔3−(4−アミノフェノキシ)フェニル〕スルホン、ビス〔4−(3−アミノフェノキシ)フェニル〕スルホン、ビス〔4−(4−アミノフェノキシ)フェニル〕スルホン、ビス〔3−(3−アミノフェノキシ)フェニル〕メタン、ビス〔3−(4−アミノフェノキシ)フェニル〕メタン、ビス〔4−(3−アミノフェノキシ)フェニル〕メタン、ビス〔4−(4−アミノフェノキシ)フェニル〕メタン、2,2−ビス〔3−(3−アミノフェノキシ)フェニル〕プロパン、2,2−ビス〔3−(4−アミノフェノキシ)フェニル〕プロパン、2,2−ビス〔4−(3−アミノフェノキシ)フェニル〕プロパン、2,2−ビス〔4−(4−アミノフェノキシ)フェニル〕プロパン、2,2−ビス〔3−(3−アミノフェノキシ)フェニル〕−1,1,1,3,3,3−ヘキサフルオロプロパン、2,2−ビス〔3−(4−アミノフェノキシ)フェニル〕−1,1,1,3,3,3−ヘキサフルオロプロパン、2,2−ビス〔4−(3−アミノフェノキシ)フェニル〕−1,1,1,3,3,3−ヘキサフルオロプロパン、2,2−ビス〔4−(4−アミノフェノキシ)フェニル〕−1,1,1,3,3,3−ヘキサフルオロプロパンなどのベンゼン核4つのジアミン。
【0069】
これらは単独でも、2種以上を混合して用いることもできる。用いるジアミンは、所望の特性などに応じて適宜選択することができる。
【0070】
これらの中でも、芳香族ジアミン化合物が好ましく、3,3’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルエーテル及びパラフェニレンジアミン、1,3−ビス(3−アミノフェニル)ベンゼン、1,3−ビス(4−アミノフェニル)ベンゼン、1,4−ビス(3−アミノフェニル)ベンゼン、1,4−ビス(4−アミノフェニル)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,4−ビス(3−アミノフェノキシ)ベンゼンを好適に用いることができる。特に、ベンゼンジアミン、ジアミノジフェニルエーテル及びビス(アミノフェノキシ)フェニルからなる群から選ばれる少なくとも一種のジアミンが好ましい。
【0071】
本発明で使用され得るポリイミド多孔質膜は、耐熱性、高温下での寸法安定性の観点から、ガラス転移温度が240℃以上であるか、又は300℃以上で明確な転移点がないテトラカルボン酸二無水物とジアミンとを組み合わせて得られるポリイミドから形成されていることが好ましい。
【0072】
本発明で使用され得るポリイミド多孔質膜は、耐熱性、高温下での寸法安定性の観点から、以下の芳香族ポリイミドからなるポリイミド多孔質膜であることが好ましい。
(i)ビフェニルテトラカルボン酸単位及びピロメリット酸単位からなる群から選ばれる少なくとも一種のテトラカルボン酸単位と、芳香族ジアミン単位とからなる芳香族ポリイミド、
(ii)テトラカルボン酸単位と、ベンゼンジアミン単位、ジアミノジフェニルエーテル単位及びビス(アミノフェノキシ)フェニル単位からなる群から選ばれる少なくとも一種の芳香族ジアミン単位とからなる芳香族ポリイミド、
及び/又は、
(iii)ビフェニルテトラカルボン酸単位及びピロメリット酸単位からなる群から選ばれる少なくとも一種のテトラカルボン酸単位と、ベンゼンジアミン単位、ジアミノジフェニルエーテル単位及びビス(アミノフェノキシ)フェニル単位からなる群から選ばれる少なくとも一種の芳香族ジアミン単位とからなる芳香族ポリイミド。
【0073】
本発明において用いられるポリイミド多孔質膜は、好ましくは、複数の孔を有する表面層A及び表面層Bと、前記表面層A及び表面層Bの間に挟まれたマクロボイド層とを有する三層構造のポリイミド多孔質膜であって、ここで前記表面層Aに存在する孔の平均孔径は0.01μm〜15μmであり、前記表面層Bに存在する孔の平均孔径は20μm〜100μmであり、前記マクロボイド層は、前記表面層A及びBに結合した隔壁と、当該隔壁並びに前記表面層A及びBに囲まれた複数のマクロボイドとを有し、前記マクロボイド層の隔壁、並びに前記表面層A及びBの厚さは0.01〜20μmであり、前記表面層A及びBにおける孔がマクロボイドに連通しており、総膜厚が5〜500μmであり、空孔率が40%以上95%未満である、ポリイミド多孔質膜である。ここで、マクロボイド層中の少なくとも1つの隔壁は、隣接するマクロボイド同士を連通する、平均孔径0.01〜100μmの、好ましくは0.01〜50μmの、1つ又は複数の孔を有する。
【0074】
例えば、国際公開WO2010/038873、特開2011−219585、又は特開2011−219586に記載されているポリイミド多孔質膜も、本発明に使用可能である。
【0075】
本発明で使用され得るPES多孔質膜は、ポリエーテルスルホンを含み、典型的には実質的にポリエーテルスルホンからなる。ポリエーテルスルホンは当業者に公知の方法で合成されたものであってよく、例えば、二価フェノール、アルカリ金属化合物及びジハロゲノジフェニル化合物を有機極性溶媒中で重縮合反応させる方法、二価フェノールのアルカリ金属二塩を予め合成しジハロゲノジフェニル化合物と有機極性溶媒中で重縮合反応させる方法等によって製造できる。
【0076】
アルカリ金属化合物としては、アルカリ金属炭酸塩、アルカリ金属水酸化物、アルカリ金属水素化物、アルカリ金属アルコキシド等が挙げられる。特に、炭酸ナトリウム及び炭酸カリウムが好ましい。
【0077】
二価フェノール化合物としては、ハイドロキノン、カテコール、レゾルシン、4,4’−ビフェノール、ビス(ヒドロキシフェニル)アルカン類(例えば2,2−ビス(ヒドロキシフェニル)プロパン、及び2,2−ビス(ヒドロキシフェニル)メタン)、ジヒドロキシジフェニルスルホン類、ジヒドロキシジフェニルエーテル類、又はそれらのベンゼン環の水素の少なくとも1つが、メチル基、エチル基、プロピル基等の低級アルキル基、又はメトキシ基、エトキシ基等の低級アルコキシ基で置換されたものが挙げられる。二価フェノール化合物としては、上記の化合物を二種類以上混合して用いることができる。
【0078】
ポリエーテルスルホンは市販品であってもよい。市販品の例としては、スミカエクセル7600P、スミカエクセル5900P(以上、住友化学(株)製)等が挙げられる。
【0079】
ポリエーテルスルホンの対数粘度は、PES多孔質膜のマクロボイドを良好に形成する観点で、好ましくは0.5以上、より好ましくは0.55以上であり、多孔質ポリエーテルスルホン膜の製造容易性の観点から、好ましくは1.0以下、より好ましくは0.9以下、更に好ましくは0.8以下、特に好ましくは0.75以下である。
【0080】
また、PES多孔質膜、又はその原料としてのポリエーテルスルホンは、耐熱性、高温下での寸法安定性の観点から、ガラス転移温度が、200℃以上であるか、又は明確なガラス転移温度が観察されないことが好ましい。
【0081】
本発明で使用され得るPES多孔質膜の製造方法は特に限定されないが、例えば、
対数粘度0.5〜1.0のポリエーテルスルホンの0.3質量%〜60質量%と有機極性溶媒40質量%〜99.7質量%とを含むポリエーテルスルホン溶液を、フィルム状に流延し、ポリエーテルスルホンの貧溶媒又は非溶媒を必須成分とする凝固溶媒に浸漬又は接触させて、空孔を有する凝固膜を作製する工程、及び
前記工程で得られた空孔を有する凝固膜を熱処理して前記空孔を粗大化させて、PES多孔質膜を得る工程
を含み、前記熱処理は、前記空孔を有する凝固膜を、前記ポリエーテルスルホンのガラス転移温度以上、若しくは240℃以上まで昇温させることを含む、方法で製造されてもよい。
【0082】
本発明で使用され得るPES多孔質膜は、好ましくは、表面層A、表面層B、及び前記表面層Aと前記表面層Bとの間に挟まれたマクロボイド層、を有するPES多孔質膜であって、
前記マクロボイド層は、前記表面層A及びBに結合した隔壁と、当該隔壁並びに前記表面層A及びBに囲まれた、膜平面方向の平均孔径が10μm〜500μmである複数のマクロボイドとを有し、
前記マクロボイド層の隔壁は、厚さが0.1μm〜50μmであり、
前記表面層A及びBはそれぞれ、厚さが0.1μm〜50μmであり、
前記表面層A及びBのうち、一方が平均孔径5μm超200μm以下の複数の細孔を有し、かつ他方が平均孔径0.01μm以上200μm未満の複数の細孔を有し、
表面層A及び表面層Bの、一方の表面開口率が15%以上であり、他方の表面層の表面開口率が10%以上であり、
前記表面層A及び前記表面層Bの前記細孔が前記マクロボイドに連通しており、
前記PES多孔質膜は、総膜厚が5μm〜500μmであり、かつ空孔率が50%〜95%である、
PES多孔質膜である。
【0083】
4.細胞培養と培養体積
ポリマー多孔質膜を用いた細胞培養のモデル図を
図1に示す。
図1は理解を助けるための図であり、各要素は実寸ではない。本発明の方法では、ポリマー多孔質膜に細胞を適用し、培養することにより、ポリマー多孔質膜の有する内部の多面的な連結多孔部分や表面に、大量の細胞が生育するため、大量の細胞を簡便に培養することが可能となる。また、本発明の方法では、細胞培養に用いる培地の量を従来の方法よりも大幅に減らしつつ、大量の細胞を培養することが可能となる。たとえば、ポリマー多孔質膜の一部分又は全体が、細胞培養培地の液相と接触していない状態であっても、大量の細胞を長期にわたって培養することができる。また、細胞生存域を含むポリマー多孔質膜体積の総和に対して、細胞培養容器中に含まれる細胞培養培地の総体積を著しく減らすことも可能となる。
【0084】
本明細書において、細胞を含まないポリマー多孔質膜がその内部間隙の体積も含めて空間中に占める体積を「見かけ上ポリマー多孔質膜体積」と呼称する(
図1参照)。そして、ポリマー多孔質膜に細胞を適用し、ポリマー多孔質膜の表面及び内部に細胞が担持された状態において、ポリマー多孔質膜、細胞、及びポリマー多孔質膜内部に浸潤した培地が全体として空間中に占める体積を「細胞生存域を含むポリマー多孔質膜体積」と呼称する(
図1参照)。膜厚25μmのポリマー多孔質膜の場合、細胞生存域を含むポリマー多孔質膜体積は、見かけ上ポリマー多孔質膜体積より、最大で50%程度大きな値となる。本発明の方法では、1つの細胞培養容器中に複数のポリマー多孔質膜を収容して培養することができるが、その場合、細胞を担持した複数のポリマー多孔質膜のそれぞれについての細胞生存域を含むポリマー多孔質膜体積の総和を、単に「細胞生存域を含むポリマー多孔質膜体積の総和」と記載することがある。
【0085】
本発明の方法を用いることにより、細胞培養容器中に含まれる細胞培養培地の総体積が、細胞生存域を含むポリマー多孔質膜体積の総和の10000倍又はそれより少ない条件でも、細胞を長期にわたって良好に培養することが可能となる。また、細胞培養容器中に含まれる細胞培養培地の総体積が、細胞生存域を含むポリマー多孔質膜体積の総和の1000倍又はそれより少ない条件でも、細胞を長期にわたって良好に培養することができる。さらに、細胞培養容器中に含まれる細胞培養培地の総体積が、細胞生存域を含むポリマー多孔質膜体積の総和の100倍又はそれより少ない条件でも、細胞を長期にわたって良好に培養することができる。そして、細胞培養容器中に含まれる細胞培養培地の総体積が、細胞生存域を含むポリマー多孔質膜体積の総和の10倍又はそれより少ない条件でも、細胞を長期にわたって良好に培養することができる。
【0086】
つまり、本発明によれば、細胞培養する空間(容器)を従来の二次元培養を行う細胞培養装置に比べて極限まで小型化可能となる。また、培養する細胞の数を増やしたい場合は、積層するポリマー多孔質膜の枚数を増やす等の簡便な操作により、柔軟に細胞培養する体積を増やすことが可能となる。本発明に用いられるポリマー多孔質膜を備えた細胞培養装置であれば、細胞を培養する空間(容器)と細胞培養培地を貯蔵する空間(容器)とを分離することが可能となり、培養する細胞数に応じて、必要となる量の細胞培養培地を準備することが可能となる。細胞培養培地を貯蔵する空間(容器)は、目的に応じて大型化又は小型化してもよく、あるいは取り替え可能な容器であってもよく、特に限定されない。
【0087】
本発明の方法において、たとえば、ポリマー多孔質膜を用いた培養後に細胞培養容器中に含まれる細胞の数が、細胞がすべて細胞培養容器中に含まれる細胞培養培地に均一に分散しているものとして、培地1ミリリットルあたり1.0×10
5個以上、1.0×10
6個以上、2.0×10
6個以上、5.0×10
6個以上、1.0×10
7個以上、2.0×10
7個以上、5.0×10
7個以上、1.0×10
8個以上、2.0×10
8個以上、5.0×10
8個以上、1.0×10
9個以上、2.0×10
9個以上、または5.0×10
9個以上となるまで培養することをいう。
【0088】
なお、培養中または培養後の細胞数を計測する方法としては、種々の公知の方法を用いることができる。たとえば、ポリマー多孔質膜を用いた培養後に細胞培養容器中に含まれる細胞の数を、細胞がすべて細胞培養容器中に含まれる細胞培養培地に均一に分散しているものとして計測する方法としては、公知の方法を適宜用いることができる。たとえば、CCK8を用いた細胞数計測法を好適に用いることができる。具体的には、Cell Countinig Kit8;同仁化学研究所製溶液試薬(以下、「CCK8」と記載する。)を用いて、ポリマー多孔質膜を用いない通常の培養における細胞数を計測し、吸光度と実際の細胞数との相関係数を求める。その後、細胞を適用し、培養したポリマー多孔質膜を、CCK8を含む培地に移し、1〜3時間インキュベータ内で保存し、上清を抜き出して480nmの波長にて吸光度を測定して、先に求めた相関係数から細胞数を計算する。
【0089】
また、別の観点からは、細胞の大量培養とは、たとえば、ポリマー多孔質膜を用いた培養後にポリマー多孔質膜1平方センチメートルあたりに含まれる細胞数が1.0×10
5個以上、2.0×10
5個以上、1.0×10
6個以上、2.0×10
6個以上、5.0×10
6個以上、1.0×10
7個以上、2.0×10
7個以上、5.0×10
7個以上、1.0×10
8個以上、2.0×10
8個以上、または5.0×10
8個以上となるまで培養することをいう。ポリマー多孔質膜1平方センチメートルあたりに含まれる細胞数は、セルカウンター等の公知の方法を用いて適宜計測することが可能である。
【0090】
5.細胞の培養システム及び培養条件
本発明の方法において、細胞の培養システム及び培養条件は、細胞の種類等に応じて適宜決定することができる。脱分化しやすい細胞に適した培養方法が公知であり、当業者は任意の公知の方法を用いてポリマー多孔質膜に適用した細胞を培養することができる。細胞培養培地も細胞の種類に応じて適宜調製することができる。
【0091】
脱分化しやすい細胞の細胞培養培地は、例えば、ロンザ社やタカラバイオ社の細胞培養培地カタログに記載されている。本発明の方法に用いることの細胞培養培地は、液体培地、半固形培地、固形培地等のいずれの形態であってもよい。また、液滴状とした液体培地を細胞培養容器中に噴霧することにより、細胞を担持したポリマー多孔質膜に培地が接触するようにしてもよい。
【0092】
ポリマー多孔質膜を用いる細胞の培養に関して、マイクロキャリアやセルローススポンジ等、他の浮遊型培養担体と共存させることもできる。
【0093】
本発明の方法において、培養に用いるシステムの形状、規模などは特に限定されず、細胞培養用のシャーレ、フラスコ、プラスチックバッグ、試験管から大型のタンクまで適宜利用可能である。例えば、BD Falcon社製のセルカルチャーディッシュやサーモサイエンティフィック社製のNunc セルファクトリー等が含まれる。なお、本発明においてポリマー多孔質膜を用いることにより、生来浮遊培養が可能でなかった細胞についても浮遊培養向け装置にて、浮遊培養類似状態での培養を行うことが可能になった。浮遊培養用の装置としては、例えば、コーニング社製のスピナーフラスコや回転培養等が使用可能である。また、同様の機能を実現出来る環境として、VERITAS社のFiberCell(登録商標)Systemの様な中空糸培養システムも使用することが可能である。
【0094】
本発明の方法における培養は、ポリマー多孔質膜上に連続的に培地を添加し回収するような連続循環もしくは開放型の装置を用いて、空気中にポリマー多孔質膜シートを露出させるような型式で実行することも可能である。
【0095】
本発明において、細胞の培養は、細胞培養容器外に設置された細胞培養培地供給手段から連続的又は間歇的に細胞培養培地が細胞培養容器中に供給される系で行ってもよい。その際、細胞培養培地が細胞培養培地供給手段と細胞培養容器との間を循環する系であることができる。
【0096】
細胞の培養を、細胞培養容器外に設置された細胞培養培地供給手段から連続的又は間歇的に細胞培養培地が細胞培養容器中に供給される系で行う場合、その系は、細胞培養容器である培養ユニットと細胞培養培地供給手段である培地供給ユニットとを含む細胞培養装置であってよく、ここで
培養ユニットは細胞を担持するための1又は複数のポリマー多孔質膜を収容する培養ユニットであって、培地供給口および培地排出口を備えた培養ユニットであり、
培地供給ユニットは培地収納容器と、培地供給ラインと、培地供給ラインを介して連続的又は間歇的に培地を送液する送液ポンプとを備え、ここで培地供給ラインの第一の端部は培地収納容器内の培地に接触し、培地供給ラインの第二の端部は培養ユニットの培地供給口を介して培養ユニット内に連通している、培地供給ユニットである
細胞培養装置であってよい。
【0097】
また、上記細胞培養装置において、培養ユニットは空気供給口、空気排出口、及び酸素交換膜を備えない培養ユニットであってよく、また、空気供給口及び空気排出口、又は酸素交換膜を備えた培養ユニットであってよい。培養ユニットは空気供給口及び空気排出口、並びに酸素交換膜を備えないものであっても、細胞の培養に必要な酸素等が培地を通じて十分に細胞に供給される。さらに、上記細胞培養装置において、培養ユニットが培地排出ラインをさらに備え、ここで培地排出ラインの第一の端部は培地収納容器に接続し、培地排出ラインの第二の端部は培養ユニットの培地排出口を介して培養ユニット内に連通し、培地が培地供給ユニットと培養ユニットとを循環可能であってよい。
【0098】
上記細胞の培養システムの一例である細胞培養装置の例を
図2に示すが、本発明の目的のために用いることができる細胞の培養システムはこれに限定されるものではない。
【0099】
6.本発明の物質産生方法について
本発明の物質産生方法において、上述したように細胞を培養することにより、細胞から所望の物質を産生させる。産生された物質が、細胞内に留まる物質であっても、細胞から分泌される物質であってもよい。産生された物質は、物質の種類、性質に応じて公知の方法により回収することが可能である。細胞から分泌される物質の場合、細胞培養培地から物質を回収することができる。産生された物質が細胞内に留まる物質の場合、細胞溶解剤等を用いた化学的処理、超音波処理、ホモジナイザー、破砕用ディスポチューブ等を用いた物理的処理などの公知の方法により細胞を破壊することにより、物質を細胞外に出して回収することが可能である。細胞を破壊する方法は、細胞の種類、物質の種類等に応じて適宜当業者が適用可能である。
【0100】
本発明の物質産生方法の一実施形態において、使用される細胞は軟骨細胞であって、前記物質がプロテオグリカン、コラーゲン及びヒアルロン酸から選択される少なくとも1つである。
【0101】
以下、本発明を実施例に基づいて、より具体的に説明する。なお本発明はこれらの実施例に限定されるものではない。当業者は本明細書の記載に基づいて容易に本発明に修飾・変更を加えることができ、それらは本発明の技術的範囲に含まれる。
【実施例】
【0102】
以下の実施例で使用されたポリイミド多孔質膜は、テトラカルボン酸成分である3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(s−BPDA)とジアミン成分である4,4’−ジアミノジフェニルエーテル(ODA)とから得られるポリアミック酸溶液と、着色前駆体であるポリアクリルアミドとを含むポリアミック酸溶液組成物を成形した後、250℃以上で熱処理することにより、調製された。得られたポリイミド多孔質膜は、複数の孔を有する表面層A及び表面層Bと、当該表面層A及び表面層Bの間に挟まれたマクロボイド層とを有する三層構造のポリイミド多孔質膜であり、表面層Aに存在する孔の平均孔径は6μmであり、表面層Bに存在する孔の平均孔径は46μmであり、膜厚が25μmであり、空孔率が73%であった。
【0103】
実施例1
ポリイミド多孔質膜上でのヒト軟骨細胞の培養
2cm×2cmの滅菌された正方形容器(Thermo Fisher Scientific社 cat.103)に軟骨細胞増殖培地(PromoCell社製)1mlを加え、滅菌した1.4cm角の正方形のポリイミド多孔質膜をメッシュ構造のA面を上にして培地に浸漬させた。1枚のシートあたり4×10
4個のヒト軟骨細胞を播種し、週2回培地(1ml)を交換しながらCO
2インキュベータ内で培養を継続的に行った。ポリイミド多孔質膜を使用した上記培養を以下で「部材培養」と呼び、得られた細胞サンプルを以下で「部材培養細胞サンプル」と呼ぶ。培養開始後、Cell Counting Kit-8(同仁化学研究所製、以下で「CCK8」と呼ぶ)を用いて細胞数を計測し、細胞生育挙動を観察した。結果を
図3に示す。長期間に亘る、安定したヒト軟骨細胞の増殖及び生育が観察された。
【0104】
実施例2
ポリイミド多孔質膜から空のポリイミド多孔質膜へのヒト軟骨細胞の移動(気相継代法)
実施例1に記載の方法に従って、ヒト軟骨細胞を59日間CO
2インキュベータ内で培養した。培養中の細胞の生育したポリイミド多孔質膜シートに対し、新規な同サイズのポリイミド多孔質膜各1枚で上下を挟み、3段重ねのポリイミド多孔質膜積層体を1セット用意した。この3段重ねの積層体を、培地中に置いたメッシュの上に気相に接する様に置き、CO
2インキュベータ内で培養を継続した。7日間後、それぞれの積層体を1枚毎に独立させ、各ポリイミド多孔質膜の細胞数についてCCK8を用いて測定した。結果を
図4に示す。
【0105】
上部・下部のシート共に、接触により十分量の細胞が生着し、独立後も順調に細胞数の上昇が確認された。約4週間で、生育細胞数上限近傍に達した。
【0106】
実施例3
ヒト軟骨細胞の長期培養
実施例1のヒト軟骨細胞の培養を、実施例1と同一の条件下でさらに継続した。CCK8を用いて細胞数を計測し、細胞生育挙動を観察した。結果を
図5に示す。
【0107】
培養開始後170日目の部材培養中のポリイミド多孔質膜をディッシュ(口内径35mm)に滅菌的に移送した。培地1mlを加え、更に、CellMask Orange Plasma Membrane Stain(1μL)及びHoechst33342(PromoKine社製)(0.5μL)を加えてインキュベータ内に5分静置した。その後、染色試薬の入った培地を除去し、新しい培地を加えて、染色を完了した。培地ごと、ポリイミド多孔質膜を2穴プラスチックチャンバ(ザルスタット社製)に移動し、共焦点レーザー顕微鏡により細胞を生かしたままで蛍光顕微鏡画像を取得した。また、同視野の光学顕微鏡画像を所得した。画像を
図6に示す。ポリイミド多孔質膜A面のメッシュ構造に適合する形状で、軟骨細胞が観察された。
【0108】
実施例4
ヒト軟骨細胞からの物質産生
実施例3における、培養開始後120日目及び365日目の部材培養細胞サンプル、及び当該細胞サンプルを培養した後の培地を回収し、ELISA法によってタイプIIコラーゲン及びプロテオグリカンの産生量を測定した。なお、部材培養細胞サンプルについては、外部からの超音波破砕によって細胞壁を破壊し、細胞内のタイプIIコラーゲン及びプロテオグリカンを回収した。
【0109】
また、ポリイミド多孔質膜を使用しないこと以外は実施例3と同様の条件で、細胞培養用シャーレ(住友ベークライト製)中でヒト軟骨細胞を1回継代後に5日間培養した。ポリイミド多孔質膜を使用しない培養を以下で「通常培養」と呼び、得られた細胞サンプルを「通常培養細胞サンプル」と呼ぶ。当該通常培養細胞サンプル、及び当該細胞サンプルを培養した後の培地を回収して、ELISA法によってタイプIIコラーゲン及びプロテオグリカンの産生量を測定した。
【0110】
回収されたタイプIIコラーゲン及びプロテオグリカンの量を以下に示す。タイプIIコラーゲン及びプロテオグリカンの高い産生量維持が確認された。
【表2】
【0111】
タイプIIコラーゲン及びプロテオグリカンは、ヒト軟骨細胞に特有の物質である。長期培養した後であっても脱分化しやすい細胞であるヒト軟骨細胞の特性が維持されていることから、本発明の方法を使用することによって、脱分化しやすい細胞の脱分化を抑制可能であることが実証された。
【0112】
実施例5
ヒト軟骨細胞の長期培養及び物質産生(細胞の初期播種数の違いが及ぼす影響)
2cm×2cmの滅菌された正方形容器(Thermo Fisher Scientific社、cat.103)に軟骨細胞増殖培地(PromoCell社製)1mlを加え、滅菌した1.4cm角の正方形のポリイミド多孔質膜をメッシュ構造のA面を上にして培地に浸漬させた。1枚のシートあたり4×10
4又は2×10
4個の軟骨細胞をそれぞれ播種し、週2回培地(1ml)を交換しながらCO
2インキュベータ内で培養を継続的に行った。CCK8を用いて細胞数を計測し、細胞生育挙動を観察した。結果を
図7に示す。細胞の初期播種数には大きく依存せずに、ヒト軟骨細胞を安定して長期に培養することができた。
【0113】
ヒト軟骨細胞の培養開始後39日目及び277日目の部材培養細胞サンプル(初期播種細胞数4.0×10
4個)、及び当該細胞サンプルを培養した後の培地を回収し、ELISA法によってタイプIIコラーゲン及びプロテオグリカンの産生量を測定した。なお、部材培養細胞サンプルについては、外部からの超音波破砕によって細胞壁を破壊し、細胞内のタイプIIコラーゲン及びプロテオグリカンを回収した。
【0114】
回収されたタイプIIコラーゲン及びプロテオグリカンの量を以下に示す。長期間の部材培養後であっても、ヒト軟骨細胞においてタイプIIコラーゲン及びプロテオグリカンの高い産生量維持が確認された。また、実施例4の結果と比較しても、物質産生量の再現性が確認された。
【表3】
【0115】
実施例6
ポリイミド多孔質膜上でのヒト骨芽細胞の培養
2cm×2cmの滅菌された正方形容器(Thermo Fisher Scientific社、cat.103)に骨芽細胞増殖培地 (PromoCell社製、C-27001)1mlを加え、滅菌した1.4cm角の正方形のポリイミド多孔質膜をメッシュ構造のA面を上にして培地に浸漬させた。1枚のシートあたり4×10
4個のヒト骨芽細胞(PromoCell社製)を播種し、CO
2インキュベータ内で培養を継続的に行った。週2回培地(1ml)を交換した。培養開始後、CCK8を用いて細胞数を計測し、細胞生育挙動を観察した。結果を
図8に示す。長期間に亘る、安定した細胞の増殖及び生育が観察された。
【0116】
実施例7
ポリイミド多孔質膜上でのヒト骨芽細胞の培養と石灰化誘導
2cm×2cmの滅菌された正方形容器(Thermo Fisher Scientific社、cat.103)に骨芽細胞増殖培地 (PromoCell社製、C-27001)1mlを加え、滅菌した1.4cm角の正方形のポリイミド多孔質膜をメッシュ構造のA面を上にして培地に浸漬させた。1枚のシートあたり4×10
4又は2×10
4個のヒト骨芽細胞(PromoCell社製)を播種し、週2回培地(1ml)を交換しながらCO
2インキュベータ内で培養を継続的に行った。培養開始後、CCK8を用いて細胞数を計測し、細胞生育挙動を観察した。結果を
図9に示す。細胞の初期播種数には大きく依存せずに、長期間に亘る、安定したヒト骨芽細胞の増殖及び生育が観察された。
【0117】
培養開始後83日目及び224日目の部材培養中のポリイミド多孔質膜(それぞれ「サンプル1」及び「サンプル2」と呼ぶ)を、石灰化誘導培地(PromoCell社製、骨芽細胞石灰化培地)を加えた、2cm×2cmの滅菌された正方形容器にそれぞれ移送し、石灰化誘導を実施した。誘導期間経過後、石灰化染色キット(コスモバイオ製)にて染色し、石灰化部分の赤変を光学顕微鏡にて観察した。結果を以下の表及び
図10に示す。表中の石灰化誘導前の生育細胞数はCCK8を用いて計測した。
図10の顕微鏡画像において特長ある赤変部が観察され、骨芽細胞特性が長期培養の中で継続的に維持されることが分かった。長期間培養した後であっても、脱分化しやすい細胞である骨芽細胞の特性(石灰化能)が維持されていることから、本発明の方法を使用することによって、脱分化しやすい細胞の脱分化を抑制可能であることが実証された。
【表4】
【0118】
実施例8
ポリイミド多孔質膜上でのヒト骨芽細胞の培養と顕微鏡観察
2cm×2cmの滅菌された正方形容器(Thermo Fisher Scientific社、cat.103)に骨芽細胞増殖培地 (Promo Cell社製、C-27001)1mlを加え、滅菌した1.4cm角の正方形のポリイミド多孔質膜をメッシュ構造のA面を上にして容器の培地に浸漬させた。1枚のポリイミド多孔質膜あたり4×10
4又は2×10
4個のヒト骨芽細胞(PromoCell社製)をそれぞれ播種し、週2回培地(1ml)を交換しながらCO
2インキュベータ内で培養を継続的に行った。培養開始後、CCK8を用いて細胞数を計測し、細胞生育挙動を観察した。結果を
図11に示す。細胞の初期播種数には大きく依存せずに、長期間に亘る、安定したヒト骨芽細胞の増殖及び生育が観察された。
【0119】
培養開始後、160日目の部材培養中のポリイミド多孔質膜をホルマリン固定し、電子顕微鏡観察を行った。具体的には、2.5%グルタールアルデヒド、2%ホルムアルデヒド混合固定液でポリイミド多孔質膜を固定後、四酸化オスミウム後固定を行い、逐次的エタノール置換法で脱水後に、液体窒素温度にて凍結割断を行った。t−ブチルアルコールを用いた凍結真空乾燥後、オスミウムプラズマ蒸着により帯電防止処理を行い、走査型電子顕微鏡(SEM)観察を実施した。観察には電界放出型SEMを用い、加速電圧5kV、高真空下で二次電子像とし、観察を行った。結果を
図12に示す。細胞の整列、細胞の多重積層構造の形成、及び膜表層部と膜近傍(内部)層における細胞の整列の相違性など、多くの興味深い部材培養挙動が観察された。
【0120】
培養開始後、171日目の部材培養中のポリイミド多孔質膜をホルマリン固定し、蛍光顕微鏡観察を行った。具体的には、ポリイミド多孔質膜をホルマリン固定後、Alexa Fluor(登録商標)488ファロイジン、CellMask Orange Plasma Membrane Stain、及びDAPIで染色し、共焦点レーザー顕微鏡により蛍光顕微画像を取得した。結果を
図13に示す。A面表層とB面表層の2つの異なる表層部を測定し、細胞の集合状況を検証した。どちらの表層部においても、強い配向性が見られる事が明らかであり、SEM解析と良く一致した結果となった。また、配向の形状に関しては、A面側では、幅広い細胞が多く観察される事実に対し、B面側では細長い細胞群の整列が観察された。この事実も、SEM解析と良く一致した結果であった。ポリイミド多孔質膜の2つの異なる表面が、長期培養後に細胞の集合状態にも大きく影響を与えうるという事実が複数の分析手段で一致した見解として観察されており、非常に興味深い結果と言える。