(58)【調査した分野】(Int.Cl.,DB名)
複数のガラス突起を有するガラス物品を形成する方法であって、前記ガラス物品が表面を有し、前記ガラス突起が、レーザー光によって、前記ガラス物品に形成され、各ガラス突起が、前記ガラス物品の前記表面から離間した終点を有し、前記ガラス物品の前記表面と、前記複数のガラス突起の前記終点との間の距離の標準偏差が、1マイクロメートル未満であるガラス物品を形成する方法において、
前記ガラス物品の複数の局所にレーザー光を照射して、前記ガラス物品の前記複数の局所に、前記ガラス突起の成長を誘起するステップと、
電子信号を生成する光検出器を用いて、前記ガラス物品の前記レーザー光が照射された局所からのバックフラッシュ光を検出するステップと、
前記バックフラッシュ光を検出した後のための、前記複数の局所へのレーザー光の固定曝露時間を設定するステップと、
コントローラが前記電子信号を受信した後、前記固定暴露時間の前記局所のレーザーの照射を終了することにより、前記電子信号を用いて、前記複数の局所におけるレーザー光の照射線量および前記ガラス物品の前記表面と、各ガラス突起の終点との間の前記距離を制御するステップと、
を備えたことを特徴とする方法。
前記ガラス物品の前記表面と、前記複数のガラス突起の前記終点との間の距離の標準偏差が、0.5マイクロメートル未満であることを特徴とする、請求項1又は2記載の方法。
複数の半球状のガラス突起を有するガラス板を形成する方法であって、前記ガラス板が表面を有し、前記ガラス突起が、レーザーの照射によって、前記ガラス板の前記表面に成長され、各ガラス突起が、前記ガラス板表面から離間した高さを有し、前記複数のガラス突起間の高さの標準偏差が、1マイクロメートル未満であるガラス板を形成する方法において、
前記ガラス板にレーザー光を照射して、前記ガラス板の複数の局所の1つに、前記ガラス突起の1つの成長を誘起するステップと、
前記レーザー光の照射線量を1つの局所に照射した後の所定の時間間隔において、前記レーザー光が照射された局所からのバックフラッシュ光を光検出器で検出するステップと、
前記光検出器が前記バックフラッシュ光を検出した後の固定曝露時間Tfで、前記局所における前記レーザー光線量を終了するステップと、
を備えたことを特徴とする方法。
前記ガラス板が、真空断熱ガラス窓に使用され、前記ガラス板の前記複数の半球状のガラス突起によって、前記ガラス板が、前記半球状の前記高さに実質的に等しい距離、別の板カラスから離間されることを特徴とする、請求項6又は7記載の方法。
前記光検出器が前記バックフラシュ光を検出した後に、前記レーザー光のパワーを調整することによって、前記光検出器が前記バックフラシュ光を検出した後に、前記レーザー光の前記固定曝露時間を調整することによって、又はその両方によって、前記レーザー光の線量を制御するステップを更に備えたことを特徴とする、請求項6〜8いずれか1項記載の方法。
表面に形成された複数の半球状のガラス突起を有するガラス板であって、各ガラス突起が、前記ガラス板の前記表面から離間した高さを有し、前記複数のガラス突起間の高さの標準偏差が、1マイクロメートル未満であるガラス板において、前記複数の半球状のガラス突起の各々が、
凹状に丸みを帯びた側面によって規定される直径D1を有する下部領域であって、前記ガラス板の前記表面から突出し、直径D1が前記ガラス突起の最大径であって、400マイクロメートル〜800マイクロメートルであり、前記凹状に丸みを帯びた側面が曲率半径R1を有し、前記ガラス板の前記表面に結合した下部領域と、
前記ガラス突起の前記下部領域と前記ガラス突起の上部領域とを接続する変曲領域と、
移行部及び頂部を有する、前記ガラス突起の前記上部領域であって、
前記移行部が、凸状に丸みを帯びた側面によって規定される直径D2を有し、前記凸状に丸みを帯びた側面が曲率半径R2を有し、前記直径D2が前記直径D1より小さく、100マイクロメートル〜600マイクロメートル、
前記頂部が、凸状に丸みを帯びた頂面によって規定される直径D3を有し、前記凸状に丸みを帯びた頂面が、前記移行部から集結する凸状に丸みを帯びた側面に結合し、前記凸状に丸みを帯びた頂面が、前記曲率半径R2より大きい600マイクロメートル〜750マイクロメートルの曲率半径R3を有し、前記直径D3が前記直径D2より小さく、100マイクロメートル〜264マイクロメートル、前記凸状に丸みを帯びた頂面が、前記ガラス板の前記表面から離間して、前記ガラス突起の高さHを規定して成り、Hは50マイクロメートル〜200マイクロメートルである、
上部領域と、
を備えたことを特徴とする、ガラス板。
【発明を実施するための形態】
【0008】
別に定義しない限り、本明細書におけるすべての技術用語及び科学用語は、本開示が属する技術分野の当業者によって一般に理解されている意味を有する。本明細書に記載のものと同様又は等価な任意の方法及び材料が、本開示の実施又は試験に使用可能であるが、例示的な方法及び材料について以下に説明する。
【0009】
本開示のガラス物品は、表面を含み、任意の形状を有することができる。1つの例において、ガラス物品は、円形、球形、湾曲状、又は平坦であってよい。別の例において、ガラス物品は、比較的厚く(約10cm)ても、比較的薄く(約0.1mm)てもよい。更に別の例において、ガラス物品は約0.5mm〜約8mmの厚さを有している。1つの実施の形態において、ガラス物品は複数の個別のガラスコンポーネント(例えば、互いに結合又は溶融して、より大きいガラス物品とすることができる、多数の方形ガラス物品)を含んでいる。例示的な実施の形態において、ガラス物品は、ガラス材料で構成され、上面、下面、及び外縁部を有するガラス板20である。本開示のガラス板20は、表面全体にわたり実質的に平坦であり、矩形を有することができる。
【0010】
本開示のガラス物品は、ソータライムガラス、ホウケイ酸ガラス、アルミノシリケートガラス、又はアルカリアルミノシリケートガラスから形成することができる。他の適切で入手可能なガラス、及び適用可能な組成は、例えば、米国特許公開第2012/0247063号明細書に開示されており、参照により、その内容が本明細書に援用されるものである。
【0011】
本開示のガラス物品は、複数のガラス突起60を有している。1つの実施の形態において、ガラス突起は、レーザー照射処理によって、ガラス物品の表面から成長する。本開示のガラス突起60は、真空断熱ガラス(VIG)窓の平行に対向するガラス板間のスペーサとして用いることができる。VIG窓において、ガラス突起60は、間の真空圧力、外部大気圧、及び外力(例えば、天候)下において、互いに弓形に湾曲する傾向がある、対向するガラス板間の間隔を維持する。従って、VIG窓の平行に対向するガラス板間の間隔は、ガラス突起の高さと実質的に同じである。
【0012】
本開示は、互いの標準偏差内の高さを有する、複数のガラス突起を備えたガラス物品(例えば、ガラス板20)を提供する。VIG窓に使用される、ガラス突起60間の高さの変動が、最小限に抑制されていることによって、VIG窓の対向するガラス板によって個々の突起に加えられる応力の集中が抑制される。高さの標準偏差が1マイクロメートルより大きい従来のガラス突起は、より高いガラス突起が、対向するガラス板に接触して、対向するガラス板に応力(及び潜在的な欠陥)を生じさせる。VIG窓に使用されるガラス突起60間の高さの変動が最小限に抑制されていることよって、ガラス突起60によって加えられる応力に耐えられるように、対向するガラス板を化学強化する必要性を排除することもできる。別の例において、ガラス突起60は、ガラス物品と別の材料(例えば、金属、プラスチック等)との間のスペーサとして機能することができる。更に別の例において、高さの変動が最小限に抑制されているガラス突起60は、審美的効果を有することができる。
【0013】
ガラス突起60は、ガラス物品の本体部23から成長させることができ、ガラス物品を構成するガラス材料で、ガラス物品の表面から凸状に突出するように形成することができる。1つの実施の形態において、ガラス物品は、複数の個別のガラスコンポーネントを含み、各ガラスコンポーネントが、少なくとも1つの局所L及び/又は少なくとも1つのガラス突起60を有している。複数のガラス突起60は、任意の数のガラス突起を含むことができ、統計的に有意な数のガラス突起の場合、20、15、10、5又はそれ以下のガラス突起を含むことができる。VIG窓に使用する場合、突起の数が少ないほど、ガラス物品の光学品質が向上する。しかし、VIG窓において、対向する板の重量及び他の外力を支持するためには、十分な数の突起が必要である。例示的な実施の形態において、ガラス突起60は、ガラス物品上に、互いに規則的に間隔を置いて配置されている。ガラス突起間の間隔は、約1mm(約1/25インチ)〜約25センチメートル(約10インチ)、又は約1センチメートル(約0.4インチ)〜約15センチメートル(約6インチ)であってよい。ガラス突起を互いに近づけて配置することによって、VIG窓の個々の突起に対する応力の集中が抑制される。別の実施の形態において、ガラス突起は、ガラス物品上に、互いに不規則又はランダムに間隔を置いて配置されている。
【0014】
図1は、複数のガラス突起のうちの1つの突起の例を示す、ガラス板20上のガラス突起60の拡大断面図である。ガラス突起60は、半球形状であり、変曲領域67によって接続された、下部領域66と上部領域68とを有している。ガラス突起60は、ガラス板の表面24から終点13までの高さH60を有している。終点13は、ガラス板20の表面から最も遠いガラス突起60上の位置である。1つの実施の形態において、終点13は、ガラス突起60の凸状に丸みを帯びた頂面52の領域であってよい。ガラス突起60の高さH60は、例示的な実施の形態において、50マイクロメートル〜200マイクロメートル、又は75マイクロメートル〜150マイクロメートル、更には100マイクロメートル〜120マイクロメートルの範囲であってよい。突起の高さH60が低すぎると、VIG窓の対向する板間の間隙が小さくなり、それによって対向する板間の真空空間の減少及び断熱特性の低下を招くことに留意されたい。加えて、ガラス突起60の高さH60が低いと、密接に配置されたガラス表面間の光の干渉によって、光リングが現れる可能性がある。
【0015】
ガラス突起60の下部領域66は、ガラス板20の表面から突出し、表面上に一体的に形成されている。下部領域66は、ガラス突起60の高さH60の約5%〜約25%に及ぶことができる高さH66を有している。下部領域66は、体積V1、及び凹状に丸みを帯びた側面53によって規定される直径D1を有している。直径D1はガラス突起60の最大径D
Mであってよい。即ち、最大径D
Mは、凹状に丸みを帯びた側面53が終了してガラス板20の表面24と結合する、点AとB(
図1に示す)との間の間隔である。最大径D
Mは、約400マイクロメートル〜約800マイクロメートル、更には500マイクロメートル〜700マイクロメートルであってよい。
【0016】
下部領域66の凹状に丸みを帯びた側面53は、曲率半径R1を有している。凹面曲率半径R1は、約25マイクロメートル〜約100マイクロメートルであってよい。曲率半径R1は、開示した範囲内において、ガラス突起60周囲の異なる位置で僅かに変化し得る。曲率半径R1は、ガラス突起60が、開示した直径D1の範囲を超えないように、ガラス板20の表面24から突出するように設定されている。ガラス突起60の変曲領域67は、下部領域66と上部領域68とを接続している。上部領域68は、移行部69及び頂部70を有する体積V2を有している。上部領域68は、ガラス突起60の高さH60の約75%〜約95%に及ぶことができる高さH68を有している。上部領域68の移行部69は、凸状に丸みを帯びた側面51によって規定される直径D2を有している。直径D2は、ガラス突起60の最大径D
Mの約33%〜約85%に及ぶことができる。凸状に丸みを帯びた側面51は、変曲領域67において、下部領域66から上方に延びる、凹状に丸みを帯びた側面53と結合する。凸状に丸みを帯びた側面51は、凸面曲率半径R2を有している。凸面曲率半径R2は、約200マイクロメートル〜約400マイクロメートルであってよく、開示した範囲内において、ガラス突起60周囲の異なる位置で僅かに変化し得る。
【0017】
曲率半径R2は、ガラス突起60の高さH60の少なくとも5マイクロメートル又は5%にわたって測定することができる。あるいは、R2は、ガラス突起60の高さH60の50%以下にわたり測定することができる。凸状に丸みを帯びた側面51間で測定される直径D2は、約100マイクロメートル〜約600マイクロメートルであってよい。移行部69の直径D2は、変曲領域67から頂部70にかけて、約15%〜約65%減少する。ガラス突起60の全体の直径が、下部領域66から移行部69にかけて徐々に減少しているため、直径D2は直径D1より小さい。
【0018】
頂部70は、凸状に丸みを帯びた頂面52によって規定される直径D3を有している。凸状に丸みを帯びた頂面52は、ガラス板20の表面24から離間した、ガラス突起60の高さH60を規定している。凸状に丸みを帯びた頂面52は、ガラス突起60の高さH60の約1%〜約3%に及ぶことができる。別の実施の形態において、凸状に丸みを帯びた頂面52は、最大径D
Mの約30%、又は最大径D
Mの約20%〜約25%に及ぶことができる。凸状に丸みを帯びた頂面52は、移行部69から集結する凸状に丸みを帯びた側面51に結合している。凸状に丸みを帯びた頂面52は、約600マイクロメートル〜約750マイクロメートル、又は約650マイクロメートル〜約680マイクロメートルの凸面曲率半径R3を有している。
【0019】
曲率半径R3は、VIG窓の対向するガラス板間の接触、及びガラス突起60を介した対向する板間の熱伝達を最小限に抑制するように設定されている。曲率半径R3は、成長制限構造体を使用せずに、本開示のレーザー照射処理によって形成することができる。成長制限構造体を使用しない、本開示のレーザー照射処理は、従来の方法と比較して、大幅に時間を節約して、凸状の頂面に明確な曲率半径を有するガラス突起60を成長させる。具体的には、レーザー照射によってガラス突起60を成長させる前に、成長制限構造体に対しガラス物品を整列させる必要がない。
【0020】
例示的な実施の形態において、凸面曲率半径R3は、凸面曲率半径R2より大きい。別の実施の形態において、R3はR2より約70%〜約140%、又は約75%〜約100%大きい。更に別の実施の形態において、凸面曲率半径R3は、凹面曲率半径R1より大きい。凸状に丸みを帯びた頂面52上の弦として測定した直径D3は、直径D2より小さい。直径D3は、約100マイクロメートル〜約264マイクロメートル以下であってよい。直径D3は、終点13又はその周囲に向けて徐々に減少する。
【0021】
移行部69及び頂部70は一体的に形成されている。更に、変曲領域67が、移行部69において、下部領域66と上部領域68とを接続している。変曲領域67は、曲率半径を有さない(即ち、平坦かつ表面24に対して垂直な)側面によって規定することができる。1つの実施の形態において、変曲領域67は、二次元領域(例えば、平面)である。別の実施の形態において、変曲領域67は、ガラス突起60の高さH60の約5%以下に及ぶ体積V4である。
【0022】
ガラス突起が半球形状を有する、本開示の実施の形態において、各ガラス突起は、表面に重ねた場合、約0.9〜約0.99の決定係数で、一般的な円の方程式(例えば、x
2+y
2=r
2)に実質的に適合する、部分的又は完全な円周を有することができる。ガラス突起が半球形状を有する、別の実施の形態の例において、各ガラス突起は、約0.9〜約0.99の決定係数で、一般的な円の方程式の一部と実質的に適合する(
図1に示すような)横断面を有している。別の実施の形態において、半球形状を有するガラス突起60は、(「フラットトップ」ガラス突起、又は約900マイクロメートル〜約2600マイクロメートルの頂面曲率半径を有するガラス突起に見られる)凸状の丸みを帯びた側面51と凸状に丸みを帯びた頂面52との接続部における曲率変化点の臨界半径を有していない。
【0023】
本開示の1つの実施の形態において、ガラス突起60は光誘起吸収によって形成される。光誘起吸収は、ガラス物品を局所的に放射線に曝露(照射)又は放射線で加熱(即ち、レーザー照射)することに起因する、ガラス物品の吸収スペクトルの局所的変化を含んでいる。光誘起吸収は、紫外、近紫外、可視、近赤外、及び/又は赤外波長を含み、これに限定されない波長又は波長範囲における、吸収の変化を伴うことができる。ガラス物品における、光誘起吸収の例には、例えば、カラーセンターの形成、一時的なガラス欠陥の形成、及び永久的なガラス欠陥の形成が含まれるが、これに限定されるものではない。レーザーの照射線量は、レーザーの波長、及びレーザーのパワーPと曝露時間との積の関数である。
【0024】
図2は、ガラス物品(例えば、ガラス板20)に、ガラス突起60を形成するのに使用される、例示的なレーザーベースの装置(「装置100」)の概略図である。装置100は光軸A1に沿って配置されたレーザー110を備えることができる。レーザー110は、光軸に沿って、パワーPを有するレーザービーム112を発することができる。例示的な実施の形態において、レーザー110は、電磁スペクトルの紫外(UV)領域で動作する。レーザーの照射線量は、レーザービーム112の波長の関数であり、レーザービーム112のパワーPと曝露時間との積である。
【0025】
装置100は、光軸A1に沿って配置され、焦点FPを含む焦点面P
Fを規定する集光光学系120も備えている。例示的な実施形態において、集光光学系120は、光軸に沿って、レーザー110から順に、デフォーカスレンズ124と第1の集光レンズ130との組み合わせ(この組み合わせによって、ビームエキスパンダー131が形成される)、及び第2の集光レンズ132を有している。例示的な実施の形態において、デフォーカスレンズは、焦点距離fD=−5cmを有し、第1の集光レンズ130は、焦点距離fC1=20cmを有し、第2の集光レンズ132は、焦点距離fC2=2.5cm及び開口数NAC2=0.5を有している。別の例示的な実施の形態において、デフォーカスレンズ124、並びに第1及び第2の集光レンズ130、132は、溶融シリカで構成され、反射防止(AR)コーティングを備えている。集光光学系120の別の例示的な実施の形態は、レーザービーム112から、集束レーザービーム112Fを生成するように構成されたミラー、又はミラーとレンズ素子との組み合わせを有している。
【0026】
装置100は、レーザー110に電気的に接続され、レーザーの動作を制御するように構成された、レーザーコントローラ、マイクロコントローラ、コンピュータ、マイクロコンピュータ等のコントローラ150も備えている。例示的な実施の形態において、レーザー制御信号SLでレーザー110を「オン」及び「オフ」するのではなく、レーザービーム112の経路にシャッター160を設け、シャッター制御信号SSを用いて、レーザービームを選択的に遮断して、レーザービームを「オン」及び「オフ」するように、コントローラ150に電気的に接続されている。
【0027】
装置100の動作を開始する前に、装置に対しガラス物品を相対配置する。具体的には、ガラス物品の表面が、光軸A1に対し実質的に垂直になるように、光軸A1に沿ってガラス物品を配置する。例示的な実施の形態において、前面22及び後面24を有するガラス板20が、ガラス板の後面24が、焦点面PFからレーザー110に向かう方向(即ち、+Z方向)に、距離DFだけ僅かに軸方向にずれるように、光軸A1に対して相対配置される。例示的な実施の形態において、ガラス板20は、0.5mm≦TG≦6mmの範囲の厚さTGを有している。別の実施の形態において、0.5mm≦DF≦2mmである。
【0028】
装置100を動作させる例示的な方法において、コントローラ150からの制御信号SLを介し、レーザー110を起動して、レーザービーム112を生成することができる。シャッター160が使用される場合には、レーザー110を起動した後、コントローラ150からのシャッター制御信号SSを介してシャッターが起動され、レーザービーム112を通すように、「オン」の位置に配置される。次に、レーザービーム112は、集光光学系120によって受光され、その中のデフォーカスレンズ124によって、レーザービームが発散され、デフォーカスレーザービーム112Dが形成される。次に、デフォーカスレーザービーム112Dは、デフォーカスレーザービームから、拡大コリメートレーザービーム112Cを形成するように構成された、第1の集光レンズによって受光される。次に、コリメートレーザービーム112Cは、集束レーザービーム112Fを形成する第2の集光レンズ132によって受光される。集束レーザービーム112Fとガラス板20の前面22及び後面24との交点によって規定される範囲内の任意の点を、本明細書において局所Lと呼ぶ。ガラス板20の別の領域にレーザービーム112Fを集束して、別の局所Lを形成することができる。
【0029】
装置100を動作させる従来の方法は、設定された時間、ガラス物品に、レーザー光を照射することを含んでいる。即ち、ガラス物品は、表面の複数の局所Lが、固定レーザー照射線量のレーザービーム112Fで曝露される。従って、レーザーは、各位置において、同じ間隔で「オン」及び「オフ」され、各局所Lにガラス突起が形成される。しかし、これ等の従来の方法は、例えば、ガラス物品の表面又は構造の変動又は欠陥、レーザー110のパワー出力の変動、及び/又はガラス物品表面に対する各レーザー照射パルス間で変化し得る、他の変動要素を考慮していない。従って、従来のレーザー照射方法では、高さHのばらつき及び標準偏差が大きい複数のガラス突起がもたらされる。具体的には、従来のレーザー照射方法によって形成された複数のガラス突起間の高さHの変動によって、約2マイクロメートルを超える偏差、及び/又は約1.1マイクロメートル以上の標準偏差がもたらされる結果となり得る。装置100を動作させる従来の方法は、ガラス突起を形成する間、ガラス物品の近傍に成長制限構造体(例えば、プレート)を使用して、物品上のガラス突起の成長を特定の高さに制限することも含んでいる。その結果、従来の方法によって形成されたガラス突起は、凸状に丸みを帯びた側壁と凸状に丸みを帯びた頂面との間に変曲点を有する「フラットトップ」プロファイルを有している。この「フラットトップ」プロファイルは、約3000マイクロメートル〜約4500マイクロメートルの曲率半径R5を有する、凸状に丸みを帯びた頂面(高さHの1〜3%に沿って)を含んでいる。
【0030】
本装置100を動作させる方法において、レーザー110を起動した後、時間増分Tiにおいて、レーザービーム112Fがガラス板20に接触する。時間増分Tiは、集束レーザービームが集束し、ガラス板20の前面22に接触したとき、又は略接触したときに終了する。時間増分Tiは、例えば、レーザー110の出力変動、制御信号SL又はSSの不感時間、レーザービーム112の移動時間、シャッター160の開閉時間、及び/又は光学系120の変化によって、各局所に対し1ピコ秒から数秒まで変動し得る。レーザービーム112のパワーPは時間増分Ti中に増減することができる。
【0031】
時間増分Tiが終了し、集束レーザービーム112Fが集束したとき、又はレーザービーム112Fがガラス板20に接触したとき、時間増分Tcが開始する。例示的な実施の形態において、レーザービーム112Fは、ガラス板20に接触し通過して、焦点FPにおいて、光軸A1に沿って焦点スポットSを形成する。焦点FPは、ガラス板の後面24から距離DFの位置にあるため、本体部23の外側に存在することができる。ここで、集束レーザービーム112Fが、ガラス板を通過するときに集束するため、ガラス板20が光学系120の焦点FPに僅かに影響を及ぼすことに留意されたい。しかし、ガラス板20の厚さTGが十分に薄いので、この焦点シフト効果は無視できる。
【0032】
集束レーザービーム112Fが、ガラス板20(局所L)を通過するとき、その一部が前述のガラス板の光誘起吸収によって吸収される。これが、局所Lにおいて、ガラス板20を局部的に加熱する働きをする。光誘起吸収量は比較的少なく、例えば、約3%〜約50%である。集束レーザービーム112Fが、ガラス板20において局所的に吸収されるとき、局所Lからフラッシュ光が発せられる。
【0033】
本開示によれば、局所Lからのフラッシュ光は、ガラス板20の前面22からのバックフラッシュ光である。即ち、フラッシュ光は、集束レーザービーム112Fの方向と反対の方向(即ち、後方)に発する。フラッシュ光は、ガラス板20を通過した、又はガラス板20の後面上の集束レーザービームを検出したものではない。そうではなく、フラッシュ光は、光検出器180の最大出力信号61の20%〜100%、更には、光検出器180の最大出力信号61の35%〜85%を検出したものである。光検出器180の出力信号61は、ガラス板20の前面22の局所Lから発せられた蛍光の強度に対応することができる。ガラス板20の前面22の局所L(即ち、レーザービーム112Fがガラス板20に接触する場所)から発せられる、バックフラッシュ光を検出することによって、突起の高さをより正確に制御できる(即ち、1.1マイクロメートル未満又はそれ以下の標準偏差以内)という点で、従来の方法に優る利点が得られる。出力信号61として検出された、局所Lから発せられた蛍光の強度変化は、光検出器180の最大出力信号61、又はレーザービーム112Fが最初にガラス板20に接触した後に、局所Lから発せられた検出光に対応する、光検出器180によって記録された接触出力15に対比して測定することができる。特定の理論に限定されるものではないが、ガラス板20の前面22のレーザーが照射された局所Lから発せられるフラッシュ光は、約900℃〜約2000℃、更には約900℃〜約1500℃の温度の溶融ガラスの可能性がある。例示的な実施の形態において、フラッシュ光は、紫外線、近紫外、可視、近赤外、及び/又は赤外波長を含みこれに限定されない広域電磁放射スペクトルを含んでいる。
【0034】
時間増分Tcは、レーザーが照射された局所Lから、フラッシュ光が発せられたときに終了することができる。即ち、時間増分Tcは、レーザービーム112Fが、ガラス板20に接触したときに始まり、光検出器180が、フラッシュ光を検出するまで継続する。この例において、光検出器180は、(例えば、
図3のグラフに示すような)電子信号181をコントローラ150に送信する。例示的な実施の形態において、コントローラ150は、光検出器180からの電子信号181中の出力信号61を識別する。従って、時間増分Tcは、レーザービーム112Fがガラス板20に接触ときから、光検出器180からの電子信号181中の出力信号61が、コントローラ150によって受信又は検出されるまで継続する。更に別の実施の形態において、フラッシュ光は、光の光子、光エネルギー、又はルミネセンスを検出し、コントローラ150に対する電子信号181を生成することができる、任意の装置(例えば、フォトダイオード)によって、検出することができる。フラッシュ光の検出に続いて、レーザービーム112のパワーPを調整し、レーザー110の継続動作時間を設定し、又は制御信号SL若しくはSSを介して、レーザー110を「オフ」にする(即ち、レーザーの照射を停止する)ように、コントローラ150を構成することができる。
【0035】
時間増分Tcの持続時間は、ガラス板20の様々な局所L間で変動し得る。この局所L間の時間増分Tcの持続時間の変動又はばらつきは、1ピコ秒から数ミリ秒であり得る。特定の理論に限定されるものではないが、これはレーザー110の出力パワーPの変動、ガラス物品の厚さ、及び/又は各局所Lにおける組成及び/又は微細構造の差異に起因する可能性がある。従って、各局所は、フラッシュ光を開始するために、僅かに異なるレーザーの照射線量を必要とし得る。
【0036】
レーザーの照射における時間増分Tcが終了すると、曝露時間Tfが開始する。1つの実施の形態において、曝露時間Tfは、ガラス突起の形成開始に対応している。曝露時間Tfの開始は、種々の制御方式を用いて、1秒の数分の1に調整することができる。例えば、光検出器180からの電子信号181中の「立ち上がり」(即ち、大きいデルタの)出力信号61を識別して、時間増分Tfを開始するように、コントローラ150をプログラムすることができる。即ち、光検出器180からの最大出力信号61の20%〜100%、更には光検出器180からの最大出力信号61の35%〜85%を識別するように、コントローラ150をプログラムすることができる。別の例において、電子信号181中の出力信号61が、選択された出力ユニットに到達したときに時間増分Tfが開始されるように、コントローラ150がプログラムされる。更に別の例において、光検出器180からの電子信号181中の最大、又は「ピーク」(即ち、光検出器180の出力信号61の100%)を識別するように、コントローラ150がプログラムされる。
図3において、出力信号の「ピーク」が、光検出器180の最大出力の100%に対応している。更に別の例において、光検出器180からの電子信号181中の出力信号61の「立ち下がり」(即ち、大きいデルタ)を識別して、時間増分Tfを開始するように、コントローラ150をプログラムすることができる。時間増分Tcに続く(即ち、曝露時間Tf中の)局所Lにおけるレーザーの照射線量が、結果として得られるガラス突起の高さH60に影響を及ぼす。
【0037】
曝露時間Tfの開始前又は後のある時間に、急速な温度変化によってガラスの膨張が誘起される限定された膨張ゾーンが、ガラス板20の本体部23に形成されるにつれ、ガラス突起が形成され始める。膨張ゾーンは、膨張ゾーンを囲む加熱されない(従って、膨張しない)ガラス領域によって制約されるため、膨張ゾーン内の溶融ガラスは、上方に膨張/流れることによって、内部応力を緩和するように強制され、それによってガラス突起60が形成される。集束レーザービーム112Fが、ガウス分布等の円対称断面強度分布を有する場合には、ガラス板本体23の円形領域に局部的な加熱及びそれに伴うガラスの膨張が生じ、結果として得られるガラス突起60は、実質的に円対称であり得る。
【0038】
一般に、局所Lにおける曝露時間Tfの継続時間が長いほど、ガラス突起60の高さH60が増加する。また、曝露時間Tf中に、局所Lに対するレーザービーム112のパワーPを増加させることによっても、ガラス突起60の高さH60が増加する結果となる。曝露時間Tf及びレーザービーム112のパワーPは、突起の形状にも影響を及ぼし得る。曝露時間Tf中のレーザービーム112のパワーPを調整するように、コントローラ150を構成することができる。曝露時間Tfは、ガラス物品の組成及び構造、並びに所望の突起の高さ及び形状に応じて、1ミリ秒から数秒とすることができる。例示的な実施の形態において、曝露時間Tfは、約1ミリ秒〜約5秒であってよい。別の例示的な実施の形態において、レーザーパワーは、数ワット〜数十ワット、又は約10ワット〜約20ワットであってよい。
【0039】
装置100を動作させる例示的な方法において、レーザービーム112のパワーPが一定(例えば、15ワット)に保持され、曝露時間Tfが、約1ミリ秒〜約2秒以上の固定時間である。装置100を動作させる別の実施の形態において、固定曝露時間Tf中に、レーザービーム112のパワーPが増減される。ガラス突起60を効果的に成長させると期待されるUV波長は、約340ナノメートル〜約380ナノメートルであり得る。ガラス突起60を効果的に成長させると期待されるIR波長は、750ナノメートル〜1600ナノメートルであり得る。電磁スペクトルの他の波長、例えば、300ナノメートル〜1600ナノメートルも期待される。曝露時間Tfの後、ガラス板20が、レーザービーム112Fに接触しないように、レーザー制御信号SL又はシャッター制御信号SSを用いて、レーザー110を「オフ」にすることができる。従って、曝露時間Tfは、局所Lがそれ以上レーザービーム112Fに接触されないときに終了する。結果として得られた、局所Lから成長したガラス突起60は、局所Lにおけるレーザービーム112Fの照射が終了することによって固定される。その後、急速放射冷却によって、ガラス突起60を凝固させることができる。
【0040】
図3は、ガラス突起60が成長中の電子信号181を示す、光検出器180からの例示的な電子信号出力の任意の単位対時間(例えば秒)のグラフである。例示的な実施の形態において、電子信号181は、光検出器180によって生成され、コントローラ150に送られる信号に対応している。
図3において、時間増分Tiが(1)レーザー110の起動時点と(2)ガラス板20に対する集束レーザービーム112Fの接触との間に示されている。レーザービーム112Fがガラス板20に接触した後、光検出器180が、局所Lから発せられた検出光に対応する、接触出力15を記録する。例示的な実施の形態において、接触出力15で検出された光は、光検出器180の最大出力信号61の20%未満である。時間増分Tcが(2)ガラス板20に対する集束レーザービーム112Fの接触と(3)フラッシュ光の開始との間に示されている。時間増分Tc中、光検出器180は、比較的一定した光検出出力を記録する。時間増分Tfが(3)フラッシュ光の開始と(4)レーザービーム112Fに対するガラス板20の曝露の終了との間に示されている。時間増分Tfの間、フラッシュ光は、光検出器180からの明確かつ鋭い出力信号61(即ち、最大出力信号61の20%〜100%)として示されている。例示的な実施の形態において、コントローラ150は、接触出力15を出力信号61(即ち、フラッシュ光)として誤って特徴付けないように構成されている。
【0041】
ガラス板20の別の位置(例えば、局所L)において、前述の処理を繰り返して、ガラス板に、複数(例えば、アレイ状)のガラス突起60を形成することができる。例示的な実施の形態において、装置100は、コントローラ150に電気的に接続され、大きな矢印172で示すように、集束レーザービーム112Fに対し、ガラス板20をX、Y、及びZ方向に移動するように構成されたX−Y−Zステージ170を備えている。これによって、コントローラ150からのステージ制御信号STを介し、ステージ170を選択的に平行移動させ、ガラス板20の異なる位置を照射して、複数のガラス突起60を形成することができる。別の例示的な実施の形態において、ガラス突起60が形成される予定のガラス板20の位置に、集束レーザービーム112Fを選択的に向けることができるように、集光光学系120が走査するように構成されている。
【0042】
前述のように、装置100を動作させる従来の方法は、設定された時間中(例えば、Ti+Tc+Tf=1.8秒)、ガラス物品にレーザー光を照射することを含んでいる。即ち、ガラス物品は、複数の局所Lが、固定レーザー照射線量のレーザービーム112Fに曝露される。
【0043】
本方法に従って、曝露時間Tfの間においてのみ、各局所Lにおけるレーザー照射線量を制御することによって、各ガラス突起60は、従来の方法によって形成されたガラス突起と比較して、より制御された高さH60を有している。具体的には、本装置100を動作させる方法は、1.1マイクロメートル未満、1マイクロメートル未満、更には0.5マイクロメートル未満の標準偏差を有する、複数のガラス突起60をもたらす。別の実施の形態において、標準偏差は0マイクロメートル、又は0.1マイクロメートルより大きくてよい。従って、曝露時間Tfの間(フラシュ光を検出した後)、各局所Lにおけるレーザー光の線量を制御することによって、レーザー照射形成において、ガラス突起60の高さH60をより正確に制御することができる。
【0044】
1マイクロメートル以内の標準偏差の高さを有する、複数のガラス突起を備えたガラス物品は、窓に用いることができる。例えば、本開示のガラス突起は、真空断熱ガラス(VIG)窓の平行に対向するガラス板間のスペーサとして用いることができる。VIG窓の平行に対向するガラス板間の間隔は、ガラス突起の高さに実質的に等しい。高さのばらつきを最小限に抑制する(1マイクロメートル又は0.5マイクロメートル未満、及び0.1マイクロメートルより大きい)利点は、ガラス突起60の終点13と対向するガラス板との接触点における、機械的応力が最小限に抑制されることである。別の例において、突起はガラス物品と別の材料との間のスペーサとして機能することができる。更に別の例において、高さのばらつきが最小限に抑制されたガラス突起は審美的利点を有する。
【実施例】
【0045】
レーザー照射で、ガラス物品上に成長させた複数のガラス突起間の高さを制御する、本開示の方法は、以下の実施例を参照することによって更に明らかになるであろう。
【0046】
実施例1
本実施例において、ソーダライムガラス板(厚さ4mm)を、前述の装置100と同様のレーザー装置に対し相対配置した。装置及びレーザーは、従来の方法と同じ方法(すなわち、レーザーが照射された局所からのフラッシュ光を検出するためのフォトダイオードを使用しない)で動作させた。即ち、本開示の高さ制御方法を用いなかった。レーザー照射によって、18個のガラス突起をガラス板上に互い離間させて形成した。
【0047】
各局所Lをレーザーに曝露する間、レーザーを355ナノメートルのUV波長で15ワットに設定した。ガラス板の18の局所をレーザー照射に曝露する合計時間を1.8秒(即ち、Ti+Tc+Tf=1.8秒)の固定に設定した。即ち、18の局所の各々が、それぞれ(潜在的なレーザー出力のばらつきを無視して)同じレーザー照射線量を受けて、18個のガラス突起の各々が形成された。
【0048】
レーザー照射処理に続き、光走査表面形状測定装置を用いて、ガラス板の表面から最も高い終点までのガラス突起の高さHを測定した。本実施例で得られた18個のガラス突起の各々の高さの測定結果を、
図4の方形のデータ点200で示す。
図4の結果の数値の要約を以下の表1に示す。本実施例の18個のガラス突起の平均の高さは185.4μmであった。平均の高さからの最大偏差及び最小偏差は、それぞれ2.1及び−2.4であった。従って、本実施例のガラス突起の高さの標準偏差は1.1マイクロメートルであった。
【0049】
実施例2
本実施例において、実施例1のソーダライムガラス板を、実施例1で説明したのと同じレーザー装置に対し相対配置した。しかし、本実施例では、レーザーに最初に曝露されるガラス板の表面近傍に隣接して、フォトダイオードを配置した。即ち、
図2に示すように、局所Lに近接して、ガラス板20の前面22の上方に、フォトダイオード180を配置した。装置及びレーザーは、ガラス突起を制御する本開示の方法と同じ方法で動作させ、18個のガラス突起をガラス板上に互いに離間させて形成した。
【0050】
各局所Lにおけるレーザーの動作中、レーザーを355ナノメートルのUV波長で15ワットに設定した。本実施例では、時間増分Ti及びTcは設定せず、18の局所の各々に対し増分は固定とした。代わりに、コントローラ150によってフラッシュ光(即ち、出力信号61の立ち上がり)が検出された後の、曝露時間Tfのみを1.6秒に固定した。本発明者等が、曝露時間Tfを1.6秒に選択した理由は、実施例1において、時間増分Ti及びTcが0.2秒と推定されたためである。従って、レーザー照射は、各局所において個別に開始された。フォトダイオードが、局所からのフラッシュ光を検出した1.6秒後に、コントローラが、当該局所のレーザーの照射を終了させた。時間増分Ti及びTcは、全く制御又は測定しなかった。ここでも、これ等の局所の1つからのフォトダイオードの電子信号181を
図3に示す。
【0051】
レーザー照射処理に続き、ガラス板の表面から最も高い終点までのガラス突起の高さHを測定した。また、複数のガラス突起の(高さHの上部1〜3%に沿った)凸状に丸みを帯びた頂面の曲率半径R3も測定し、約600マイクロメートル〜約750マイクロメートルの範囲であった。本実施例で得られた18個のガラス突起各々の狭い高さ分布測定結果を、
図4の菱形のデータ点201で示す。
図4の結果の数値の要約を以下の表1に示す。本実施例の18個のガラス突起の平均の高さは188.9マイクロメートルであった。予想外に、平均の高さからの最大偏差及び最小偏差は、それぞれ1.3及び−0.7であった。更に予想外なことに、本実施例のガラス突起の高さの標準偏差は0.5マイクロメートルであった。
【0052】
【表1】
【0053】
実施例2のガラス突起が、実施例1のガラス突起と比較して、高さの標準偏差が50%以上減少することは予想していなかった。フォトダイオードによってフラッシュ光が検出されるまで、各局所におけるレーザー照射線量の制御を低減することによって、本方法に従って形成されたガラス突起の高さの分布が減少する。特定の局所におけるレーザー照射線量の制御を減らせば、ガラス突起の高さの標準偏差が増加するであろうと当業者は予想していたことであろう。即ち、(時間増分Ti及びTcを制御せずに)曝露時間Tfのみを制御することによって、ガラス突起の高さの標準偏差が1.1マイクロメートルより大きくなるであろうと、当業者は予想していたことであろう。しかし、そうではなく、実施例2の18個のガラス突起の高さの標準偏差は、1マイクロメートル未満、事実0.5マイクロメートルに低下した。
【0054】
実施例1と実施例2との平均の突起の高さの相違は、実施例1のガラス突起と比較して、実施例2のガラス突起のレーザー照射線量の増加に起因する可能性がある。具体的には、実施例2の突起は、実施例1の時間増分Ti及びTcの0.2秒の時間推定に基づいて、より長い時間にわたって照射された可能性がある。実施例2のガラス突起の平均の突起の高さは、単に曝露時間Tfを1.6秒から、例えば1.5秒以下に短縮することによって調整できたであろう。
【0055】
本明細書において、名詞は、文脈上明らかに別の意味に解釈されない限り、複数の対象を指す。従って、例えば、金属と言った場合、文脈上明らかに別の意味に解釈されない限り、かかる金属を2つ以上有する例を含む。
【0056】
本明細書において、範囲は「約」1つの特定の値から、及び/又は「約」別の特定の値までと表現することができる。かかる範囲が示された場合、これ等の例は、1つの特定の値から、及び/又は別の特定の値まで含んでいる。同様に、先行する「約」を使用することによって、値が近似値として表現されている場合、特定の値が別の態様を形成することが理解されるであろう。更に、範囲の各々の終点は、他方の終点に関連して、及び他方の終点とは無関係に、有意であることが理解されるであろう。
【0057】
特に明記しない限り、本明細書に記載の方法は、そのステップを特定の順序で実行する必要があると解釈されることを意図するものでは全くない。従って、方法クレームが、そのステップが従うべき順序を記述していない場合、又はステップが特定の順序に限定されると、クレーム若しくは明細書に具体的に記述されていない場合、如何なる点においても、順序が推測されることを意図するものでは全くない。
【0058】
本明細書における記述が、特定の方法で機能するように「configured」又は「adapted to」されている、本発明の構成要素を指すことにも留意されたい。この点において、かかる構成要素は、特定の特性又は機能を特定の方法で具体化するように「configured」又は「adapted to」されており、かかる記述は、意図した使用の記述ではなく、構造的記述である。より具体的には、本明細書において、構成要素が「configured」又は「adapted to」されている方法に言及している場合には、構成要素の既存の物理的状態を意味するものであり、従って、構成要素の構造的な特性の明確な記述と解釈されるものである。
【0059】
本発明の精神及び範囲を逸脱せずに、本開示の実施の形態に様々な改良及び変形が可能であることは、当業者には明らかであろう。本発明の精神及び本質を組み込んだ、本開示の実施の形態の改良、組み合わせ、部分組み合わせ、及び変形が、当業者に想到され得るため、本発明は添付の特許請求の範囲に属するすべてのもの及びその均等物を含むと解釈されるべきである。
【0060】
以下、本発明の好ましい実施形態を項分け記載する。
【0061】
実施形態1
複数のガラス突起を有するガラス物品を形成する方法であって、前記ガラス物品が表面を有し、前記ガラス突起が、レーザー光によって、前記ガラス物品に形成され、各ガラス突起が、前記ガラス物品の前記表面から離間した終点を有し、前記ガラス物品の前記表面と、前記複数のガラス突起の前記終点との間の距離の標準偏差が、1マイクロメートル未満であるガラス物品を形成する方法において、
前記ガラス物品の複数の局所にレーザー光を照射するステップと、
電子信号を生成する光検出器を用いて、前記ガラス物品の前記レーザー光が照射された局所からのバックフラッシュ光を検出するステップと、
前記電子信号を用いて、前記複数の局所における前記レーザー光の照射線量を制御して、前記ガラス物品の前記複数の局所に、ガラス突起の成長を誘起するステップと、
を備えた方法。
【0062】
実施形態2
前記複数のガラス突起が、少なくとも10個のガラス突起を含む、実施形態1記載の方法。
【0063】
実施形態3
前記複数のガラス突起の各々が、半球状の横断面を有し、各横断面が、0.9〜0.99の決定係数で、一般的な曲率円の方程式に実質的に適合する、実施形態1記載の方法。
【0064】
実施形態4
前記ガラス物品の前記表面と、前記複数のガラス突起の前記終点との間の距離の標準偏差が、0.5マイクロメートル未満である、実施形態1記載の方法。
【0065】
実施形態5
前記ガラス物品に、340ナノメートル〜380ナノメートルのUV波長を有するレーザー光を照射して、前記ガラス突起の成長を誘起する、実施形態1記載の方法。
【0066】
実施形態6
前記レーザーが照射された前記局所からのバックフラッシュ光を検出するステップが、900℃〜2000℃の温度の溶融ガラスを感知するステップを含む、実施形態1記載の方法。
【0067】
実施形態7
前記レーザーが照射された前記局所からのバックフラッシュ光を検出するステップが、レーザー照射開始後の時間増分において生じる、実施形態1記載の方法。
【0068】
実施形態8
前記レーザー光の照射線量を制御するステップが、前記バックフラッシュ光を検出した後に、前記レーザー光を固定曝露時間に設定するステップを含む、実施形態7記載の方法。
【0069】
実施形態9
前記レーザー光の照射線量を制御するステップが、前記電子信号を受信した後の固定曝露時間で、前記局所のレーザー光を停止するコントローラを使用するステップを含む、実施形態1記載の方法。
【0070】
実施形態10
前記レーザー光の照射線量を制御するステップが、前記電子信号を受信した後に、前記レーザー光のパワーを調整するように構成されたコントローラを含む、実施形態1記載の方法。
【0071】
実施形態11
複数の半球状のガラス突起を有するガラス板を形成する方法であって、前記ガラス板が表面を有し、前記ガラス突起が、レーザー照射によって、前記ガラス板の前記表面に成長され、各ガラス突起が、前記ガラス板表面から離間した高さを有し、前記複数のガラス突起間の高さの標準偏差が、1マイクロメートル未満であるガラス板を形成する方法において、
前記ガラス板にレーザー光を照射して、前記ガラス板の複数の局所の1つに、前記ガラス突起の1つの成長を誘起するステップと、
前記レーザー光の照射線量を1つの局所に照射した後の時間増分において、前記レーザー光が照射された局所からのバックフラッシュ光を光検出器で検出するステップと、
前記光検出器が前記バックフラッシュ光を検出した後の固定曝露時間で、前記局所における前記レーザー光の線量を停止するステップと、
を備えた方法。
【0072】
実施形態12
前記半球状のガラス突起の各々が、横断面を有し、前記複数の半球状のガラス突起の各々の前記横断面が、0.9〜0.99の決定係数で、一般的な曲率円の方程式に実質的に適合する、実施形態11記載の方法。
【0073】
実施形態13
前記ガラス板が、真空断熱ガラス窓に使用され、前記ガラス板の前記複数の半球状のガラス突起によって、前記ガラス板が、前記半球状の前記高さに実質的に等しい距離、別の板カラスから離間される、実施形態11記載の方法。
【0074】
実施形態14
前記レーザーが照射された前記局所からのバックフラッシュ光を検出するステップが、前記レーザーが照射された前記局所の900℃〜2000℃の温度の溶融ガラスを特定するステップを含む、実施形態11記載の方法。
【0075】
実施形態15
前記光検出器が前記バックフラシュ光を検出した後に、前記レーザー光のパワーを調整することによって、前記局所における前記レーザー光の線量を制御するステップを更に備えた、実施形態11記載の方法。
【0076】
実施形態16
前記光検出器が前記バックフラシュ光を検出した後に、前記レーザー光の前記固定曝露時間を調整することによって、前記局所における前記レーザー光の線量を制御するステップを更に備えた、実施形態11記載の方法。
【0077】
実施形態17
前記固定曝露時間が、1ミリ秒〜約5秒である、実施形態11記載の方法。
【0078】
実施形態18
前記ガラス板が、複数のガラスコンポーネントを含み、該ガラスコンポーネントが、各々前記局所の少なくとも1つを有する、実施形態11記載の方法。
【0079】
実施形態19
前記ガラス板が、複数のガラスコンポーネントを含み、各ガラスコンポーネントが、該コンポーネントに形成された、少なくとも1つの半球状のガラス突起を有する、実施形態11記載の方法。
【0080】
実施形態20
表面に形成された複数の半球状のガラス突起を有するガラス板であって、各ガラス突起が、前記ガラス板の前記表面から離間した高さを有し、前記複数のガラス突起間の高さの標準偏差が、1マイクロメートル未満であるガラス板において、前記複数の半球状のガラス突起の各々が、
凹状に丸みを帯びた側面によって規定される直径D1を有する下部領域であって、前記ガラス板の前記表面から突出し、直径D1が前記ガラス突起の最大径であり、前記凹状に丸みを帯びた側面が曲率半径R1を有し、前記ガラス板の前記表面に結合した下部領域と、
前記ガラス突起の前記下部領域と前記ガラス突起の上部領域とを接続する変曲領域と、
移行部及び頂部を有する、前記ガラス突起の前記上部領域であって、
前記移行部が、凸状に丸みを帯びた側面によって規定される直径D2を有し、前記凸状に丸みを帯びた側面が曲率半径R2を有し、前記直径D2が前記直径D1より小さく、
前記頂部が、凸状に丸みを帯びた頂面によって規定される直径D3を有し、前記凸状に丸みを帯びた頂面が、前記移行部から集結する凸状に丸みを帯びた側面に結合し、前記凸状に丸みを帯びた頂面が、前記曲率半径R2より大きい約600マイクロメートル〜約750マイクロメートルの曲率半径R3を有し、前記直径D3が前記直径D2より小さく、前記凸状に丸みを帯びた頂面が、前記ガラス板の前記表面から離間して、前記ガラス突起の高さHを規定して成る、
上部領域と、
を備えた、ガラス板。