特許第6882824号(P6882824)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ダイセル・エボニック株式会社の特許一覧

特許6882824ポリアミド粒子及びその製造方法、樹脂組成物並びに成形品
<>
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6882824
(24)【登録日】2021年5月11日
(45)【発行日】2021年6月2日
(54)【発明の名称】ポリアミド粒子及びその製造方法、樹脂組成物並びに成形品
(51)【国際特許分類】
   C08L 77/00 20060101AFI20210524BHJP
   C08L 63/00 20060101ALI20210524BHJP
   C08J 5/04 20060101ALI20210524BHJP
【FI】
   C08L77/00
   C08L63/00 A
   C08J5/04CFC
【請求項の数】12
【全頁数】22
(21)【出願番号】特願2018-528403(P2018-528403)
(86)(22)【出願日】2017年4月10日
(86)【国際出願番号】JP2017014636
(87)【国際公開番号】WO2018016138
(87)【国際公開日】20180125
【審査請求日】2020年2月7日
(31)【優先権主張番号】特願2016-141825(P2016-141825)
(32)【優先日】2016年7月19日
(33)【優先権主張国】JP
(73)【特許権者】
【識別番号】000108982
【氏名又は名称】ダイセル・エボニック株式会社
(74)【代理人】
【識別番号】100142594
【弁理士】
【氏名又は名称】阪中 浩
(74)【代理人】
【識別番号】100090686
【弁理士】
【氏名又は名称】鍬田 充生
(72)【発明者】
【氏名】六田 充輝
(72)【発明者】
【氏名】中家 芳樹
(72)【発明者】
【氏名】宇野 孝之
【審査官】 河内 浩志
(56)【参考文献】
【文献】 特開2010−132811(JP,A)
【文献】 国際公開第2015/076070(WO,A1)
【文献】 国際公開第2015/076074(WO,A1)
【文献】 国際公開第2015/076069(WO,A1)
【文献】 国際公開第2015/033998(WO,A1)
【文献】 特開2006−257117(JP,A)
【文献】 VESTOSINT,Degussa AG,2004年12月,p11,URL,http://www.todo1104.sakura.ne.jp/takagi/test/daicel_en/catalog/nylon12_p/pdf/vestosint_eng.pdf
【文献】 トロガミド,ダイセル・エボニック株式会社,2000年 2月,p2,3,7,URL,https://www.daicel-evonik.com/assets/img/uploads/TROGAMID(Light Weight) _1.pdf
(58)【調査した分野】(Int.Cl.,DB名)
C08J 3/00− 3/28
99/00
C08K 3/00− 13/08
C08L 1/00−101/14
(57)【特許請求の範囲】
【請求項1】
ポリアミドを含み、かつ吸水率が0.5〜2.5重量%であるポリアミド粒子と、エポキシ樹脂とを含む硬化性樹脂組成物
【請求項2】
ポリアミドが半結晶性ポリアミドである請求項1記載の硬化性樹脂組成物
【請求項3】
ポリアミドのガラス転移温度が100〜150℃である請求項1又は2記載の硬化性樹脂組成物
【請求項4】
ポリアミドが脂環族ポリアミド及び/又は脂肪族ポリアミドである請求項1〜3のいずれかに記載の硬化性樹脂組成物
【請求項5】
ポリアミド粒子の平均粒径が5〜40μmである請求項1〜4のいずれかに記載の硬化性樹脂組成物
【請求項6】
ポリアミド粒子のBET法による比表面積が0.08〜12m/gである請求項1〜5のいずれかに記載の硬化性樹脂組成物
【請求項7】
ポリアミド粒子が球状であり、かつポリアミド粒子の平均粒径が15〜25μmである請求項1〜6のいずれかに記載の硬化性樹脂組成物
【請求項8】
ポリアミド粒子が、示差走査熱量測定(DSC)によって10℃/分の速度で昇温したとき、ポリアミドのガラス転移温度と融点との間の温度範囲に発熱ピークを有する請求項1〜7のいずれかに記載の硬化性樹脂組成物
【請求項9】
ポリアミド粒子の割合が、ポリアミド粒子及びエポキシ樹脂の総量に対して30重量%以下である請求項1〜8のいずれかに記載の硬化性樹脂組成物。
【請求項10】
強化繊維をさらに含む請求項のいずれかに記載の硬化性樹脂組成物。
【請求項11】
強化繊維が炭素繊維及び/又はガラス繊維を含む請求項10記載の硬化性樹脂組成物。
【請求項12】
請求項11のいずれかに記載の硬化性樹脂組成物の硬化物を含む成形品。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、繊維強化複合材料などの硬化性樹脂組成物の硬化物の靱性を向上させるためのポリアミド粒子及びその製造方法、前記粒子を含む硬化性樹脂組成物並びにこの組成物で形成された成形品に関する。
【背景技術】
【0002】
炭素繊維(カーボン繊維)及びマトリックス樹脂を含む炭素繊維強化複合材料(CFRP)は、強度、剛性などに優れ、各種用途(例えば、航空機の一次構造部材、自動車用部材、風車の羽根、各種電子機器の筐体など)において使用されている。こうした用途において特に重要な物性としては、主に物理的強度、例えば、衝撃強度、弾性率、曲げ強度等が挙げられる。このような物性を改善するため、従来から、マトリックス樹脂(例えば、エポキシ樹脂成分)及び炭素繊維を含むCFRPに対して各種フィラーをさらに添加する工夫がなされてきた。中でも昨今様々な検討がなされているのはポリアミド粒子によるCFRPの強化である。
【0003】
特開2014−145003号公報(特許文献1)には、強化繊維とエポキシ樹脂と2種類の平均粒径を有するポリマー粒子とを含み、かつ前記ポリマー粒子のうち、平均粒径10〜30μmである大粒径のポリマー粒子のガラス転移温度が80〜180℃であるプリプレグ(成形用中間材料)が開示されている。この文献の実施例では、ポリアミドを溶媒に溶解した後、貧溶媒を投下して析出させる化学粉砕法でポリアミド粒子を調製している。
【0004】
特許第5655976号公報(特許文献2)には、強化繊維と、熱硬化性樹脂と、結晶性ポリアミド及び非晶性ポリアミドを含む組成物からなり、かつ特定の貯蔵弾性率及び80〜180℃のガラス転移温度を有する粒子とを含むプリプレグが開示されている。この文献の実施例でも、結晶性ポリアミド及び非晶性ポリアミドを溶媒に溶解した後、貧溶媒を投下して析出させる化学粉砕法でポリアミド粒子を調製している。
【0005】
WO2015/033998号パンフレット(特許文献3)には、プリプレグとして利用できる繊維強化用複合材料用組成物として、強化繊維、平均粒子径12〜70μmを有する球状のポリアミド樹脂粒子及びマトリックス樹脂を含む組成物が開示されている。この文献の実施例では、ポリアミドに非相溶な材料を用いてポリアミドを溶融混練する強制乳化法によってポリアミド樹脂粒子を調製している。
【0006】
特開2015−98532号公報(特許文献4)には、強化繊維とこの強化繊維の繊維間に含浸された樹脂組成物とを含む強化繊維層と、この強化繊維層の少なくとも一方の表面上に設けられた表面層とを備えたプリプレグであって、前記表面層が、ベンゾオキサジン樹脂、エポキシ樹脂、分子中に2個以上のフェノール性水酸基を有する硬化剤、及び平均粒子径が5〜50μmであり、かつポリアミド12樹脂粒子及びポリアミド1010樹脂粒子を含むポリアミド樹脂粒子を含有するプリプレグが開示されている。
【0007】
しかし、これらのポリアミド粒子では、強化繊維の補強効果が充分ではなく、硬化性樹脂組成物の硬化物の靱性も低かった。さらに、特許文献1及び2のポリアミド粒子では、2種類のポリアミド粒子を用いるため、均一に混合する必要があり、取り扱い性も低かった。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特開2014−145003号公報(請求項1、実施例)
【特許文献2】特許第5655976号公報(特許請求の範囲、実施例)
【特許文献3】WO2015/033998号パンフレット(請求の範囲、実施例)
【特許文献4】特開2015−98532号公報(請求項1)
【発明の概要】
【発明が解決しようとする課題】
【0009】
従って、本発明の目的は、硬化性樹脂の硬化物の靱性を向上できるポリアミド粒子及びその製造方法、前記粒子を含む硬化性樹脂組成物並びにこの組成物で形成された成形品を提供することにある。
【0010】
本発明の他の目的は、繊維強化複合材料(FRP)において強化繊維(特に炭素繊維)による補強効果を向上できるポリアミド粒子及びその製造方法、前記粒子を含む硬化性樹脂組成物並びにこの組成物で形成された成形品を提供することにある。
【0011】
本発明のさらに他の目的は、取り扱い性に優れ、容易にFRPの層間靱性を向上できるポリアミド粒子及びその製造方法、前記粒子を含む硬化性樹脂組成物並びにこの組成物で形成された成形品を提供することにある。
【課題を解決するための手段】
【0012】
本発明者らは、前記課題を達成するため、ポリアミド粒子の吸水率に着目した。ポリアミドは吸水性が高い樹脂として知られているが、構造部材の分野では、吸水性は寸法安定性や電気的性質を低下させるため、当業者であれば、できるだけ吸水率を低下させたポリアミドを使用するのが通常である。なお、特許文献1〜4には、ポリアミド粒子の吸水率については記載されていない。例えば、特許文献1及び2では、ポリアミドのガラス転移温度や貯蔵弾性率G’の温度依存性が検討されているが、これらの特性は粒子を構成するポリアミドの特性であって、ポリアミド粒子の特性ですらない。特許文献3及び4でも、ポリアミド粒子の粒径及び化学構造が特定されているのみである。さらに、特許文献3及び4では、得られたポリアミド粒子に対する乾燥条件について記載されておらず、吸水率を推定することもできない。例えば、特許文献3では、ポリエチレングリコールなどの溶媒を溶出してポリアミド粒子を製造しているが、溶媒の除去方法(乾燥条件)について記載されていない。しかし、当業者であれば、ポリアミド粒子の溶媒を除去するための乾燥では、前述のように、吸水率を低下させるとともに、生産効率を向上させるため、なるべく高い温度、すなわちポリアミドのガラス転移温度以上の温度で加熱するのが通常である。特に、エポキシ樹脂などの硬化性樹脂を使用するFRPの分野では、エポキシ樹脂の硬化不良の原因となる水分の含有は極力避けるのが技術常識であった。さらに、加熱して乾燥後も、水分の吸水を避けるため、アルミニウムなどの水分を透過しない包装材料で梱包し、水分の出入りがない状態で保管される。そのため、ポリアミド粒子は、袋を開封しない限り、乾燥時の吸水量がそのまま維持される。これに対して、本発明者らは、ポリアミド粒子の吸水率を所定の範囲に調整することにより、意外にも硬化性樹脂組成物の硬化物の靱性を向上できることを見出した。すなわち、特許文献1〜4では、ポリアミド粒子自身の特性を制御する技術的思想が開示されておらず、得られるポリアミド粒子も低い吸水率により、硬化性樹脂の硬化物の靱性を向上できず、強化繊維を含む組成物では繊維による補強効果を向上できないことを見出した。
【0013】
また、樹脂粒子の代表的な製造方法として、(1)冷凍粉砕法(例えば、樹脂を液体窒素などで冷却、脆化させた上で、物理的な力によって粉砕又は破砕し粉体化する方法など)、(2)化学粉砕法(例えば、樹脂を溶媒に溶解した後、貧溶媒に投下して析出させる方法など)、(3)重合法(例えば、懸濁重合やエマルジョン重合などにより粒子化しつつ重合する方法)、(4)強制乳化法{例えば、樹脂に対して非相溶な材料[例えば、水溶性高分子(ポリエチレングリコールなど)、糖類(多糖類、オリゴ糖など)などの水溶性材料]と樹脂とを溶融混練し、非相溶な材料(水溶性高分子)中に樹脂粒子が分散した分散体を得た後、この分散体から非相溶な材料を取り除く方法など}、(5)レーザー法(レーザーで瞬間的に溶融させ繊維状の樹脂を、減圧槽などとの組み合わせにより空中に飛翔させて、樹脂粒子を得る方法)などが知られている。本発明者らは、特定の吸水率を有するポリアミド粒子は、これらの方法のうち、強制乳化法を選択し、得られた粒子の熱履歴(特に乾燥条件)を特殊な条件に調整することにより、前記吸水率を有するための適度な結晶性(半結晶性)を備えることも見出した。
【0014】
すなわち、本発明のポリアミド粒子は、ポリアミドを含み、かつ吸水率が0.5〜2.5重量%である。前記ポリアミドは半結晶性ポリアミドであってもよい。前記ポリアミドのガラス転移温度は100〜150℃程度である。前記ポリアミドは脂環族ポリアミド及び/又は脂肪族ポリアミドであってもよい。本発明のポリアミド粒子の平均粒径は5〜40μm程度であり、BET法による比表面積が0.08〜12m/g程度である。また、本発明のポリアミド粒子は、球状であり、かつ平均粒径が15〜25μm程度であってもよい。さらに、本発明のポリアミド粒子は、示差走査熱量測定(DSC)によって10℃/分の速度で昇温したとき、前記ポリアミドのガラス転移温度と融点との間の温度範囲に発熱ピークを有していてもよい。
【0015】
本発明には、ポリアミドとこのポリアミドに非相溶な水性媒体とを溶融混練する溶融混練工程と、得られた溶融混練物から親水性溶媒で前記水性媒体を除去して前駆体粒子を得る水性媒体除去工程と、温度及び湿度を制御し、得られた前駆体粒子の吸水量を調整する水分調整工程とを含む前記ポリアミド粒子の製造方法も含まれる。
【0016】
また、本発明には、前記ポリアミド粒子及び硬化性樹脂を含む硬化性樹脂組成物も含まれる。前記硬化性樹脂はエポキシ樹脂を含んでいてもよい。前記ポリアミド粒子の割合は、ポリアミド粒子及び硬化性樹脂の総量に対して30重量%以下であってもよい。本発明の硬化性樹脂組成物は、強化繊維をさらに含んでいてもよい。前記強化繊維は炭素繊維及び/又はガラス繊維を含んでいてもよい。
【0017】
さらに、本発明には、前記硬化性樹脂組成物の硬化物を含む成形品も含まれる。
【0018】
なお、本明細書及び特許請求の範囲において、硬化性樹脂組成物が硬化性樹脂に加えて硬化剤及び/又は硬化促進剤を含む場合、「硬化性樹脂」は硬化剤及び/又は硬化促進剤を含む意味で用いる。
【発明の効果】
【0019】
本発明では、ポリアミド粒子の吸水率が0.5〜2.5重量%に調整されているため、硬化性樹脂の硬化物の靱性を向上できる。特に、ポリアミド粒子を構成するポリアミドのガラス転移温度を100〜150℃に調整することにより、エポキシ樹脂の硬化物の靱性を向上できる。また、強化繊維(特に炭素繊維)による補強効果を向上できる。さらに、吸水率を調整したポリアミド粒子を硬化性樹脂と組み合わせて強化繊維に含浸させるだけで、容易にFRPの層間靱性を向上でき、取り扱い性にも優れている。
【0020】
なお、本発明のポリアミド粒子を硬化性樹脂(特に硬化性樹脂及び強化繊維)に配合することより、微粒子の状態で少量の配合割合であるにも拘わらず、硬化物の靱性及び強化繊維の補強効果が向上するメカニズムは明確ではないが、所定の吸水率を有することにより、ポリアミド粒子の柔軟性が向上し、組成物中で変形することにより、破壊エネルギーを吸収できるとともに、硬化性樹脂の硬化物や強化繊維と密着して隙間の形成を抑制できるためであると推定できる。さらに、本発明のポリアミド粒子が所定の結晶性を有すると、吸水率の調整が容易となる上に、硬化性樹脂(特にエポキシ樹脂)との親和性も向上し、硬化性樹脂との境界でアロイ層を形成することにより、硬化物の靱性を更に向上していると推定できる。
【発明を実施するための形態】
【0021】
[ポリアミド粒子]
本発明のポリアミド粒子は、主鎖にアミド結合を有するポリアミドを含み、ポリアミド単独で形成されていてもよく、ポリアミドを含む樹脂組成物(ポリアミドを主成分として含む樹脂組成物)で形成されていてもよい。ポリアミドの割合は、粒子全体に対して、例えば60重量%以上、好ましくは80重量%以上、さらに好ましくは90重量%以上であってもよい。
【0022】
ポリアミドとしては、例えば、脂肪族ポリアミド、脂環族ポリアミド、芳香族ポリアミドなどが挙げられる。ポリアミドは、ホモポリアミド又はコポリアミドであってもよい。ポリアミドの末端基は特に限定されないが、アミノ基、カルボキシル基、酸無水物基であってもよい。
【0023】
脂肪族ポリアミドのうち、ホモポリアミドとしては、脂肪族ジアミン成分[アルカンジアミン(例えば、テトラメチレンジアミン、ヘキサメチレンジアミン、ドデカンジアミンなどのC4−16アルキレンジアミン、好ましくはC6−14アルキレンジアミン、さらに好ましくはC6−12アルキレンジアミン)など]と、脂肪族ジカルボン酸成分[例えば、アルカンジカルボン酸(例えば、アジピン酸、セバシン酸、ドデカン二酸などのC4−20アルカンジカルボン酸、好ましくはC5−18アルカンジカルボン酸、さらに好ましくはC6−16アルカンジカルボン酸)など]とのホモ又はコポリアミド、ラクタム[ε−カプロラクタム、ω−ラウロラクタムなどの炭素数4〜20(好ましくは炭素数4〜16)程度のラクタムなど]又はアミノカルボン酸(例えば、ω−アミノウンデカン酸などのC4−20アミノカルボン酸、好ましくはC4−16アミノカルボン酸、さらに好ましくはC6−14アミノカルボン酸など)のホモ又はコポリアミド、脂肪族ジアミン成分及び脂肪族ジカルボン酸成分の第1のアミド形成成分と、ラクタム又はアミノカルボン酸の第2のアミド形成成分とのコポリアミドなどが含まれる。
【0024】
具体的な脂肪族ポリアミドとしては、例えば、ポリアミド6、ポリアミド11、ポリアミド12、ポリアミド46、ポリアミド66、ポリアミド610、ポリアミド611、ポリアミド612、ポリアミド613、ポリアミド1010、ポリアミド1012、ポリアミド66/11、ポリアミド66/12、ポリアミド6/12/612などが挙げられる。
【0025】
脂環族ポリアミドとしては、脂環族ジアミン成分及び脂環族ジカルボン酸成分から選択された少なくとも一種を構成成分として含むホモポリアミド又はコポリアミドなどが挙げられ、例えば、ジアミン成分及びジカルボン酸成分のうち、少なくとも一部の成分として脂環族ジアミン及び/又は脂環族ジカルボン酸を用いて得られる脂環族ポリアミドなどが使用できる。特に、ジアミン成分及びジカルボン酸成分として、脂環族ジアミン成分及び/又は脂環族ジカルボン酸成分と共に、前記例示の脂肪族ジアミン成分及び/又は脂肪族ジカルボン酸成分を併用するのが好ましい。このような脂環族ポリアミドは、透明性が高く、いわゆる透明ポリアミドとして知られている。
【0026】
脂環族ジアミン成分としては、ジアミノシクロヘキサンなどのジアミノシクロアルカン(ジアミノC5−10シクロアルカンなど);ビス(4−アミノシクロヘキシル)メタン、ビス(4−アミノ−3−メチルシクロヘキシル)メタン、2,2−ビス(4’−アミノシクロヘキシル)プロパンなどのビス(アミノシクロアルキル)アルカン[ビス(アミノC5−8シクロアルキル)C1−3アルカンなど];水添キシリレンジアミンなどが挙げられる。脂環族ジアミン成分は、アルキル基(メチル基、エチル基などのC1−6アルキル基、好ましくはC1−4アルキル基、さらに好ましくはC1−2アルキル基)などの置換基を有していてもよい。また、脂環族ジカルボン酸としては、1,4−シクロヘキサンジカルボン酸、1,3−シクロヘキサンジカルボン酸などのシクロアルカンジカルボン酸(C5−10シクロアルカン−ジカルボン酸など)などが挙げられる。
【0027】
代表的な脂環族ポリアミドとしては、例えば、脂環族ジアミン成分[例えば、ビス(アミノシクロヘキシル)アルカンなど]と脂肪族ジカルボン酸成分[例えば、アルカンジカルボン酸(例えば、C4−20アルカン−ジカルボン酸成分など)など]との縮合物などが挙げられる。
【0028】
芳香族ポリアミドには、脂肪族ポリアミドにおいて、脂肪族ジアミン成分及び脂肪族ジカルボン酸成分のうち少なくとも一方の成分が芳香族成分であるポリアミド、例えば、ジアミン成分が芳香族ジアミン成分であるポリアミド[例えば、芳香族ジアミン(メタキシリレンジアミンなど)と脂肪族ジカルボン酸との縮合物(例えば、MXD−6など)など]、ジカルボン酸成分が芳香族成分であるポリアミド[例えば、脂肪族ジアミン(トリメチルヘキサメチレンジアミンなど)と芳香族ジカルボン酸(テレフタル酸、イソフタル酸など)との縮合物など]などが含まれる。また、芳香族ポリアミド樹脂は、ジアミン成分及びジカルボン酸成分が芳香族成分であるポリアミド[ポリ(m−フェニレンイソフタルアミド)など]の全芳香族ポリアミド(アラミド)であってもよい。
【0029】
これらのポリアミドは、単独で又は2種以上組み合わせてもよい。これらのうち、硬化性樹脂の補強効果が大きい点から、脂環族ポリアミドや脂肪族ポリアミドなどの半結晶性ポリアミド(結晶性を有するポリアミド)(脂環族ポリアミド及び/又は脂肪族ポリアミド)が好ましく、強化繊維の近傍にポリアミド粒子を偏在させ易い点から、脂環族ポリアミド(脂環式構造を有するポリアミド)が特に好ましい。特に、ポリアミド粒子を構成する樹脂について、非晶性の樹脂の方が半結晶性の樹脂よりも粒子にした時に結晶化度が低くなるのは当然であるが、硬化性樹脂がエポキシ樹脂である場合、非晶性でかつエポキシ樹脂の硬化条件で形状を維持できる樹脂はガラス転移温度が非常に高く、室温から100℃程度の温度領域では脆性となるため、非晶性の樹脂では補強効果が低下する虞がある。
【0030】
ポリアミド(特に、脂環族ポリアミド)の数平均分子量は、例えば8000〜200000、好ましくは9000〜150000、さらに好ましくは10000〜100000程度であってもよい。なお、数平均分子量は、ポリスチレンなどを標準物質とし、ゲルパーミエーションクロマトグラフィーなどにより測定できる。
【0031】
ポリアミド(特に、脂環族ポリアミド)の融点は、特に制限されないが、比較的高温の融点を有するポリアミドを好適に使用してもよい。このようなポリアミドは、組成物や成形品の製造において、球状を高いレベルで維持しやすいためか、強化繊維を含む場合でも、強化繊維による補強効果を効率よく得やすい。このようなポリアミド樹脂(脂肪族ポリアミド、脂環族ポリアミドなど)の融点は、例えば150℃以上(例えば155〜350℃)、好ましくは160℃以上(例えば165〜300℃)、さらに好ましくは170℃以上(例えば175〜270℃)であってもよい。また、ポリアミドの融点(又は軟化点)は、組成物の成形温度[例えば、マトリックス樹脂としての硬化性樹脂(例えば、エポキシ樹脂)の硬化温度など]以上(又は組成物の成形温度よりも高い温度)であってもよい。
【0032】
ポリアミドのガラス転移温度(Tg)は、例えば30℃以上(例えば50〜200℃程度)の範囲から選択できるが、硬化性樹脂がエポキシ樹脂を含む場合、好ましくは100〜150℃、さらに好ましくは110〜145℃(特に120〜140℃)程度である。ガラス転移温度が100℃未満であると、一般的にマトリックス樹脂として用いられるエポキシ樹脂の硬化反応温度が100〜200℃程度であるため、添加したポリアミド粒子が変形したり凝集する虞がある。一方、ガラス転移温度が150℃を越えると、好ましい粒径や表面積のポリアミド粒子を製造するのが困難となり、低温で脆くなる虞がある。
【0033】
なお、ガラス転移温度が100℃以上のポリアミドは、ポリアミドとしてはガラス転移温度の高い部類に属し、一般に化学構造として脂肪族ポリアミドでこのようなガラス転移温度を有するのは事実上不可能である。このようなポリアミドとしては、主鎖にベンゼン環を有する芳香族ポリアミド、主鎖に脂環式構造を有する脂環式ポリアミドが相当するが、靭性に優れ、特に、硬化性樹脂(特に、エポキシ樹脂)や硬化性樹脂と強化樹脂などの半結晶性樹脂繊維の複合体に対する補強効果に優れる点から、脂環族ポリアミドが好ましく、半結晶性脂環族ポリアミドが特に好ましい。
【0034】
ポリアミド(特に、半結晶性ポリアミド)の結晶化度は、ポリアミドの種類に応じて選択でき、80%以下(例えば75〜1%)、好ましくは50%以下(例えば50〜10%)であってもよい。半結晶性ポリアミドが脂環族ポリアミドである場合、結晶化度は40%以下であり、例えば30〜1%、好ましくは20〜1%、さらに好ましくは20〜5%程度である。ポリアミド1010などのC6−10アルカン単位を有する半結晶性脂肪族ポリアミドの結晶化度は50%以下であってもよく、例えば50〜1%、好ましくは45〜10%、さらに好ましくは43〜30%程度である。ポリアミド12などのC11−13アルカン単位を有する半結晶性脂肪族ポリアミドの結晶化度は80%以下であってもよく、例えば80〜10%、好ましくは78〜30%、さらに好ましくは75〜35%程度である。結晶化度が高すぎると、硬化性樹脂(特に、エポキシ樹脂)や硬化性樹脂と強化繊維の複合体に対する補強効果を改善できない可能性がある。本発明では、結晶化度は、慣用の方法、例えば、X線回折法、示差走査熱量測定(DSC)法によって測定でき、特に、後述する実施例に記載の広角X線回折(WAXD)に基づいて測定できる。
【0035】
ポリアミド粒子は、示差走査熱量測定(DSC)によって10℃/分の速度で昇温したときに、ポリアミドのガラス転移温度と融点との間の温度範囲に発熱ピークを有するのが好ましい。発熱ピークは、前記温度範囲にあればよく、例えば、ガラス転移温度よりも1〜70℃高い位置にあってもよく、好ましくは1〜60℃、さらに好ましくは1〜50℃(特に1〜40℃)程度高い位置にあってもよい。本発明では、ポリアミド粒子がこのような熱的特性(結晶構造)を有することにより、硬化性樹脂(特にエポキシ樹脂)と作用し易くなるためか、硬化物の靱性を向上でき、強化繊維の補強効果も向上できる。
【0036】
なお、CFRPの製造過程では、添加された粒子はエポキシ樹脂の硬化反応により長時間にわたり150℃を超える温度環境下に曝される上に、硬化反応中のエポキシ樹脂や硬化剤などの化学的影響を受けるにも拘わらず、CFRPの補強のために用いられるポリアミド粒子自体の熱的特性についての検討は殆ど行われていなかった。特に、粒子を構成するポリアミドの場合、熱による融解後に冷却して固化した樹脂において、固化した後の分子の高次構造(結晶化度など)は、固化後の熱履歴(特に乾燥による加熱)の態様によって大きく異なる。このような高次構造の違いはCFRPにおける粒子の補強効果に大きな影響を及ぼすにも拘わらず、従来の技術では、これらの点について検討されていなかった。さらに、前述のように、通常の乾燥条件では、乾燥のための加熱により結晶化が進行するため、示差走査熱量分析(DSC)の1st Heatの過程で結晶化の発熱ピークが観察できる程度に低い本発明の結晶化度は達成できない。
【0037】
本発明では、ポリアミドは特定の吸水率に調整されることにより、硬化性樹脂の硬化物の靱性(特に、強化繊維を含むエポキシ樹脂組成物の硬化物の靱性)を向上できる。ポリアミド粒子の吸水率は0.5〜2.5重量%であり、例えば0.5〜2重量%(例えば0.8〜1.5重量%)、好ましくは0.55〜2重量%(例えば0.6〜1.5重量%)、さらに好ましくは0.65〜1重量%(特に0.7〜0.8重量%)程度である。吸水率が0.5重量%未満であると、靭性向上効果が十分に得られない。一方、2.5重量%を越えると、十分な靭性向上効果は得られず、エポキシ樹脂などの硬化性樹脂の硬化反応に影響を及ぼしたり、硬化反応の間に粒子中にボイドが発生する虞もある。なお、本明細書及び特許請求の範囲では、ポリアミド粒子の吸水率は、カールフィッシャー法、詳しくは、後述する実施例に記載の方法で測定できる。
【0038】
ポリアミド粒子の形状としては、不定形状、ジャガイモ状、球状などが知られているが、このような形状は、通常、粒子の製造方法に応じて決定される場合が多い。これらの形状のうち、球状が好ましい。球状としては、真球状又は真球状に準ずる形状[例えば、表面が滑らかで(又は表面に凹凸がなく)、かつ長径と短径とが近似している(例えば、長径/短径=1.3/1〜1/1、好ましくは1.2/1〜1/1、さらに好ましくは1.1/1〜1/1程度である)形状]などが挙げられる。中でも、真球状が好ましい。
【0039】
ポリアミド粒子の代表的な製造方法として、(1)冷凍粉砕法、(2)化学粉砕法、(3)重合法、(4)強制乳化法、(5)レーザー法などが知られている。本発明者らは、特定の吸水率を有するポリアミド粒子は、これらの方法のうち、比表面積が比較的小さい球状粒子が得られるのが、(4)強制乳化法であるが、この方法でも用いるポリアミドの種類、ポリアミドと水溶性媒体との組み合わせ、プロセス温度、冷却方法、水溶性媒体を除去した後の乾燥方法などで結晶化度は変わってくることを見出した。この結晶化度は、その後の熱履歴などと共にポリアミド粒子の吸水量に大きな影響を与える。
【0040】
本発明では、ポリアミド粒子の比表面積は主にBET法で測定できる。粒子(パウダー)の表面積よりも、粒子に尖った部分がないこと、粒子形状が均一であることが安定した補強効果に有効であるため、比表面積が小さい形状である球状が好ましく、最も小さい比表面積を有する形状である真球が特に好ましい。完全に球形で粒径にも分布のない粒子の場合、粒径と比表面積の関係を表1に示す。
【0041】
【表1】
【0042】
ポリアミドの種類によって比重は変わるが、脂肪族ポリアミド(ポリアミド12)や脂環族ポリアミドの場合は概ね比重は1.0程度である。例えば、ポリアミド粒子の平均粒径が約20μmである場合、例えば、上述した(2)化学粉砕法であれば、比表面積は2〜3.5m/g程度、(4)強制乳化法であれば0.2〜0.4m/g程度である。ポリアミド粒子の好ましい比表面積は、0.08〜12m/gであるが、より詳しくは、平均粒径が40μm程度の粒子であれば0.08〜1.5m/g、30μm程度の粒子であれば0.15〜2m/g、20μm程度の粒子であれば0.2〜3m/g、10μm程度の粒子であれば0.3〜6m/g、5μm程度の粒子であれば0.6〜12m/g程度が好適である。
【0043】
ポリアミド粒子の平均粒径(平均粒子径)は、3μm以上(例えば5〜40μm)の範囲から選択でき、例えば14μm以上(例えば15〜40μm)、好ましくは16μm以上(例えば17〜35μm)、さらに好ましくは18μm以上(例えば19〜30μm)、特に20μm以上(例えば21〜30μm)であってもよく、特に繊維強化複合材料(特にエポキシ樹脂を含む材料)の場合は通常12〜40μm、好ましくは15〜30μm、さらに好ましくは15〜25μm程度であってもよい。平均粒径が小さすぎると、強化繊維を含む場合、強化繊維の補強効果を改善できない虞がある。なお、本明細書及び特許請求の範囲では、平均粒子径は、個数平均一次粒子径で表され、レーザー回折散乱法などにより測定できる。
【0044】
なお、前記範囲は平均粒径であるが、前記平均粒径の範囲にある粒子径を有するポリアミド粒子が効率良い補強効果に主に寄与するようである。そのため、ポリアミド粒子は、例えば、粒子径が5〜40μm(特に15〜40μm)の範囲にあるポリアミド粒子を、粒子数基準で、全体に対して50%以上(例えば60%以上)、好ましくは70%以上、さらに好ましくは80%以上、特に90%以上含むポリアミド粒子であってもよい。
【0045】
また、ポリアミド粒子の平均粒子径は、強化繊維と共に用いる場合、強化繊維の平均径に応じて選択でき、例えば、強化繊維の平均径(平均繊維径)の0.5〜15倍(例えば0.7〜12倍)、好ましくは1〜10倍(例えば1.5〜5倍)、さらに好ましくは1.8〜7倍(特に2〜6倍)程度であってもよく、通常1.5〜15倍(例えば2〜10倍)程度であってもよい。このような粒径のポリアミド粒子を使用することで、強化繊維近傍にポリアミド粒子を偏在させ易く、強化繊維による補強効果を効率よく高めやすい。
【0046】
ポリアミド粒子は、ポリアミド樹脂を含んでいればよいが、さらに衝撃性改良剤を含んでいてもよい。衝撃性改良剤としては、例えば、酸変性されたポリオレフィン樹脂(酸変性ポリオレフィン樹脂)、グリシジル基などのエポキシ基含有基を有する樹脂などが挙げられる。これらの衝撃性改良剤は、単独で又は二種以上組み合わせて使用できる。これらの衝撃性改良剤のうち、酸変性ポリオレフィン樹脂が好ましく、このポリオレフィン樹脂は部分的に炭素−炭素の二重結合を有していてもよい。衝撃性改良剤の割合は、ポリアミド100重量部に対して、例えば1〜30重量部、好ましくは1〜25重量部、さらに好ましくは5〜20重量部程度である。
【0047】
ポリアミド粒子は、他の成分として、他の熱可塑性樹脂や慣用の添加剤をさらに含んでいてもよい。慣用の添加剤としては、例えば、安定剤、充填剤(非繊維状充填剤)、着色剤、分散剤、防腐剤、抗酸化剤、消泡剤などが挙げられる。これらの他の成分は、単独で又は2種以上組み合わせてもよい。他の成分の合計割合は、ポリアミド100重量部に対して、例えば10重量部以下(例えば0.01〜10重量部程度)であってもよい。
【0048】
[ポリアミド粒子の製造方法]
本発明のポリアミド粒子は、ポリアミドとこのポリアミドに非相溶な水性媒体とを溶融混練する溶融混練工程、得られた溶融混練物から親水性溶媒で前記水性媒体を除去して前駆体粒子を得る水性媒体除去工程、温度及び湿度を制御し、得られた前駆体粒子の吸水量を調整する水分調整工程を経て得られる。
【0049】
前記溶融混練工程及び水性媒体除去工程は、慣用の強制乳化法と同様である。本発明では、強制乳化法によって粒子状に成形した後、水分調整工程でポリアミド粒子の吸水率が調整される。強制乳化法としては、慣用の方法、例えば、特開2010−132811号公報に記載の方法などを利用できる。
【0050】
前記水性媒体としては、ポリアミドの種類に応じて選択でき、例えば、熱溶融性の糖類(スクロース、マルトトリオースなどのオリゴ糖;キシリトール、エリスリトール、ソルビトール、マンニトールなどの糖アルコールなど)、水溶性高分子(ポリエチレングリコール、ポリビニルアルコール、ポリアクリル酸ナトリウム、ポリアクリルアミドなどの水溶性合成高分子;デンプン、メチルセルロースなどの多糖類など)などが挙げられる。これらの水性媒体は、単独で又は二種以上組み合わせて使用できる。
【0051】
これらのうち、水溶性高分子(例えば、ポリエチレングリコールやポリビニルアルコールなどの水溶性合成高分子)であってもよく、例えば、ポリエチレングリコールであれば、日油(株)製の「PEG−20000」、「PEG−11000」、「PEG−1000」、「PEG−200」などを単独で又は二種以上組み合わせて使用できる。水性媒体の粘度は、強制乳化法で得られる樹脂粒子の粒径を制御するためのひとつの因子であり、粘度の選択は、目的とする粒径、ポリアミドの種類や分子量、ポリアミドと水性媒体との体積比やコンパウンド時のシェアレート(剪断速度)などによって異なり、これらの条件を組み合わせて調整してもよい。水性媒体としては、適度な粒径に調整し易い点から、特に、ポリエチレングリコールであってもよい。
【0052】
水性媒体の重量割合は、ポリアミド100重量部に対して、例えば10〜100重量部、好ましくは20〜100重量部、さらに好ましくは30〜100重量部程度であってもよい。水性媒体の体積割合は、水性媒体及びポリアミドの総体積に対して50体積%以上(例えば50〜90体積%程度)であってもよい。水性媒体の割合が多すぎると、生産性が低下する虞があり、逆に少なすぎると、小粒径のポリアミド粒子を製造するのが困難となる虞がある。
【0053】
溶融混練温度は、ポリアミドの融点又は軟化点以上の温度であればよく、ポリアミドの種類に応じて選択でき、例えば、脂環族ポリアミド樹脂の場合、例えば250℃以上(例えば250〜350℃)、好ましくは260〜320℃、さらに好ましくは270〜300℃程度である。
【0054】
溶融混練後の冷却方法は、特に限定されないが、生産性の点から、脂環族ポリアミド樹脂の場合、強制的に冷却(急冷)するのが好ましく、例えば、冷却速度は1℃/分以上(例えば1〜10℃/分程度)であってもよい。固化後の乾燥条件(加熱)に比べると、ポリアミド粒子の結晶性に対する影響は小さいが、結晶化速度の遅い脂環族ポリアミド樹脂の場合、強制的に冷却してもよい。
【0055】
冷却した混練物から水性媒体を除去する方法は、親水性溶媒を用いた方法が利用され、通常、親水性溶媒で洗浄することにより、水性媒体を除去する。親水性溶媒としては、例えば、水、アルコール(エタノールなどの低級アルコールなど)、水溶性ケトン(アセトンなど)などを好ましく利用できる。
【0056】
水分調整工程(溶媒乾燥工程)では、ポリアミド粒子の吸水率を調整できれば、特に限定されないが、通常、ポリアミドの種類に応じて、温度及び湿度を調整して、溶媒である水性媒体を除去するとともに、ポリアミド粒子の吸水量が調整される。
【0057】
具体的には、強制乳化法で得られたポリアミド粒子では、通常、前記水性媒体として水を利用するため、ポリアミド粒子は過剰の水分を含有している場合が多い。そのため、ポリアミド粒子を適度な条件(温度、湿度及び時間)で乾燥することにより、吸水率を調整してもよい。例えば、温度は、粒子の吸水率を調整するとともに、前述の結晶化度に調整する点から、ポリアミドのガラス転移温度をTgとするとき、Tg以下であってもよく、好ましくはTg−10℃以下、さらに好ましくはTg−30℃以下(特にTg−50℃以下)であってもよい。具体的には、吸水率を調整する点から、脂環族ポリアミドの場合、例えば0〜50℃、好ましくは5〜40℃、さらに好ましくは10〜30℃程度であってもよい。また、脂肪族ポリアミドの場合、例えば10〜60℃、好ましくは20〜55℃、さらに好ましくは30〜50℃程度であってもよい。吸水率は湿度との関係にもよるが、一般的には、温度が高すぎると、吸水率が低下し、結晶化度が高くなり過ぎる虞がある。
【0058】
湿度は、ポリアミドの種類や目的の吸水率に応じて10〜100%RH程度の範囲から選択できる。温度や乾燥時間に応じても変わるため、一義的には決められないが、例えば、脂環族ポリアミドの場合、湿度は10〜80%RH、好ましくは30〜70%RH、さらに好ましくは40〜60%RH程度であってもよい。ポリアミド12などの脂肪族ポリアミドの場合、湿度は50%RH以上、好ましくは60〜95%RH、さらに好ましくは70〜90%RH程度であってもよい。湿度が低すぎると吸水率が低下する虞がある。
【0059】
このような温度及び湿度で、ポリアミド粒子の吸水率を調整するための時間は、温度や湿度、ポリアミドの種類に応じて適宜選択できるが、例えば、脂環族ポリアミドの場合、例えば1日以上、好ましくは3日以上、さらに好ましくは5日以上(例えば5〜10日)程度であってもよい。また、脂肪族ポリアミドの場合、例えば5時間以上、好ましくは10時間以上、さらに好ましくは20時間以上(例えば20時間〜5日)程度であってもよい。
【0060】
[硬化性樹脂組成物]
本発明の硬化性樹脂組成物は、前記ポリアミド粒子に加えて、硬化性樹脂を含む。また、前記硬化性樹脂は、硬化剤及び硬化促進剤をさらに含んでいてもよい。さらに、本発明の硬化性樹脂組成物は、強化繊維を含む繊維強化複合材料(又は繊維強化樹脂)を得るための組成物(繊維強化複合材料用組成物又は繊維強化樹脂用組成物)であってもよい。
【0061】
(硬化性樹脂)
硬化性樹脂は、熱又は光硬化性樹脂のいずれであってもよいが、強度や熱的特性などの観点から、ポリアミドとの組み合わせにおいて、熱硬化性樹脂を好適に使用できる。そのため、硬化性樹脂は、熱硬化性樹脂を含んでいてもよい。
【0062】
熱硬化性樹脂としては、例えば、エポキシ樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、アクリル樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂、アニリン樹脂、ポリイミド樹脂、ビスマレイミド樹脂などが挙げられる。これらの熱硬化性樹脂は、単独で又は2種以上組み合わせてもよい。
【0063】
熱硬化性樹脂の中でも、特に、エポキシ樹脂が好ましい。エポキシ樹脂としては、例えば、グリシジルエーテル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂(例えば、テトラグリシジルジアミノジフェニルメタン、トリグリシジル−p−アミノフェノール、トリグリシジルアミノクレゾール、ジグリシジルアニリン、N,N−ジグリシジル−4−グリシジルオキシアニリンなど)、グリシジルエステル型エポキシ樹脂[例えば、ジカルボン酸(例えば、テレフタル酸、イソフタル酸、フタル酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸などの芳香族ジカルボン酸又はその水添物)のジグリシジルエステルなど]、アルケンオキシド類(例えば、ビニルシクロヘキセンジオキシドなど)、トリグリシジルイソシアヌレートなどが挙げられる。
【0064】
グリシジルエーテル型エポキシ樹脂としては、例えば、ビスフェノール型エポキシ樹脂(ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、臭素化ビスフェノール型エポキシ樹脂などのビスフェノール類又はそのアルキレンオキシド付加体とエピクロロヒドリンとの反応物)、フェノール型エポキシ樹脂(フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂、ビフェニル骨格含有フェノールノボラック樹脂、キシリレン骨格含有フェノールノボラック樹脂など)、ジシクロペンタジエン型エポキシ樹脂、ナフタレン骨格を有するグリシジルエーテル[例えば、1,5−ジ(グリシジルオキシ)ナフタレンなどのジ(グリシジルオキシ)ナフタレン、ビス[2,7−ジ(グリシジルオキシ)ナフチル]メタンなど]などの芳香族骨格を有するエポキシ樹脂(ポリグリシジルエーテル);アルカンジオールジグリシジルエーテル(例えば、ブタンジオールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテルなどのC2−10アルカンジオールジグリシジルエーテル)、ポリアルカンジオールジグリシジルエーテル(例えば、ポリプロピレングリコールジグリシジルエーテルなどのポリC2−4アルカンジオールジグリシジルエーテル)、アルカントリ乃至ヘキサオールのジ乃至ヘキサグリシジルエーテル(例えば、トリメチロールプロパンジ又はトリグリシジルエーテル、グリセリンジ又はトリグリシジルエーテルなどのC3−10アルカントリ又はテトラオールのジ又はトリグリシジルエーテル)などの脂肪族骨格を有するエポキシ樹脂(ポリグリシジルエーテル)などが挙げられる。
【0065】
なお、ビスフェノール類のアルキレンオキシド付加体において、ビスフェノール類のヒドロキシル基1モルに対するアルキレンオキシドの付加モル数は、例えば1モル以上(例えば1〜20モル)、好ましくは1〜15モル、さらに好ましくは1〜10モル程度であってもよい。
【0066】
これらのエポキシ樹脂は、単独で又は2種以上組み合わせてもよい。これらのエポキシ樹脂のうち、強度などの点で、芳香族骨格を有するエポキシ樹脂、例えば、ビスフェノール型エポキシ樹脂などが好ましい。そのため、エポキシ樹脂は、芳香族骨格を有するエポキシ樹脂で少なくとも構成してもよく、芳香族骨格を有するエポキシ樹脂と他のエポキシ樹脂(例えば、脂肪族骨格を有するエポキシ樹脂など)とを組み合わせてもよい。
【0067】
なお、エポキシ樹脂は、単官能性のエポキシ化合物(又は希釈剤){例えば、モノグリシジルエーテル[例えば、アルキルグリシジルエーテル(例えば、2−エチルへキシルグリシジルエーテルなど)、アルケニルグリシジルエーテル(例えば、アリルグリシジルエーテルなど)、アリールグリシジルエーテル(例えば、フェニルグリシジルエーテルなど)など]、アルケンオキシド(例えば、オクチレンオキシド、スチレンオキシドなど)など}と組み合わせてエポキシ樹脂を構成してもよい。なお、エポキシ樹脂と単官能性のエポキシ化合物とを組み合わせる場合、これらの割合は、前者/後者(重量比)=例えば99/1〜50/50、好ましくは97/3〜60/40、さらに好ましくは95/5〜70/30程度であってもよい。
【0068】
エポキシ樹脂(又はエポキシ樹脂及び単官能性のエポキシ化合物との組成物)は、常温(例えば20〜30℃程度)において、固体状であってもよく、液体状であってもよい。なお、液体状のエポキシ樹脂の粘度(25℃)は、例えば50〜50000mPa・s、好ましくは100〜40000mPa・s(例えば200〜35000mPa・s)、さらに好ましくは300〜30000mPa・s(例えば500〜25000mPa・s)程度であってもよく、1000mPa・s以上(例えば2000〜50000mPa・s、好ましくは3000〜30000mPa・s、さらに好ましくは5000〜25000mPa・s)程度であってもよい。
【0069】
(硬化剤及び硬化促進剤)
硬化剤としては、硬化性樹脂の種類に応じて適宜選択でき、例えば、硬化性樹脂がエポキシ樹脂である場合の硬化剤としては、例えば、アミン系硬化剤、フェノール樹脂系硬化剤(例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂など)、酸無水物系硬化剤[例えば、脂肪族ジカルボン酸無水物(ドデセニル無水コハク酸など)、脂環族ジカルボン酸無水物(テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸など)、芳香族ジカルボン酸無水物(無水フタル酸、無水トリメリット酸、無水ピロメリット酸、ベンゾフェノンテトラカルボン酸無水物など)など]、ポリメルカプタン系硬化剤、潜在性硬化剤(三フッ化ホウ素−アミン錯体、ジシアンジアミド、カルボン酸ヒドラジドなど)などが挙げられる。
【0070】
アミン系硬化剤としては、例えば、芳香族アミン系硬化剤[例えば、ポリアミノアレーン(例えば、パラフェニレンジアミン、メタフェニレンジアミンなどのジアミノアレーン)、ポリアミノ−アルキルアレーン(例えば、ジエチルトルエンジアミンなどのジアミノ−アルキルアレーン)、ポリ(アミノアルキル)アレーン(例えば、キシリレンジアミンなどのジ(アミノアルキル)アレーン)、ポリ(アミノアリール)アルカン(例えば、ジアミノジフェニルメタンなどのジ(アミノアリール)アルカン)、ポリ(アミノ−アルキルアリール)アルカン(例えば、4,4’−メチレンビス(2−エチル−6−メチルアニリン)などのジ(アミノ−アルキルアリール)アルカン)、ビス(アミノアリールアルキル)アレーン(例えば、1,3−ビス[2−(4−アミノフェニル)−2−プロピル)]ベンゼン、1,4−ビス[2−(4−アミノフェニル)−2−プロピル)]ベンゼンなど)、ジ(アミノアリール)エーテル(例えば、ジアミノジフェニルエーテルなど)、ジ(アミノアリールオキシ)アレーン(例えば、1,3−ビス(3−アミノフェノキシ)ベンゼンなど)、ジ(アミノアリール)スルホン(例えば、ジアミノジフェニルスルホンなど)など]、脂肪族アミン系硬化剤(例えば、エチレンジアミン、ヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ジエチルアミノプロピルアミンなど)、脂環族アミン系硬化剤(例えば、メンセンジアミン、イソホロンジアミン、ビス(4−アミノ−3−メチルシクロヘキシル)メタン、3,9−ビス(3−アミノプロピル)−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、ノルボルナンジアミンなど)、イミダゾール類(例えば、2−メチルイミダゾール、2−フェニルイミダゾール、2−へプタデシルイミダゾール、2−エチル−4−メチルイミダゾールなどのアルキルイミダゾール;2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール、2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール、1−ベンジル−2−フェニルイミダゾールなどのアリールイミダゾール)又はその塩(例えば、ギ酸塩、フェノール塩、フェノールノボラック塩、炭酸塩など)などが挙げられる。
【0071】
硬化剤は、単独で又は2種以上組み合わせてもよい。なお、硬化剤は、硬化促進剤として作用する場合もある。
【0072】
これらのうち、特にアミン系硬化剤(例えば、芳香族アミン系硬化剤)を好適に使用してもよい。
【0073】
硬化剤の割合は、硬化性樹脂の種類(エポキシ当量など)や硬化剤の種類などに応じて適宜選択できるが、例えば、硬化性樹脂(特に、エポキシ樹脂)100重量部に対して0.1〜300重量部、好ましくは1〜250重量部、さらに好ましくは3〜200重量部(例えば、4〜150重量部)、特に5〜100重量部程度であってもよい。
【0074】
硬化促進剤も、硬化性樹脂の種類に応じて適宜選択でき、例えば、硬化性樹脂がエポキシ樹脂である場合の硬化促進剤としては、例えば、ホスフィン類(例えば、エチルホスフィン、プロピルホスフィン、トリアルキルホスフィン、フェニルホスフィン、トリフェニルホスフィンなど)、アミン類(例えば、トリエチルアミン、ピペリジン、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリエチレンジアミン、トリス(ジメチルアミノメチル)フェノール、N,N−ジメチルピペラジンなどの第2〜3級アミン類又はその塩など)などが挙げられる。硬化促進剤は、単独で又は2種以上組み合わせてもよい。
【0075】
硬化促進剤の割合は、硬化剤の種類などに応じて適宜選択できるが、例えば、硬化性樹脂(特に、エポキシ樹脂)100重量部に対して0.01〜100重量部、好ましくは0.05〜50重量部、さらに好ましくは1〜30重量部程度であってもよい。
【0076】
本発明の組成物(又は後述の成形品)において、ポリアミド粒子及び硬化性樹脂(硬化剤や硬化促進剤を含む場合には、硬化性樹脂との総量)の総量に対するポリアミド粒子の割合は50重量%以下(例えば0.1〜40重量%程度)の範囲から選択でき、例えば30重量%以下(例えば0.5〜25重量%)、好ましくは20重量%以下(例えば1〜18重量%)、さらに好ましくは15重量%以下(例えば2〜12重量%)程度であってもよく、10重量%以下(例えば0.5〜8重量%、好ましくは1〜5重量%)であってもよい。
【0077】
また、本発明の組成物(又は後述の成形品)において、ポリアミド粒子及び硬化性樹脂(硬化剤や硬化促進剤を含む場合には、硬化性樹脂との総量)の総量に対する、ポリアミド粒子の割合は、30体積%以下(例えば0.01〜25体積%程度)の範囲から選択でき、例えば、20体積%以下(例えば0.1〜15体積%)、好ましくは10体積%以下(例えば0.3〜8体積%)、さらに好ましくは5体積%以下(例えば0.5〜3体積%)程度であってもよい。
【0078】
(強化繊維)
強化繊維(補強繊維、繊維状強化材、繊維状フィラー、繊維状充填剤)は、硬化性樹脂を補強(又は強化)する成分であり、無機繊維を含む。無機繊維としては、例えば、炭素繊維(カーボン繊維)、ガラス繊維、ホウ素繊維、アルミノケイ酸繊維、酸化アルミニウム繊維、炭化ケイ素繊維、金属繊維、チタン酸カリウム繊維などが挙げられる。これらの無機繊維は、単独で又は二種以上組み合わせて使用できる。
【0079】
これらの無機繊維のうち、炭素繊維及び/又はガラス繊維が好ましく、炭素繊維が特に好ましい。炭素繊維は、特に限定されず、ピッチ系繊維、ポリアクリロニトリル(PAN)系炭素繊維などのいずれであってもよい。これらの炭素繊維は、単独で又は二種以上組み合わせて使用できる。
【0080】
強化繊維は、無機繊維に加えて、有機繊維を含んでいてもよい。有機繊維としては、例えば、ポリエステル繊維[例えば、芳香族ポリエステル繊維(例えば、ポリエチレンテレフタレート繊維などのポリアルキレンアリレート繊維)など]、ポリアミド繊維[例えば、芳香族ポリアミド繊維(アラミド繊維など)など]、再生繊維(レーヨンなど)などが挙げられる。これらの有機繊維は、単独で又は二種以上組み合わせて使用できる。
【0081】
なお、無機繊維と有機繊維とを組み合わせる場合、強化繊維全体に対する無機繊維(特に、炭素繊維及び/又はガラス繊維)の割合は、例えば30体積%以上、好ましくは50体積%以上、さらに好ましくは70体積%以上(特に90体積%以上)であってもよく、100体積%(特に、炭素繊維のみ)であってもよい。
【0082】
なお、強化繊維は、表面処理されていてもよい。
【0083】
強化繊維の平均径は、その種類にもよるが、0.5〜1000μm(例えば1〜500μm)程度の範囲から選択でき、例えば1〜300μm(例えば、2〜100μm)、好ましくは3〜70μm、さらに好ましくは5〜50μm(特に5〜30μm)程度であってもよい。
【0084】
特に、炭素繊維の平均径(平均繊維径)は、例えば1〜100μm(例えば、1.5〜70μm)、好ましくは2〜50μm(例えば2.5〜40μm)、さらに好ましくは3〜30μm、特に5〜20μm(例えば6〜15μm)程度であってもよく、通常5〜15μm(例えば7〜10μm)程度であってもよい。
【0085】
なお、本明細書及び特許請求の範囲では、繊維径は、慣用の方法で測定でき、例えば、電子顕微鏡を用いて10本以上の繊維径を測定し、平均値を算出することにより求めることができる。
【0086】
強化繊維は、短繊維、長繊維のいずれであってもよいが、特に長繊維であってもよい。長繊維は、連続繊維、不連続繊維のいずれであってもよく、連続繊維と不連続繊維とを組み合わせてもよい。
【0087】
強化繊維は、布帛(又は布)の形態であってもよい。布帛(繊維集合体)としては、例えば、織布(織物)、不織布、編布(編物)などが挙げられる。また、強化繊維は、後述のように、同方向(又は一方向)に揃えた(並べられた)態様で、ポリアミド粒子及び硬化性樹脂とともに、組成物中に含まれていてもよい。
【0088】
布の組織は、布の種類に応じて適宜選択できる。例えば、織布の組織(織物組織)としては、平織、綾織、朱子織などが挙げられるが、特に限定されない。また、編布の組織(編物組織)としては、経編(例えば、トリコットなど)、緯編(例えば、平編、鹿の子編など)などが挙げられる。
【0089】
本発明では、ポリアミド粒子の割合が小さくても、硬化性樹脂の靱性や強化繊維による補強効果を十分に得ることができる。
【0090】
なお、本発明の組成物(又は後述の成形品)において、ポリアミド粒子及び硬化性樹脂の総量の割合は、強化繊維100重量部に対して、例えば1〜70重量部、好ましくは2〜50重量部、さらに好ましくは3〜30重量部程度であってもよい。
【0091】
(他の成分)
本発明の組成物は、本発明の効果を害しない範囲であれば、必要に応じて、他の成分として、他の樹脂粒子、熱可塑性樹脂、慣用の添加剤をさらに含んでいてもよい。
【0092】
他の樹脂粒子としては、例えば、ポリエステル粒子(例えば、ポリエチレンテレフタレートなどの芳香族ポリエステル粒子など)、ポリアセタール粒子、ポリスルフィド粒子、ポリスルホン粒子(ポリエーテルスルホン粒子を含む)、ポリエーテルケトン粒子、ポリオレフィン粒子などが挙げられる。
【0093】
熱可塑性樹脂としては、例えば、アクリル樹脂、ポリオレフィン樹脂(例えば、ポリプロピレンなど)、ポリアミド樹脂(前記例示のポリアミド樹脂など)、ポリエステル樹脂(例えば、ポリエチレンテレフタレートなどの芳香族ポリエステル樹脂など)、ポリカーボネート樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンスルフィド樹脂、ポリスルホン樹脂、ポリエーテルケトン樹脂、ポリエーテルエーテルケトン樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂などが挙げられる。
【0094】
慣用の添加剤としては、ポリアミド粒子の項で例示された慣用の添加剤などが挙げられる。なお、本発明の組成物は、導電性粒子を含んでいてもよく、通常、導電性粒子を含んでいなくてもよい。
【0095】
他の成分の割合は、硬化性樹脂100重量部に対して、例えば10重量部以下(例えば0.01〜10重量部程度)であってもよい。
【0096】
[組成物の形態及び製造方法]
本発明の組成物の形態は、ポリアミド粒子及び硬化性樹脂を含んでいればよく、特に限定されないが、強化繊維(さらには必要に応じて他の成分、以下同じ)をさらに含む繊維強化複合材料用組成物の場合、通常、強化繊維に、ポリアミド粒子及び硬化性樹脂を含む混合物(又はポリアミド樹脂を含む硬化性樹脂)が含浸(付着)した形態であってもよい。このような形態は、強化繊維及びポリアミド粒子が、硬化性樹脂中に分散した形態ということもできる。
【0097】
また、このような組成物は、プリプレグ(成形用中間材料)であってもよい。例えば、硬化性樹脂が熱硬化性樹脂成分[例えば、エポキシ樹脂成分(エポキシ樹脂と硬化剤との組成物など)]である場合、組成物は、半硬化状であってもよい。
【0098】
具体的な形態としては、強化繊維の形状などに応じて選択でき、例えば、(i)同方向(又は一方向)に揃えた複数の強化繊維に、前記混合物が含浸した形態、(ii)布状の強化繊維に前記混合物が含浸した形態などが挙げられる。なお、(i)の形態の組成物のうち、プリプレグとしては、UDプリプレグなどとして、(ii)の形態の組成物のうち、プリプレグとしては、クロスプリプレグなどとして知られている。
【0099】
本発明の組成物は、ポリアミド粒子と硬化性樹脂とを混合する方法で製造でき、繊維強化複合材料用組成物の場合、強化繊維、ポリアミド粒子及び硬化性樹脂を混合して製造でき、通常、強化繊維に、ポリアミド粒子及び硬化性樹脂を含む混合物を含浸(又は付着)して製造できる。
【0100】
具体的な含浸方法としては、(a)強化繊維に液状の混合物を含浸させる方法、(b)混合物で形成されたシート状物と強化繊維とを加圧下で接触させる方法などが挙げられる。
【0101】
方法(a)において、液状の混合物は、液状(常温で液状)の硬化性樹脂を用いてもよく、適当な溶媒(ポリアミド粒子に対する貧溶媒)を用いて得てもよい。また、硬化性樹脂を溶融させることで、液状の混合物を得ることもできる。
【0102】
[成形品]
本発明には、前記硬化性樹脂組成物の硬化物で形成された成形品も含まれる。なかでも強化繊維を含む成形品は、強化繊維と、この強化繊維を分散させるマトリックス樹脂としての硬化性樹脂を含んでいるため、複合材料[繊維強化複合材料(特に炭素繊維強化複合材料)]ということもできる。
【0103】
成形品の製造方法(成形方法)としては、前記組成物の形態や構成成分の種類などに応じて選択できる。例えば、前記組成物(詳細には、所望の成形品の形状に形成した前記組成物)を、硬化処理することで、成形品(硬化処理品)を得ることができる。また、熱硬化性樹脂成分が、未硬化であるか、半硬化であるかなどに応じて、成形法を選択することもできる。成形品の形状は、一次元的形状(棒状など)、二次元的形状(シート状など)、三次元的形状のいずれであってもよい。
【0104】
具体的な成形方法としては、ハンドレイアップ成形法、SMC(シートモールディングコンパウンド)プレス成形法、RIMP(レジンインフュージョン)成形法、プリプレグプレス成形法、プリプレグオートクレーブ法、ワインディング法(フィラメントワインディング法、ピンワインディング成形法など)、引抜成形法、BMC(バルクモールディングコンパウンド)成形法などが挙げられる。
【0105】
以上のようにして、成形品が得られる。このような本発明の成形品(又は組成物)では、ポリアミド粒子により、硬化物の靱性を高めることができ、繊維強化複合材料では、強化繊維による補強機能(例えば、層間靱性など)を高めることができる。特に、本発明では、特定の吸水率、形状及び粒径を有するポリアミド粒子により、効率よく強化繊維を補強できるようであり、ポリアミド粒子の割合が比較的小さくても、十分な補強機能を実現できる。
【実施例】
【0106】
以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。実施例及び比較例で使用した材料の略号は下記の通りであり、実施例及び比較例で得られた樹脂粒子及び試験片を以下の項目で評価した。
【0107】
[材料]
脂環族PA:脂環族ポリアミド、ダイセル・エボニック(株)製「トロガミドCX7323」、融点247℃
PA12粒子A:化学粉砕法(溶媒に溶解した後、再析出させてパウダー化させる方法)で得られたポリアミド12粒子、ダイセル・エボニック(株)製「ベストジント2158」
PA12粒子B:化学粉砕法で得られたポリアミド12粒子、ダイセル・エボニック(株)製「ベストジント2070」
マトリックス樹脂:エポキシ樹脂(三菱化学(株)製、「jER828」)とアミン系硬化剤(三菱化学(株)製、「jERキュアW」)との混合物
炭素繊維:HONLU TECHNOLOGY CO.LTD製「TC−33」、平均繊維径約7μm。
【0108】
[平均粒径]
ポリアミド粒子を水に分散し、レーザー回折/散乱式粒子径分布測定装置((株)堀場製作所製「LA920」)を用いて測定した。
【0109】
[BET比表面積]
ポリアミド粒子について、吸着測定用前処理装置(マイクロトラックベル(株)製「Belprep vac−II」)を用いて、80℃までの真空加熱脱気を行った。前処したポリアミド粒子について、比表面積・細孔分布測定装置(マイクロトラックベル(株)製「BELSORP−mini)を用いて、液体窒素温度下(77K)における窒素ガス吸着法にて、設定相対圧:吸着1.0×10−3〜0.35の吸着等温線を測定した。但し、実際の測定開始時の相対圧は、測定前の真空度(ポリアミド粒子の前処理に起因)に依存する。なお、死容積を実測するモードで測定した。解析法として、BET法にて比表面積を求めた。
【0110】
[吸水率]
カールフィッシャー法に準拠して、水分気化装置((株)三菱化学アナリテック製「型番VA−200」)を備えた微量水分測定装置((株)三菱化学アナリテック製「CA−200」)を用いて、測定温度210℃の条件で測定した。
【0111】
[結晶化のピーク(DSC)]
得られたポリアミド粒子について、示差走査熱量計(SII(株)製「X−DSC7000」)を用いて、室温から300℃まで10℃/分で昇温し、その間(ガラス転移温度Tgと融点との間)に結晶化の発熱ピークが観測できるか否かを確認した。
【0112】
[結晶化度]
粉末X線解析ソフトウェア((株)リガク製「PDXL Ver2.3.1.0」)を用いて、広角X線回折で得られた回折曲線にフィッティング(方法:FP法、ピーク形状:対数正規分布、バックグラウンド精密化:なし)を行うことにより結晶回折ピーク、非晶質ハロを分離し、以下の式から結晶化度(%)を求めた。
【0113】
結晶化度=[結晶回折ピークの積分強度総和(cps・deg)]/[結晶回折ピーク及び非晶質ハロの積分強度総和(cps・deg)]×100%。
【0114】
[層間破壊靱性試験]
(試験片の作製)
マトリックス樹脂に対して、5重量%で実施例及び比較例で得られたポリアミド粒子を添加し、ホットスターラーを用いて、100℃、600rpmの条件で24時間攪拌した。その後、さらに、真空容器中で1時間放置することで脱泡し、ポリアミド粒子を含むマトリックス樹脂を得た。
【0115】
(試験片A)
得られたマトリックス樹脂を用いて、強化繊維を配合せずに、長さ140mm×幅25mm×厚み2.8mmの試験片Aを作製した。詳しくは、硬化条件は、100℃で2時間加熱した後、175℃で4時間加熱した。また、試験片Aの長さ方向の一方の端部に予亀裂を形成した。予亀裂は、硬化時にシート状試験片の前駆体(未硬化物)の長さ方向の一方の端部から、厚み方向の中央部にシートの面方向に沿って、幅が25mm以上で厚み25μmのポリイミドフィルム(東レ・デュポン(株)製「カプトン」)を挿入し、硬化後に、このポリイミドフィルムを引き抜く方法により形成した。
【0116】
(試験片B)
ハンドレイアップ法により、炭素繊維を用いて作製した織物(平織)に、得られたマトリックス樹脂(未硬化物)を含浸させた後、新たな前記織物を積層して前記マトリックス樹脂を含浸させる操作を繰り返して12層の積層物を得た。さらに、得られた積層物を約8MPaの圧力を負荷した状態で恒温槽に入れ、100℃で2時間加熱した後、175℃で4時間加熱し、硬化処理を行った。なお、6層目積層時に、試験片Aと同じく予亀裂を入れるために、厚さ25μmのポリイミドフィルムを挿入し、硬化後に引き抜いた。その後、ダイアモンドカッターで、試験片Aと同一の形状に切削した。
【0117】
(試験方法)
得られた試験片Aについては、ASTM E399に準拠して、平面ひずみ破壊靱性(KIC)を測定し、得られた試験片Bについては、JIS K7086−1993に準拠して、き裂進展過程のモードI層間破壊靱性値(GIR)及びき裂進展初期のモードII層間破壊靱性値(GIIC)を測定した。
【0118】
実施例1
ポリエチレングリコールを用いて、特開2010−132811号公報の実施例に準じ、強制乳化法で脂環族PAを微粒子化した。押出機のダイから押し出された溶融混練物に対して、スポットクーラーを用いて強制的に冷却した後、水洗によりポリエチレングリコールのみを除き、アスピレーターを用いてグラスフィルターで濾過した後、温度23℃及び湿度50%RHに調整された空調室内で一週間自然乾燥させポリアミド粒子(パウダー)を得た。得られたポリアミド粒子の平均粒径は21μmであり、BET比表面積は0.36m/g、吸水率は1.5重量%であった。また、DSCによる10℃/分の昇温条件で結晶化の発熱ピークが観測された。結晶化度は11%であった。
【0119】
実施例2
空調室内での自然乾燥時間を3日間に短縮する以外は実施例1と同様の方法でポリアミド粒子を製造した。得られたポリアミド粒子の平均粒径は23μmであり、BET比表面積は0.33m/g、吸水率は0.74重量%であった。また、DSCによる10℃/分の昇温条件で結晶化の発熱ピークが観測された。結晶化度は11%であった。
【0120】
比較例1
ポリエチレングリコールを用いて、特開2010−132811号公報の実施例に準じ、強制乳化法で脂環族PAを微粒子化した。押出機のダイから押し出された溶融混練物を強制的に冷却せず、自然放冷した後、水洗によりポリエチレングリコールのみを除き、180℃で4時間加熱して乾燥させポリアミド粒子を得た。得られたポリアミド粒子の平均粒径は21μmであり、BET比表面積は0.36m/g、吸水率は0.22重量%であった。また、DSCによる10℃/分の昇温条件で結晶化の発熱ピークは観測されなかった。
【0121】
比較例2
乾燥条件を100℃で8時間に変更する以外は比較例1と同様の方法でポリアミド粒子を製造した。得られたポリアミド粒子の平均粒径は21μmであり、BET比表面積は0.36m/g、吸水率は0.29重量%であった。また、DSCによる10℃/分の昇温条件で結晶化の発熱ピークは観測されなかった。
【0122】
比較例3
ポリエチレングリコールを除いた粒子を乾燥しない以外は比較例1と同様の方法でポリアミド粒子を製造した。得られたポリアミド粒子の平均粒径は21μmであり、BET比表面積は0.36m/g、吸水率は2.75重量%であった。また、DSCによる10℃/分の昇温条件で結晶化の発熱ピークが観測された。
【0123】
実施例3
PA12粒子Aを高湿環境下(温度40℃及び湿度70%RH)で1日間吸湿させてポリアミド粒子を得た。得られたポリアミド粒子の平均粒径は22μmであり、BET比表面積は2.67m/g、吸水率は0.5重量%であった。また、DSCによる10℃/分の昇温条件で結晶化の発熱ピークは観測されなかった。結晶化度は55%であった。
【0124】
比較例4
PA12粒子Aを処理せずにそのままポリアミド粒子として用いた。ポリアミド粒子の平均粒径は22μmであり、BET比表面積は2.67m/g、吸水率は0.1重量%であった。また、DSCによる10℃/分の昇温条件で結晶化の発熱ピークは観測されなかった。
【0125】
実施例4
PA12粒子Bを高湿環境下(温度40℃及び湿度70%RH)で1日間吸湿させてポリアミド粒子を得た。得られたポリアミド粒子の平均粒径は8μmであり、BET比表面積は7.12m/g、吸水率は0.5重量%であった。また、DSCによる10℃/分の昇温条件で結晶化の発熱ピークは観測されなかった。
【0126】
比較例5
PA12粒子Bを処理せずにそのままポリアミド粒子として用いた。ポリアミド粒子の平均粒径は8μmであり、BET比表面積は7.12m/g、吸水率は0.1重量%であった。また、DSCによる10℃/分の昇温条件で結晶化の発熱ピークは観測されなかった。
【0127】
実施例及び比較例で得られたポリアミド粒子の特性を表2に示す。さらに、実施例及び比較例で得られたポリアミド粒子を用いて、試験片A及びBを作製し、層間破壊靱性試験を行った結果も表2に示す。
【0128】
【表2】
【0129】
表2の結果から明らかなように、実施例では、ポリアミド粒子が適度な吸水率を有するため、層間靱性も高いのに対して、比較例では、樹脂粒子が結晶化ピークを有さず層間靱性も低い。特に、実施例1及び2では、適度な吸水率を有し、かつ結晶化ピークを有する脂環族ポリアミド粒子であるため、層間靱性が特に高い。
【産業上の利用可能性】
【0130】
本発明のポリアミド粒子は、繊維強化複合材料やエポキシ樹脂組成物などの硬化性樹脂組成物の補強剤として利用できる。前記組成物の硬化物で形成された成形体としては、種々の分野における構造部材(構造材料)、例えば、乗り物(例えば、飛行機、ヘリコプター、ロケット、自動車、バイク、自転車、電車、船、車いすなど)、人工衛星、風車、スポーツ用品(ゴルフのシャフト、テニスラケット)、筐体(ノートパソコンの筐体など)、医療分野の成形品(人工骨など)、ICトレイ、つり竿、橋脚などが例示できる。