【実施例】
【0062】
以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。
【0063】
(調製例1)
<ビピリジン基含有メソポーラス有機シリカの調製>
オクタデシルトリメチルアンモニウムクロリド(C
18TMACl、3.78g(10.8mmol))、蒸留水(202ml)及び6N水酸化ナトリウム水溶液(0.59ml(3.54mmol))を混合して50℃に加熱し、得られた混合物に、激しく撹拌しながら、5,5’−ビス(トリイソプロポキシシリル)−2,2’−ビピリジン(Si−BPy−Si、4.59g(8.12mmol))のエタノール溶液(9.17ml)を90分間かけて滴下した。得られた溶液を50℃で加熱しながら3日間激しく撹拌し、さらに50℃で加熱しながら3日間静置して、下記反応式(P1):
【0064】
【化7】
【0065】
で表される反応を行なった。生成した沈殿物を加圧ろ過により回収し、鋳型界面活性剤(C
18TMACl)を含むビピリジン基含有有機シリカメソ構造体を得た。この有機シリカメソ構造体を酸性エタノール(エタノール346mlと2M塩酸10.2mlの混合溶液)に添加し、一晩懸濁させて前記鋳型界面活性剤を除去し、薄黄色〜灰色の固体であるビピリジン基含有メソポーラス有機シリカ(BPy−PMO)を得た。このBPy−PMOのビピリジン基含有量は3.18mmol−BPy/gであった。
【0066】
(比較調製例1)
<ビピリジン基担持ノンポーラスシリカの調製>
アルゴン雰囲気下、非晶質シリカゲル(silica、関東化学株式会社製「球状シリカゲル60N」、比表面積680m
2/g、細孔径5.4nm)(1.00g)をトルエン(30ml)中に分散させ、この分散液に5−(4−トリエトキシシリルブチル)−5’−メチル−2,2’−ビピリジン(250mg(643μmol))を添加した。得られた懸濁液にトリフルオロ酢酸(20μl)を滴下した後、還流しながら1日間撹拌して、下記反応式(P2):
【0067】
【化8】
【0068】
で表される反応を行なった。得られた懸濁液を、メンブレンフィルター(孔径0.5μm)を用いて減圧ろ過し、ろ滓をトルエンおよびメタノールで洗浄した後、減圧乾燥して、ピリジン基担持ノンポーラスシリカ(BPy−silica)を得た。このBPy−silicaのビピリジン基含有量は0.514mmol−BPy/gであった。
【0069】
(比較調製例2)
<ビピリジン基担持メソポーラスシリカの調製>
アルゴン雰囲気下、メソポーラスシリカ(FSM−16、太陽化学株式会社製「TMPS−4R」、比表面積897m
2/g、細孔径3.9nm)(200mg)をトルエン(10ml)中に分散させ、この分散液に5−(4−トリエトキシシリルブチル)−5’−メチル−2,2’−ビピリジン(BPy−C4−Si、50mg(129μmol))を添加した。得られた懸濁液にトリフルオロ酢酸(20μl)を滴下した後、還流しながら1日間撹拌して、下記反応式(P3):
【0070】
【化9】
【0071】
で表される反応を行なった。得られた懸濁液を、メンブレンフィルター(孔径0.5μm)を用いて減圧ろ過し、ろ滓をトルエンおよびメタノールで洗浄した後、減圧乾燥して、ビピリジン基担持メソポーラスシリカ(BPy−FSM)を得た。このBPy−FSMのビピリジン基含有量は0.515mmol−BPy/gであった。
【0072】
(合成例1)
<Rh含有メソポーラス有機シリカの合成>
アルゴン雰囲気下、調製例1で得られたBPy−PMO(50mg、0.159mmol−BPy)及び(ペンタメチルシクロペンタジエニル)ロジウム(III)ジクロリドダイマー([RhCp
*Cl
2]
2、2mg(3.2μmol))を量り取り、さらに、N,N’−ジメチルホルムアミド(50ml)を添加し、60℃で加熱しながら16時間撹拌して、下記反応式(S1):
【0073】
【化10】
【0074】
で表される反応を行なった。得られた分散液をメンブレンフィルター(孔径0.45μm)に通して固体成分を回収した。得られた固体成分をN,N’−ジメチルホルムアミド及びエタノールで洗浄した後、真空乾燥して、Rh原子に配位したビピリジン基を含有するメソポーラス有機シリカ(Rh−BPy−PMO、Rh/BPy−PMO=2/50)を得た。
【0075】
(合成例2)
<Rh含有メソポーラス有機シリカの合成>
BPy−PMOの量を100mg(0.318mmol−BPy)に、[RhCp
*Cl
2]
2の量を5mg(8.1μmol)に変更した以外は合成例1と同様にして、Rh原子に配位したビピリジン基を含有するメソポーラス有機シリカ(Rh−BPy−PMO、Rh/BPy−PMO=5/100)を得た。
【0076】
(合成例3)
<Rh含有メソポーラス有機シリカの合成>
BPy−PMOの量を100mg(0.318mmol−BPy)に、[RhCp
*Cl
2]
2の量を10mg(16μm)に変更した以外は合成例1と同様にして、Rh原子に配位したビピリジン基を含有するメソポーラス有機シリカ(Rh−BPy−PMO、Rh/BPy−PMO=10/100)を得た。
【0077】
(比較合成例1)
<Rh含有ビピリジンの合成>
[RhCp
*Cl
2]
2(50mg(80.9μmol))をN,N’−ジメチルホルムアミド(2.0ml)に溶解した。得られた溶液に2,2’−ビピリジン(31mg(198μmol))を添加し、室温で2時間撹拌して、下記反応式(S2):
【0078】
【化11】
【0079】
で表される反応を行なった。得られた反応液にジエチルエーテル(5ml)を添加し、生成した沈殿物を、メンブレンフィルター(孔径0.20μm)を用いて吸引ろ過により回収し、ジエチルエーテルで洗浄した後、真空乾燥して、RhCp
*ClのRh原子にビピリジン基が配位した均一系Rh錯体(Rh−BPy、Rh/BPy=1/1)を得た。このRh−BPyにおけるRh含有量は2.15mmol−Rh/gであった。
【0080】
(比較合成例2)
<Rh含有ノンポーラスシリカの合成>
アルゴン雰囲気下、比較調製例1で得られたBPy−silica(200mg、0.103mmol−BPy)及び(ペンタメチルシクロペンタジエニル)ロジウム(III)ジクロリドダイマー([RhCp
*Cl
2]
2、20mg(32.4μmol))を量り取り、さらに、脱水メタノール(50ml)を添加し、65℃で加熱しながら16時間撹拌して、下記反応式(S3):
【0081】
【化12】
【0082】
で表される反応を行なった。得られた分散液をメンブレンフィルター(孔径0.45μm)に通して固体成分を回収した。得られた固体成分をメタノールで洗浄した後、真空乾燥して、Rh原子に配位したビピリジン基を含有するノンポーラスシリカ(Rh−BPy−silica、Rh/BPy−silica=10/100)を得た。このRh−BPy−silicaにおけるRh含有量は0.136mmol−Rh/gであった。
【0083】
(比較合成例3)
<Rh含有メソポーラスシリカの合成>
比較調製例1で得られたBPy−silicaの代わりに比較調製例2で得られたBPy−FSM(200mg、0.103mmol−BPy)を用いた以外は、比較合成例2と同様にして、下記反応式(S4):
【0084】
【化13】
【0085】
で表される反応を行い、Rh原子に配位したビピリジン基を含有するメソポーラスシリカ(Rh−BPy−FSM、Rh/BPy−FSM=10/100)を得た。このRh−BPy−FSMにおけるRh含有量は0.292mmol−Rh/gであった。
【0086】
〔X線回折パターン及び窒素吸着等温線〕
調製例1で得られたBPy−PMO及び合成例1〜3で得られたRh−BPy−PMOのX線回折パターンを、粉末X線回折装置(株式会社リガク製「RINT−TTR」)を用いて測定したところ、2θ=1.82°(d=4.85nm)に規則的なメソ構造に由来する回折ピークが観察された。また、2θ=7.60°(d=1.16nm)、2θ=15.6°(d=0.568nm)及び2θ=23.0°(d=0.387nm)にビピリジン基の層状配列構造に由来する回折ピークが観察された。なお、
図1には、一例として、調製例1で得られたBPy−PMO及び合成例1で得られたRh−BPy−PMOのX線回折パターンを示す。
【0087】
また、調製例1で得られたBPy−PMO及び合成例1〜3で得られたRh−BPy−PMOの窒素吸着等温線を、自動比表面積/細孔分布測定装置(カンタクローム社製「Autosorb−1 system」)を用い、液体窒素温度(−196℃)条件で定容量式ガス吸着法により求めたところ、いずれもIV型であった。なお、
図2には、合成例1で得られたRh−BPy−PMOの窒素吸脱着等温線を示す。
【0088】
したがって、X線回折パターン及び窒素吸脱着等温線から、調製例1で得られたBPy−PMO及び合成例1〜3で得られたRh−BPy−PMOはいずれも規則的なメソ細孔を有するものであり、調製例1で得られたBPy−PMOにRhを固定化しても、規則的なメソ細孔構造が維持されていることが確認された。
【0089】
また、窒素吸着等温線に基づいて、調製例1で得られたBPy−PMO及び合成例1〜3で得られたRh−BPy−PMOの中心細孔直径をDFT法により算出し、比表面積をBET法により算出した。それらの結果を表1に示す。
【0090】
〔紫外可視拡散反射スペクトル〕
合成例1〜3で得られたRh−BPy−PMOの紫外可視拡散反射スペクトルを、紫外可視分光光度計(日本分光株式会社製「V−670」)を用いて測定したところ、いずれのRh−BPy−PMOにおいても、ビピリジン基のπ−π
*遷移に由来する300nmを極大波長とする吸収ピークに加えて、Rh原子にビピリジン基が錯配位していることを示す380nm付近の吸収ピークが観測された。また、この380nm付近の吸収ピークの強度は、[RhCp
*Cl
2]
2の添加量が増加するにつれて大きくなった。これは、Rhの固定化量が増加したことによるものと考えられる。
【0091】
〔エネルギー分散型X線分光分析(EDX分析)〕
合成例1〜3で得られたRh−BPy−PMOについて、エネルギー分散型X線分光分析装置を備えた走査型電子顕微鏡(株式会社日立ハイテクノロジーズ製「3600−N」)を用いてEDX分析を行なったところ、いずれのRh−BPy−PMOにおいても、EDXマッピング像から、ケイ素原子(SiK線)とロジウム原子(RhL線)は均一に分布していることが確認された。また、EDX分析結果に基づいて、合成例1〜3で得られたRh−BPy−PMOにおけるケイ素、ロジウム及び塩素の原子組成含有率を算出し、ビピリジン基に対するロジウムのモル比を求めた。さらに、このモル比から、Rh−BPy−PMO(1g)に対するロジウム含有量を算出した。それらの結果を表1に示す。
【0092】
【表1】
【0093】
表1に示した結果から明らかなように、[RhCp
*Cl
2]
2の添加量が増加するにつれて、Rhの固定化量が増加することが確認された。
【0094】
〔X線吸収微細構造(XAFS)解析〕
合成例1〜3で得られたRh−BPy−PMO及び比較合成例1で得られたRh−BPyのX線吸収微細構造(XAFS)解析を、SPring−8(BL14B2)を利用して透過法により行なった。すなわち、Si(311)二結晶分光器により単色化されたX線を用いて、室温でRhのK吸収端付近のXAFSスペクトルを測定した。得られたX線広域微細構造(EXAFS)スペクトルについて、Athenaを用いてデータ処理を行なった。すなわち、EXAFS振動χ(k)にk
3の重みをかけて2Å
−1<k<12Å
−1の領域においてフーリエ変換を行い、動径分布関数を得た。その結果、合成例1〜3で得られたRh−BPy−PMOは、XANESスペクトル及び動径分布関数が均一系Rh錯体(RhCp
*(BPy)Cl
2)と同様の形状を有しており、比較合成例1で得られた均一系Rh錯体(Rh−BPy)と同様の配位構造を有していることが確認された。
【0095】
(参考例1)
固体触媒として合成例2で得られたRh−BPy−PMO(Rh/BPy−PMO=5/100、3.23mg、0.4μmol−Rh)と、反応基質として2−シクロヘキセ−1−オン(40μmol)とを量り取り、これに0.1Mリン酸ナトリウム緩衝液(2ml、pH7)、0.5Mギ酸ナトリウム(68mg)、及び内部標準物質としてフェノール(1μl/ml)を添加して40℃で加熱しながら6時間攪拌して、下記反応式(E1):
【0096】
【化14】
【0097】
で表される反応を行なった。反応終了後、得られた反応液を0.1ml採取し、酢酸エチル(0.5ml)で抽出操作を3回行い、得られた有機層を無水硫酸ナトリウムで乾燥した後、ガスクロマトグラフィで分析し、基質転化率を求めた。その結果を
図3及び
図4に示す。
【0098】
(実施例1)
ウシ血清アルブミン(BSA)を、濃度が2mg/ml、5mg/ml、10mg/ml、又は20mg/mlとなるように更に添加した以外は参考例1と同様にして、前記反応式(E1)で表される反応を行い、基質転化率を求めた。その結果を
図3に示す。
【0099】
(参考例2)
固体触媒として合成例3で得られたRh−BPy−PMO(Rh/BPy−PMO=10/100、1.79mg、0.4μmol−Rh)を用いた以外は参考例1と同様にして、前記反応式(E1)で表される反応を行い、基質転化率を求めた。その結果を
図3に示す。
【0100】
(実施例2)
ウシ血清アルブミン(BSA)を、濃度が2mg/ml、5mg/ml、10mg/ml、又は20mg/mlとなるように更に添加した以外は参考例2と同様にして、前記反応式(E1)で表される反応を行い、基質転化率を求めた。その結果を
図3に示す。
【0101】
(比較参考例1)
触媒として比較合成例1で得られた均一系Rh錯体(Rh−BPy、Rh/BPy=1/1、0.186mg、0.4μmol−Rh)を用いた以外は参考例1と同様にして、下記反応式(C1):
【0102】
【化15】
【0103】
で表される反応を行い、基質転化率を求めた。その結果を
図3に示す。
【0104】
(比較例1)
ウシ血清アルブミン(BSA)を、濃度が2mg/ml、5mg/ml、10mg/ml、又は20mg/mlとなるように更に添加した以外は比較参考例1と同様にして、前記反応式(C1)で表される反応を行い、基質転化率を求めた。その結果を
図3に示す。
【0105】
(比較参考例2)
固体触媒として比較合成例2で得られたRh−BPy−silica(Rh/BPy−silica=10/100、2.94mg、0.4μmol−Rh)を用いた以外は参考例1と同様にして、下記反応式(C2):
【0106】
【化16】
【0107】
で表される反応を行い、基質転化率を求めた。その結果を
図4に示す。
【0108】
(比較参考例3)
固体触媒として比較合成例3で得られたRh−BPy−FSM(Rh/BPy−FSM=10/100、1.34mg、0.4μmol−Rh)を用いた以外は参考例1と同様にして、下記反応式(C3):
【0109】
【化17】
【0110】
で表される反応を行い、基質転化率を求めた。その結果を
図4に示す。
【0111】
図3に示した結果から明らかなように、触媒としてRh原子に配位したビピリジン基を含有するメソポーラス有機シリカ(Rh−BPy−PMO)を用いた場合(実施例1、2)には、タンパク質であるウシ血清アルブミン(BSA)の存在下においても、高い触媒活性(基質転化率70%以上)が維持されることがわかった。一方、触媒として均一系Rh錯体(Rh−BPy)を用いた場合(比較例1)には、BSA濃度が増加するにつれて、触媒活性が大幅に低下することがわかった(BSA:20mg/mlの場合、基質転化率:17%)。
【0112】
また、
図4に示した結果から明らかなように、固体触媒として、Rh原子に配位したビピリジン基を含有するノンポーラスシリカ(Rh−BPy−silica、比較参考例2)及びRh原子に配位したビピリジン基を含有するメソポーラスシリカ(Rh−BPy−FSM、比較参考例3)を用いた場合には、Rh原子に配位したビピリジン基を含有するメソポーラス有機シリカ(Rh−BPy−PMO、参考例1)を用いた場合に比べて、触媒活性が低くなった。これは、Rh−BPy−silicaやRh−BPy−FSMにおいては、非晶質シリカゲルやメソポーラスシリカの表面にビピリジン基が担持されているため、このビピリジン基によって細孔内での反応基質の拡散性が阻害されたこと、また、非晶質シリカゲルやメソポーラスシリカの表面が不均質であることが原因であると推察される。一方、Rh−BPy−PMOにおいては、ビピリジン基がメソポーラス有機シリカの骨格中に含まれているため、反応基質の拡散性が阻害されず、高い触媒活性が得られたと考えられる。
【0113】
(参考例3)
固体触媒として合成例1で得られたRh−BPy−PMO(Rh/BPy−PMO=2/50、11.6mg、1.0μmol−Rh)と、反応基質として酸化型ニコチンアミドアデニンジヌクレオチド(NAD
+、1.0mM)とを量り取り、これに0.1Mリン酸ナトリウム緩衝液(10ml、pH7)及び10Mギ酸ナトリウム水溶液(100μl)を添加して25℃で180分間攪拌して、下記反応式(E2):
【0114】
【化18】
【0115】
〔前記式(E2)中、Rはアデニンジヌクレオチドを示す。〕
で表される反応を行なった。反応終了後、得られた反応液中の還元型ニコチンアミドアデニンジヌクレオチド(NADH)の生成量を測定し、反応収率を求めた。その結果を表2に示す。
【0116】
(実施例3)
ウシ血清アルブミン(BSA)を、濃度が10mg/mlとなるように更に添加した以外は参考例3と同様にして、前記反応式(E2)で表される反応を行い、反応収率を求めた。その結果を表2に示す。
【0117】
(比較参考例4)
触媒として比較合成例1で得られた均一系Rh錯体(Rh−BPy、Rh/BPy=1/1、0.465mg(1.0μmol)、1.0μmol−Rh)を用いた以外は参考例3と同様にして、下記反応式(C4):
【0118】
【化19】
【0119】
〔前記式(C4)中、Rはアデニンジヌクレオチドを示す。〕
で表される反応を行い、反応収率を求めた。その結果を表2に示す。
【0120】
(比較例2)
ウシ血清アルブミン(BSA)を、濃度が10mg/mlとなるように更に添加した以外は比較参考例4と同様にして、前記反応式(C4)で表される反応を行い、反応収率を求めた。その結果を表2に示す。
【0121】
【表2】
【0122】
表2に示した結果から明らかなように、触媒として、Rh原子に配位したビピリジン基を含有するメソポーラス有機シリカ(Rh−BPy−PMO)を用いた場合(実施例3)には、均一系Rh錯体(Rh−BPy)を用いた場合(比較例2)に比べて、タンパク質であるウシ血清アルブミン(BSA)の存在下における触媒活性の維持率が高くなることがわかった。