特許第6883231号(P6883231)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ゼロックス コーポレイションの特許一覧

特許6883231高速3次元物体印刷用の均一な材料堆積及び硬化を生じさせるための温度管理方法及び装置
<>
  • 特許6883231-高速3次元物体印刷用の均一な材料堆積及び硬化を生じさせるための温度管理方法及び装置 図000002
  • 特許6883231-高速3次元物体印刷用の均一な材料堆積及び硬化を生じさせるための温度管理方法及び装置 図000003
  • 特許6883231-高速3次元物体印刷用の均一な材料堆積及び硬化を生じさせるための温度管理方法及び装置 図000004
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6883231
(24)【登録日】2021年5月12日
(45)【発行日】2021年6月9日
(54)【発明の名称】高速3次元物体印刷用の均一な材料堆積及び硬化を生じさせるための温度管理方法及び装置
(51)【国際特許分類】
   B29C 64/112 20170101AFI20210531BHJP
   B29C 64/245 20170101ALI20210531BHJP
   B29C 64/30 20170101ALI20210531BHJP
   B29C 64/393 20170101ALI20210531BHJP
   B33Y 30/00 20150101ALI20210531BHJP
   B33Y 10/00 20150101ALI20210531BHJP
【FI】
   B29C64/112
   B29C64/245
   B29C64/30
   B29C64/393
   B33Y30/00
   B33Y10/00
【請求項の数】10
【全頁数】11
(21)【出願番号】特願2016-170711(P2016-170711)
(22)【出願日】2016年9月1日
(65)【公開番号】特開2017-56724(P2017-56724A)
(43)【公開日】2017年3月23日
【審査請求日】2019年8月27日
(31)【優先権主張番号】14/852,915
(32)【優先日】2015年9月14日
(33)【優先権主張国】US
(73)【特許権者】
【識別番号】596170170
【氏名又は名称】ゼロックス コーポレイション
【氏名又は名称原語表記】XEROX CORPORATION
(74)【代理人】
【識別番号】100094569
【弁理士】
【氏名又は名称】田中 伸一郎
(74)【代理人】
【識別番号】100109070
【弁理士】
【氏名又は名称】須田 洋之
(74)【代理人】
【識別番号】100067013
【弁理士】
【氏名又は名称】大塚 文昭
(74)【代理人】
【識別番号】100086771
【弁理士】
【氏名又は名称】西島 孝喜
(74)【代理人】
【識別番号】100109335
【弁理士】
【氏名又は名称】上杉 浩
(74)【代理人】
【識別番号】100120525
【弁理士】
【氏名又は名称】近藤 直樹
(74)【代理人】
【識別番号】100139712
【弁理士】
【氏名又は名称】那須 威夫
(74)【代理人】
【識別番号】100167911
【弁理士】
【氏名又は名称】豊島 匠二
(72)【発明者】
【氏名】ポール・ジェイ・マコンヴィル
(72)【発明者】
【氏名】ホン・チャオ
(72)【発明者】
【氏名】チャールズ・ティー・ファッチーニ
【審査官】 河口 展明
(56)【参考文献】
【文献】 国際公開第2015/056230(WO,A1)
【文献】 米国特許出願公開第2015/0210010(US,A1)
【文献】 米国特許出願公開第2010/0191360(US,A1)
【文献】 国際公開第2015/108546(WO,A2)
【文献】 米国特許出願公開第2015/0021815(US,A1)
【文献】 米国特許出願公開第2016/0236414(US,A1)
【文献】 米国特許出願公開第2015/0306823(US,A1)
【文献】 米国特許出願公開第2015/0174824(US,A1)
【文献】 国際公開第2015/108560(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
B29C 64/00−64/40
B29C 67/00−67/08
B29C 67/24−69/02
B29C 73/00−73/34
B29D 1/00−29/10
B29D 33/00;99/00
B33Y 10/00−99/00
(57)【特許請求の範囲】
【請求項1】
3次元物体印刷システムにおいて、
材料の液滴を吐出するように構成された複数のイジェクタと、
吐出された前記材料の液滴によってプラテンの表面上への3次元物体の形成を可能とするように前記複数のイジェクタの反対側に配置されたプラテンと、
前記プラテンの表面を加熱するように構成されたヒータと、
前記プラテンの表面上に形成された前記3次元物体上に吐出された前記材料の温度に対応する信号を生成するように構成されたセンサと、
前記3次元物体の前記吐出された材料上に電磁放射を放射するように構成されたラジエータと、
前記3次元物体の前記吐出された材料を冷却するように構成されたクーラと、
前記複数のイジェクタ、前記ヒータ、前記センサ、前記ラジエータ及び前記クーラに動作可能に接続されたコントローラとを備え、前記コントローラが、
前記プラテンの表面上に前記3次元物体を生成するように前記3次元物体のディジタル画像データを参照しながら材料層を形成するために前記プラテンに向かって前記材料の液滴を吐出するように前記複数のイジェクタを動作させ、
前記プラテンの表面を加熱するように前記ヒータを動作させ、
前記センサから受信した信号を参照しながら、前記電磁放射が放射される前における、前記吐出された材料から熱を減衰させるように前記クーラを動作させ、
所定の閾値と前記センサから受信した信号を比較し、
前記プラテン上の前記3次元物体の前記吐出された材料に前記電磁放射を放射するように前記ラジエータを動作させ、
前記所定の閾値を超えた前記センサからの前記信号に応答して前記電磁放射が放射された材料によって生成される熱を減衰させるように前記クーラを動作させるように構成されている、3次元物体印刷システム。
【請求項2】
前記コントローラが、さらに、
前記3次元物体の横断面を通る温度勾配を減衰させるように前記ヒータ及び前記クーラを動作させるように構成されている、請求項1に記載の3次元物体印刷システム。
【請求項3】
前記コントローラが、さらに、
前記3次元物体の所定部分が前記プラテンの表面上に形成されるまで前記ヒータを動作させるように構成されている、請求項2に記載の3次元物体印刷システム。
【請求項4】
前記ヒータの動作が、さらに、
前記3次元物体が所定の高さに到達するまで前記ヒータを動作させることを備える、請求項3に記載の3次元物体印刷システム。
【請求項5】
前記ヒータの動作が、さらに、
前記3次元物体の温度を示す前記センサからの前記信号が前記所定の閾値を超えるまで前記ヒータを動作させることを備える、請求項3に記載の3次元物体印刷システム。
【請求項6】
3次元物体印刷システムを動作させる方法において、
プラテンの表面を加熱するようにコントローラによってヒータを動作させることと、
前記プラテンの表面上に3次元物体を生成するように前記3次元物体のディジタル画像データを参照しながら材料層を形成するために前記プラテンの表面に向かって材料の液滴を吐出するように前記コントローラによって複数のイジェクタを動作させることと、
前記プラテンの表面上に前記3次元物体を形成する前記吐出された材料の温度を示す信号をセンサによって生成することと、
前記センサからの前記信号を参照しながら、電磁放射が放射される前における、前記吐出された材料から熱を減衰させるようにクーラを前記コントローラによって動作させることと、
前記プラテンの表面上に前記3次元物体を形成する前記吐出された材料を硬化するために前記電磁放射を放射するようにラジエータを前記コントローラによって動作させることと、
所定の閾値を超えた前記センサからの前記信号に応答して前記電磁放射が放射された材料からの熱を減衰させるように前記クーラを前記コントローラによって動作させることとを備える、3次元物体印刷システムを動作させる方法。
【請求項7】
さらに、
前記プラテンの表面上の前記3次元物体を通る温度勾配を減衰させるように前記コントローラによって前記ヒータ及び前記クーラを動作させることを備える、請求項6に記載の3次元物体印刷システムを動作させる方法。
【請求項8】
さらに、
前記3次元物体の所定部分が前記プラテンの表面上に形成されるまで表面を加熱するように前記コントローラによって前記ヒータを動作させることを備える、請求項7に記載の3次元物体印刷システムを動作させる方法。
【請求項9】
前記ヒータの動作が、さらに、
前記プラテンの表面上の材料が所定の高さに到達するまで前記プラテンの表面を加熱するように前記コントローラによって前記ヒータを動作させることを備える、請求項8に記載の3次元物体印刷システムを動作させる方法。
【請求項10】
前記ヒータの動作が、さらに、
前記センサからの前記信号が前記所定の閾値を超えるまで表面を加熱するように前記コントローラによって前記ヒータを動作させることを備える、請求項8に記載の3次元物体印刷システムを動作させる方法。
【発明の詳細な説明】
【技術分野】
【0001】
本文書において開示されるシステム及び方法は、3次元物体を造形するプリンタに関し、より具体的には、印刷された3次元物体の均一な材料堆積及び硬化を生じさせる高速3次元物体プリンタに関する。
【背景技術】
【0002】
ディジタル積層造形としても知られているディジタル3次元造形は、ディジタルモデルからの実質的に任意の形状の3次元固体物体の製造プロセスである。3次元物体印刷は、1つ以上のプリントヘッドが異なる形状の基材上に材料の連続層を吐出する積層プロセスである。典型的には、ドキュメントプリンタにおけるインクジェットプリントヘッドに類似するイジェクタヘッドは、材料供給源に接続されたイジェクタのアレイを含む。単一イジェクタヘッド内のイジェクタは、材料の異なるソースに接続されることができ、又は、各イジェクタヘッドは、イジェクタヘッド内のイジェクタの全てが同じ材料の液滴を吐出するのを可能とするために材料の異なるソースに接続されることができる。製造される物体の一部となる材料は造形材料と称されるとともに、物体形成のための構造的支持を提供するために使用されるが物体から後に除去される材料は、支持材料として知られている。3次元物体印刷は、切削又は孔あけなどの減法プロセスによるワークピースからの材料の除去をほとんどあてにしている従来の物体形成技術から区別される。
【0003】
プリントヘッドの形態のイジェクタを利用する3次元物体プリンタは、噴射されてUV硬化されたポリマーの3次元物体の高解像度を提供することができる積層造形技術として浮上してきたが、3次元物体印刷システムの処理速度及び生産性の向上のために引き続きニーズが存在する。単一経路などのプリントヘッドのより少ない経路中により高い噴射周波数で造形材料及び支持材料を堆積させることによって速度を増加させるために複数のプリントヘッドの使用が提案されている。しかしながら、課題は、より高い噴射周波数及びより少ない経路と関連している。例えば、印刷中に吐出された造形材料及び支持材料の容積は、同じ又はより短い期間にわたって以前の3次元物体プリンタよりも約10倍まで大きくなり得る。造形及び支持材料の液滴は高温で吐出されることから、プリンタによる吐出速度の増加は、既に形成された部品の一部の温度を上昇させることがあり、それにより、吐出された材料の部品精度に悪影響を与えることがある。さらに、UV硬化造形及び支持材料について、硬化プロセスは発熱性である。したがって、インク反応性成分、希釈剤及び添加剤に応じて、熱量がUV硬化中に放出され、プリンタの一部をさらに加熱する硬化温度が部品精度に悪影響を与える。さらに、部品が次層の堆積のための印刷領域になる場合、それは部品の全ての熱履歴を伝え、望ましい温度状態にない可能性が非常に高い。
【発明の概要】
【発明が解決しようとする課題】
【0004】
したがって、高速印刷中に発生する熱影響を補償する3次元物体プリンタのニーズが存在する。
【課題を解決するための手段】
【0005】
1つの実施形態における3次元物体印刷システムは、材料の液滴を吐出するように構成された複数のイジェクタと、吐出された材料の液滴によるプラテンの表面上における3次元物体の形成を可能とするように複数のイジェクタの反対側に位置するプラテンと、プラテンの表面を加熱するように構成されたヒータと、プラテンの表面に形成された3次元物体上の吐出された材料の温度に対応する信号を生成するように構成されたセンサと、3次元物体の吐出された材料上に放射を向けるように構成されたラジエータと、3次元物体の吐出された材料を冷却するように構成されたクーラと、複数のイジェクタ、ヒータ、センサ、ラジエータ及びクーラに動作可能に接続されたコントローラとを備える。
【0006】
コントローラは、プラテンの表面に3次元物体を生成するように3次元物体のディジタル画像データを参照しながら材料層を形成するためにプラテンに向かって材料の液滴を吐出するように複数のイジェクタを動作させ、プラテンの表面を加熱するようにヒータを動作させ、所定の閾値とセンサから受信した信号を比較し、プラテン上に3次元物体の吐出された材料を放射するようにラジエータを動作させ、所定の閾値を超えたセンサからの信号に応答して放射された材料によって生成される熱を減衰させるためにクーラを動作させるように構成されている。
【0007】
3次元物体印刷システムを動作させる方法もまた開示されている。1つの実施形態における方法は、プラテンの表面を加熱するためにコントローラによってヒータを動作させるステップと、プラテンの表面上に3次元物体を生成するように3次元物体のディジタル画像データを参照しながら材料層を形成するためにプラテンの表面に向けて材料の液滴を吐出するようにコントローラによって複数のイジェクタを動作させるステップと、プラテンの表面上に3次元物体を形成する吐出された材料の温度を示す信号をセンサによって生成するステップと、プラテンの表面上に3次元物体を形成する吐出された材料を硬化するために放射を照射するようにコントローラによってラジエータを動作させるステップと、所定の閾値を超えたセンサからの信号に応答して放射された材料からの熱を減衰させるようにコントローラによってクーラを動作させるステップとを備える。
【0008】
物体の高速印刷中の熱影響を補償する3次元物体プリンタの上述した態様及び他の特徴は、添付図面と関連して以下の詳細な説明において説明される。
【図面の簡単な説明】
【0009】
図1図1は、平面支持部材、レベラーロール、硬化ステーション、冷却素子、加熱素子及び調整ステーションを有する3次元物体印刷システムの部分斜視側面図である。
図2図2は、コントローラに接続されて示された図1の3次元物体印刷システムの構成要素の概略図である。
図3図3は、図1の3次元物体印刷システムを動作させる方法の概略図である。
【発明を実施するための形態】
【0010】
システム及び方法についての詳細とともに本願明細書に開示されたシステム及び方法についての環境の一般的な理解のために、図面が参照される。図面において、同様の参照符号は、同様の要素を指す。
【0011】
図1は、3次元物体又は部品110を生成する3次元物体プリンタ100における構成要素の構成を示している。本文書において使用されるように、用語「3次元物体プリンタ」は、3次元物体を形成するために物体の画像データを参照しながら材料を吐出する任意の装置を指す。プリンタ100は、支持材料容器114と、造形材料容器118と、4つのイジェクタヘッド122、123、126、127と、物体110を冷却するように構成された複数の冷却素子130と、ヒータ132と、平面支持部材134と、調整ステーション138と、温度センサ140と、アクチュエータ142と、コントローラ146と、平坦化部又はレベラーロール148と、硬化ステーション150とを含む。導管150、152は、支持材料容器114を支持するようにイジェクタヘッド122、123を接続し、導管154、156は、造形材料容器118に対してイジェクタヘッド126、127を接続する。4つのイジェクタヘッド122、123、126、127は、図1に示されているが、他の実施形態においては、5、6、8個又は任意の他の所望数のイジェクタヘッドが利用される。
【0012】
1つ及びおそらく複数のアクチュエータ142は、平面支持部材134及びイジェクタヘッド122、123、126、127の互いに対する移動を制御するためにコントローラ146によって制御される。すなわち、1つ以上のアクチュエータは、平面支持部材の表面を基準としてプロセス方向及びクロスプロセス方向にイジェクタヘッドを移動させるためにイジェクタヘッドを支持する構造に動作可能に接続されることができる。あるいは、1つ以上のアクチュエータは、部品が平面支持部材134の面内のプロセス及びクロスプロセス方向において製造される表面を移動させるために平面支持部材134に動作可能に接続されることができる。本願明細書において使用される場合、用語「プロセス方向」は、平面支持部材134の表面における1つの軸に沿った移動を指し、「クロスプロセス方向」は、その面におけるプロセス方向軸に対して直交する平面支持部材表面における軸に沿った移動を指す。これらの方向は、図1において文字「P」及び「C−P」によって示されている。
【0013】
イジェクタヘッド122、123、126、127はまた、平面支持部材134に対して直交する方向に移動する。この方向は、本文書において垂直方向と称され、図1において文字「V」によって示されている。垂直方向における移動は、イジェクタヘッド122、123、126、127に動作可能に接続された1つ以上のアクチュエータにより、又は、平面支持部材134及びイジェクタヘッド122、123、126、127の双方に動作可能に接続された1つ以上のアクチュエータにより、平面支持部材134に動作可能に接続された1つ以上のアクチュエータによって達成される。これらの様々な構成におけるこれらのアクチュエータは、垂直方向に平面支持部材134、イジェクタヘッド122、123、126、127又はその双方を移動させるようにアクチュエータを動作させるコントローラ146に動作可能に接続される。コントローラ146は、イジェクタヘッド122、123、126、127に動作可能に接続される(図2)。特定の実施形態において、コントローラは、単一経路上の画像データに対して造形材料及び支持材料を堆積させるためにイジェクタヘッドを制御するように構成されている。
【0014】
アクチュエータ142はまた、冷却素子130、調整ステーション138、レベラーロール148、温度センサ140及び硬化ステーション150に動作可能に接続される。コントローラ146は、平面支持部材134と、冷却素子130、調整ステーション138、レベラーロール148、温度センサ140及び硬化ステーション150との互いに対する移動を制御するためにアクチュエータ142を制御するように構成されている。すなわち、1つ以上のアクチュエータは、平面支持部材の表面を基準としてプロセス方向及びクロスプロセス方向に調整ステーション、レベラー、温度センサ及び硬化ステーションを移動させるために、冷却素子130、調整ステーション138、レベラーロール148、温度センサ140及び硬化ステーション150を支持する構造に動作可能に接続されることができる。
【0015】
あるいは、1つ以上のアクチュエータは、冷却素子130、調整ステーション138、レベラーロール148、温度センサ140及び硬化ステーション150に対して部品110を移動させるために、部品が平面支持部材134の面内のプロセス及びクロスプロセス方向において製造される表面を移動させるように平面支持部材134に動作可能に接続されることができる。図1に示される特定の実施形態において、平面支持部材134は、イジェクタヘッド122、123、126、127、冷却素子130、調整ステーション138、レベラーロール148及び硬化ステーション150に対して物体110を移動させるように構成されたコンベヤベルトである。コントローラ146はまた、調整ステーション138、温度センサ140、平面支持部材134、レベラーロール148及び硬化ステーション150に動作可能に接続される(図2)。
【0016】
コントローラ146は、イジェクタヘッド122、123、126、127による材料の堆積、レベラーロール148によるレベリング又は平坦化、硬化ステーション150による硬化及び調整ステーション138における温度調整を含む印刷プロセス中に物体110の温度を追跡するために温度センサ140を制御する。温度センサ140は、例えば、赤外線センサ又は他の周知の温度測定装置とすることができる。いくつかの実施形態において、温度センサ140は、イジェクタヘッド、レベラー、硬化ステーション及び調整ステーションに対して固定又は可動の複数の温度センサを備える。いくつかの実施形態において、温度センサ140は、物体110上の複数の場所の温度を検出するように構成されている。そして、冷却素子130によって提供される空気の温度及び量は、特定の位置で検出された温度に対して異なって加えられる。
【0017】
イジェクタヘッド122、123、126、127のそれぞれはまた、平面支持部材134の上面135に向かって印刷領域において各イジェクタヘッドに供給される支持及び造形材料を吐出するようにコントローラに動作可能に接続されたメモリ内の3次元物体画像データを参照しながらコントローラ146によって動作される。物体110は、層が対応する物体の高さに到達し且つ物体110が形成されるまで各層において画像データに対応する場所に造形及び支持材料が吐出される層毎ベースで実質的に形成される。いくつかの実施形態において、造形及び支持材料の各層は、平面支持部材134に対してイジェクタヘッドの単一経路においてイジェクタヘッド122、123、126、127によって堆積される。いくつかの実施形態において、支持部材に吐出された材料は、ポリカーボネート又はアクリロニトリル・ブタジエン・スチレン(ABS)材料と同様であり、UV硬化性である。しかしながら、任意の所望の材料が使用されてもよい。
【0018】
1つの特定の実施形態において、造形及び支持材料は、イジェクタヘッド122、123、126及び127による噴射前に約80℃の温度に加熱される。材料が平面支持部材134に噴射された後、材料は、平面支持部材の表面135に衝突した際に又は堆積した材料の前層に衝突した際に迅速にゲル状態に固化又は到達する。
【0019】
コントローラ146はまた、所望の温度まで印刷領域において平面支持部材134の表面135を加熱するようにヒータ132を動作させる。ヒータ132は、支持部材134を加熱するために平面支持部材に動作可能に接続された加熱素子(図示しない)を含むことができる。他の実施形態において、加熱素子は、赤外線(IR)加熱ランプ、マイクロ波ヒータ、加熱パッド又は任意の他の所望の加熱素子などの加熱ランプを含む。ヒータがIR加熱ランプを含むいくつかの特定の実施形態において、IR加熱ランプは、1又は2ミクロンのピークレートを有するAdphosIR加熱ランプである。しかしながら、任意の所望のヒータが使用可能である。
【0020】
材料層が平面支持部材134に吐出された後、コントローラ146は、物体110をレベリングするためにレベラーロール148の下方において部分的に形成された物体110がある位置まで平面支持部材134を移動させるようにアクチュエータ142を制御し、UV硬化性の造形及び支持材料を硬化するためにUV硬化ステーション150を制御し、材料堆積の他層について物体110を調製するように所望の温度まで部品をさらに冷却するために調整ステーション138を制御する。
【0021】
レベラーロール148は、滑らかな表面を有する加熱されたシリンダ(図示しない)を含む。コントローラ146は、形成された最新層と係合して回転させることにより、吐出されることになる材料の後続層について滑らかで均一な表面を提供するために、形成された最新層の一部を溶融、転写及び除去するように、レベラーロール148の加熱されたシリンダを制御する。レベラーは、さらに、物体110が後続層の材料堆積のために正確な高さであるのを確実にする。いくつかの実施形態において、加熱されたシリンダは、明確に定義された厚さを有する滑らかな層を提供するために堆積された材料の約20%まで除去する。シリンダに対して位置決めされるスクレーパ(図示しない)は、シリンダに付着する材料がシリンダから掻き取られて再利用されるか、そうでない場合には例えば容器(図示しない)に導かれるのを確実にする。
【0022】
硬化ステーション150は、吐出された材料を硬化するためにイジェクタヘッドによって平面支持部材134に吐出された材料に放射を導くように構成された放射素子151を含む。いくつかの実施形態において、放射素子151は、物体に電磁放射を導くラジエータである。1つの特定の実施形態において、放射素子151は、物体を形成する材料を硬化するために物体110に向かってUVスペクトルにおける電磁放射を放射する紫外線(UV)ランプ又は一連のUV発光ダイオード(LED)である。調整ステーション138は、温度をさらなる材料堆積のための最適範囲にするために各層の材料堆積後に3次元物体110の一部の温度を制御するように構成されている。物体110の前層の温度が次層の堆積中に高すぎる場合、吐出された材料は、十分に固化することができず、層間の位置合わせ誤差を生じさせる。物体110の前層の温度が次層の堆積中に低すぎる場合、材料は、前層に向かって弱い接着性を有することがあり、例えば、ヤング弾性率はX−Y方向には強いが、Z方向には弱いなど、異方性の機械的特性及び早期の機械的故障を生じさせる。
【0023】
示された実施形態において、調整ステーション138は、物体110の温度、より具体的には物体110の上面温度が、正しい位置合わせ、精度、表面仕上げ及び機械的特性を有する部品を造形するための特定の範囲内にあるのを確実にするために、温度センサ140によって検知された温度に対して物体110を冷却するように構成された冷却素子160と、温度センサ140によって検知された温度に対して物体110を加熱するように構成された加熱素子162とを含む。いくつかで実施形態において、好ましい温度は、材料液滴の迅速な固化とともに層間の良好な接着を確実にするためにインク固化温度よりも僅かに低い。この温度は、いくつかの材料については約40から約50℃の範囲内であるが、温度は、材料の特性に相関がある。冷却素子160は、物体110に向けて空気を導くように構成された1つ又は多数のファンとすることができ、コントローラは、インクに向かって1つ以上のファンから導かれる空気の風速及び/又は温度を制御するように構成されている。いくつかの実施形態において、ファンは、コントローラの制御下で、適切な冷却ガス源(図示しない)から冷却空気又は他のガスを受け取って吹くように接続されることができる。任意の所望の種類の冷却素子が使用可能である。
【0024】
調整ステーション138の加熱素子162は、物体110を加熱するように構成されている。加熱素子は、加熱ランプ、マイクロ波加熱素子又は任意の他の所望の加熱素子などの加熱素子とすることができる。調整ステーション138は、物体110の表面が所望の温度に到達するまで、温度センサ140によって検知された温度に対して冷却及び加熱プロセスを継続する。そして、物体110は、イジェクタヘッド122、123、126、127による材料堆積の他層についての印刷領域にもたらされ、吐出、レベリング、硬化及び調整のプロセスは、物体110が形成されるまで層毎に繰り返される。
【0025】
3次元物体プリンタ100は、さらに、物体が印刷領域にある場合、及び冷却素子130を有する硬化ステーション150における硬化中に、レベラーロール148によってレベリングされた物体110の能動的な冷却のために構成されている。コントローラ146は、温度センサ140からの温度データから形成された3次元物体110の温度に基づいて冷却素子130を動作させる。特定の実施形態において、コントローラ146は、UV材料が使用される場合、効率的なUV硬化を可能とする所望の硬化温度まで物体110を冷却するために冷却素子130を制御するように構成されている。図1に示される実施形態において、冷却素子130は、印刷領域内の空気を循環させる1つ以上の冷却ファンを備える。各ファンによって生成される流速、及び空気の温度は、物体の温度が所定範囲内にあるのを確実にするためにコントローラ146によって可変制御される。温度が高すぎる場合、1つ以上のファンは、3次元物体を冷却するように動作する。図1に示される実施形態において、冷却素子130は、イジェクタヘッド122、123、126、127から分離されている。他の実施形態において、冷却素子は、イジェクタヘッド間に配置することができる。いくつかの実施形態において、冷却素子は、イジェクタヘッドとともに移動する。
【0026】
1つの実施形態において、冷却素子130は、結合又は上述した他の特性などの材料の特性を向上させるために所定範囲内の部品の表面の温度を維持するように制御される。いくつかの実施形態において、特定の範囲は、他の要因のうち、物体を形成するために吐出される材料の種類に応じて選択される。向上した特性を提供する温度範囲は、実験的に決定することができる。特定の実施形態において、選択された範囲は、約35℃から約100℃とすることができる。しかしながら、選択された範囲は、吐出される材料及び実験的データに応じて、この範囲内の範囲とすることができる。さらに、以下により詳細に記載されるように、温度センサ140によって検出された温度に対してヒータ132、冷却素子130及び調整ステーション138を制御することにより、物体110の厚さを通る温度勾配は、所望の範囲内に正確に維持されることができる。
【0027】
いくつかの実施形態において、温度センサ140は、物体110の温度を検出し続けるように制御され、ヒータ132、冷却素子130及び調整ステーション138は、印刷領域外の物体110の所望の温度勾配を維持するように制御されるとともに、物体110は、レベラーロール148によってレベリングされ、硬化ステーション150によって硬化され、調整ステーション138によって冷却又は加熱される。したがって、特定の実施形態において、コントローラ146は、物体110、特に印刷プロセス全体を通して物体110の表面の温度データを収集するように構成されている。検出された温度に基づいて、コントローラ146は、材料堆積、レベリング及び各層の硬化を含む全印刷プロセス中において物体110の表面の温度が最適範囲内にあるのを確実にするために、冷却素子130、ヒータ132及び調整ステーション138の冷却素子160及び加熱素子162を制御する。
【0028】
複数のプリントヘッドの使用は、高い噴射周波数で且つ単一経路などのプリントヘッドの少ない経路で造形材料及び支持材料を堆積させることによって速度を増加させることが提案されている。しかしながら、課題は、より高い噴射周波数及びより少数の経路に関連付けられている。例えば、印刷中に吐出された造形材料及び支持材料の量は、前の3次元プリンタよりも約10倍までとすることができ、材料の増加量は、さらに短期間内に吐出されることができる。堆積中に、プリンタによって吐出された加熱されたインク滴は、既に形成された部品の一部の温度を上昇させることができ、それにより、吐出された材料の変位精度に悪影響を与えることがある。さらに、UV硬化造形及び支持材料が使用される場合、プリントヘッドから吐出されるUVインクの層を硬化するために使用される硬化プロセスは発熱プロセスである。UV硬化性インクが利用される場合、造形及び支持材料の各層が平面支持部材134に吐出された後、平面支持部材134は、UV硬化ステーション138を通り過ぎて物体110を移動させ、UV硬化ステーションにおけるエミッタ(図示しない)は、インクを硬化させるために物体110に向かってUVスペクトルにおける電磁放射を放射する。
【0029】
図3は、層毎ベースで3次元物体を形成するように3次元プリンタを動作させる方法200を示している。プロセスは、3次元物体プリンタのプラテンの表面を加熱するためにコントローラの制御下で動作するヒータによって開始する(ブロック210)。複数のプリントヘッドは、プラテンの表面上に3次元物体を生成するように3次元物体のディジタル画像データを参照しながら材料層を形成するためにプラテンの表面に向かって材料の液滴を吐出するためにコントローラの制御下で動作する(ブロック216)。温度センサは、印刷面上に形成された材料層の温度を示す信号を生成し(ブロック222)、冷却素子は、印刷面上に形成された材料の温度を示す信号を参照しながらプラテンの表面上に吐出された材料から熱を減衰させるように制御される(ブロック228)。レベラーは、プラテンの表面上に形成された3次元物体の表面をレベリングするように制御され(ブロック234)、ラジエータは、プラテン上に吐出された材料を硬化させるために放射線を放射するようにコントローラによって制御される(ブロック240)。調整ステーションの冷却素子は、材料が所定温度に到達するまでプラテンの表面上に吐出された材料から熱を減衰させるためにコントローラによって制御される(ブロック246)。
図1
図2
図3