【発明の効果】
【0010】
上述の手段(1)〜(2)によれば、弦楽器の音のように複雑な倍音を含む音の波形が刻まれたソースの音信号の波形を忠実に再現した音にして再生可能となり、弦楽器などの音も極めて生々しく再現することがはじめて可能になった。
【0011】
このような作用効果が得られるのは、本願発明者が解明した以下の事実による。
すなわち、ソースに刻まれた弦楽器等の生音の音波形を再現する際の最大の障害になっているのは、スピーカー装置やアンプなどが持っている群遅延特性であるという事実である。従来から「群遅延特性」自体は知られていたが、この「群遅延特性」が「生音の波形再現」に決定的な影響を及ぼすとの明確な認識はされていなかった。そして、アンプなどのオーディオ装置に固有の「群遅延特性」がアンプなどのオーディオ装置の固有の音質を決定づけているという事実である。つまりは、従来不明であった音質を左右する物理因子が「群遅延特性」であるという事実である。換言すると、「群遅延特性」以外の歪率やS/N比等々の従来問題にしていた物理特性はほとんど音質に関係なかったという事実である。本願発明は、これらの事実を明確に認識することがきっかけでなすことができたものである。
【0012】
ここで、群遅延(τg)とは、ある信号処理系にある周波数の信号を入力した場合において、入力波形と出力波形との位相差をφとし、角周波数をωとしたとき、τg=dφ/dωで表されるものである。簡単に言えば、群遅延の値の大きさは、遅延時間が周波数に依存して変化する度合いを示すもので、例えば、群遅延の値がゼロであれば、遅延時間が周波数にかかわらず一定であるということであり、群遅延の値がゼロ以上であれば、その値に応じた程度に遅延時間が周波数に依存して変化するものであるということができる。すなわち、群遅延が大きいと、周波数がわずかに異なっただけで、互いの遅延時間が大きく異なってしまうということである。つまりは、仮に、周波数の異なる二つの信号を一緒に入力した場合には、その二つの信号は群遅延の大きさに応じた大きさの時間差をもって別々に出力されるということである。
【0013】
群遅延は、特に大口径のスピーカーの低音部において非常に大きい値を有しており、例えば、口径30cm内外のスピーカーの群遅延特性に着目し、スピーカーに複数の周波数の音の電気信号を印加してから音が発生されるまでの時間についてみると、50Hzの音は、500Hzの音が出てから数m秒程度遅れて出てくることが知られている。これは、電気信号が加えられてからコーン紙が振動するまでにかかる時間が低周波ほど長くかかるという現象ゆえである。
【0014】
いま、このような群遅延特性を有するスピーカーに対し、50Hzの波に500Hzの波が重畳された波形を有する音信号が加えられたとすると、先に500Hzの波の音が再生され、その後、数m秒程度遅れてからの50Hzの波の音が再生されることになる。換言すると、50Hzの波の上にある500Hzの波のピーク位置が数m秒の分だけ移動することになる。
【0015】
ここで、特に、弦楽器の音などをはじめとする自然の生の音の波形は、単純繰り返し波形の波とは異質なものであり、いわば、非繰り返し波形もしくは非対称な波形ともいうべきもので、波どうしが多数複雑に重畳された複雑な形状をしているのが普通である。このような複雑な波形の音の場合には、群遅延があると、50Hzの波の上の特定の位置にあった500Hzの波のピーク位置(時間軸における位置関係)が変わることになる。そうすると、それによって当然、元の波形とは違った波形になってしまうことになる。その結果、再生される音自体が違ったものになることは明らかである。したがって、原理的にいえば、群遅延特性がある(全周波数領域のいずれかで群遅延の値がゼロでないという意味)だけで、波形再現は不可能であるということになる。逆に言えば、群遅延特性がない(全周波数領域で群遅延の値がゼロであるという意味)場合には、複雑な波形の重畳波でも、重畳波同士の位置関係(時間軸における位置関係)は再現されるということになる。これに加えて再生周波数領域全体で周波数特性が一様(全周波数領域でピーク高さの再現性があるという意味)であれば、波形再現が可能になると考えられる。
【0016】
以上の考察に基づけば、結局、オーディオ装置などの性能は、周波数成分の異なる複数の波が重畳された波形を有する音信号を用い、それらを被測定系に入力し、入力する前の音波形と出力後の音波形とを比較し、その一致度合いの良し悪しによって評価することによって客観的評価が可能になることがわかる。これに対して、従来の評価方法は弦楽器等の生の音の波形の再現能力とは関係のない因子に基づいていたもので、ほとんど意味のないものであったと思われる。
【0017】
なお、アンプなども含む音信号の伝送経路中にL(コイル),C(キャパシタンス;コンデンサー),R(抵抗)などの成分が存在すると、一種のフィルターの作用をすることになり、ここを伝送する音信号に対し、遅延回路として働く。そして、その遅延回路の遅延時間には周波数依存性がある。つまり、音信号の伝送経路にも、スピーカーに比較するとその大きさは非常に小さいと考えられるが、群遅延があることは明らかである。特にアンプには、多数の抵抗、コンデンサーもしくはトランジスター等が用いられているので、これらが有するL,C,R成分による群遅延は必ずしも無視できるようなものでないとも考えられる。
【0018】
ここで、アンプにおいて、音の違いを左右する因子は何であるのか、という問いに対して明確に答えた文献等はこれまで全く見つかっていない。これまで問題にしてきていた歪率やS/N比や周波数特性やダンピングファクターその他の物理因子が全く変わりない二つのアンプでも音がかなり違う場合があるからである。本願発明者の考察によれば、音の違いを左右しているのは主として群遅延特性の違いではないかと考えられる。つまり、アンプによって等価的に介在されるL,C,Rなどの成分が異なるので異なるフィルターが介在されていることになり、結果的にそれぞれ固有の群遅延特性を有することになり、その固有の群遅延特性によって固有の音になっているものと考えられる。
【0019】
また、音は、空間における空気密度の時間変化であって、オーディオ装置は、この空気密度の時間変化をマイク等によって電気的信号の大小の時間的変化に変換したものを再び音に変換するための装置である。電気的信号の大小の時間的変化とは、つまりは音信号の波形で表されるものであって、音は、一義的にこの音波形によって定まるという比較的単純なものであるということができる。したがって、他の因子がどのように違っていても最終的に音の波形が同一であれば、音は同じであるし、音の波形が違うのであれば、他の因子がどうであろうとも音は違うのである。ただ、音の場合、聴感上においては音が違うことは判別できても、その良し悪しなどを客観的に判別することは著しく困難であることはブラインドテストなどの経験上からも明らかである。これは、音を特定するための情報量が映像などに比較して極端に少ないために、聴覚の個人的違いや、いわゆるブラセーボ効果などに大きく左右されるからであるとも考えられる。
【0020】
この点、映像の場合を考えると、映像は、二次元形状を特定する情報、二次元形状の各点における明るさの情報、さらにカラーの場合には各点における色を特定するための情報などが加えられて定まるもので、音に比較してきわめて膨大な情報によってはじめて定まるものである。つまりは、映像の場合には、沢山の情報によって特定されるので誰もが間違えようがなくその映像を明確に特定して記憶でき、既に記憶している類似の正しい映像と瞬時に比較してその映像が正しいものか異常なものかを判断できるのではないかと考えられる。これに比較すると音の場合には一瞬シルエットが見え隠れする程度の情報量だとも考えられる。すなわち、音の場合には、非常に少ない情報しかないので、ほとんどの人が映像のようには聴いた音を明確に特定して記憶することはできず、かつ既に記憶しているあいまいな記憶に基づく音と比較しても、何か違うかもしれないという程度のことを感ずることはできても、その音が正しい音なのか異常な音なのかということになると、映像に比較すると、きわめてあいまいなものになるものと考えられる。
【0021】
映像の場合であれば、再生した映像に、像のゆがみ、色ずれもしくは色むらなどがあれば、ただちにそれは正しい映像ではないと判断でき、ソース自体の異常は勿論であるが、再生装置の異常も疑うことになる。これは、映像の場合には、ソースたるフィルムの映像を投写して映し出された映像は、殆どの場合、正しい映像、つまりは色ずれや像の歪みや等のない正しい映像であり、我々は、再生装置で再生したときの正しい映像を常に眼にしており、したがって、再生装置で再生された映像が正しい映像であるか異常な映像であるかを直ちに判別できるだけの情報を既に頭に持っているからでもあるということもできる。
【0022】
これに対し、音の場合には、像のゆがみに例えられる周波数特性の変動、色ずれに例えられる群遅延特性などがあった場合、それによっては正しくない音であるとはただちに判断できないのが普通である。このため、例えていえば、ソースに刻まれているのがカラー写真の映像であるのに、映し出されたものがピカソの絵のようになっていた場合には、映像ではただちに変だと気が付くと思われるが、音になった途端、それがおかしい音であるとはほとんど誰も指摘できないことになっているものと思われる。これは、音の場合には、現状のオーディオ装置によって再生した音は、ことごとく、正しくない音、つまりは像の歪みや色ずれ等がある千差万別なもので、我々は、再生装置で再生したときの正しい音をこれまで耳にした経験を持たないので、再生装置で再生された音が正しい音であるかどうかを判別するための手がかりすら全く持っていなかったからでもあるということもできる。
【0023】
それゆえ、これまでのオーディオ装置の評価は、いわば、映し出されたピカソ風の絵の良し悪しの評価になってしまっているのが現状のように思われる。色ずれの模様が絶妙できれいであるとか、像のゆがみ具合がなんとも芸術的であるとか、という具合にである。これでは「再生装置」ではなく、いわばソースをオルゴールのユニット代わりに用いて、さまざまな箱(オーディオ装置)に様々なユニット(ソース)をとっかえひっかえ取り付けて一種のオルゴールの音の美しさを競って楽しんでいるようなものだといっても過言ではない。
【0024】
このようなたとえがあながち間違いともいえないことは、本願発明にかかるオーディ装置と、従来の一般的なオーディオ装置とを比較することによって誰でも明確に実感できるものである。すなわち、本願発明は、「生音の波形の再現」に向け、生音の波形の特質に着目して、その波形の再現に障害になると思われるいくつかの要因を抽出し、その障害要因を一つ一つつぶしていくことによって、かなり「生音の波形の再現」に近づいたものである。いわば、正しい再生音に近づいたものである。その結果、弦楽器の音に代表される倍音成分の多いと思われる自然音が、非常に生々しく自然に聞こえるようになり、いわば、メッキを全部剥がしたような音、あるいは、電気音響的な音ではなく、アコースティック楽器らしい音になった。しかも、それが、特別に選ばれたソースだけではなく、まともに録音されたと思われる多くのソースについて言えるようになった。
【0025】
従来のオーディオ装置でも、特別に選ばれた限られた一部のソースを再生した場合にはそれに近いように感じさせてくれるオーディオ装置が非常に少なかったが存在した。しかし、そのような装置の場合、その非常に限られたソース以外では生々しさを感じられずに逆にかえってうるささなどを感じて聴きにくい音になる場合も少なからずあるものであった。従来は、そのようなソースは録音が悪いせいであり、よい録音は非常に限られたものであると思われていた。しかしながら、本発明のオーディオ装置によれば、そのような多くのソースについてもうるささなどを感ずるようなことはなく、それなりに生々しく録音されているものであることを十分に感じさせてくれるものである。
【0026】
ソースに刻まれた音は、すでに原音とは違うものであるので、オーディオ装置で原音再生はもともと不可能であるとし、そうであるならば、忠実再生はもともと無意味であるのだからオーディオ装置によって逆にソースの音を加工することによって原音に近い音にすべきとした間違った考えもある。その考えが間違いと思うのは、既に述べたことからも明らかではあるが、以下の理由からでもある。まず、そのような考えが提示されているものの、その実現手段としてまともな具体的手段が提示された例はみたことがない。その理由は提示しようとして提示できないからだと思われる。何故なら、ソースに刻まれた音以外には、そのソースに刻まれた音の元になった原音を客観的に特定もしくは推定する術はないからである。主観的に推定しても単なるあてずっぽうに過ぎないことになる。楽器等の生音の波形は非常に複雑なので、単純な補完法などで推定することはほとんど不可能と考えられるからである。
【0027】
そもそもオーディオ装置は、「原音」を再現する装置ではなく、ソースに刻まれた音を忠実に再生する装置であると考えるべきである。これは、映写機などの映像再生装置が、フィルムなどに刻まれた映像を忠実に映し出す装置であることに照らせば、きわめて当然のことと思われる。フィルムに刻まれた映像を加工して、「原音」に相当する「現場」自体を再現しようとは誰も考えないのではないだろうか。この場合、ソースの音の忠実再現とは、つまりは、音の波形を忠実に再現することである。従来のオーディオ界は、そのような客観的視点ではなく、「原音」再現などという意味をなさない概念などに振り回わされて、波形再現とは何の関係もないあてずっぽう的なハードいじりや、抽象的言語遊びに終始していたようにもみえる。
【0028】
原音自体を味わうには、論理的にみてその場にいない限り無理であろうが、原音に最も近い音、もしくは原音を彷彿させるに最も有効な音は、原音自体の情報の一部を切り取ってそのまま記録したものであるところのソースに刻まれた音をそのままの形で再現した音であると考えられる。これは、写真映像に例えて言うならば、像のゆがみや色ずれなどを徹底的に排除して写真映像として刻まれたフィルムの映像を忠実にスクリーンなどに映し出すこと以外に、その撮影した現場を生々しく彷彿させる術はないのと似ていると考えられる。像のゆがみや色ずれなどに相当する変形があった場合には、それが主観的に原音を目指したものであると主張したとしても客観的にみれば生々しさから遠ざかっているに過ぎないのではないかと考えられる。
【0029】
しかるに、現状のオーディオ装置は、ソースの音に対して、映像であれば誰がみても絶対に許されないほどの像のゆがみや色ずれに相当する変形が加えられた状態の音を平気で放出するものであるに等しく、現状のオーディオ界はそれを野放図のままにしているようにもみえる。ただ、これは、最近までは、スピーカーを主としたオーディオ機器の性能をもってしては、「複雑な波形」を含む「生音の波形の再現」が不可能であったので、仕方がなかったともいい得る。
【0030】
しかし、本願発明者の考察によれば、近年になって開発された技術を応用すれば「生音の波形の再現」が可能であることが判明した。すなわち、AVアンプ等に用いられているデジタルフィルターを用いた音場補正技術である。この音場補正技術の中には、周波数補正やルーム補正(部屋の反射音による歪補正など)などとともに、群遅延補正を行うものがある。ただ、この音場補正技術は、主として5.1チャンネルなどのサラウンドシステムの各スピーカーの間の音圧バランスや位相の調整あるいは再生周波数の調整などを行うツールとしての認識が強く、いわゆるピュアオーディオに適用される例は少ない。また、ピュアオーディオに適用される場合においても、いわゆる部屋の音場を調整して補正するツールであるという程度のあいまいな認識しかなく、明確に「生音の波形再現」には絶対に欠かせない決定的なツールであるとまでは認識されていなかったものである。
【0031】
本願発明者は、従来のスピーカーやアンプだけでは実現不可能であった、非繰り返しもしくは非対称の波形ともいうべき「複雑な波形」を含む「生音の波形再現」の実現には、音場補正技術が絶対に欠かせないものであるという認識を持つに至り、本願発明をなすに至ったものである。換言すると、音場補正技術を用いることによって従来は不可能と思われていた「複雑な波形」を含む「生音の波形再現」をはじめて可能にしたものである。
【0032】
すなわち、例えば、弦楽器や管楽器や打楽器などの楽器の音の波形のように、周波数の異なる複数の波形が複雑に重畳された非繰り返しもしくは非対称の波形ともいうべき、「複雑な波形」を含む「生音の波形再現」をするには、重畳波どうしの波の位置関係(ピーク位置の関係)を再現したうえで、波の高さも再現する必要がある。重畳波どうしの位置関係(ピーク位置の関係;位相の関係)の再現は、群遅延特性を理想的にする(全周波数で群遅延の値をゼロにする)ことで実現でき、波の高さの再現は周波数特性を一様にすることで実現できる。上述の通り、スピーカーやアンプには「群遅延特性」(各周波数での群遅延の値を示したもの)及び「周波数特性」(各周波数での音圧レベルを示したもの)があり、これらの特性が所望のものでないと波形再現ができないことになるが、音場補正技術を用いればこれらを補正できるので、その補正を行うことによって、「複雑な波形」を含む「生音の波形再現」を行うものである。
【0033】
この場合、スピーカーの群遅延は、口径が大きくなればなるほど増大するので、大口径のスピーカーの場合、音場補正装置の補正では群遅延の補正をしきれない場合がある。一方、口径の小さいスピーカーは群遅延は小さいが、低音領域で必要な音圧レベルを確保できず、音場補正装置による補正によっても補正しきれない場合がある。そこで、口径の小さいスピーカーを多数用いることで群遅延を小さくした状態で低音領域の音圧レベルをある程度確保し、一方、多数用いたことによって音圧過剰となった中高音域については、音場補正装置を装備したアンプを用いることによってカットすることにより、優れた群遅延特性とフラットな周波数特性を得るようにした。
【0034】
ここで、本発明者の考察によれば、音場補正における補正の結果が出力されるのは、あくまでもスピーカーの振動体であるコーン紙に対してである。しかるに、その補正の基礎となる測定値にコーン紙の振動以外に起因する雑音が含まれている場合には、雑音を含むものに対しての補正となってしまって正しい補正がなされないのではないか、という疑問が持ち上がった。そうしてみると、現状のスピーカーは、コーン紙の表の面から射出される音以外にも、コーン紙の裏面から射出してボックス内で反射した後、コーン紙を突き抜けて射出される音や、ボックス表面の振動によって生ずる音など、無視できない雑音に満ちているのではないかということになった。
【0035】
実際に、現状の「従来型」スピーカーで弦や人の声などの音源を再生した場合のスピーカーの再生波形と元の波形とを比較してみると、音場補正がない場合と音場補正をかけた場合とで、波形再現性に大きな違いは見られず、いずれも元の波形と大きく異なるものであった。そこで、本発明者は、上記雑音を可能な限り除去することを検討した結果、振動によって音の出るボックスをそのままの状態にしたのでは難しいということになった。そこで、本発明にかかるスピーカーは、いわゆるボックスに相当する部分を可能な限り吸音材や制振材で覆うか、もしくはボックスに相当するもの自体をなくし、コーン紙の表の面以外の部分を可能な限り吸音材などで覆うことにしたものである。その結果、本発明にかかるスピーカー装置では、音場補正がない場合と音場補正をかけた場合とで、波形再現性に大きな違いが見られ、音場補正をかけた場合には、スピーカーから射出された音の波形がソースに刻まれた元の波形に非常に近いものになることが判明した。すなわち、補正が極めて有効にかかっていることが判明した。本発明にかかる装置による再生音が従来の装置では全く経験したことがないほど生々しい音に聴こえる理由であると考えられる。
【0036】
なお、マルチウエイ式のスピーカーの場合には、小口径のスピーカーを多数用いたスピーカー装置を構成し、このスピーカー装置で低音領域を担当させ、一方、中高音領域は別のスピーカーによって担当させ、これらをチャンネルデバイダーを用いたマルチアンプ駆動することによって、低音領域でも群遅延が少なく、かつ十分な音圧レベルを確保でき、しかも、中高音領域での周波数特性の乱れもなく、全再生領域にわたって音圧レベルのバランスも取れるようにした。さらには、このようなオーディオ装置であれば、音場補正装置による群遅延補正及び周波数補正によって非常に効果的な補正が可能になるので、この補正を行うことによって、「複雑な波形」を含む「生音の波形再現」をより正確に行うことを可能にしたものである。
【0037】
ここで、音場補正装置による群遅延補正及び周波数補正は、周知のFIRフィルターなどのデジタルフィルターを用いたもので行う。これによれば、位相の乱れなどをきたすことがなく比較的容易に補正を行うことができる。これらの補正は、周知のAVアンプなどで一般的に用いられているように、群遅延特性や周波数特性等を測定するための測定用信号をオーディ装置で再生し、それをマイクで受けて分析し、得られた群遅延特性や周波数特性等からその逆補正をする音響伝達圧関数を作成し、それを用いて補正を行うものである。FIRフィルターを用いた補正装置は、フィルターのタップ数が多ければ多いほど精密な補正ができるので、少なくとも数千タップ以上、可能であれば数十万タップ備えたものとすることが望ましい。かつ処理周波数も192KHz、24bit以上とすることが望ましい。