【実施例】
【0074】
次に、
図7〜
図14を参照して、本発明の一実施例を説明する。
【0075】
図7は、本発明の一実施例による固体酸化物形燃料電池装置(SOFC)を示す全体構成図である。
図7に示すように、本発明の一実施例による固体酸化物形燃料電池装置(SOFC)1は、燃料電池モジュール2と、補機ユニット4を備えている。
【0076】
燃料電池モジュール2は、燃料電池モジュール2の最外壁を構成する寸法バラツキ吸収部材6を備え、この寸法バラツキ吸収部材6の内部には、板状の第1断熱材7を介して金属製のモジュール容器8が内蔵されている。この密閉空間であるモジュール容器8の下方部分である発電室10には、燃料ガスと酸化剤ガス(以下では適宜「発電用空気」又は「空気」と呼ぶ。)とにより発電反応を行う燃料電池セル集合体12が収容置されている。この燃料電池セル集合体12は、複数の燃料電池セルユニット16(
図11参照)が直列接続されて構成されている。この例では、燃料電池セル集合体12は、128本の燃料電池セルユニット16を有する。
【0077】
燃料電池モジュール2のモジュール容器8の発電室10の上方には、燃焼部としての燃焼室18が形成され、この燃焼室18で、発電反応に使用されなかった(発電に寄与しなかった)残余の燃料ガスと残余の空気とが燃焼し、排気ガス(言い換えると燃焼ガス)を生成するようになっている。さらに、モジュール容器8は第1断熱材7により覆われており、燃料電池モジュール2内部の熱が、外気へ発散するのを抑制している。また、この燃焼室18の上方には、燃料ガスを改質する改質器120が配置され、残余ガスの燃焼熱によって改質器120を改質反応が可能な温度となるように加熱している。
【0078】
ここで、直方体形状のモジュール容器8のそれぞれの壁面に対応して第1断熱材7が設けられている。ここでの図示は省略するが、第1断熱材7はモジュール容器8の上面視において、第1断熱材8は製造上で生じる第1断熱材8の寸法のバラツキによって第1断熱材8間に隙間が生じないようにモジュール容器8の外壁面に接して設置されている。そのため、モジュール容器8の外壁面を覆っている第1断熱材8の外周側に、寸法バラツキの影響が生じることとなる。
【0079】
また、第1断熱材8の外周側には、それぞれの第1断熱材8に対応して、外圧を受けることによって変形する寸法バラツキ吸収部材6が配置されており、図示しない固定部材によって端部同士が密接し、第1断熱材8に固定されている。この寸法バラツキ吸収部材8は固定部材(図示せず)からの外圧により、上述した第1断熱材8の寸法バラツキを吸収する。この寸法バラツキ吸収部材6は、第1断熱材7と同じ断熱材料をガラスクロスで覆うことによって構成されており、第2断熱材としての機能も有する。
【0080】
さらに、寸法バラツキ吸収部材6内においてモジュール容器8の上方には、蒸発器140が第1断熱材7内に設けられている。蒸発器140は、供給された水と排気ガスとの間で熱交換を行うことによって、水を蒸発させて水蒸気を生成し、この水蒸気と原燃料ガスとの混合ガス(以下では「燃料ガス」と呼ぶこともある。)をモジュール容器8内の改質器120に供給する。
【0081】
次に、補機ユニット4は、燃料電池モジュール2からの排気中に含まれる水分を結露させた水を貯水してフィルターにより純水とする純水タンク26と、この貯水タンクから供給される水の流量を調整する水流量調整ユニット28(モータで駆動される「水ポンプ」等)を備えている。また、補機ユニット4は、都市ガス等の原料ガスの供給減である燃料供給源30から供給された燃料を遮断するガス遮断弁32と、燃料ガスから硫黄を除去するための脱硫器36と、燃料ガスの流量を調整する燃料流量調整ユニット38(モータで駆動される「燃料ポンプ」等)と、電源喪失時において、燃料流量調整ユニット38から流出する燃料ガスを遮断するバルブ39を備えている。さらに、補機ユニット4は、空気供給源40から供給される空気を遮断する電磁弁42と、空気の流量を調整する改質用空気流量調整ユニット44及び発電用空気流量調整ユニット45(モータで駆動される「空気ブロア」等)と、改質器120に供給される改質用空気を加熱する第1ヒータ46と、発電室に供給される発電用空気を加熱する第2ヒータ48とを備えている。これらの第1ヒータ46と第2ヒータ48は、起動時の昇温を効率よく行うために設けられているが、省略しても良い。
【0082】
なお、本実施例では、装置の起動時に改質器120内において、部分酸化改質反応(POX)のみが生じるPOX工程から、部分酸化改質反応(POX)と水蒸気改質反応(SR)が混在したオートサーマル改質反応(ATR)が生じるATR工程を経て、水蒸気改質反応のみが生じるSR工程が行われるように構成してもよいし、POX工程を省略してATR工程からSR工程に移行されるように構成してもよいし、POX工程及びATR工程を省略してSR工程のみが行われるように構成してもよい。なお、SR工程のみが行われる構成では、改質用空気流量調整ユニット44は不要である。
【0083】
次に、燃料電池モジュール2には、排気ガスが供給される温水製造装置50が接続されている。この温水製造装置50には、水供給源24から水道水が供給され、この水道水が排気ガスの熱により温水となり、図示しない外部の給湯器の貯湯タンクへ供給されるようになっている。また、燃料電池モジュール2には、燃料ガスの供給量等を制御するための制御ボックス52が取り付けられている。さらに、燃料電池モジュール2には、燃料電池モジュールにより発電された電力を外部に供給するための電力取出部(電力変換部)であるインバータ54が接続されている。
【0084】
次に、
図8乃至
図10を参照して、本発明の一実施例による固体酸化物形燃料電池装置の燃料電池モジュールの構造について説明する。
図8は、本発明の一実施例による固体酸化物形燃料電池装置の燃料電池モジュールを示す側面断面図であり、
図9は、
図8のIII-III線に沿った断面図であり、
図10は、モジュール容器及び空気通路カバーの分解斜視図である。
【0085】
図8及び
図9に示すように、燃料電池モジュール2は、第1断熱材7で覆われたモジュール容器8の内部に設けられた燃料電池セル集合体12及び改質器120を有すると共に、モジュール容器8の外部で且つ第1断熱材7内に設けられた蒸発器140を有する。なお、ここでは寸法バラツキ吸収部材6の図示及び説明を省略する。
【0086】
まず、モジュール容器8は、
図10に示すように、略矩形の天板8a,底板8c,これらの長手方向(
図8の左右方向)に延びる辺同士を連結する対向する一対の側板8bからなる筒状体と、この筒状体の長手方向の両端部の2つの対向する開口部を塞ぎ、天板8a及び底板8cの幅方向(
図9の左右方向)に延びる辺同士を連結する閉鎖側板8d,8eからなる。
【0087】
モジュール容器8は、空気通路カバー160によって天板8a及び側板8bが覆われている。空気通路カバー160は、天板160aと、対向する一対の側板160bとを有する。天板160aの略中央部分には、排気管171を貫通させるための開口部167が設けられている。天板160aと天板8aとの間、及び、側板160bと側板8bとの間は、所定の距離だけ離間した状態となっている。これにより、モジュール容器8の外側と第1断熱材7との間、具体的にはモジュール容器8の天板8a及び側板8bと、空気通路カバー160の天板160a及び側板160bとの間には、天板160a及び側板160bの外面に沿って、酸化剤ガス供給通路としての空気通路161a,161bが形成されている(
図9参照)。
【0088】
モジュール容器8の側板8bの下部には、複数の貫通孔である吹出口8fが設けられている(
図10参照)。発電用空気は、空気通路カバー160の天板160aのうち、モジュール容器8の閉鎖側板8e側の略中央部には、空気通路161aに連通する空気供給口160c(
図8参照)が形成されている。発電用空気導入管74は、空気供給口160cに接続されており、発電用空気導入管74から導入された空気は流路方向調整部164を介して空気通路161a内に供給される(
図8、
図10参照)。そして、発電用空気は、空気通路161a,161bを通って、吹出口8fから燃料電池セル集合体12に向けて発電室10内に噴射される(
図9、
図10参照)。
【0089】
また、空気通路161a,161bの内部には、熱交換促進部材としてのプレートフィン162が設けられている(
図9参照)。プレートフィン162は、モジュール容器8の天板8aと空気通路カバー160の天板160aの間で長手方向及び幅方向に延びるように水平方向に設けられた水平部162aと、モジュール容器8の側板8bと空気通路カバー160の側板160bとの間であって、且つ、燃料電池セルユニット16よりも上方の位置に長手方向及び鉛直方向に延びるように設けられた鉛直部162bとを含む。水平部162aは短手方向中央側の端部が、空気通路カバー160の天板160aに形成された空気供給口160cの近傍まで延出している。
【0090】
また、鉛直部162bの下端は、モジュール容器8の側板8bの燃焼室18から輻射熱を受けることができる部分と略等しい高さまで延出している。具体的には、鉛直部162bの下端は、後述する蓄熱手段として機能する燃料電池セルユニット16の上端付近、より具体的には内側電極端子86の高さに位置している。
【0091】
プレートフィン162は、一枚のプレートフィンが天板8aの縁近傍において折り曲げられて形成され、水平部162a及び鉛直部162bは連続した一部材として構成されている。なお、本実施例では、水平部162a及び鉛直部162bは、一枚のプレートフィンが天板8aを折り曲げて構成しているが、必ずしもこのように構成する必要はない。例えば、二枚のプレートフィンを溶接等で接続して水平部162a及び鉛直部162bを構成してもよく、水平部162aと鉛直部162bとが、熱を伝達可能なように連続する一部材として構成されていればよい。
【0092】
空気通路161a,161bを流れる発電用空気は、特にプレートフィン162を通過する際に、これらプレートフィン162の内側のモジュール容器8内(具体的には天板8a,側板8bに沿って設けられた排気通路)を通過する排気ガスとの間で熱交換を行い、加熱されることとなる。このようなことから、空気通路161a,161bにおいてプレートフィン162が設けられた部分は、熱交換器(熱交換部)として機能する。なお、プレートフィン162の水平部162aが設けられた部分が主たる熱交換器部分を構成し、プレートフィン162の鉛直部162bが設けられた部分が従たる熱交換器部分を構成する。
【0093】
つぎに、蒸発器140は、モジュール容器8の天板8a上で水平方向に延びるように固定されている。また、蒸発器140とモジュール容器8との間には、これらの隙間を埋めるように板状に形成された第1断熱材断熱材7が配置されている(
図8及び
図9参照)。
【0094】
具体的には、蒸発器140は、長手方向(
図8の左右方向)の一側端側に、水及び原燃料ガス(改質用空気を含めてもよい)を供給する燃料供給配管63と、排気ガスを排出するための排気ガス排出管82(
図9参照)とが連結され、長手方向の他側端側に、排気管171の上端部が連結されている。排気管171は、空気通路カバー160の天板160aに形成された開口部167を貫通して下方へ延び、モジュール容器8の天板8a上に形成された排気口111に連結されている。排気口111は、モジュール容器8内の燃焼室18で生成された排気ガスをモジュール容器8の外へ排出する開口部であり、モジュール容器8の上面視略矩形の天板8aのほぼ中央部に形成されている。
【0095】
また、蒸発器140は、
図8及び
図9に示すように、上面視で略矩形の蒸発器ケース141を有している。この蒸発器ケース141は、2つの高さの低い有底矩形筒状の上側ケース142と下側ケース143とを、これらの間に中間板144を挟んだ状態で接合して形成されている。
【0096】
したがって、蒸発器ケース141は、上下方向に二層構造となっており、下層部分には、排気管171から供給された排気ガスが通過する排気通路部140Aが形成され、上層部分には、燃料供給配管63から供給された水を蒸発させて水蒸気を生成する蒸発部140Bと、蒸発部140Bで生成された水蒸気と燃料供給配管63から供給された原燃料ガスとを混合させる混合部140Cが設けられている。
【0097】
図8及び
図9に示すように、蒸発部140B及び混合部140Cは、複数の連通孔(スリット)145aが形成された仕切り板145により蒸発器140を仕切った空間にて形成されている。また、蒸発部140B内には、アルミナボール(図示せず)が充填されている。
【0098】
また、排気通路部140Aは、同様に複数の連通孔を有する2つの仕切り板146,147により排気ガスの上流側から下流側にかけて3つの空間に仕切られている。そして、2番目の空間に燃焼触媒(図示せず)が充填されている。すなわち、本実施例の蒸発器140は、上下方向の二層構造のうちの下層構造に燃焼触媒器を含んでいる。
【0099】
このような蒸発器140では、蒸発部140B内の水と排気通路部140Aを通過する排気ガスとの間で熱交換が行われ、排気ガスの熱により蒸発部140B内の水が蒸発して、水蒸気が生成されることとなる。また、混合部140C内の混合ガスと排気通路部140Aを通過する排気ガスとの間で熱交換が行われ、排気ガスの熱により混合ガスが昇温されることとなる。
【0100】
さらに、
図8に示すように、混合部140Cには、改質器120に混合ガスを供給するための混合ガス供給管112が接続されている。この混合ガス供給管112は、排気管171の内部を通過するように配置されており、一端が中間板144に形成された開口144aに連結され、他端が改質器120の天面に形成された混合ガス供給口120aに連結されている。混合ガス供給管112は、排気通路部140A内,排気管171内を通過してモジュール容器8内まで鉛直下方に延び、そこで略90°屈曲されて天板8aに沿って水平方向に延びた後、下方へ略90°屈曲されて改質器120に連結されている。
【0101】
つぎに、改質器120は、燃焼室18の上方でモジュール容器8の長手方向に沿って水平方向に延びるように配置され、モジュール容器8の天板8aとの間に排気ガス誘導部材130を介して所定距離隔てられて状態で、天板8aに対して固定されている。改質器120は、上面視で外形略矩形であるが、中央部に貫通孔120bが形成された環状構造体であり、上側ケース121と下側ケース122とが接合された筐体を有している。この貫通孔120bは、天板8aに形成された排気口111と上面視で重なるように位置し、好ましくは、貫通孔120bの中央位置に排気口111が形成される。
【0102】
改質器120の長手方向の一端側(モジュール容器8の閉鎖側板8e側)では、上側ケース121に設けられた混合ガス供給口120aに混合ガス供給管112が連結されており、他端側(閉鎖側板8d側)では、燃料ガス供給管64が下側ケース122に、脱硫器36まで延びる水添脱硫器用水素取出管65が上側ケース121にそれぞれ連結されている。したがって、改質器120は、混合ガス供給管112から混合ガス(つまり水蒸気が混合された原燃料ガス(改質用空気を含めてもよい))を受け取り、内部で混合ガスを改質し、燃料ガス供給管64及び水添脱硫器用水素取出管65から改質後のガス(即ち、燃料ガス)を排出するように構成されている。
【0103】
改質器120は、その内部空間が2つの仕切り板123a,123bによって3つの空間に仕切られることにより、改質器120内に、混合ガス供給管112からの混合ガスを受入れる混合ガス受入部120Aと、混合ガスを改質するための改質触媒(図示せず)が充填された改質部120Bと、改質部120Bを通過したガスを排出するガス排出部120Cと、が形成されている(
図8参照)。改質部120Bは、仕切り板123a,123bに挟まれた空間であり、この空間に改質触媒が保持されている。混合ガス及び改質後の燃料ガスは、仕切り板123a,123bに設けられた複数の連通孔(スリット)を通って移動可能となっている。また、改質触媒としては、アルミナの球体表面にニッケルを付与したものや、アルミナの球体表面にルテニウムを付与したものが適宜用いられる。
【0104】
混合ガス受入部120Aには、蒸発器140から混合ガス供給管112を介して供給された混合ガスが混合ガス供給口120aを通して噴出される。この混合ガスは、混合ガス受入部120A内で拡張されて噴出速度が低下し、仕切り板123aを通過して改質部120Bに供給される。
【0105】
改質部120Bでは、低速で移動する混合ガスが改質触媒により燃料ガスに改質され、この燃料ガスが仕切り板123bを通過してガス排出部120Cに供給される。
【0106】
ガス排出部120Cでは、燃料ガスが燃料ガス供給管64、及び、水添脱硫器用水素取出管65へ排出される。
【0107】
燃料ガス供給通路としての燃料ガス供給管64は、モジュール容器8内を閉鎖側板8dに沿って下方へ延び、底板8c付近で略90°屈曲されて水平方向に延びて、燃料電池セル集合体12の下方に形成されたマニホールド66内へ入り、更にマニホールド66内で逆側の閉鎖側板8e付近まで水平方向に延びている。燃料ガス供給管64の水平部64aの下方面には、複数の燃料供給孔64bが形成されており、この燃料供給孔64bから、燃料ガスがマニホールド66内に供給される。このマニホールド66の上方には、燃料電池セルユニット16を支持するための貫通孔を備えた下支持板68が取り付けられており、マニホールド66内の燃料ガスが、燃料電池セルユニット16内に供給される。また、燃料ガスと空気との燃焼を開始するための点火装置83が、燃焼室18に設けられている。
【0108】
排気ガス誘導部材130は、改質器120と天板8aとの間でモジュール容器8の長手方向に沿って水平方向に延びるように配置されている。排気ガス誘導部材130は、上下方向に所定距離だけ離間された下部誘導板131及び上部誘導板132と、これらの長手方向の両端辺が取り付けられる連結板133,134とを備えている(
図8,
図9参照)。上部誘導板132は、幅方向の両端部が下方に向けて折り曲げられ、下部誘導板131に連結されている。連結板133,134は、上端部が天板8aに連結され、下端部が改質器120に連結されており、これにより、排気ガス誘導部材130及び改質器120を天板8aに固定している。
【0109】
下部誘導板131は、幅方向(
図9の左右方向)の中央部が下方に向けて突出する凸状段部131aが形成されている。一方、上部誘導板132は、下部誘導板131と同様に、幅方向の中央部が下方に向けて凹状となるように凹部132aが形成されている。凸状段部131aと凹部132aは、上下方向で並行して長手方向に延びている。混合ガス供給管112は、モジュール容器8内でこの凹部132a内を水平方向に延びた後、閉鎖側板8e付近で下方に向けて屈曲し、上部誘導板132及び下部誘導板131を貫通して、改質器120に連結されている。
【0110】
排気ガス誘導部材130は、上部誘導板132、下部誘導板131、連結板133,134によって、断熱層として機能する内部空間であるガス溜135が形成されている。このガス溜135は、燃焼室18と流体連通している。すなわち、上部誘導板132、下部誘導板131、連結板133,134は、所定の隙間を形成するように連結されており、気密的には連結されていない。ガス溜135には、運転中に燃焼室18から排気ガスが流入したり、停止時に外部から空気が流入したりすることが可能となっているが、総じてガス溜135の内外間のガスの移動は緩やかである。
【0111】
上部誘導板132は、天板8aと所定の上下方向距離を隔てて配置されており、上部誘導板132と天板8aとの間には、長手方向及び幅方向に沿って水平方向に延びる排気通路172が形成されている。この排気通路172は、モジュール容器8の天板8aを挟んで空気通路161aと並設されており、排気通路172内には、空気通路161a,161b内のプレートフィン162と同様なプレートフィン175が配置されている。このプレートフィン175は、プレートフィン162の水平部162aと上面視で略同一箇所に設けられており、天板8aを挟んで上下方向に対向している。空気通路161a及び排気通路172のうち、プレートフィン162,175が設けられた部分において、空気通路161aを流れる発電用空気と排気通路172を流れる排気ガスとの間で効率的な熱交換が行われて、排気ガスの熱により発電用空気が昇温されることとなる。
【0112】
また、改質器120は、モジュール容器8の側板8bと所定の水平方向距離を隔てて配置されており、改質器120と側板8bとの間には、排気ガスを下方から上方へ通過させる排気通路173が形成されている。また、排気ガス誘導部材130も側板8bと所定の水平方向距離を隔てて配置されており、排気通路173は、排気ガス誘導部材130と側板8bとの間の通路を含んで天板8aまで延びている。排気通路173は、天板8aと側板8bとの角部に位置する排気ガス導入口172aで排気通路172と連通している。この排気ガス導入口172aは、モジュール容器8内で長手方向に延びている。
【0113】
さらに、下部誘導板131は、改質器120の上側ケース121の天面から所定の上下方向距離を隔てて配置されており、下部誘導板131と上側ケース121との間、及び、改質器120の貫通孔120bは、貫通孔120bを下方から上方へ向けて通過した排気ガスを通過させる排気通路174を形成している。この排気通路174は、改質器120の上方で排気通路173と合流する。
【0114】
つぎに、
図11を参照して、燃料電池セルユニット16について説明する。
図11は、本発明の一実施例による固体酸化物形燃料電池の燃料電池セルユニットを示す部分断面図である。
図11に示すように、燃料電池セルユニット16は、燃料電池セル84と、この燃料電池セル84の両端部にそれぞれ接続されたキャップである内側電極端子86とを備えている。
【0115】
燃料電池セル84は、上下方向に延びる管状構造体であり、内部に燃料ガス流路88を形成する円筒形の内側電極層90と、円筒形の外側電極層92と、内側電極層90と外側電極層92との間にある電解質層94とを備えている。この内側電極層90は、燃料ガスが通過する燃料極であり、(−)極となり、一方、外側電極層92は、空気と接触する空気極であり、(+)極となっている。
【0116】
燃料電池セル84の上端側と下端側に取り付けられた内側電極端子86は、同一構造であるため、ここでは、上端側に取り付けられた内側電極端子86について具体的に説明する。内側電極層90の上部90aは、電解質層94と外側電極層92に対して露出された外周面90bと上端面90cとを備えている。内側電極端子86は、導電性のシール材96を介して内側電極層90の外周面90bと接続され、さらに、内側電極層90の上端面90cとは直接接触することにより、内側電極層90と電気的に接続されている。内側電極端子86の中心部には、内側電極層90の燃料ガス流路88と連通する燃料ガス流路細管98が形成されている。
【0117】
この燃料ガス流路細管98は、内側電極端子86の中心から燃料電池セル84の軸線方向に延びるように設けられた細長い細管である。このため、マニホールド66(
図8参照)から、下側の内側電極端子86の燃料ガス流路細管98を通って燃料ガス流路88に流入する燃料ガスの流れには、所定の圧力損失が発生する。従って、下側の内側電極端子86の燃料ガス流路細管98は、流入側流路抵抗部として作用し、その流路抵抗は所定の値となるように設定されている。また、燃料ガス流路88から、上側の内側電極端子86の燃料ガス流路細管98を通って燃焼室18(
図8参照)に流出する燃料ガスの流れにも所定の圧力損失が発生する。従って、上側の内側電極端子86の燃料ガス流路細管98は、流出側流路抵抗部として作用し、その流路抵抗は所定の値となるように設定されている。
【0118】
内側電極層90は、例えば、Niと、CaやY、Sc等の希土類元素から選ばれる少なくとも一種をドープしたジルコニアとの混合体、Niと、希土類元素から選ばれる少なくとも一種をドープしたセリアとの混合体、Niと、Sr、Mg、Co、Fe、Cuから選ばれる少なくとも一種をドープしたランタンガレードとの混合体、の少なくとも一種から形成される。
【0119】
電解質層94は、例えば、Y、Sc等の希土類元素から選ばれる少なくとも一種をドープしたジルコニア、希土類元素から選ばれる少なくとも一種をドープしたセリア、Sr、Mgから選ばれる少なくとも一種をドープしたランタンガレート、の少なくとも一種から形成される。
【0120】
外側電極層92は、例えば、Sr、Caから選ばれた少なくとも一種をドープしたランタンマンガナイト、Sr、Co、Ni、Cuから選ばれた少なくとも一種をドープしたランタンフェライト、Sr、Fe、Ni、Cuから選ばれた少なくとも一種をドープしたランタンコバルタイト、銀、などの少なくとも一種から形成される。
【0121】
少なくとも上方の内側電極端子86は、熱容量が大きく、蓄熱性の高い金属から形成されており、蓄熱手段として機能する。燃料電池セルユニット16の上方の燃焼室18で発生した熱は、上方の内側電極端子86で蓄熱され、これにより燃料電池セル84へ燃焼室18からの熱が直接伝わるのを抑止できる。また、このようにして蓄熱された内側電極端子86は熱源として機能し、蓄熱した熱を周囲に放出する。
【0122】
燃料電池セル集合体12は、各燃料電池セルユニット16の燃料極である内側電極層90に取り付けられた内側電極端子86が、他の燃料電池セルユニット16の空気極である外側電極層92の外周面に電気的に接続されることにより、128本の燃料電池セルユニット16の全てが直列接続されて構成される。
【0123】
つぎに、
図12〜
図14を参照して、本発明の一実施例による固体酸化物形燃料電池装置の燃料電池モジュール内のガス及び熱の流れについて説明する。
図12は、
図8と同様の、本発明の一実施例による固体酸化物形燃料電池装置の燃料電池モジュールを示す側面断面図であり、
図13は、
図9と同様の、
図8のIII−III線に沿った断面図である。また、
図14は、本発明の一実施例による固体酸化物形燃料電池装置の燃料電池モジュールの上部の部分断面図である。
なお、
図12及び
図13は、それぞれ、
図8及び
図9中にガスの流れを示す矢印を新たに付加した図であり、説明の便宜上、第1断熱材7を取り除いた状態の図を示している。図中、実線矢印は燃料ガスの流れ、破線矢印は発電用空気の流れ、一点鎖線矢印は排気ガスの流れを示す。
【0124】
図12に示すように、水及び原燃料ガス(燃料ガス)は、蒸発器140の長手方向の一端側に連結された燃料供給配管63から蒸発器140の上層に設けられた蒸発部140B内に供給される。蒸発部140Bに供給された水は、蒸発器140の下層に設けられた排気通路部140Aを流れる排気ガスにより加熱され水蒸気となる。この水蒸気と、燃料供給配管63から供給された原燃料ガスとが、蒸発部140B内を下流方向に流れて行き、混合部140C内で混合される。混合部140C内の混合ガスは、下層の排気通路部140Aを流れる排気ガスにより加熱される。
【0125】
混合部140C内で形成された混合ガス(燃料ガス)は、混合ガス供給管112を通って、モジュール容器8内の改質器120に供給される。混合ガス供給管112は、排気通路部140A,排気管171,及び排気通路172を順に通過しているため、これらの通路を流れる排気ガスにより、混合ガス供給管112内の混合ガスは更に加熱される。
【0126】
混合ガスは、改質器120内の混合ガス受入部120A内に流入し、ここから仕切り板123aを通過して改質部120Bに流入する。混合ガスは、改質部120Bにおいて改質されて燃料ガスとなる。こうして生成された燃料ガスは、仕切り板123bを通過して、ガス排出部120Cに流入する。
【0127】
さらに、燃料ガスは、ガス排出部120Cから燃料ガス供給管64と水添脱硫器用水素取出管65とに分岐する。そして、燃料ガス供給管64に流入した燃料ガスは、燃料ガス供給管64の水平部64aに設けられた燃料供給孔64bからマニホールド66内に供給され、マニホールド66から各燃料電池セルユニット16内に供給される。
【0128】
また、
図12及び
図13に示すように、発電用空気は、発電用空気導入管74から空気通路161aに供給される。発電用空気は、空気通路161a,161b内において、プレートフィン162を通過する際に、これらプレートフィン162の下部のモジュール容器8内に形成された排気通路172,173を通過する排気ガスとの間で効率的な熱交換を行い、加熱されることとなる。特に、排気通路172内には、空気通路161aのプレートフィン162に対応してプレートフィン175が設けられているので、発電用空気は、プレートフィン162とプレートフィン175とを介して、排気ガスとより効率的な熱交換を行う。
【0129】
また、燃焼室18においてオフガスが燃焼されることにより、モジュール容器8の側板8bの燃料電池セルユニット16の上端部よりも上方の部分が輻射熱を受け、加熱される。そして、モジュール容器8の側板8bが加熱されることにより、この熱が空気通路161b内のプレートフィン162の鉛直部162bに伝達される。さらに、プレートフィン162の鉛直部162bに伝達された熱は水平部162aまで伝搬される。このため、空気通路161bの燃料電池セルユニット16の上端部よりも上方の部分でも空気が効率的に加熱される。この後、発電用空気は、モジュール容器8の側板8bの下部に設けられた複数の吹出口8fから燃料電池セル集合体12に向けて発電室10内に噴射される。
【0130】
なお、本実施例では、燃料電池セル集合体12の側方部位には排気通路が形成されていないため、この部位において発電用空気と排気ガスとの間の熱交換は抑制される。したがって、燃料電池セル集合体12の側方部位において、空気通路161b内の発電用空気に上下方向の温度ムラが生じ難くなっている。
【0131】
また、発電室10内で発電に利用されなかった燃料ガスは、
図13に示すように、燃焼室18で燃焼されて排気ガス(燃焼ガス)となり、モジュール容器8内を上昇していく。具体的には、排気ガスは、排気通路173と排気通路174とに分岐して、改質器120の外側面とモジュール容器8の側板8bとの間、及び、改質器120の貫通孔120bから改質器120と排気ガス誘導部材130との間をそれぞれ通過する。このとき、排気通路174を通過する排気ガスは、改質器120の貫通孔120bの上方に配置された凸状段部131aによって幅方向に二分され、排気ガス誘導部材130の下部に留まることなく排気通路173に向けて誘導され、排気通路173を流れる排気ガスに素早く合流される。
【0132】
また、
図14に示すように、燃焼室18において発電室10内で発電に利用されなかった燃料ガスが燃焼されることにより、輻射熱が発生する。この輻射熱は、矢印Aで示すように、主に燃料電池セルユニット16の上端部(内側電極端子86)、及び、モジュール容器8の側板8bの燃料電池セルユニット16の上端部よりも上方の部分に放射され、これらの部分が輻射熱により加熱される。
【0133】
モジュール容器8の側板8bの燃料電池セルユニット16の内側電極端子86は、蓄熱性が高い材料により構成されているため、燃焼室18で発生した熱を蓄熱する。そして、内側電極端子86は熱を蓄えると熱源として機能し、矢印Bで示すように、モジュール容器8の側板8bを介して、プレートフィン162の鉛直部162bを加熱する。鉛直部162bが加熱されると、その熱は矢印Cで示すように、水平部162aの空気供給口160c近傍まで伝達されるため、空気通路161a、161bの空気供給口160cから燃料電池セルユニット16の上端部よりも上方の部分で効率良く熱交換が行われる。
【0134】
その後、排気ガスは、排気ガス導入口172aから排気通路172に流入する。排気通路172内では、排気ガスは、排気通路172を水平方向に流れていき、モジュール容器8の天板8aの中央に形成された排気口111から流出する。
【0135】
なお、排気ガスが排気通路173を上方へ流れていく際に、空気通路161b内に設けられたプレートフィン162の鉛直部162bを介して、発電用空気と排気ガスとの間で熱交換が行われる。また、排気ガスが排気通路172を水平方向に流れていく際に、排気通路172内に設けられたプレートフィン175と、このプレートフィン175に対応して空気通路161a内に設けられたプレートフィン162の水平部162aとを介して、発電用空気と排気ガスとの間で効率的な熱交換が行われる。このようにして、排気ガスの熱により発電用空気が昇温される。
【0136】
そして、排気口111から流出した排気ガスは、モジュール容器8の外部に設けられた排気管171を通過して蒸発器140の排気通路部140Aに流入し、排気通路部140Aを通過した後、蒸発器140から排気ガス排出管82へ排出される。排気ガスは、蒸発器140の排気通路部140Aを流れる際に、上述したように、蒸発器140の混合部140C内の混合ガス及び蒸発部140B内の水と熱交換を行う。
【0137】
本実施例による固体酸化物形燃料電池装置1によれば以下の効果が奏される。
本実施例では、蒸発器140が第1断熱材7の内側、かつ、モジュール容器8の外に配置されている。これにより、排気通路172、173における排気ガスが蒸発器140により温度低下するのを防止し、短い熱交換距離であっても、排気通路172、173内の排気ガスと空気通路161内の空気との間で十分な熱交換を行うことができる。
【0138】
また、本実施例では、プレートフィン162の鉛直部162bの下端は、モジュール容器8の側板8bの燃焼室18からの輻射熱を受けることができる部分と略等しい高さまで延出している。これにより、燃焼室18からの輻射熱がモジュール容器8の側板8bを介してプレートフィン162の鉛直部162bに伝達される。このため、空気通路161a、161bの燃料電池セル84よりも上方の部位で、空気が十分加熱されることとなり、空気通路161a、161bの燃料電池セル84に対応する高さにおいて温度ムラが生じるのを防止できる。
【0139】
また、例えば、プレートフィン162の鉛直部162bの下端が改質器120と略等しい高さにおいて終端している場合には、モジュール容器8の側板8bの燃焼室18の側方に当たる部分では、排気ガスと空気との熱交換効率が低下する。このように燃焼室18の側方に当たる部分での熱交換効率が低下してしまうと、燃焼室18で発生した熱が燃料電池セルユニット16の上方に滞留してしまう。
【0140】
これに対して、本実施例では、プレートフィン162の鉛直部162bの下端は、モジュール容器8の側板8bの燃焼室18からの輻射熱を受けることができる部分と略等しい高さまで延出している。これにより、モジュール容器8の燃焼室18の側方において排気ガスから空気へ交換が促進されるため、燃焼室18からの排熱が燃料電池セルユニット16の上方に滞留することを抑止し、より確実に温度ムラの発生を抑えることができる。
【0141】
このようにして、本実施例によれば、燃料電池セル84よりも上方における排気ガスと空気との間の熱交換性能を向上することが可能となり、燃料電池セル84に温度ムラの影響を与えることなく燃料電池装置1の小型化を図ることができる。
【0142】
また、本実施例では、プレートフィン162は、水平部162aと鉛直部162bとが一体に構成され、空気供給口160cの近傍から、燃焼室18からの輻射熱を受けることができる位置まで連続して設けられている。これにより、燃焼室18からモジュール容器8の側板8bに伝達された輻射熱がプレートフィン162の鉛直部162bに伝達され、さらに、この熱がプレートフィン162により空気供給口162cの近傍まで伝達されるため、短い熱交換距離でも十分に空気を加熱することができる。
【0143】
本実施例では、燃料電池セル84の上端部には、熱容量が大きく、蓄熱性の高い金属から形成された内側電極端子86が設けられ、プレートフィン162の鉛直部162bの下端は、内側電極端子86と略等しい高さに位置している。これにより、内側電極端子86が燃焼室18からの熱を受けるため、燃焼室18により燃料電池セル84が直接加熱することを防止し、燃料電池セル84に上下方向の温度ムラが生じることを抑止できる。さらに、熱を蓄えた内側電極端子86が熱源として機能し、モジュール容器8の側板8bを介してプレートフィン162の鉛直部162bを加熱するため、空気通路161bの燃料電池セル84よりも上方の部位で、空気が十分加熱されることとなり、空気通路161bの燃料電池セル84に対応する高さにおいて温度ムラが生じるのを防止できる。